]> git.ipfire.org Git - people/arne_f/kernel.git/blame - drivers/iommu/intel-iommu.c
iommu/vt-d: Check capability before disabling protected memory
[people/arne_f/kernel.git] / drivers / iommu / intel-iommu.c
CommitLineData
ba395927 1/*
ea8ea460 2 * Copyright © 2006-2014 Intel Corporation.
ba395927
KA
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
ea8ea460
DW
13 * Authors: David Woodhouse <dwmw2@infradead.org>,
14 * Ashok Raj <ashok.raj@intel.com>,
15 * Shaohua Li <shaohua.li@intel.com>,
16 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17 * Fenghua Yu <fenghua.yu@intel.com>
9f10e5bf 18 * Joerg Roedel <jroedel@suse.de>
ba395927
KA
19 */
20
9f10e5bf
JR
21#define pr_fmt(fmt) "DMAR: " fmt
22
ba395927
KA
23#include <linux/init.h>
24#include <linux/bitmap.h>
5e0d2a6f 25#include <linux/debugfs.h>
54485c30 26#include <linux/export.h>
ba395927
KA
27#include <linux/slab.h>
28#include <linux/irq.h>
29#include <linux/interrupt.h>
ba395927
KA
30#include <linux/spinlock.h>
31#include <linux/pci.h>
32#include <linux/dmar.h>
33#include <linux/dma-mapping.h>
34#include <linux/mempool.h>
75f05569 35#include <linux/memory.h>
aa473240 36#include <linux/cpu.h>
5e0d2a6f 37#include <linux/timer.h>
dfddb969 38#include <linux/io.h>
38717946 39#include <linux/iova.h>
5d450806 40#include <linux/iommu.h>
38717946 41#include <linux/intel-iommu.h>
134fac3f 42#include <linux/syscore_ops.h>
69575d38 43#include <linux/tboot.h>
adb2fe02 44#include <linux/dmi.h>
5cdede24 45#include <linux/pci-ats.h>
0ee332c1 46#include <linux/memblock.h>
36746436 47#include <linux/dma-contiguous.h>
091d42e4 48#include <linux/crash_dump.h>
8a8f422d 49#include <asm/irq_remapping.h>
ba395927 50#include <asm/cacheflush.h>
46a7fa27 51#include <asm/iommu.h>
ba395927 52
078e1ee2
JR
53#include "irq_remapping.h"
54
5b6985ce
FY
55#define ROOT_SIZE VTD_PAGE_SIZE
56#define CONTEXT_SIZE VTD_PAGE_SIZE
57
ba395927 58#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
18436afd 59#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
ba395927 60#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
e0fc7e0b 61#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
ba395927
KA
62
63#define IOAPIC_RANGE_START (0xfee00000)
64#define IOAPIC_RANGE_END (0xfeefffff)
65#define IOVA_START_ADDR (0x1000)
66
67#define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
68
4ed0d3e6 69#define MAX_AGAW_WIDTH 64
5c645b35 70#define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
4ed0d3e6 71
2ebe3151
DW
72#define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
73#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
74
75/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
76 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
77#define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
78 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
79#define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
ba395927 80
1b722500
RM
81/* IO virtual address start page frame number */
82#define IOVA_START_PFN (1)
83
f27be03b 84#define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
284901a9 85#define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
6a35528a 86#define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
5e0d2a6f 87
df08cdc7
AM
88/* page table handling */
89#define LEVEL_STRIDE (9)
90#define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
91
6d1c56a9
OBC
92/*
93 * This bitmap is used to advertise the page sizes our hardware support
94 * to the IOMMU core, which will then use this information to split
95 * physically contiguous memory regions it is mapping into page sizes
96 * that we support.
97 *
98 * Traditionally the IOMMU core just handed us the mappings directly,
99 * after making sure the size is an order of a 4KiB page and that the
100 * mapping has natural alignment.
101 *
102 * To retain this behavior, we currently advertise that we support
103 * all page sizes that are an order of 4KiB.
104 *
105 * If at some point we'd like to utilize the IOMMU core's new behavior,
106 * we could change this to advertise the real page sizes we support.
107 */
108#define INTEL_IOMMU_PGSIZES (~0xFFFUL)
109
df08cdc7
AM
110static inline int agaw_to_level(int agaw)
111{
112 return agaw + 2;
113}
114
115static inline int agaw_to_width(int agaw)
116{
5c645b35 117 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
df08cdc7
AM
118}
119
120static inline int width_to_agaw(int width)
121{
5c645b35 122 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
df08cdc7
AM
123}
124
125static inline unsigned int level_to_offset_bits(int level)
126{
127 return (level - 1) * LEVEL_STRIDE;
128}
129
130static inline int pfn_level_offset(unsigned long pfn, int level)
131{
132 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
133}
134
135static inline unsigned long level_mask(int level)
136{
137 return -1UL << level_to_offset_bits(level);
138}
139
140static inline unsigned long level_size(int level)
141{
142 return 1UL << level_to_offset_bits(level);
143}
144
145static inline unsigned long align_to_level(unsigned long pfn, int level)
146{
147 return (pfn + level_size(level) - 1) & level_mask(level);
148}
fd18de50 149
6dd9a7c7
YS
150static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
151{
5c645b35 152 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
6dd9a7c7
YS
153}
154
dd4e8319
DW
155/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
156 are never going to work. */
157static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
158{
159 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
160}
161
162static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
163{
164 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
165}
166static inline unsigned long page_to_dma_pfn(struct page *pg)
167{
168 return mm_to_dma_pfn(page_to_pfn(pg));
169}
170static inline unsigned long virt_to_dma_pfn(void *p)
171{
172 return page_to_dma_pfn(virt_to_page(p));
173}
174
d9630fe9
WH
175/* global iommu list, set NULL for ignored DMAR units */
176static struct intel_iommu **g_iommus;
177
e0fc7e0b 178static void __init check_tylersburg_isoch(void);
9af88143
DW
179static int rwbf_quirk;
180
b779260b
JC
181/*
182 * set to 1 to panic kernel if can't successfully enable VT-d
183 * (used when kernel is launched w/ TXT)
184 */
185static int force_on = 0;
186
46b08e1a
MM
187/*
188 * 0: Present
189 * 1-11: Reserved
190 * 12-63: Context Ptr (12 - (haw-1))
191 * 64-127: Reserved
192 */
193struct root_entry {
03ecc32c
DW
194 u64 lo;
195 u64 hi;
46b08e1a
MM
196};
197#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
46b08e1a 198
091d42e4
JR
199/*
200 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
201 * if marked present.
202 */
203static phys_addr_t root_entry_lctp(struct root_entry *re)
204{
205 if (!(re->lo & 1))
206 return 0;
207
208 return re->lo & VTD_PAGE_MASK;
209}
210
211/*
212 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
213 * if marked present.
214 */
215static phys_addr_t root_entry_uctp(struct root_entry *re)
216{
217 if (!(re->hi & 1))
218 return 0;
46b08e1a 219
091d42e4
JR
220 return re->hi & VTD_PAGE_MASK;
221}
7a8fc25e
MM
222/*
223 * low 64 bits:
224 * 0: present
225 * 1: fault processing disable
226 * 2-3: translation type
227 * 12-63: address space root
228 * high 64 bits:
229 * 0-2: address width
230 * 3-6: aval
231 * 8-23: domain id
232 */
233struct context_entry {
234 u64 lo;
235 u64 hi;
236};
c07e7d21 237
cf484d0e
JR
238static inline void context_clear_pasid_enable(struct context_entry *context)
239{
240 context->lo &= ~(1ULL << 11);
241}
242
243static inline bool context_pasid_enabled(struct context_entry *context)
244{
245 return !!(context->lo & (1ULL << 11));
246}
247
248static inline void context_set_copied(struct context_entry *context)
249{
250 context->hi |= (1ull << 3);
251}
252
253static inline bool context_copied(struct context_entry *context)
254{
255 return !!(context->hi & (1ULL << 3));
256}
257
258static inline bool __context_present(struct context_entry *context)
c07e7d21
MM
259{
260 return (context->lo & 1);
261}
cf484d0e
JR
262
263static inline bool context_present(struct context_entry *context)
264{
265 return context_pasid_enabled(context) ?
266 __context_present(context) :
267 __context_present(context) && !context_copied(context);
268}
269
c07e7d21
MM
270static inline void context_set_present(struct context_entry *context)
271{
272 context->lo |= 1;
273}
274
275static inline void context_set_fault_enable(struct context_entry *context)
276{
277 context->lo &= (((u64)-1) << 2) | 1;
278}
279
c07e7d21
MM
280static inline void context_set_translation_type(struct context_entry *context,
281 unsigned long value)
282{
283 context->lo &= (((u64)-1) << 4) | 3;
284 context->lo |= (value & 3) << 2;
285}
286
287static inline void context_set_address_root(struct context_entry *context,
288 unsigned long value)
289{
1a2262f9 290 context->lo &= ~VTD_PAGE_MASK;
c07e7d21
MM
291 context->lo |= value & VTD_PAGE_MASK;
292}
293
294static inline void context_set_address_width(struct context_entry *context,
295 unsigned long value)
296{
297 context->hi |= value & 7;
298}
299
300static inline void context_set_domain_id(struct context_entry *context,
301 unsigned long value)
302{
303 context->hi |= (value & ((1 << 16) - 1)) << 8;
304}
305
dbcd861f
JR
306static inline int context_domain_id(struct context_entry *c)
307{
308 return((c->hi >> 8) & 0xffff);
309}
310
c07e7d21
MM
311static inline void context_clear_entry(struct context_entry *context)
312{
313 context->lo = 0;
314 context->hi = 0;
315}
7a8fc25e 316
622ba12a
MM
317/*
318 * 0: readable
319 * 1: writable
320 * 2-6: reserved
321 * 7: super page
9cf06697
SY
322 * 8-10: available
323 * 11: snoop behavior
622ba12a
MM
324 * 12-63: Host physcial address
325 */
326struct dma_pte {
327 u64 val;
328};
622ba12a 329
19c239ce
MM
330static inline void dma_clear_pte(struct dma_pte *pte)
331{
332 pte->val = 0;
333}
334
19c239ce
MM
335static inline u64 dma_pte_addr(struct dma_pte *pte)
336{
c85994e4
DW
337#ifdef CONFIG_64BIT
338 return pte->val & VTD_PAGE_MASK;
339#else
340 /* Must have a full atomic 64-bit read */
1a8bd481 341 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
c85994e4 342#endif
19c239ce
MM
343}
344
19c239ce
MM
345static inline bool dma_pte_present(struct dma_pte *pte)
346{
347 return (pte->val & 3) != 0;
348}
622ba12a 349
4399c8bf
AK
350static inline bool dma_pte_superpage(struct dma_pte *pte)
351{
c3c75eb7 352 return (pte->val & DMA_PTE_LARGE_PAGE);
4399c8bf
AK
353}
354
75e6bf96
DW
355static inline int first_pte_in_page(struct dma_pte *pte)
356{
357 return !((unsigned long)pte & ~VTD_PAGE_MASK);
358}
359
2c2e2c38
FY
360/*
361 * This domain is a statically identity mapping domain.
362 * 1. This domain creats a static 1:1 mapping to all usable memory.
363 * 2. It maps to each iommu if successful.
364 * 3. Each iommu mapps to this domain if successful.
365 */
19943b0e
DW
366static struct dmar_domain *si_domain;
367static int hw_pass_through = 1;
2c2e2c38 368
28ccce0d
JR
369/*
370 * Domain represents a virtual machine, more than one devices
1ce28feb
WH
371 * across iommus may be owned in one domain, e.g. kvm guest.
372 */
ab8dfe25 373#define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 0)
1ce28feb 374
2c2e2c38 375/* si_domain contains mulitple devices */
ab8dfe25 376#define DOMAIN_FLAG_STATIC_IDENTITY (1 << 1)
2c2e2c38 377
29a27719
JR
378#define for_each_domain_iommu(idx, domain) \
379 for (idx = 0; idx < g_num_of_iommus; idx++) \
380 if (domain->iommu_refcnt[idx])
381
99126f7c 382struct dmar_domain {
4c923d47 383 int nid; /* node id */
29a27719
JR
384
385 unsigned iommu_refcnt[DMAR_UNITS_SUPPORTED];
386 /* Refcount of devices per iommu */
387
99126f7c 388
c0e8a6c8
JR
389 u16 iommu_did[DMAR_UNITS_SUPPORTED];
390 /* Domain ids per IOMMU. Use u16 since
391 * domain ids are 16 bit wide according
392 * to VT-d spec, section 9.3 */
99126f7c 393
0824c592 394 bool has_iotlb_device;
00a77deb 395 struct list_head devices; /* all devices' list */
99126f7c
MM
396 struct iova_domain iovad; /* iova's that belong to this domain */
397
398 struct dma_pte *pgd; /* virtual address */
99126f7c
MM
399 int gaw; /* max guest address width */
400
401 /* adjusted guest address width, 0 is level 2 30-bit */
402 int agaw;
403
3b5410e7 404 int flags; /* flags to find out type of domain */
8e604097
WH
405
406 int iommu_coherency;/* indicate coherency of iommu access */
58c610bd 407 int iommu_snooping; /* indicate snooping control feature*/
c7151a8d 408 int iommu_count; /* reference count of iommu */
6dd9a7c7
YS
409 int iommu_superpage;/* Level of superpages supported:
410 0 == 4KiB (no superpages), 1 == 2MiB,
411 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
fe40f1e0 412 u64 max_addr; /* maximum mapped address */
00a77deb
JR
413
414 struct iommu_domain domain; /* generic domain data structure for
415 iommu core */
99126f7c
MM
416};
417
a647dacb
MM
418/* PCI domain-device relationship */
419struct device_domain_info {
420 struct list_head link; /* link to domain siblings */
421 struct list_head global; /* link to global list */
276dbf99 422 u8 bus; /* PCI bus number */
a647dacb 423 u8 devfn; /* PCI devfn number */
eada1b22 424 u16 pfsid; /* SRIOV physical function source ID */
b16d0cb9
DW
425 u8 pasid_supported:3;
426 u8 pasid_enabled:1;
427 u8 pri_supported:1;
428 u8 pri_enabled:1;
429 u8 ats_supported:1;
430 u8 ats_enabled:1;
431 u8 ats_qdep;
0bcb3e28 432 struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
93a23a72 433 struct intel_iommu *iommu; /* IOMMU used by this device */
a647dacb
MM
434 struct dmar_domain *domain; /* pointer to domain */
435};
436
b94e4117
JL
437struct dmar_rmrr_unit {
438 struct list_head list; /* list of rmrr units */
439 struct acpi_dmar_header *hdr; /* ACPI header */
440 u64 base_address; /* reserved base address*/
441 u64 end_address; /* reserved end address */
832bd858 442 struct dmar_dev_scope *devices; /* target devices */
b94e4117
JL
443 int devices_cnt; /* target device count */
444};
445
446struct dmar_atsr_unit {
447 struct list_head list; /* list of ATSR units */
448 struct acpi_dmar_header *hdr; /* ACPI header */
832bd858 449 struct dmar_dev_scope *devices; /* target devices */
b94e4117
JL
450 int devices_cnt; /* target device count */
451 u8 include_all:1; /* include all ports */
452};
453
454static LIST_HEAD(dmar_atsr_units);
455static LIST_HEAD(dmar_rmrr_units);
456
457#define for_each_rmrr_units(rmrr) \
458 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
459
5e0d2a6f 460static void flush_unmaps_timeout(unsigned long data);
461
314f1dc1 462struct deferred_flush_entry {
2aac6304 463 unsigned long iova_pfn;
769530e4 464 unsigned long nrpages;
314f1dc1
OP
465 struct dmar_domain *domain;
466 struct page *freelist;
467};
5e0d2a6f 468
80b20dd8 469#define HIGH_WATER_MARK 250
314f1dc1 470struct deferred_flush_table {
80b20dd8 471 int next;
314f1dc1 472 struct deferred_flush_entry entries[HIGH_WATER_MARK];
80b20dd8 473};
474
aa473240
OP
475struct deferred_flush_data {
476 spinlock_t lock;
477 int timer_on;
478 struct timer_list timer;
479 long size;
480 struct deferred_flush_table *tables;
80b20dd8 481};
482
aa473240 483DEFINE_PER_CPU(struct deferred_flush_data, deferred_flush);
80b20dd8 484
5e0d2a6f 485/* bitmap for indexing intel_iommus */
5e0d2a6f 486static int g_num_of_iommus;
487
92d03cc8 488static void domain_exit(struct dmar_domain *domain);
ba395927 489static void domain_remove_dev_info(struct dmar_domain *domain);
e6de0f8d
JR
490static void dmar_remove_one_dev_info(struct dmar_domain *domain,
491 struct device *dev);
127c7615 492static void __dmar_remove_one_dev_info(struct device_domain_info *info);
2452d9db
JR
493static void domain_context_clear(struct intel_iommu *iommu,
494 struct device *dev);
2a46ddf7
JL
495static int domain_detach_iommu(struct dmar_domain *domain,
496 struct intel_iommu *iommu);
ba395927 497
d3f13810 498#ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
0cd5c3c8
KM
499int dmar_disabled = 0;
500#else
501int dmar_disabled = 1;
d3f13810 502#endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
0cd5c3c8 503
8bc1f85c
ED
504int intel_iommu_enabled = 0;
505EXPORT_SYMBOL_GPL(intel_iommu_enabled);
506
2d9e667e 507static int dmar_map_gfx = 1;
7d3b03ce 508static int dmar_forcedac;
5e0d2a6f 509static int intel_iommu_strict;
6dd9a7c7 510static int intel_iommu_superpage = 1;
c83b2f20 511static int intel_iommu_ecs = 1;
ae853ddb
DW
512static int intel_iommu_pasid28;
513static int iommu_identity_mapping;
c83b2f20 514
ae853ddb
DW
515#define IDENTMAP_ALL 1
516#define IDENTMAP_GFX 2
517#define IDENTMAP_AZALIA 4
c83b2f20 518
d42fde70
DW
519/* Broadwell and Skylake have broken ECS support — normal so-called "second
520 * level" translation of DMA requests-without-PASID doesn't actually happen
521 * unless you also set the NESTE bit in an extended context-entry. Which of
522 * course means that SVM doesn't work because it's trying to do nested
523 * translation of the physical addresses it finds in the process page tables,
524 * through the IOVA->phys mapping found in the "second level" page tables.
525 *
526 * The VT-d specification was retroactively changed to change the definition
527 * of the capability bits and pretend that Broadwell/Skylake never happened...
528 * but unfortunately the wrong bit was changed. It's ECS which is broken, but
529 * for some reason it was the PASID capability bit which was redefined (from
530 * bit 28 on BDW/SKL to bit 40 in future).
531 *
532 * So our test for ECS needs to eschew those implementations which set the old
533 * PASID capabiity bit 28, since those are the ones on which ECS is broken.
534 * Unless we are working around the 'pasid28' limitations, that is, by putting
535 * the device into passthrough mode for normal DMA and thus masking the bug.
536 */
c83b2f20 537#define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
d42fde70
DW
538 (intel_iommu_pasid28 || !ecap_broken_pasid(iommu->ecap)))
539/* PASID support is thus enabled if ECS is enabled and *either* of the old
540 * or new capability bits are set. */
541#define pasid_enabled(iommu) (ecs_enabled(iommu) && \
542 (ecap_pasid(iommu->ecap) || ecap_broken_pasid(iommu->ecap)))
ba395927 543
c0771df8
DW
544int intel_iommu_gfx_mapped;
545EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
546
ba395927
KA
547#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
548static DEFINE_SPINLOCK(device_domain_lock);
549static LIST_HEAD(device_domain_list);
550
b22f6434 551static const struct iommu_ops intel_iommu_ops;
a8bcbb0d 552
4158c2ec
JR
553static bool translation_pre_enabled(struct intel_iommu *iommu)
554{
555 return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
556}
557
091d42e4
JR
558static void clear_translation_pre_enabled(struct intel_iommu *iommu)
559{
560 iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
561}
562
4158c2ec
JR
563static void init_translation_status(struct intel_iommu *iommu)
564{
565 u32 gsts;
566
567 gsts = readl(iommu->reg + DMAR_GSTS_REG);
568 if (gsts & DMA_GSTS_TES)
569 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
570}
571
00a77deb
JR
572/* Convert generic 'struct iommu_domain to private struct dmar_domain */
573static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
574{
575 return container_of(dom, struct dmar_domain, domain);
576}
577
ba395927
KA
578static int __init intel_iommu_setup(char *str)
579{
580 if (!str)
581 return -EINVAL;
582 while (*str) {
0cd5c3c8
KM
583 if (!strncmp(str, "on", 2)) {
584 dmar_disabled = 0;
9f10e5bf 585 pr_info("IOMMU enabled\n");
0cd5c3c8 586 } else if (!strncmp(str, "off", 3)) {
ba395927 587 dmar_disabled = 1;
9f10e5bf 588 pr_info("IOMMU disabled\n");
ba395927
KA
589 } else if (!strncmp(str, "igfx_off", 8)) {
590 dmar_map_gfx = 0;
9f10e5bf 591 pr_info("Disable GFX device mapping\n");
7d3b03ce 592 } else if (!strncmp(str, "forcedac", 8)) {
9f10e5bf 593 pr_info("Forcing DAC for PCI devices\n");
7d3b03ce 594 dmar_forcedac = 1;
5e0d2a6f 595 } else if (!strncmp(str, "strict", 6)) {
9f10e5bf 596 pr_info("Disable batched IOTLB flush\n");
5e0d2a6f 597 intel_iommu_strict = 1;
6dd9a7c7 598 } else if (!strncmp(str, "sp_off", 6)) {
9f10e5bf 599 pr_info("Disable supported super page\n");
6dd9a7c7 600 intel_iommu_superpage = 0;
c83b2f20
DW
601 } else if (!strncmp(str, "ecs_off", 7)) {
602 printk(KERN_INFO
603 "Intel-IOMMU: disable extended context table support\n");
604 intel_iommu_ecs = 0;
ae853ddb
DW
605 } else if (!strncmp(str, "pasid28", 7)) {
606 printk(KERN_INFO
607 "Intel-IOMMU: enable pre-production PASID support\n");
608 intel_iommu_pasid28 = 1;
609 iommu_identity_mapping |= IDENTMAP_GFX;
ba395927
KA
610 }
611
612 str += strcspn(str, ",");
613 while (*str == ',')
614 str++;
615 }
616 return 0;
617}
618__setup("intel_iommu=", intel_iommu_setup);
619
620static struct kmem_cache *iommu_domain_cache;
621static struct kmem_cache *iommu_devinfo_cache;
ba395927 622
9452d5bf
JR
623static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
624{
8bf47816
JR
625 struct dmar_domain **domains;
626 int idx = did >> 8;
627
628 domains = iommu->domains[idx];
629 if (!domains)
630 return NULL;
631
632 return domains[did & 0xff];
9452d5bf
JR
633}
634
635static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
636 struct dmar_domain *domain)
637{
8bf47816
JR
638 struct dmar_domain **domains;
639 int idx = did >> 8;
640
641 if (!iommu->domains[idx]) {
642 size_t size = 256 * sizeof(struct dmar_domain *);
643 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
644 }
645
646 domains = iommu->domains[idx];
647 if (WARN_ON(!domains))
648 return;
649 else
650 domains[did & 0xff] = domain;
9452d5bf
JR
651}
652
4c923d47 653static inline void *alloc_pgtable_page(int node)
eb3fa7cb 654{
4c923d47
SS
655 struct page *page;
656 void *vaddr = NULL;
eb3fa7cb 657
4c923d47
SS
658 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
659 if (page)
660 vaddr = page_address(page);
eb3fa7cb 661 return vaddr;
ba395927
KA
662}
663
664static inline void free_pgtable_page(void *vaddr)
665{
666 free_page((unsigned long)vaddr);
667}
668
669static inline void *alloc_domain_mem(void)
670{
354bb65e 671 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
ba395927
KA
672}
673
38717946 674static void free_domain_mem(void *vaddr)
ba395927
KA
675{
676 kmem_cache_free(iommu_domain_cache, vaddr);
677}
678
679static inline void * alloc_devinfo_mem(void)
680{
354bb65e 681 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
ba395927
KA
682}
683
684static inline void free_devinfo_mem(void *vaddr)
685{
686 kmem_cache_free(iommu_devinfo_cache, vaddr);
687}
688
ab8dfe25
JL
689static inline int domain_type_is_vm(struct dmar_domain *domain)
690{
691 return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
692}
693
28ccce0d
JR
694static inline int domain_type_is_si(struct dmar_domain *domain)
695{
696 return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
697}
698
ab8dfe25
JL
699static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
700{
701 return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
702 DOMAIN_FLAG_STATIC_IDENTITY);
703}
1b573683 704
162d1b10
JL
705static inline int domain_pfn_supported(struct dmar_domain *domain,
706 unsigned long pfn)
707{
708 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
709
710 return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
711}
712
4ed0d3e6 713static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
1b573683
WH
714{
715 unsigned long sagaw;
716 int agaw = -1;
717
718 sagaw = cap_sagaw(iommu->cap);
4ed0d3e6 719 for (agaw = width_to_agaw(max_gaw);
1b573683
WH
720 agaw >= 0; agaw--) {
721 if (test_bit(agaw, &sagaw))
722 break;
723 }
724
725 return agaw;
726}
727
4ed0d3e6
FY
728/*
729 * Calculate max SAGAW for each iommu.
730 */
731int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
732{
733 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
734}
735
736/*
737 * calculate agaw for each iommu.
738 * "SAGAW" may be different across iommus, use a default agaw, and
739 * get a supported less agaw for iommus that don't support the default agaw.
740 */
741int iommu_calculate_agaw(struct intel_iommu *iommu)
742{
743 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
744}
745
2c2e2c38 746/* This functionin only returns single iommu in a domain */
8c11e798
WH
747static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
748{
749 int iommu_id;
750
2c2e2c38 751 /* si_domain and vm domain should not get here. */
ab8dfe25 752 BUG_ON(domain_type_is_vm_or_si(domain));
29a27719
JR
753 for_each_domain_iommu(iommu_id, domain)
754 break;
755
8c11e798
WH
756 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
757 return NULL;
758
759 return g_iommus[iommu_id];
760}
761
8e604097
WH
762static void domain_update_iommu_coherency(struct dmar_domain *domain)
763{
d0501960
DW
764 struct dmar_drhd_unit *drhd;
765 struct intel_iommu *iommu;
2f119c78
QL
766 bool found = false;
767 int i;
2e12bc29 768
d0501960 769 domain->iommu_coherency = 1;
8e604097 770
29a27719 771 for_each_domain_iommu(i, domain) {
2f119c78 772 found = true;
8e604097
WH
773 if (!ecap_coherent(g_iommus[i]->ecap)) {
774 domain->iommu_coherency = 0;
775 break;
776 }
8e604097 777 }
d0501960
DW
778 if (found)
779 return;
780
781 /* No hardware attached; use lowest common denominator */
782 rcu_read_lock();
783 for_each_active_iommu(iommu, drhd) {
784 if (!ecap_coherent(iommu->ecap)) {
785 domain->iommu_coherency = 0;
786 break;
787 }
788 }
789 rcu_read_unlock();
8e604097
WH
790}
791
161f6934 792static int domain_update_iommu_snooping(struct intel_iommu *skip)
58c610bd 793{
161f6934
JL
794 struct dmar_drhd_unit *drhd;
795 struct intel_iommu *iommu;
796 int ret = 1;
58c610bd 797
161f6934
JL
798 rcu_read_lock();
799 for_each_active_iommu(iommu, drhd) {
800 if (iommu != skip) {
801 if (!ecap_sc_support(iommu->ecap)) {
802 ret = 0;
803 break;
804 }
58c610bd 805 }
58c610bd 806 }
161f6934
JL
807 rcu_read_unlock();
808
809 return ret;
58c610bd
SY
810}
811
161f6934 812static int domain_update_iommu_superpage(struct intel_iommu *skip)
6dd9a7c7 813{
8140a95d 814 struct dmar_drhd_unit *drhd;
161f6934 815 struct intel_iommu *iommu;
8140a95d 816 int mask = 0xf;
6dd9a7c7
YS
817
818 if (!intel_iommu_superpage) {
161f6934 819 return 0;
6dd9a7c7
YS
820 }
821
8140a95d 822 /* set iommu_superpage to the smallest common denominator */
0e242612 823 rcu_read_lock();
8140a95d 824 for_each_active_iommu(iommu, drhd) {
161f6934
JL
825 if (iommu != skip) {
826 mask &= cap_super_page_val(iommu->cap);
827 if (!mask)
828 break;
6dd9a7c7
YS
829 }
830 }
0e242612
JL
831 rcu_read_unlock();
832
161f6934 833 return fls(mask);
6dd9a7c7
YS
834}
835
58c610bd
SY
836/* Some capabilities may be different across iommus */
837static void domain_update_iommu_cap(struct dmar_domain *domain)
838{
839 domain_update_iommu_coherency(domain);
161f6934
JL
840 domain->iommu_snooping = domain_update_iommu_snooping(NULL);
841 domain->iommu_superpage = domain_update_iommu_superpage(NULL);
58c610bd
SY
842}
843
03ecc32c
DW
844static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
845 u8 bus, u8 devfn, int alloc)
846{
847 struct root_entry *root = &iommu->root_entry[bus];
848 struct context_entry *context;
849 u64 *entry;
850
4df4eab1 851 entry = &root->lo;
c83b2f20 852 if (ecs_enabled(iommu)) {
03ecc32c
DW
853 if (devfn >= 0x80) {
854 devfn -= 0x80;
855 entry = &root->hi;
856 }
857 devfn *= 2;
858 }
03ecc32c
DW
859 if (*entry & 1)
860 context = phys_to_virt(*entry & VTD_PAGE_MASK);
861 else {
862 unsigned long phy_addr;
863 if (!alloc)
864 return NULL;
865
866 context = alloc_pgtable_page(iommu->node);
867 if (!context)
868 return NULL;
869
870 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
871 phy_addr = virt_to_phys((void *)context);
872 *entry = phy_addr | 1;
873 __iommu_flush_cache(iommu, entry, sizeof(*entry));
874 }
875 return &context[devfn];
876}
877
4ed6a540
DW
878static int iommu_dummy(struct device *dev)
879{
880 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
881}
882
156baca8 883static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
c7151a8d
WH
884{
885 struct dmar_drhd_unit *drhd = NULL;
b683b230 886 struct intel_iommu *iommu;
156baca8
DW
887 struct device *tmp;
888 struct pci_dev *ptmp, *pdev = NULL;
aa4d066a 889 u16 segment = 0;
c7151a8d
WH
890 int i;
891
4ed6a540
DW
892 if (iommu_dummy(dev))
893 return NULL;
894
156baca8 895 if (dev_is_pci(dev)) {
1c387188
AR
896 struct pci_dev *pf_pdev;
897
156baca8 898 pdev = to_pci_dev(dev);
1c387188
AR
899 /* VFs aren't listed in scope tables; we need to look up
900 * the PF instead to find the IOMMU. */
901 pf_pdev = pci_physfn(pdev);
902 dev = &pf_pdev->dev;
156baca8 903 segment = pci_domain_nr(pdev->bus);
ca5b74d2 904 } else if (has_acpi_companion(dev))
156baca8
DW
905 dev = &ACPI_COMPANION(dev)->dev;
906
0e242612 907 rcu_read_lock();
b683b230 908 for_each_active_iommu(iommu, drhd) {
156baca8 909 if (pdev && segment != drhd->segment)
276dbf99 910 continue;
c7151a8d 911
b683b230 912 for_each_active_dev_scope(drhd->devices,
156baca8
DW
913 drhd->devices_cnt, i, tmp) {
914 if (tmp == dev) {
1c387188
AR
915 /* For a VF use its original BDF# not that of the PF
916 * which we used for the IOMMU lookup. Strictly speaking
917 * we could do this for all PCI devices; we only need to
918 * get the BDF# from the scope table for ACPI matches. */
352c0214 919 if (pdev && pdev->is_virtfn)
1c387188
AR
920 goto got_pdev;
921
156baca8
DW
922 *bus = drhd->devices[i].bus;
923 *devfn = drhd->devices[i].devfn;
b683b230 924 goto out;
156baca8
DW
925 }
926
927 if (!pdev || !dev_is_pci(tmp))
928 continue;
929
930 ptmp = to_pci_dev(tmp);
931 if (ptmp->subordinate &&
932 ptmp->subordinate->number <= pdev->bus->number &&
933 ptmp->subordinate->busn_res.end >= pdev->bus->number)
934 goto got_pdev;
924b6231 935 }
c7151a8d 936
156baca8
DW
937 if (pdev && drhd->include_all) {
938 got_pdev:
939 *bus = pdev->bus->number;
940 *devfn = pdev->devfn;
b683b230 941 goto out;
156baca8 942 }
c7151a8d 943 }
b683b230 944 iommu = NULL;
156baca8 945 out:
0e242612 946 rcu_read_unlock();
c7151a8d 947
b683b230 948 return iommu;
c7151a8d
WH
949}
950
5331fe6f
WH
951static void domain_flush_cache(struct dmar_domain *domain,
952 void *addr, int size)
953{
954 if (!domain->iommu_coherency)
955 clflush_cache_range(addr, size);
956}
957
ba395927
KA
958static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
959{
ba395927 960 struct context_entry *context;
03ecc32c 961 int ret = 0;
ba395927
KA
962 unsigned long flags;
963
964 spin_lock_irqsave(&iommu->lock, flags);
03ecc32c
DW
965 context = iommu_context_addr(iommu, bus, devfn, 0);
966 if (context)
967 ret = context_present(context);
ba395927
KA
968 spin_unlock_irqrestore(&iommu->lock, flags);
969 return ret;
970}
971
972static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
973{
ba395927
KA
974 struct context_entry *context;
975 unsigned long flags;
976
977 spin_lock_irqsave(&iommu->lock, flags);
03ecc32c 978 context = iommu_context_addr(iommu, bus, devfn, 0);
ba395927 979 if (context) {
03ecc32c
DW
980 context_clear_entry(context);
981 __iommu_flush_cache(iommu, context, sizeof(*context));
ba395927
KA
982 }
983 spin_unlock_irqrestore(&iommu->lock, flags);
984}
985
986static void free_context_table(struct intel_iommu *iommu)
987{
ba395927
KA
988 int i;
989 unsigned long flags;
990 struct context_entry *context;
991
992 spin_lock_irqsave(&iommu->lock, flags);
993 if (!iommu->root_entry) {
994 goto out;
995 }
996 for (i = 0; i < ROOT_ENTRY_NR; i++) {
03ecc32c 997 context = iommu_context_addr(iommu, i, 0, 0);
ba395927
KA
998 if (context)
999 free_pgtable_page(context);
03ecc32c 1000
c83b2f20 1001 if (!ecs_enabled(iommu))
03ecc32c
DW
1002 continue;
1003
1004 context = iommu_context_addr(iommu, i, 0x80, 0);
1005 if (context)
1006 free_pgtable_page(context);
1007
ba395927
KA
1008 }
1009 free_pgtable_page(iommu->root_entry);
1010 iommu->root_entry = NULL;
1011out:
1012 spin_unlock_irqrestore(&iommu->lock, flags);
1013}
1014
b026fd28 1015static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
5cf0a76f 1016 unsigned long pfn, int *target_level)
ba395927 1017{
ba395927
KA
1018 struct dma_pte *parent, *pte = NULL;
1019 int level = agaw_to_level(domain->agaw);
4399c8bf 1020 int offset;
ba395927
KA
1021
1022 BUG_ON(!domain->pgd);
f9423606 1023
162d1b10 1024 if (!domain_pfn_supported(domain, pfn))
f9423606
JS
1025 /* Address beyond IOMMU's addressing capabilities. */
1026 return NULL;
1027
ba395927
KA
1028 parent = domain->pgd;
1029
5cf0a76f 1030 while (1) {
ba395927
KA
1031 void *tmp_page;
1032
b026fd28 1033 offset = pfn_level_offset(pfn, level);
ba395927 1034 pte = &parent[offset];
5cf0a76f 1035 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
6dd9a7c7 1036 break;
5cf0a76f 1037 if (level == *target_level)
ba395927
KA
1038 break;
1039
19c239ce 1040 if (!dma_pte_present(pte)) {
c85994e4
DW
1041 uint64_t pteval;
1042
4c923d47 1043 tmp_page = alloc_pgtable_page(domain->nid);
ba395927 1044
206a73c1 1045 if (!tmp_page)
ba395927 1046 return NULL;
206a73c1 1047
c85994e4 1048 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
64de5af0 1049 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
effad4b5 1050 if (cmpxchg64(&pte->val, 0ULL, pteval))
c85994e4
DW
1051 /* Someone else set it while we were thinking; use theirs. */
1052 free_pgtable_page(tmp_page);
effad4b5 1053 else
c85994e4 1054 domain_flush_cache(domain, pte, sizeof(*pte));
ba395927 1055 }
5cf0a76f
DW
1056 if (level == 1)
1057 break;
1058
19c239ce 1059 parent = phys_to_virt(dma_pte_addr(pte));
ba395927
KA
1060 level--;
1061 }
1062
5cf0a76f
DW
1063 if (!*target_level)
1064 *target_level = level;
1065
ba395927
KA
1066 return pte;
1067}
1068
6dd9a7c7 1069
ba395927 1070/* return address's pte at specific level */
90dcfb5e
DW
1071static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
1072 unsigned long pfn,
6dd9a7c7 1073 int level, int *large_page)
ba395927
KA
1074{
1075 struct dma_pte *parent, *pte = NULL;
1076 int total = agaw_to_level(domain->agaw);
1077 int offset;
1078
1079 parent = domain->pgd;
1080 while (level <= total) {
90dcfb5e 1081 offset = pfn_level_offset(pfn, total);
ba395927
KA
1082 pte = &parent[offset];
1083 if (level == total)
1084 return pte;
1085
6dd9a7c7
YS
1086 if (!dma_pte_present(pte)) {
1087 *large_page = total;
ba395927 1088 break;
6dd9a7c7
YS
1089 }
1090
e16922af 1091 if (dma_pte_superpage(pte)) {
6dd9a7c7
YS
1092 *large_page = total;
1093 return pte;
1094 }
1095
19c239ce 1096 parent = phys_to_virt(dma_pte_addr(pte));
ba395927
KA
1097 total--;
1098 }
1099 return NULL;
1100}
1101
ba395927 1102/* clear last level pte, a tlb flush should be followed */
5cf0a76f 1103static void dma_pte_clear_range(struct dmar_domain *domain,
595badf5
DW
1104 unsigned long start_pfn,
1105 unsigned long last_pfn)
ba395927 1106{
6dd9a7c7 1107 unsigned int large_page = 1;
310a5ab9 1108 struct dma_pte *first_pte, *pte;
66eae846 1109
162d1b10
JL
1110 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1111 BUG_ON(!domain_pfn_supported(domain, last_pfn));
59c36286 1112 BUG_ON(start_pfn > last_pfn);
ba395927 1113
04b18e65 1114 /* we don't need lock here; nobody else touches the iova range */
59c36286 1115 do {
6dd9a7c7
YS
1116 large_page = 1;
1117 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
310a5ab9 1118 if (!pte) {
6dd9a7c7 1119 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
310a5ab9
DW
1120 continue;
1121 }
6dd9a7c7 1122 do {
310a5ab9 1123 dma_clear_pte(pte);
6dd9a7c7 1124 start_pfn += lvl_to_nr_pages(large_page);
310a5ab9 1125 pte++;
75e6bf96
DW
1126 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1127
310a5ab9
DW
1128 domain_flush_cache(domain, first_pte,
1129 (void *)pte - (void *)first_pte);
59c36286
DW
1130
1131 } while (start_pfn && start_pfn <= last_pfn);
ba395927
KA
1132}
1133
3269ee0b
AW
1134static void dma_pte_free_level(struct dmar_domain *domain, int level,
1135 struct dma_pte *pte, unsigned long pfn,
1136 unsigned long start_pfn, unsigned long last_pfn)
1137{
1138 pfn = max(start_pfn, pfn);
1139 pte = &pte[pfn_level_offset(pfn, level)];
1140
1141 do {
1142 unsigned long level_pfn;
1143 struct dma_pte *level_pte;
1144
1145 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1146 goto next;
1147
c19bfc67 1148 level_pfn = pfn & level_mask(level);
3269ee0b
AW
1149 level_pte = phys_to_virt(dma_pte_addr(pte));
1150
1151 if (level > 2)
1152 dma_pte_free_level(domain, level - 1, level_pte,
1153 level_pfn, start_pfn, last_pfn);
1154
1155 /* If range covers entire pagetable, free it */
1156 if (!(start_pfn > level_pfn ||
08336fd2 1157 last_pfn < level_pfn + level_size(level) - 1)) {
3269ee0b
AW
1158 dma_clear_pte(pte);
1159 domain_flush_cache(domain, pte, sizeof(*pte));
1160 free_pgtable_page(level_pte);
1161 }
1162next:
1163 pfn += level_size(level);
1164 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1165}
1166
3d1a2442 1167/* clear last level (leaf) ptes and free page table pages. */
ba395927 1168static void dma_pte_free_pagetable(struct dmar_domain *domain,
d794dc9b
DW
1169 unsigned long start_pfn,
1170 unsigned long last_pfn)
ba395927 1171{
162d1b10
JL
1172 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1173 BUG_ON(!domain_pfn_supported(domain, last_pfn));
59c36286 1174 BUG_ON(start_pfn > last_pfn);
ba395927 1175
d41a4adb
JL
1176 dma_pte_clear_range(domain, start_pfn, last_pfn);
1177
f3a0a52f 1178 /* We don't need lock here; nobody else touches the iova range */
3269ee0b
AW
1179 dma_pte_free_level(domain, agaw_to_level(domain->agaw),
1180 domain->pgd, 0, start_pfn, last_pfn);
6660c63a 1181
ba395927 1182 /* free pgd */
d794dc9b 1183 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
ba395927
KA
1184 free_pgtable_page(domain->pgd);
1185 domain->pgd = NULL;
1186 }
1187}
1188
ea8ea460
DW
1189/* When a page at a given level is being unlinked from its parent, we don't
1190 need to *modify* it at all. All we need to do is make a list of all the
1191 pages which can be freed just as soon as we've flushed the IOTLB and we
1192 know the hardware page-walk will no longer touch them.
1193 The 'pte' argument is the *parent* PTE, pointing to the page that is to
1194 be freed. */
1195static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1196 int level, struct dma_pte *pte,
1197 struct page *freelist)
1198{
1199 struct page *pg;
1200
1201 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1202 pg->freelist = freelist;
1203 freelist = pg;
1204
1205 if (level == 1)
1206 return freelist;
1207
adeb2590
JL
1208 pte = page_address(pg);
1209 do {
ea8ea460
DW
1210 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1211 freelist = dma_pte_list_pagetables(domain, level - 1,
1212 pte, freelist);
adeb2590
JL
1213 pte++;
1214 } while (!first_pte_in_page(pte));
ea8ea460
DW
1215
1216 return freelist;
1217}
1218
1219static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1220 struct dma_pte *pte, unsigned long pfn,
1221 unsigned long start_pfn,
1222 unsigned long last_pfn,
1223 struct page *freelist)
1224{
1225 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1226
1227 pfn = max(start_pfn, pfn);
1228 pte = &pte[pfn_level_offset(pfn, level)];
1229
1230 do {
1231 unsigned long level_pfn;
1232
1233 if (!dma_pte_present(pte))
1234 goto next;
1235
1236 level_pfn = pfn & level_mask(level);
1237
1238 /* If range covers entire pagetable, free it */
1239 if (start_pfn <= level_pfn &&
1240 last_pfn >= level_pfn + level_size(level) - 1) {
1241 /* These suborbinate page tables are going away entirely. Don't
1242 bother to clear them; we're just going to *free* them. */
1243 if (level > 1 && !dma_pte_superpage(pte))
1244 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1245
1246 dma_clear_pte(pte);
1247 if (!first_pte)
1248 first_pte = pte;
1249 last_pte = pte;
1250 } else if (level > 1) {
1251 /* Recurse down into a level that isn't *entirely* obsolete */
1252 freelist = dma_pte_clear_level(domain, level - 1,
1253 phys_to_virt(dma_pte_addr(pte)),
1254 level_pfn, start_pfn, last_pfn,
1255 freelist);
1256 }
1257next:
1258 pfn += level_size(level);
1259 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1260
1261 if (first_pte)
1262 domain_flush_cache(domain, first_pte,
1263 (void *)++last_pte - (void *)first_pte);
1264
1265 return freelist;
1266}
1267
1268/* We can't just free the pages because the IOMMU may still be walking
1269 the page tables, and may have cached the intermediate levels. The
1270 pages can only be freed after the IOTLB flush has been done. */
b690420a
JR
1271static struct page *domain_unmap(struct dmar_domain *domain,
1272 unsigned long start_pfn,
1273 unsigned long last_pfn)
ea8ea460 1274{
ea8ea460
DW
1275 struct page *freelist = NULL;
1276
162d1b10
JL
1277 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1278 BUG_ON(!domain_pfn_supported(domain, last_pfn));
ea8ea460
DW
1279 BUG_ON(start_pfn > last_pfn);
1280
1281 /* we don't need lock here; nobody else touches the iova range */
1282 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1283 domain->pgd, 0, start_pfn, last_pfn, NULL);
1284
1285 /* free pgd */
1286 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1287 struct page *pgd_page = virt_to_page(domain->pgd);
1288 pgd_page->freelist = freelist;
1289 freelist = pgd_page;
1290
1291 domain->pgd = NULL;
1292 }
1293
1294 return freelist;
1295}
1296
b690420a 1297static void dma_free_pagelist(struct page *freelist)
ea8ea460
DW
1298{
1299 struct page *pg;
1300
1301 while ((pg = freelist)) {
1302 freelist = pg->freelist;
1303 free_pgtable_page(page_address(pg));
1304 }
1305}
1306
ba395927
KA
1307/* iommu handling */
1308static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1309{
1310 struct root_entry *root;
1311 unsigned long flags;
1312
4c923d47 1313 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
ffebeb46 1314 if (!root) {
9f10e5bf 1315 pr_err("Allocating root entry for %s failed\n",
ffebeb46 1316 iommu->name);
ba395927 1317 return -ENOMEM;
ffebeb46 1318 }
ba395927 1319
5b6985ce 1320 __iommu_flush_cache(iommu, root, ROOT_SIZE);
ba395927
KA
1321
1322 spin_lock_irqsave(&iommu->lock, flags);
1323 iommu->root_entry = root;
1324 spin_unlock_irqrestore(&iommu->lock, flags);
1325
1326 return 0;
1327}
1328
ba395927
KA
1329static void iommu_set_root_entry(struct intel_iommu *iommu)
1330{
03ecc32c 1331 u64 addr;
c416daa9 1332 u32 sts;
ba395927
KA
1333 unsigned long flag;
1334
03ecc32c 1335 addr = virt_to_phys(iommu->root_entry);
c83b2f20 1336 if (ecs_enabled(iommu))
03ecc32c 1337 addr |= DMA_RTADDR_RTT;
ba395927 1338
1f5b3c3f 1339 raw_spin_lock_irqsave(&iommu->register_lock, flag);
03ecc32c 1340 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
ba395927 1341
c416daa9 1342 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
ba395927
KA
1343
1344 /* Make sure hardware complete it */
1345 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 1346 readl, (sts & DMA_GSTS_RTPS), sts);
ba395927 1347
1f5b3c3f 1348 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
ba395927
KA
1349}
1350
1351static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1352{
1353 u32 val;
1354 unsigned long flag;
1355
9af88143 1356 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
ba395927 1357 return;
ba395927 1358
1f5b3c3f 1359 raw_spin_lock_irqsave(&iommu->register_lock, flag);
462b60f6 1360 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
ba395927
KA
1361
1362 /* Make sure hardware complete it */
1363 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 1364 readl, (!(val & DMA_GSTS_WBFS)), val);
ba395927 1365
1f5b3c3f 1366 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
ba395927
KA
1367}
1368
1369/* return value determine if we need a write buffer flush */
4c25a2c1
DW
1370static void __iommu_flush_context(struct intel_iommu *iommu,
1371 u16 did, u16 source_id, u8 function_mask,
1372 u64 type)
ba395927
KA
1373{
1374 u64 val = 0;
1375 unsigned long flag;
1376
ba395927
KA
1377 switch (type) {
1378 case DMA_CCMD_GLOBAL_INVL:
1379 val = DMA_CCMD_GLOBAL_INVL;
1380 break;
1381 case DMA_CCMD_DOMAIN_INVL:
1382 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1383 break;
1384 case DMA_CCMD_DEVICE_INVL:
1385 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1386 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1387 break;
1388 default:
1389 BUG();
1390 }
1391 val |= DMA_CCMD_ICC;
1392
1f5b3c3f 1393 raw_spin_lock_irqsave(&iommu->register_lock, flag);
ba395927
KA
1394 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1395
1396 /* Make sure hardware complete it */
1397 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1398 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1399
1f5b3c3f 1400 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
ba395927
KA
1401}
1402
ba395927 1403/* return value determine if we need a write buffer flush */
1f0ef2aa
DW
1404static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1405 u64 addr, unsigned int size_order, u64 type)
ba395927
KA
1406{
1407 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1408 u64 val = 0, val_iva = 0;
1409 unsigned long flag;
1410
ba395927
KA
1411 switch (type) {
1412 case DMA_TLB_GLOBAL_FLUSH:
1413 /* global flush doesn't need set IVA_REG */
1414 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1415 break;
1416 case DMA_TLB_DSI_FLUSH:
1417 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1418 break;
1419 case DMA_TLB_PSI_FLUSH:
1420 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
ea8ea460 1421 /* IH bit is passed in as part of address */
ba395927
KA
1422 val_iva = size_order | addr;
1423 break;
1424 default:
1425 BUG();
1426 }
1427 /* Note: set drain read/write */
1428#if 0
1429 /*
1430 * This is probably to be super secure.. Looks like we can
1431 * ignore it without any impact.
1432 */
1433 if (cap_read_drain(iommu->cap))
1434 val |= DMA_TLB_READ_DRAIN;
1435#endif
1436 if (cap_write_drain(iommu->cap))
1437 val |= DMA_TLB_WRITE_DRAIN;
1438
1f5b3c3f 1439 raw_spin_lock_irqsave(&iommu->register_lock, flag);
ba395927
KA
1440 /* Note: Only uses first TLB reg currently */
1441 if (val_iva)
1442 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1443 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1444
1445 /* Make sure hardware complete it */
1446 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1447 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1448
1f5b3c3f 1449 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
ba395927
KA
1450
1451 /* check IOTLB invalidation granularity */
1452 if (DMA_TLB_IAIG(val) == 0)
9f10e5bf 1453 pr_err("Flush IOTLB failed\n");
ba395927 1454 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
9f10e5bf 1455 pr_debug("TLB flush request %Lx, actual %Lx\n",
5b6985ce
FY
1456 (unsigned long long)DMA_TLB_IIRG(type),
1457 (unsigned long long)DMA_TLB_IAIG(val));
ba395927
KA
1458}
1459
64ae892b
DW
1460static struct device_domain_info *
1461iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1462 u8 bus, u8 devfn)
93a23a72 1463{
93a23a72 1464 struct device_domain_info *info;
93a23a72 1465
55d94043
JR
1466 assert_spin_locked(&device_domain_lock);
1467
93a23a72
YZ
1468 if (!iommu->qi)
1469 return NULL;
1470
93a23a72 1471 list_for_each_entry(info, &domain->devices, link)
c3b497c6
JL
1472 if (info->iommu == iommu && info->bus == bus &&
1473 info->devfn == devfn) {
b16d0cb9
DW
1474 if (info->ats_supported && info->dev)
1475 return info;
93a23a72
YZ
1476 break;
1477 }
93a23a72 1478
b16d0cb9 1479 return NULL;
93a23a72
YZ
1480}
1481
0824c592
OP
1482static void domain_update_iotlb(struct dmar_domain *domain)
1483{
1484 struct device_domain_info *info;
1485 bool has_iotlb_device = false;
1486
1487 assert_spin_locked(&device_domain_lock);
1488
1489 list_for_each_entry(info, &domain->devices, link) {
1490 struct pci_dev *pdev;
1491
1492 if (!info->dev || !dev_is_pci(info->dev))
1493 continue;
1494
1495 pdev = to_pci_dev(info->dev);
1496 if (pdev->ats_enabled) {
1497 has_iotlb_device = true;
1498 break;
1499 }
1500 }
1501
1502 domain->has_iotlb_device = has_iotlb_device;
1503}
1504
93a23a72 1505static void iommu_enable_dev_iotlb(struct device_domain_info *info)
ba395927 1506{
fb0cc3aa
BH
1507 struct pci_dev *pdev;
1508
0824c592
OP
1509 assert_spin_locked(&device_domain_lock);
1510
0bcb3e28 1511 if (!info || !dev_is_pci(info->dev))
93a23a72
YZ
1512 return;
1513
fb0cc3aa 1514 pdev = to_pci_dev(info->dev);
b68377cb
JP
1515 /* For IOMMU that supports device IOTLB throttling (DIT), we assign
1516 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
1517 * queue depth at PF level. If DIT is not set, PFSID will be treated as
1518 * reserved, which should be set to 0.
1519 */
1520 if (!ecap_dit(info->iommu->ecap))
1521 info->pfsid = 0;
1522 else {
1523 struct pci_dev *pf_pdev;
1524
1525 /* pdev will be returned if device is not a vf */
1526 pf_pdev = pci_physfn(pdev);
1527 info->pfsid = PCI_DEVID(pf_pdev->bus->number, pf_pdev->devfn);
1528 }
fb0cc3aa 1529
b16d0cb9
DW
1530#ifdef CONFIG_INTEL_IOMMU_SVM
1531 /* The PCIe spec, in its wisdom, declares that the behaviour of
1532 the device if you enable PASID support after ATS support is
1533 undefined. So always enable PASID support on devices which
1534 have it, even if we can't yet know if we're ever going to
1535 use it. */
1536 if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1537 info->pasid_enabled = 1;
1538
1539 if (info->pri_supported && !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1540 info->pri_enabled = 1;
1541#endif
1542 if (info->ats_supported && !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1543 info->ats_enabled = 1;
0824c592 1544 domain_update_iotlb(info->domain);
b16d0cb9
DW
1545 info->ats_qdep = pci_ats_queue_depth(pdev);
1546 }
93a23a72
YZ
1547}
1548
1549static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1550{
b16d0cb9
DW
1551 struct pci_dev *pdev;
1552
0824c592
OP
1553 assert_spin_locked(&device_domain_lock);
1554
da972fb1 1555 if (!dev_is_pci(info->dev))
93a23a72
YZ
1556 return;
1557
b16d0cb9
DW
1558 pdev = to_pci_dev(info->dev);
1559
1560 if (info->ats_enabled) {
1561 pci_disable_ats(pdev);
1562 info->ats_enabled = 0;
0824c592 1563 domain_update_iotlb(info->domain);
b16d0cb9
DW
1564 }
1565#ifdef CONFIG_INTEL_IOMMU_SVM
1566 if (info->pri_enabled) {
1567 pci_disable_pri(pdev);
1568 info->pri_enabled = 0;
1569 }
1570 if (info->pasid_enabled) {
1571 pci_disable_pasid(pdev);
1572 info->pasid_enabled = 0;
1573 }
1574#endif
93a23a72
YZ
1575}
1576
1577static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1578 u64 addr, unsigned mask)
1579{
1580 u16 sid, qdep;
1581 unsigned long flags;
1582 struct device_domain_info *info;
1583
0824c592
OP
1584 if (!domain->has_iotlb_device)
1585 return;
1586
93a23a72
YZ
1587 spin_lock_irqsave(&device_domain_lock, flags);
1588 list_for_each_entry(info, &domain->devices, link) {
b16d0cb9 1589 if (!info->ats_enabled)
93a23a72
YZ
1590 continue;
1591
1592 sid = info->bus << 8 | info->devfn;
b16d0cb9 1593 qdep = info->ats_qdep;
b68377cb
JP
1594 qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
1595 qdep, addr, mask);
93a23a72
YZ
1596 }
1597 spin_unlock_irqrestore(&device_domain_lock, flags);
1598}
1599
a1ddcbe9
JR
1600static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1601 struct dmar_domain *domain,
1602 unsigned long pfn, unsigned int pages,
1603 int ih, int map)
ba395927 1604{
9dd2fe89 1605 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
03d6a246 1606 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
a1ddcbe9 1607 u16 did = domain->iommu_did[iommu->seq_id];
ba395927 1608
ba395927
KA
1609 BUG_ON(pages == 0);
1610
ea8ea460
DW
1611 if (ih)
1612 ih = 1 << 6;
ba395927 1613 /*
9dd2fe89
YZ
1614 * Fallback to domain selective flush if no PSI support or the size is
1615 * too big.
ba395927
KA
1616 * PSI requires page size to be 2 ^ x, and the base address is naturally
1617 * aligned to the size
1618 */
9dd2fe89
YZ
1619 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1620 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1f0ef2aa 1621 DMA_TLB_DSI_FLUSH);
9dd2fe89 1622 else
ea8ea460 1623 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
9dd2fe89 1624 DMA_TLB_PSI_FLUSH);
bf92df30
YZ
1625
1626 /*
82653633
NA
1627 * In caching mode, changes of pages from non-present to present require
1628 * flush. However, device IOTLB doesn't need to be flushed in this case.
bf92df30 1629 */
82653633 1630 if (!cap_caching_mode(iommu->cap) || !map)
b5c2e607 1631 iommu_flush_dev_iotlb(domain, addr, mask);
ba395927
KA
1632}
1633
f8bab735 1634static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1635{
1636 u32 pmen;
1637 unsigned long flags;
1638
41f08cc5
LB
1639 if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
1640 return;
1641
1f5b3c3f 1642 raw_spin_lock_irqsave(&iommu->register_lock, flags);
f8bab735 1643 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1644 pmen &= ~DMA_PMEN_EPM;
1645 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1646
1647 /* wait for the protected region status bit to clear */
1648 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1649 readl, !(pmen & DMA_PMEN_PRS), pmen);
1650
1f5b3c3f 1651 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
f8bab735 1652}
1653
2a41ccee 1654static void iommu_enable_translation(struct intel_iommu *iommu)
ba395927
KA
1655{
1656 u32 sts;
1657 unsigned long flags;
1658
1f5b3c3f 1659 raw_spin_lock_irqsave(&iommu->register_lock, flags);
c416daa9
DW
1660 iommu->gcmd |= DMA_GCMD_TE;
1661 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
ba395927
KA
1662
1663 /* Make sure hardware complete it */
1664 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 1665 readl, (sts & DMA_GSTS_TES), sts);
ba395927 1666
1f5b3c3f 1667 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
ba395927
KA
1668}
1669
2a41ccee 1670static void iommu_disable_translation(struct intel_iommu *iommu)
ba395927
KA
1671{
1672 u32 sts;
1673 unsigned long flag;
1674
1f5b3c3f 1675 raw_spin_lock_irqsave(&iommu->register_lock, flag);
ba395927
KA
1676 iommu->gcmd &= ~DMA_GCMD_TE;
1677 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1678
1679 /* Make sure hardware complete it */
1680 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 1681 readl, (!(sts & DMA_GSTS_TES)), sts);
ba395927 1682
1f5b3c3f 1683 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
ba395927
KA
1684}
1685
3460a6d9 1686
ba395927
KA
1687static int iommu_init_domains(struct intel_iommu *iommu)
1688{
8bf47816
JR
1689 u32 ndomains, nlongs;
1690 size_t size;
ba395927
KA
1691
1692 ndomains = cap_ndoms(iommu->cap);
8bf47816 1693 pr_debug("%s: Number of Domains supported <%d>\n",
9f10e5bf 1694 iommu->name, ndomains);
ba395927
KA
1695 nlongs = BITS_TO_LONGS(ndomains);
1696
94a91b50
DD
1697 spin_lock_init(&iommu->lock);
1698
ba395927
KA
1699 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1700 if (!iommu->domain_ids) {
9f10e5bf
JR
1701 pr_err("%s: Allocating domain id array failed\n",
1702 iommu->name);
ba395927
KA
1703 return -ENOMEM;
1704 }
8bf47816 1705
86f004c7 1706 size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
8bf47816
JR
1707 iommu->domains = kzalloc(size, GFP_KERNEL);
1708
1709 if (iommu->domains) {
1710 size = 256 * sizeof(struct dmar_domain *);
1711 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1712 }
1713
1714 if (!iommu->domains || !iommu->domains[0]) {
9f10e5bf
JR
1715 pr_err("%s: Allocating domain array failed\n",
1716 iommu->name);
852bdb04 1717 kfree(iommu->domain_ids);
8bf47816 1718 kfree(iommu->domains);
852bdb04 1719 iommu->domain_ids = NULL;
8bf47816 1720 iommu->domains = NULL;
ba395927
KA
1721 return -ENOMEM;
1722 }
1723
8bf47816
JR
1724
1725
ba395927 1726 /*
c0e8a6c8
JR
1727 * If Caching mode is set, then invalid translations are tagged
1728 * with domain-id 0, hence we need to pre-allocate it. We also
1729 * use domain-id 0 as a marker for non-allocated domain-id, so
1730 * make sure it is not used for a real domain.
ba395927 1731 */
c0e8a6c8
JR
1732 set_bit(0, iommu->domain_ids);
1733
ba395927
KA
1734 return 0;
1735}
ba395927 1736
ffebeb46 1737static void disable_dmar_iommu(struct intel_iommu *iommu)
ba395927 1738{
29a27719 1739 struct device_domain_info *info, *tmp;
55d94043 1740 unsigned long flags;
ba395927 1741
29a27719
JR
1742 if (!iommu->domains || !iommu->domain_ids)
1743 return;
a4eaa86c 1744
bea64033 1745again:
55d94043 1746 spin_lock_irqsave(&device_domain_lock, flags);
29a27719
JR
1747 list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1748 struct dmar_domain *domain;
1749
1750 if (info->iommu != iommu)
1751 continue;
1752
1753 if (!info->dev || !info->domain)
1754 continue;
1755
1756 domain = info->domain;
1757
bea64033 1758 __dmar_remove_one_dev_info(info);
29a27719 1759
bea64033
JR
1760 if (!domain_type_is_vm_or_si(domain)) {
1761 /*
1762 * The domain_exit() function can't be called under
1763 * device_domain_lock, as it takes this lock itself.
1764 * So release the lock here and re-run the loop
1765 * afterwards.
1766 */
1767 spin_unlock_irqrestore(&device_domain_lock, flags);
29a27719 1768 domain_exit(domain);
bea64033
JR
1769 goto again;
1770 }
ba395927 1771 }
55d94043 1772 spin_unlock_irqrestore(&device_domain_lock, flags);
ba395927
KA
1773
1774 if (iommu->gcmd & DMA_GCMD_TE)
1775 iommu_disable_translation(iommu);
ffebeb46 1776}
ba395927 1777
ffebeb46
JL
1778static void free_dmar_iommu(struct intel_iommu *iommu)
1779{
1780 if ((iommu->domains) && (iommu->domain_ids)) {
86f004c7 1781 int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
8bf47816
JR
1782 int i;
1783
1784 for (i = 0; i < elems; i++)
1785 kfree(iommu->domains[i]);
ffebeb46
JL
1786 kfree(iommu->domains);
1787 kfree(iommu->domain_ids);
1788 iommu->domains = NULL;
1789 iommu->domain_ids = NULL;
1790 }
ba395927 1791
d9630fe9
WH
1792 g_iommus[iommu->seq_id] = NULL;
1793
ba395927
KA
1794 /* free context mapping */
1795 free_context_table(iommu);
8a94ade4
DW
1796
1797#ifdef CONFIG_INTEL_IOMMU_SVM
a222a7f0
DW
1798 if (pasid_enabled(iommu)) {
1799 if (ecap_prs(iommu->ecap))
1800 intel_svm_finish_prq(iommu);
8a94ade4 1801 intel_svm_free_pasid_tables(iommu);
a222a7f0 1802 }
8a94ade4 1803#endif
ba395927
KA
1804}
1805
ab8dfe25 1806static struct dmar_domain *alloc_domain(int flags)
ba395927 1807{
ba395927 1808 struct dmar_domain *domain;
ba395927
KA
1809
1810 domain = alloc_domain_mem();
1811 if (!domain)
1812 return NULL;
1813
ab8dfe25 1814 memset(domain, 0, sizeof(*domain));
4c923d47 1815 domain->nid = -1;
ab8dfe25 1816 domain->flags = flags;
0824c592 1817 domain->has_iotlb_device = false;
92d03cc8 1818 INIT_LIST_HEAD(&domain->devices);
2c2e2c38
FY
1819
1820 return domain;
1821}
1822
d160aca5
JR
1823/* Must be called with iommu->lock */
1824static int domain_attach_iommu(struct dmar_domain *domain,
fb170fb4
JL
1825 struct intel_iommu *iommu)
1826{
44bde614 1827 unsigned long ndomains;
55d94043 1828 int num;
44bde614 1829
55d94043 1830 assert_spin_locked(&device_domain_lock);
d160aca5 1831 assert_spin_locked(&iommu->lock);
ba395927 1832
29a27719
JR
1833 domain->iommu_refcnt[iommu->seq_id] += 1;
1834 domain->iommu_count += 1;
1835 if (domain->iommu_refcnt[iommu->seq_id] == 1) {
fb170fb4 1836 ndomains = cap_ndoms(iommu->cap);
d160aca5
JR
1837 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1838
1839 if (num >= ndomains) {
1840 pr_err("%s: No free domain ids\n", iommu->name);
1841 domain->iommu_refcnt[iommu->seq_id] -= 1;
1842 domain->iommu_count -= 1;
55d94043 1843 return -ENOSPC;
2c2e2c38 1844 }
ba395927 1845
d160aca5
JR
1846 set_bit(num, iommu->domain_ids);
1847 set_iommu_domain(iommu, num, domain);
1848
1849 domain->iommu_did[iommu->seq_id] = num;
1850 domain->nid = iommu->node;
fb170fb4 1851
fb170fb4
JL
1852 domain_update_iommu_cap(domain);
1853 }
d160aca5 1854
55d94043 1855 return 0;
fb170fb4
JL
1856}
1857
1858static int domain_detach_iommu(struct dmar_domain *domain,
1859 struct intel_iommu *iommu)
1860{
d160aca5 1861 int num, count = INT_MAX;
d160aca5 1862
55d94043 1863 assert_spin_locked(&device_domain_lock);
d160aca5 1864 assert_spin_locked(&iommu->lock);
fb170fb4 1865
29a27719
JR
1866 domain->iommu_refcnt[iommu->seq_id] -= 1;
1867 count = --domain->iommu_count;
1868 if (domain->iommu_refcnt[iommu->seq_id] == 0) {
d160aca5
JR
1869 num = domain->iommu_did[iommu->seq_id];
1870 clear_bit(num, iommu->domain_ids);
1871 set_iommu_domain(iommu, num, NULL);
fb170fb4 1872
fb170fb4 1873 domain_update_iommu_cap(domain);
c0e8a6c8 1874 domain->iommu_did[iommu->seq_id] = 0;
fb170fb4 1875 }
fb170fb4
JL
1876
1877 return count;
1878}
1879
ba395927 1880static struct iova_domain reserved_iova_list;
8a443df4 1881static struct lock_class_key reserved_rbtree_key;
ba395927 1882
51a63e67 1883static int dmar_init_reserved_ranges(void)
ba395927
KA
1884{
1885 struct pci_dev *pdev = NULL;
1886 struct iova *iova;
1887 int i;
ba395927 1888
0fb5fe87
RM
1889 init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN,
1890 DMA_32BIT_PFN);
ba395927 1891
8a443df4
MG
1892 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1893 &reserved_rbtree_key);
1894
ba395927
KA
1895 /* IOAPIC ranges shouldn't be accessed by DMA */
1896 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1897 IOVA_PFN(IOAPIC_RANGE_END));
51a63e67 1898 if (!iova) {
9f10e5bf 1899 pr_err("Reserve IOAPIC range failed\n");
51a63e67
JC
1900 return -ENODEV;
1901 }
ba395927
KA
1902
1903 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1904 for_each_pci_dev(pdev) {
1905 struct resource *r;
1906
1907 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1908 r = &pdev->resource[i];
1909 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1910 continue;
1a4a4551
DW
1911 iova = reserve_iova(&reserved_iova_list,
1912 IOVA_PFN(r->start),
1913 IOVA_PFN(r->end));
51a63e67 1914 if (!iova) {
9f10e5bf 1915 pr_err("Reserve iova failed\n");
51a63e67
JC
1916 return -ENODEV;
1917 }
ba395927
KA
1918 }
1919 }
51a63e67 1920 return 0;
ba395927
KA
1921}
1922
1923static void domain_reserve_special_ranges(struct dmar_domain *domain)
1924{
1925 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1926}
1927
1928static inline int guestwidth_to_adjustwidth(int gaw)
1929{
1930 int agaw;
1931 int r = (gaw - 12) % 9;
1932
1933 if (r == 0)
1934 agaw = gaw;
1935 else
1936 agaw = gaw + 9 - r;
1937 if (agaw > 64)
1938 agaw = 64;
1939 return agaw;
1940}
1941
dc534b25
JR
1942static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1943 int guest_width)
ba395927 1944{
ba395927
KA
1945 int adjust_width, agaw;
1946 unsigned long sagaw;
1947
0fb5fe87
RM
1948 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
1949 DMA_32BIT_PFN);
ba395927
KA
1950 domain_reserve_special_ranges(domain);
1951
1952 /* calculate AGAW */
ba395927
KA
1953 if (guest_width > cap_mgaw(iommu->cap))
1954 guest_width = cap_mgaw(iommu->cap);
1955 domain->gaw = guest_width;
1956 adjust_width = guestwidth_to_adjustwidth(guest_width);
1957 agaw = width_to_agaw(adjust_width);
1958 sagaw = cap_sagaw(iommu->cap);
1959 if (!test_bit(agaw, &sagaw)) {
1960 /* hardware doesn't support it, choose a bigger one */
9f10e5bf 1961 pr_debug("Hardware doesn't support agaw %d\n", agaw);
ba395927
KA
1962 agaw = find_next_bit(&sagaw, 5, agaw);
1963 if (agaw >= 5)
1964 return -ENODEV;
1965 }
1966 domain->agaw = agaw;
ba395927 1967
8e604097
WH
1968 if (ecap_coherent(iommu->ecap))
1969 domain->iommu_coherency = 1;
1970 else
1971 domain->iommu_coherency = 0;
1972
58c610bd
SY
1973 if (ecap_sc_support(iommu->ecap))
1974 domain->iommu_snooping = 1;
1975 else
1976 domain->iommu_snooping = 0;
1977
214e39aa
DW
1978 if (intel_iommu_superpage)
1979 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1980 else
1981 domain->iommu_superpage = 0;
1982
4c923d47 1983 domain->nid = iommu->node;
c7151a8d 1984
ba395927 1985 /* always allocate the top pgd */
4c923d47 1986 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
ba395927
KA
1987 if (!domain->pgd)
1988 return -ENOMEM;
5b6985ce 1989 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
ba395927
KA
1990 return 0;
1991}
1992
1993static void domain_exit(struct dmar_domain *domain)
1994{
ea8ea460 1995 struct page *freelist = NULL;
ba395927
KA
1996
1997 /* Domain 0 is reserved, so dont process it */
1998 if (!domain)
1999 return;
2000
7b668357 2001 /* Flush any lazy unmaps that may reference this domain */
aa473240
OP
2002 if (!intel_iommu_strict) {
2003 int cpu;
2004
2005 for_each_possible_cpu(cpu)
2006 flush_unmaps_timeout(cpu);
2007 }
7b668357 2008
d160aca5
JR
2009 /* Remove associated devices and clear attached or cached domains */
2010 rcu_read_lock();
ba395927 2011 domain_remove_dev_info(domain);
d160aca5 2012 rcu_read_unlock();
92d03cc8 2013
ba395927
KA
2014 /* destroy iovas */
2015 put_iova_domain(&domain->iovad);
ba395927 2016
ea8ea460 2017 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
ba395927 2018
ea8ea460
DW
2019 dma_free_pagelist(freelist);
2020
ba395927
KA
2021 free_domain_mem(domain);
2022}
2023
64ae892b
DW
2024static int domain_context_mapping_one(struct dmar_domain *domain,
2025 struct intel_iommu *iommu,
28ccce0d 2026 u8 bus, u8 devfn)
ba395927 2027{
c6c2cebd 2028 u16 did = domain->iommu_did[iommu->seq_id];
28ccce0d
JR
2029 int translation = CONTEXT_TT_MULTI_LEVEL;
2030 struct device_domain_info *info = NULL;
ba395927 2031 struct context_entry *context;
ba395927 2032 unsigned long flags;
ea6606b0 2033 struct dma_pte *pgd;
55d94043 2034 int ret, agaw;
28ccce0d 2035
c6c2cebd
JR
2036 WARN_ON(did == 0);
2037
28ccce0d
JR
2038 if (hw_pass_through && domain_type_is_si(domain))
2039 translation = CONTEXT_TT_PASS_THROUGH;
ba395927
KA
2040
2041 pr_debug("Set context mapping for %02x:%02x.%d\n",
2042 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
4ed0d3e6 2043
ba395927 2044 BUG_ON(!domain->pgd);
5331fe6f 2045
55d94043
JR
2046 spin_lock_irqsave(&device_domain_lock, flags);
2047 spin_lock(&iommu->lock);
2048
2049 ret = -ENOMEM;
03ecc32c 2050 context = iommu_context_addr(iommu, bus, devfn, 1);
ba395927 2051 if (!context)
55d94043 2052 goto out_unlock;
ba395927 2053
55d94043
JR
2054 ret = 0;
2055 if (context_present(context))
2056 goto out_unlock;
cf484d0e 2057
afd7e2b4
XP
2058 /*
2059 * For kdump cases, old valid entries may be cached due to the
2060 * in-flight DMA and copied pgtable, but there is no unmapping
2061 * behaviour for them, thus we need an explicit cache flush for
2062 * the newly-mapped device. For kdump, at this point, the device
2063 * is supposed to finish reset at its driver probe stage, so no
2064 * in-flight DMA will exist, and we don't need to worry anymore
2065 * hereafter.
2066 */
2067 if (context_copied(context)) {
2068 u16 did_old = context_domain_id(context);
2069
21f2950f 2070 if (did_old >= 0 && did_old < cap_ndoms(iommu->cap)) {
afd7e2b4
XP
2071 iommu->flush.flush_context(iommu, did_old,
2072 (((u16)bus) << 8) | devfn,
2073 DMA_CCMD_MASK_NOBIT,
2074 DMA_CCMD_DEVICE_INVL);
21f2950f
KA
2075 iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
2076 DMA_TLB_DSI_FLUSH);
2077 }
afd7e2b4
XP
2078 }
2079
ea6606b0
WH
2080 pgd = domain->pgd;
2081
de24e553 2082 context_clear_entry(context);
c6c2cebd 2083 context_set_domain_id(context, did);
ea6606b0 2084
de24e553
JR
2085 /*
2086 * Skip top levels of page tables for iommu which has less agaw
2087 * than default. Unnecessary for PT mode.
2088 */
93a23a72 2089 if (translation != CONTEXT_TT_PASS_THROUGH) {
da4b7ae4 2090 for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
55d94043 2091 ret = -ENOMEM;
de24e553 2092 pgd = phys_to_virt(dma_pte_addr(pgd));
55d94043
JR
2093 if (!dma_pte_present(pgd))
2094 goto out_unlock;
ea6606b0 2095 }
4ed0d3e6 2096
64ae892b 2097 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
b16d0cb9
DW
2098 if (info && info->ats_supported)
2099 translation = CONTEXT_TT_DEV_IOTLB;
2100 else
2101 translation = CONTEXT_TT_MULTI_LEVEL;
de24e553 2102
93a23a72 2103 context_set_address_root(context, virt_to_phys(pgd));
da4b7ae4 2104 context_set_address_width(context, agaw);
de24e553
JR
2105 } else {
2106 /*
2107 * In pass through mode, AW must be programmed to
2108 * indicate the largest AGAW value supported by
2109 * hardware. And ASR is ignored by hardware.
2110 */
2111 context_set_address_width(context, iommu->msagaw);
93a23a72 2112 }
4ed0d3e6
FY
2113
2114 context_set_translation_type(context, translation);
c07e7d21
MM
2115 context_set_fault_enable(context);
2116 context_set_present(context);
5331fe6f 2117 domain_flush_cache(domain, context, sizeof(*context));
ba395927 2118
4c25a2c1
DW
2119 /*
2120 * It's a non-present to present mapping. If hardware doesn't cache
2121 * non-present entry we only need to flush the write-buffer. If the
2122 * _does_ cache non-present entries, then it does so in the special
2123 * domain #0, which we have to flush:
2124 */
2125 if (cap_caching_mode(iommu->cap)) {
2126 iommu->flush.flush_context(iommu, 0,
2127 (((u16)bus) << 8) | devfn,
2128 DMA_CCMD_MASK_NOBIT,
2129 DMA_CCMD_DEVICE_INVL);
c6c2cebd 2130 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
4c25a2c1 2131 } else {
ba395927 2132 iommu_flush_write_buffer(iommu);
4c25a2c1 2133 }
93a23a72 2134 iommu_enable_dev_iotlb(info);
c7151a8d 2135
55d94043
JR
2136 ret = 0;
2137
2138out_unlock:
2139 spin_unlock(&iommu->lock);
2140 spin_unlock_irqrestore(&device_domain_lock, flags);
fb170fb4 2141
5c365d18 2142 return ret;
ba395927
KA
2143}
2144
579305f7
AW
2145struct domain_context_mapping_data {
2146 struct dmar_domain *domain;
2147 struct intel_iommu *iommu;
579305f7
AW
2148};
2149
2150static int domain_context_mapping_cb(struct pci_dev *pdev,
2151 u16 alias, void *opaque)
2152{
2153 struct domain_context_mapping_data *data = opaque;
2154
2155 return domain_context_mapping_one(data->domain, data->iommu,
28ccce0d 2156 PCI_BUS_NUM(alias), alias & 0xff);
579305f7
AW
2157}
2158
ba395927 2159static int
28ccce0d 2160domain_context_mapping(struct dmar_domain *domain, struct device *dev)
ba395927 2161{
64ae892b 2162 struct intel_iommu *iommu;
156baca8 2163 u8 bus, devfn;
579305f7 2164 struct domain_context_mapping_data data;
64ae892b 2165
e1f167f3 2166 iommu = device_to_iommu(dev, &bus, &devfn);
64ae892b
DW
2167 if (!iommu)
2168 return -ENODEV;
ba395927 2169
579305f7 2170 if (!dev_is_pci(dev))
28ccce0d 2171 return domain_context_mapping_one(domain, iommu, bus, devfn);
579305f7
AW
2172
2173 data.domain = domain;
2174 data.iommu = iommu;
579305f7
AW
2175
2176 return pci_for_each_dma_alias(to_pci_dev(dev),
2177 &domain_context_mapping_cb, &data);
2178}
2179
2180static int domain_context_mapped_cb(struct pci_dev *pdev,
2181 u16 alias, void *opaque)
2182{
2183 struct intel_iommu *iommu = opaque;
2184
2185 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
ba395927
KA
2186}
2187
e1f167f3 2188static int domain_context_mapped(struct device *dev)
ba395927 2189{
5331fe6f 2190 struct intel_iommu *iommu;
156baca8 2191 u8 bus, devfn;
5331fe6f 2192
e1f167f3 2193 iommu = device_to_iommu(dev, &bus, &devfn);
5331fe6f
WH
2194 if (!iommu)
2195 return -ENODEV;
ba395927 2196
579305f7
AW
2197 if (!dev_is_pci(dev))
2198 return device_context_mapped(iommu, bus, devfn);
e1f167f3 2199
579305f7
AW
2200 return !pci_for_each_dma_alias(to_pci_dev(dev),
2201 domain_context_mapped_cb, iommu);
ba395927
KA
2202}
2203
f532959b
FY
2204/* Returns a number of VTD pages, but aligned to MM page size */
2205static inline unsigned long aligned_nrpages(unsigned long host_addr,
2206 size_t size)
2207{
2208 host_addr &= ~PAGE_MASK;
2209 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2210}
2211
6dd9a7c7
YS
2212/* Return largest possible superpage level for a given mapping */
2213static inline int hardware_largepage_caps(struct dmar_domain *domain,
2214 unsigned long iov_pfn,
2215 unsigned long phy_pfn,
2216 unsigned long pages)
2217{
2218 int support, level = 1;
2219 unsigned long pfnmerge;
2220
2221 support = domain->iommu_superpage;
2222
2223 /* To use a large page, the virtual *and* physical addresses
2224 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2225 of them will mean we have to use smaller pages. So just
2226 merge them and check both at once. */
2227 pfnmerge = iov_pfn | phy_pfn;
2228
2229 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2230 pages >>= VTD_STRIDE_SHIFT;
2231 if (!pages)
2232 break;
2233 pfnmerge >>= VTD_STRIDE_SHIFT;
2234 level++;
2235 support--;
2236 }
2237 return level;
2238}
2239
9051aa02
DW
2240static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2241 struct scatterlist *sg, unsigned long phys_pfn,
2242 unsigned long nr_pages, int prot)
e1605495
DW
2243{
2244 struct dma_pte *first_pte = NULL, *pte = NULL;
9051aa02 2245 phys_addr_t uninitialized_var(pteval);
cc4f14aa 2246 unsigned long sg_res = 0;
6dd9a7c7
YS
2247 unsigned int largepage_lvl = 0;
2248 unsigned long lvl_pages = 0;
e1605495 2249
162d1b10 2250 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
e1605495
DW
2251
2252 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2253 return -EINVAL;
2254
2255 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2256
cc4f14aa
JL
2257 if (!sg) {
2258 sg_res = nr_pages;
9051aa02
DW
2259 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2260 }
2261
6dd9a7c7 2262 while (nr_pages > 0) {
c85994e4
DW
2263 uint64_t tmp;
2264
e1605495 2265 if (!sg_res) {
e17f2b51
RM
2266 unsigned int pgoff = sg->offset & ~PAGE_MASK;
2267
f532959b 2268 sg_res = aligned_nrpages(sg->offset, sg->length);
e17f2b51 2269 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
e1605495 2270 sg->dma_length = sg->length;
e17f2b51 2271 pteval = (sg_phys(sg) - pgoff) | prot;
6dd9a7c7 2272 phys_pfn = pteval >> VTD_PAGE_SHIFT;
e1605495 2273 }
6dd9a7c7 2274
e1605495 2275 if (!pte) {
6dd9a7c7
YS
2276 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2277
5cf0a76f 2278 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
e1605495
DW
2279 if (!pte)
2280 return -ENOMEM;
6dd9a7c7 2281 /* It is large page*/
6491d4d0 2282 if (largepage_lvl > 1) {
ba2374fd
CZ
2283 unsigned long nr_superpages, end_pfn;
2284
6dd9a7c7 2285 pteval |= DMA_PTE_LARGE_PAGE;
d41a4adb 2286 lvl_pages = lvl_to_nr_pages(largepage_lvl);
ba2374fd
CZ
2287
2288 nr_superpages = sg_res / lvl_pages;
2289 end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2290
d41a4adb
JL
2291 /*
2292 * Ensure that old small page tables are
ba2374fd 2293 * removed to make room for superpage(s).
d41a4adb 2294 */
ba2374fd 2295 dma_pte_free_pagetable(domain, iov_pfn, end_pfn);
6491d4d0 2296 } else {
6dd9a7c7 2297 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
6491d4d0 2298 }
6dd9a7c7 2299
e1605495
DW
2300 }
2301 /* We don't need lock here, nobody else
2302 * touches the iova range
2303 */
7766a3fb 2304 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
c85994e4 2305 if (tmp) {
1bf20f0d 2306 static int dumps = 5;
9f10e5bf
JR
2307 pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2308 iov_pfn, tmp, (unsigned long long)pteval);
1bf20f0d
DW
2309 if (dumps) {
2310 dumps--;
2311 debug_dma_dump_mappings(NULL);
2312 }
2313 WARN_ON(1);
2314 }
6dd9a7c7
YS
2315
2316 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2317
2318 BUG_ON(nr_pages < lvl_pages);
2319 BUG_ON(sg_res < lvl_pages);
2320
2321 nr_pages -= lvl_pages;
2322 iov_pfn += lvl_pages;
2323 phys_pfn += lvl_pages;
2324 pteval += lvl_pages * VTD_PAGE_SIZE;
2325 sg_res -= lvl_pages;
2326
2327 /* If the next PTE would be the first in a new page, then we
2328 need to flush the cache on the entries we've just written.
2329 And then we'll need to recalculate 'pte', so clear it and
2330 let it get set again in the if (!pte) block above.
2331
2332 If we're done (!nr_pages) we need to flush the cache too.
2333
2334 Also if we've been setting superpages, we may need to
2335 recalculate 'pte' and switch back to smaller pages for the
2336 end of the mapping, if the trailing size is not enough to
2337 use another superpage (i.e. sg_res < lvl_pages). */
e1605495 2338 pte++;
6dd9a7c7
YS
2339 if (!nr_pages || first_pte_in_page(pte) ||
2340 (largepage_lvl > 1 && sg_res < lvl_pages)) {
e1605495
DW
2341 domain_flush_cache(domain, first_pte,
2342 (void *)pte - (void *)first_pte);
2343 pte = NULL;
2344 }
6dd9a7c7
YS
2345
2346 if (!sg_res && nr_pages)
e1605495
DW
2347 sg = sg_next(sg);
2348 }
2349 return 0;
2350}
2351
9051aa02
DW
2352static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2353 struct scatterlist *sg, unsigned long nr_pages,
2354 int prot)
ba395927 2355{
9051aa02
DW
2356 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2357}
6f6a00e4 2358
9051aa02
DW
2359static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2360 unsigned long phys_pfn, unsigned long nr_pages,
2361 int prot)
2362{
2363 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
ba395927
KA
2364}
2365
2452d9db 2366static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
ba395927 2367{
c7151a8d
WH
2368 if (!iommu)
2369 return;
8c11e798
WH
2370
2371 clear_context_table(iommu, bus, devfn);
2372 iommu->flush.flush_context(iommu, 0, 0, 0,
4c25a2c1 2373 DMA_CCMD_GLOBAL_INVL);
1f0ef2aa 2374 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
ba395927
KA
2375}
2376
109b9b04
DW
2377static inline void unlink_domain_info(struct device_domain_info *info)
2378{
2379 assert_spin_locked(&device_domain_lock);
2380 list_del(&info->link);
2381 list_del(&info->global);
2382 if (info->dev)
0bcb3e28 2383 info->dev->archdata.iommu = NULL;
109b9b04
DW
2384}
2385
ba395927
KA
2386static void domain_remove_dev_info(struct dmar_domain *domain)
2387{
3a74ca01 2388 struct device_domain_info *info, *tmp;
fb170fb4 2389 unsigned long flags;
ba395927
KA
2390
2391 spin_lock_irqsave(&device_domain_lock, flags);
76f45fe3 2392 list_for_each_entry_safe(info, tmp, &domain->devices, link)
127c7615 2393 __dmar_remove_one_dev_info(info);
ba395927
KA
2394 spin_unlock_irqrestore(&device_domain_lock, flags);
2395}
2396
2397/*
2398 * find_domain
1525a29a 2399 * Note: we use struct device->archdata.iommu stores the info
ba395927 2400 */
1525a29a 2401static struct dmar_domain *find_domain(struct device *dev)
ba395927
KA
2402{
2403 struct device_domain_info *info;
2404
2405 /* No lock here, assumes no domain exit in normal case */
1525a29a 2406 info = dev->archdata.iommu;
ba395927
KA
2407 if (info)
2408 return info->domain;
2409 return NULL;
2410}
2411
5a8f40e8 2412static inline struct device_domain_info *
745f2586
JL
2413dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2414{
2415 struct device_domain_info *info;
2416
2417 list_for_each_entry(info, &device_domain_list, global)
41e80dca 2418 if (info->iommu->segment == segment && info->bus == bus &&
745f2586 2419 info->devfn == devfn)
5a8f40e8 2420 return info;
745f2586
JL
2421
2422 return NULL;
2423}
2424
5db31569
JR
2425static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2426 int bus, int devfn,
2427 struct device *dev,
2428 struct dmar_domain *domain)
745f2586 2429{
5a8f40e8 2430 struct dmar_domain *found = NULL;
745f2586
JL
2431 struct device_domain_info *info;
2432 unsigned long flags;
d160aca5 2433 int ret;
745f2586
JL
2434
2435 info = alloc_devinfo_mem();
2436 if (!info)
b718cd3d 2437 return NULL;
745f2586 2438
745f2586
JL
2439 info->bus = bus;
2440 info->devfn = devfn;
b16d0cb9
DW
2441 info->ats_supported = info->pasid_supported = info->pri_supported = 0;
2442 info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
2443 info->ats_qdep = 0;
745f2586
JL
2444 info->dev = dev;
2445 info->domain = domain;
5a8f40e8 2446 info->iommu = iommu;
745f2586 2447
b16d0cb9
DW
2448 if (dev && dev_is_pci(dev)) {
2449 struct pci_dev *pdev = to_pci_dev(info->dev);
2450
2451 if (ecap_dev_iotlb_support(iommu->ecap) &&
2452 pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
2453 dmar_find_matched_atsr_unit(pdev))
2454 info->ats_supported = 1;
2455
2456 if (ecs_enabled(iommu)) {
2457 if (pasid_enabled(iommu)) {
2458 int features = pci_pasid_features(pdev);
2459 if (features >= 0)
2460 info->pasid_supported = features | 1;
2461 }
2462
2463 if (info->ats_supported && ecap_prs(iommu->ecap) &&
2464 pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
2465 info->pri_supported = 1;
2466 }
2467 }
2468
745f2586
JL
2469 spin_lock_irqsave(&device_domain_lock, flags);
2470 if (dev)
0bcb3e28 2471 found = find_domain(dev);
f303e507
JR
2472
2473 if (!found) {
5a8f40e8 2474 struct device_domain_info *info2;
41e80dca 2475 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
f303e507
JR
2476 if (info2) {
2477 found = info2->domain;
2478 info2->dev = dev;
2479 }
5a8f40e8 2480 }
f303e507 2481
745f2586
JL
2482 if (found) {
2483 spin_unlock_irqrestore(&device_domain_lock, flags);
2484 free_devinfo_mem(info);
b718cd3d
DW
2485 /* Caller must free the original domain */
2486 return found;
745f2586
JL
2487 }
2488
d160aca5
JR
2489 spin_lock(&iommu->lock);
2490 ret = domain_attach_iommu(domain, iommu);
2491 spin_unlock(&iommu->lock);
2492
2493 if (ret) {
c6c2cebd 2494 spin_unlock_irqrestore(&device_domain_lock, flags);
499f3aa4 2495 free_devinfo_mem(info);
c6c2cebd
JR
2496 return NULL;
2497 }
c6c2cebd 2498
b718cd3d
DW
2499 list_add(&info->link, &domain->devices);
2500 list_add(&info->global, &device_domain_list);
2501 if (dev)
2502 dev->archdata.iommu = info;
2503 spin_unlock_irqrestore(&device_domain_lock, flags);
2504
cc4e2575
JR
2505 if (dev && domain_context_mapping(domain, dev)) {
2506 pr_err("Domain context map for %s failed\n", dev_name(dev));
e6de0f8d 2507 dmar_remove_one_dev_info(domain, dev);
cc4e2575
JR
2508 return NULL;
2509 }
2510
b718cd3d 2511 return domain;
745f2586
JL
2512}
2513
579305f7
AW
2514static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2515{
2516 *(u16 *)opaque = alias;
2517 return 0;
2518}
2519
76208356 2520static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
ba395927 2521{
cc4e2575 2522 struct device_domain_info *info = NULL;
76208356 2523 struct dmar_domain *domain = NULL;
579305f7 2524 struct intel_iommu *iommu;
08a7f456 2525 u16 req_id, dma_alias;
ba395927 2526 unsigned long flags;
aa4d066a 2527 u8 bus, devfn;
ba395927 2528
579305f7
AW
2529 iommu = device_to_iommu(dev, &bus, &devfn);
2530 if (!iommu)
2531 return NULL;
2532
08a7f456
JR
2533 req_id = ((u16)bus << 8) | devfn;
2534
146922ec
DW
2535 if (dev_is_pci(dev)) {
2536 struct pci_dev *pdev = to_pci_dev(dev);
276dbf99 2537
579305f7
AW
2538 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2539
2540 spin_lock_irqsave(&device_domain_lock, flags);
2541 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2542 PCI_BUS_NUM(dma_alias),
2543 dma_alias & 0xff);
2544 if (info) {
2545 iommu = info->iommu;
2546 domain = info->domain;
5a8f40e8 2547 }
579305f7 2548 spin_unlock_irqrestore(&device_domain_lock, flags);
ba395927 2549
76208356 2550 /* DMA alias already has a domain, use it */
579305f7 2551 if (info)
76208356 2552 goto out;
579305f7 2553 }
ba395927 2554
146922ec 2555 /* Allocate and initialize new domain for the device */
ab8dfe25 2556 domain = alloc_domain(0);
745f2586 2557 if (!domain)
579305f7 2558 return NULL;
dc534b25 2559 if (domain_init(domain, iommu, gaw)) {
579305f7
AW
2560 domain_exit(domain);
2561 return NULL;
2c2e2c38 2562 }
ba395927 2563
76208356 2564out:
579305f7 2565
76208356
JR
2566 return domain;
2567}
579305f7 2568
76208356
JR
2569static struct dmar_domain *set_domain_for_dev(struct device *dev,
2570 struct dmar_domain *domain)
2571{
2572 struct intel_iommu *iommu;
2573 struct dmar_domain *tmp;
2574 u16 req_id, dma_alias;
2575 u8 bus, devfn;
2576
2577 iommu = device_to_iommu(dev, &bus, &devfn);
2578 if (!iommu)
2579 return NULL;
2580
2581 req_id = ((u16)bus << 8) | devfn;
2582
2583 if (dev_is_pci(dev)) {
2584 struct pci_dev *pdev = to_pci_dev(dev);
2585
2586 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2587
2588 /* register PCI DMA alias device */
2589 if (req_id != dma_alias) {
2590 tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2591 dma_alias & 0xff, NULL, domain);
2592
2593 if (!tmp || tmp != domain)
2594 return tmp;
2595 }
ba395927
KA
2596 }
2597
5db31569 2598 tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
76208356
JR
2599 if (!tmp || tmp != domain)
2600 return tmp;
2601
2602 return domain;
2603}
579305f7 2604
76208356
JR
2605static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2606{
2607 struct dmar_domain *domain, *tmp;
2608
2609 domain = find_domain(dev);
2610 if (domain)
2611 goto out;
2612
2613 domain = find_or_alloc_domain(dev, gaw);
2614 if (!domain)
2615 goto out;
2616
2617 tmp = set_domain_for_dev(dev, domain);
2618 if (!tmp || domain != tmp) {
579305f7
AW
2619 domain_exit(domain);
2620 domain = tmp;
2621 }
b718cd3d 2622
76208356
JR
2623out:
2624
b718cd3d 2625 return domain;
ba395927
KA
2626}
2627
b213203e
DW
2628static int iommu_domain_identity_map(struct dmar_domain *domain,
2629 unsigned long long start,
2630 unsigned long long end)
ba395927 2631{
c5395d5c
DW
2632 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2633 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2634
2635 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2636 dma_to_mm_pfn(last_vpfn))) {
9f10e5bf 2637 pr_err("Reserving iova failed\n");
b213203e 2638 return -ENOMEM;
ba395927
KA
2639 }
2640
af1089ce 2641 pr_debug("Mapping reserved region %llx-%llx\n", start, end);
ba395927
KA
2642 /*
2643 * RMRR range might have overlap with physical memory range,
2644 * clear it first
2645 */
c5395d5c 2646 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
ba395927 2647
c5395d5c
DW
2648 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2649 last_vpfn - first_vpfn + 1,
61df7443 2650 DMA_PTE_READ|DMA_PTE_WRITE);
b213203e
DW
2651}
2652
d66ce54b
JR
2653static int domain_prepare_identity_map(struct device *dev,
2654 struct dmar_domain *domain,
2655 unsigned long long start,
2656 unsigned long long end)
b213203e 2657{
19943b0e
DW
2658 /* For _hardware_ passthrough, don't bother. But for software
2659 passthrough, we do it anyway -- it may indicate a memory
2660 range which is reserved in E820, so which didn't get set
2661 up to start with in si_domain */
2662 if (domain == si_domain && hw_pass_through) {
9f10e5bf
JR
2663 pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2664 dev_name(dev), start, end);
19943b0e
DW
2665 return 0;
2666 }
2667
9f10e5bf
JR
2668 pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2669 dev_name(dev), start, end);
2670
5595b528
DW
2671 if (end < start) {
2672 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2673 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2674 dmi_get_system_info(DMI_BIOS_VENDOR),
2675 dmi_get_system_info(DMI_BIOS_VERSION),
2676 dmi_get_system_info(DMI_PRODUCT_VERSION));
d66ce54b 2677 return -EIO;
5595b528
DW
2678 }
2679
2ff729f5
DW
2680 if (end >> agaw_to_width(domain->agaw)) {
2681 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2682 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2683 agaw_to_width(domain->agaw),
2684 dmi_get_system_info(DMI_BIOS_VENDOR),
2685 dmi_get_system_info(DMI_BIOS_VERSION),
2686 dmi_get_system_info(DMI_PRODUCT_VERSION));
d66ce54b 2687 return -EIO;
2ff729f5 2688 }
19943b0e 2689
d66ce54b
JR
2690 return iommu_domain_identity_map(domain, start, end);
2691}
ba395927 2692
d66ce54b
JR
2693static int iommu_prepare_identity_map(struct device *dev,
2694 unsigned long long start,
2695 unsigned long long end)
2696{
2697 struct dmar_domain *domain;
2698 int ret;
2699
2700 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2701 if (!domain)
2702 return -ENOMEM;
2703
2704 ret = domain_prepare_identity_map(dev, domain, start, end);
2705 if (ret)
2706 domain_exit(domain);
b213203e 2707
ba395927 2708 return ret;
ba395927
KA
2709}
2710
2711static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
0b9d9753 2712 struct device *dev)
ba395927 2713{
0b9d9753 2714 if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
ba395927 2715 return 0;
0b9d9753
DW
2716 return iommu_prepare_identity_map(dev, rmrr->base_address,
2717 rmrr->end_address);
ba395927
KA
2718}
2719
d3f13810 2720#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
49a0429e
KA
2721static inline void iommu_prepare_isa(void)
2722{
2723 struct pci_dev *pdev;
2724 int ret;
2725
2726 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2727 if (!pdev)
2728 return;
2729
9f10e5bf 2730 pr_info("Prepare 0-16MiB unity mapping for LPC\n");
0b9d9753 2731 ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
49a0429e
KA
2732
2733 if (ret)
9f10e5bf 2734 pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
49a0429e 2735
9b27e82d 2736 pci_dev_put(pdev);
49a0429e
KA
2737}
2738#else
2739static inline void iommu_prepare_isa(void)
2740{
2741 return;
2742}
d3f13810 2743#endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
49a0429e 2744
2c2e2c38 2745static int md_domain_init(struct dmar_domain *domain, int guest_width);
c7ab48d2 2746
071e1374 2747static int __init si_domain_init(int hw)
2c2e2c38 2748{
c7ab48d2 2749 int nid, ret = 0;
2c2e2c38 2750
ab8dfe25 2751 si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2c2e2c38
FY
2752 if (!si_domain)
2753 return -EFAULT;
2754
2c2e2c38
FY
2755 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2756 domain_exit(si_domain);
2757 return -EFAULT;
2758 }
2759
0dc79715 2760 pr_debug("Identity mapping domain allocated\n");
2c2e2c38 2761
19943b0e
DW
2762 if (hw)
2763 return 0;
2764
c7ab48d2 2765 for_each_online_node(nid) {
5dfe8660
TH
2766 unsigned long start_pfn, end_pfn;
2767 int i;
2768
2769 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2770 ret = iommu_domain_identity_map(si_domain,
2771 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2772 if (ret)
2773 return ret;
2774 }
c7ab48d2
DW
2775 }
2776
2c2e2c38
FY
2777 return 0;
2778}
2779
9b226624 2780static int identity_mapping(struct device *dev)
2c2e2c38
FY
2781{
2782 struct device_domain_info *info;
2783
2784 if (likely(!iommu_identity_mapping))
2785 return 0;
2786
9b226624 2787 info = dev->archdata.iommu;
cb452a40
MT
2788 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2789 return (info->domain == si_domain);
2c2e2c38 2790
2c2e2c38
FY
2791 return 0;
2792}
2793
28ccce0d 2794static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2c2e2c38 2795{
0ac72664 2796 struct dmar_domain *ndomain;
5a8f40e8 2797 struct intel_iommu *iommu;
156baca8 2798 u8 bus, devfn;
2c2e2c38 2799
5913c9bf 2800 iommu = device_to_iommu(dev, &bus, &devfn);
5a8f40e8
DW
2801 if (!iommu)
2802 return -ENODEV;
2803
5db31569 2804 ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
0ac72664
DW
2805 if (ndomain != domain)
2806 return -EBUSY;
2c2e2c38
FY
2807
2808 return 0;
2809}
2810
0b9d9753 2811static bool device_has_rmrr(struct device *dev)
ea2447f7
TM
2812{
2813 struct dmar_rmrr_unit *rmrr;
832bd858 2814 struct device *tmp;
ea2447f7
TM
2815 int i;
2816
0e242612 2817 rcu_read_lock();
ea2447f7 2818 for_each_rmrr_units(rmrr) {
b683b230
JL
2819 /*
2820 * Return TRUE if this RMRR contains the device that
2821 * is passed in.
2822 */
2823 for_each_active_dev_scope(rmrr->devices,
2824 rmrr->devices_cnt, i, tmp)
0b9d9753 2825 if (tmp == dev) {
0e242612 2826 rcu_read_unlock();
ea2447f7 2827 return true;
b683b230 2828 }
ea2447f7 2829 }
0e242612 2830 rcu_read_unlock();
ea2447f7
TM
2831 return false;
2832}
2833
c875d2c1
AW
2834/*
2835 * There are a couple cases where we need to restrict the functionality of
2836 * devices associated with RMRRs. The first is when evaluating a device for
2837 * identity mapping because problems exist when devices are moved in and out
2838 * of domains and their respective RMRR information is lost. This means that
2839 * a device with associated RMRRs will never be in a "passthrough" domain.
2840 * The second is use of the device through the IOMMU API. This interface
2841 * expects to have full control of the IOVA space for the device. We cannot
2842 * satisfy both the requirement that RMRR access is maintained and have an
2843 * unencumbered IOVA space. We also have no ability to quiesce the device's
2844 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2845 * We therefore prevent devices associated with an RMRR from participating in
2846 * the IOMMU API, which eliminates them from device assignment.
2847 *
2848 * In both cases we assume that PCI USB devices with RMRRs have them largely
2849 * for historical reasons and that the RMRR space is not actively used post
2850 * boot. This exclusion may change if vendors begin to abuse it.
18436afd
DW
2851 *
2852 * The same exception is made for graphics devices, with the requirement that
2853 * any use of the RMRR regions will be torn down before assigning the device
2854 * to a guest.
c875d2c1
AW
2855 */
2856static bool device_is_rmrr_locked(struct device *dev)
2857{
2858 if (!device_has_rmrr(dev))
2859 return false;
2860
2861 if (dev_is_pci(dev)) {
2862 struct pci_dev *pdev = to_pci_dev(dev);
2863
18436afd 2864 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
c875d2c1
AW
2865 return false;
2866 }
2867
2868 return true;
2869}
2870
3bdb2591 2871static int iommu_should_identity_map(struct device *dev, int startup)
6941af28 2872{
ea2447f7 2873
3bdb2591
DW
2874 if (dev_is_pci(dev)) {
2875 struct pci_dev *pdev = to_pci_dev(dev);
ea2447f7 2876
c875d2c1 2877 if (device_is_rmrr_locked(dev))
3bdb2591 2878 return 0;
e0fc7e0b 2879
3bdb2591
DW
2880 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2881 return 1;
e0fc7e0b 2882
3bdb2591
DW
2883 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2884 return 1;
6941af28 2885
3bdb2591 2886 if (!(iommu_identity_mapping & IDENTMAP_ALL))
3dfc813d 2887 return 0;
3bdb2591
DW
2888
2889 /*
2890 * We want to start off with all devices in the 1:1 domain, and
2891 * take them out later if we find they can't access all of memory.
2892 *
2893 * However, we can't do this for PCI devices behind bridges,
2894 * because all PCI devices behind the same bridge will end up
2895 * with the same source-id on their transactions.
2896 *
2897 * Practically speaking, we can't change things around for these
2898 * devices at run-time, because we can't be sure there'll be no
2899 * DMA transactions in flight for any of their siblings.
2900 *
2901 * So PCI devices (unless they're on the root bus) as well as
2902 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2903 * the 1:1 domain, just in _case_ one of their siblings turns out
2904 * not to be able to map all of memory.
2905 */
2906 if (!pci_is_pcie(pdev)) {
2907 if (!pci_is_root_bus(pdev->bus))
2908 return 0;
2909 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2910 return 0;
2911 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
3dfc813d 2912 return 0;
3bdb2591
DW
2913 } else {
2914 if (device_has_rmrr(dev))
2915 return 0;
2916 }
3dfc813d 2917
3bdb2591 2918 /*
3dfc813d 2919 * At boot time, we don't yet know if devices will be 64-bit capable.
3bdb2591 2920 * Assume that they will — if they turn out not to be, then we can
3dfc813d
DW
2921 * take them out of the 1:1 domain later.
2922 */
8fcc5372
CW
2923 if (!startup) {
2924 /*
2925 * If the device's dma_mask is less than the system's memory
2926 * size then this is not a candidate for identity mapping.
2927 */
3bdb2591 2928 u64 dma_mask = *dev->dma_mask;
8fcc5372 2929
3bdb2591
DW
2930 if (dev->coherent_dma_mask &&
2931 dev->coherent_dma_mask < dma_mask)
2932 dma_mask = dev->coherent_dma_mask;
8fcc5372 2933
3bdb2591 2934 return dma_mask >= dma_get_required_mask(dev);
8fcc5372 2935 }
6941af28
DW
2936
2937 return 1;
2938}
2939
cf04eee8
DW
2940static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2941{
2942 int ret;
2943
2944 if (!iommu_should_identity_map(dev, 1))
2945 return 0;
2946
28ccce0d 2947 ret = domain_add_dev_info(si_domain, dev);
cf04eee8 2948 if (!ret)
9f10e5bf
JR
2949 pr_info("%s identity mapping for device %s\n",
2950 hw ? "Hardware" : "Software", dev_name(dev));
cf04eee8
DW
2951 else if (ret == -ENODEV)
2952 /* device not associated with an iommu */
2953 ret = 0;
2954
2955 return ret;
2956}
2957
2958
071e1374 2959static int __init iommu_prepare_static_identity_mapping(int hw)
2c2e2c38 2960{
2c2e2c38 2961 struct pci_dev *pdev = NULL;
cf04eee8
DW
2962 struct dmar_drhd_unit *drhd;
2963 struct intel_iommu *iommu;
2964 struct device *dev;
2965 int i;
2966 int ret = 0;
2c2e2c38 2967
2c2e2c38 2968 for_each_pci_dev(pdev) {
cf04eee8
DW
2969 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2970 if (ret)
2971 return ret;
2972 }
2973
2974 for_each_active_iommu(iommu, drhd)
2975 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2976 struct acpi_device_physical_node *pn;
2977 struct acpi_device *adev;
2978
2979 if (dev->bus != &acpi_bus_type)
2980 continue;
86080ccc 2981
cf04eee8
DW
2982 adev= to_acpi_device(dev);
2983 mutex_lock(&adev->physical_node_lock);
2984 list_for_each_entry(pn, &adev->physical_node_list, node) {
2985 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2986 if (ret)
2987 break;
eae460b6 2988 }
cf04eee8
DW
2989 mutex_unlock(&adev->physical_node_lock);
2990 if (ret)
2991 return ret;
62edf5dc 2992 }
2c2e2c38
FY
2993
2994 return 0;
2995}
2996
ffebeb46
JL
2997static void intel_iommu_init_qi(struct intel_iommu *iommu)
2998{
2999 /*
3000 * Start from the sane iommu hardware state.
3001 * If the queued invalidation is already initialized by us
3002 * (for example, while enabling interrupt-remapping) then
3003 * we got the things already rolling from a sane state.
3004 */
3005 if (!iommu->qi) {
3006 /*
3007 * Clear any previous faults.
3008 */
3009 dmar_fault(-1, iommu);
3010 /*
3011 * Disable queued invalidation if supported and already enabled
3012 * before OS handover.
3013 */
3014 dmar_disable_qi(iommu);
3015 }
3016
3017 if (dmar_enable_qi(iommu)) {
3018 /*
3019 * Queued Invalidate not enabled, use Register Based Invalidate
3020 */
3021 iommu->flush.flush_context = __iommu_flush_context;
3022 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
9f10e5bf 3023 pr_info("%s: Using Register based invalidation\n",
ffebeb46
JL
3024 iommu->name);
3025 } else {
3026 iommu->flush.flush_context = qi_flush_context;
3027 iommu->flush.flush_iotlb = qi_flush_iotlb;
9f10e5bf 3028 pr_info("%s: Using Queued invalidation\n", iommu->name);
ffebeb46
JL
3029 }
3030}
3031
091d42e4 3032static int copy_context_table(struct intel_iommu *iommu,
dfddb969 3033 struct root_entry *old_re,
091d42e4
JR
3034 struct context_entry **tbl,
3035 int bus, bool ext)
3036{
dbcd861f 3037 int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
543c8dcf 3038 struct context_entry *new_ce = NULL, ce;
dfddb969 3039 struct context_entry *old_ce = NULL;
543c8dcf 3040 struct root_entry re;
091d42e4
JR
3041 phys_addr_t old_ce_phys;
3042
3043 tbl_idx = ext ? bus * 2 : bus;
dfddb969 3044 memcpy(&re, old_re, sizeof(re));
091d42e4
JR
3045
3046 for (devfn = 0; devfn < 256; devfn++) {
3047 /* First calculate the correct index */
3048 idx = (ext ? devfn * 2 : devfn) % 256;
3049
3050 if (idx == 0) {
3051 /* First save what we may have and clean up */
3052 if (new_ce) {
3053 tbl[tbl_idx] = new_ce;
3054 __iommu_flush_cache(iommu, new_ce,
3055 VTD_PAGE_SIZE);
3056 pos = 1;
3057 }
3058
3059 if (old_ce)
782d0b84 3060 memunmap(old_ce);
091d42e4
JR
3061
3062 ret = 0;
3063 if (devfn < 0x80)
543c8dcf 3064 old_ce_phys = root_entry_lctp(&re);
091d42e4 3065 else
543c8dcf 3066 old_ce_phys = root_entry_uctp(&re);
091d42e4
JR
3067
3068 if (!old_ce_phys) {
3069 if (ext && devfn == 0) {
3070 /* No LCTP, try UCTP */
3071 devfn = 0x7f;
3072 continue;
3073 } else {
3074 goto out;
3075 }
3076 }
3077
3078 ret = -ENOMEM;
dfddb969
DW
3079 old_ce = memremap(old_ce_phys, PAGE_SIZE,
3080 MEMREMAP_WB);
091d42e4
JR
3081 if (!old_ce)
3082 goto out;
3083
3084 new_ce = alloc_pgtable_page(iommu->node);
3085 if (!new_ce)
3086 goto out_unmap;
3087
3088 ret = 0;
3089 }
3090
3091 /* Now copy the context entry */
dfddb969 3092 memcpy(&ce, old_ce + idx, sizeof(ce));
091d42e4 3093
cf484d0e 3094 if (!__context_present(&ce))
091d42e4
JR
3095 continue;
3096
dbcd861f
JR
3097 did = context_domain_id(&ce);
3098 if (did >= 0 && did < cap_ndoms(iommu->cap))
3099 set_bit(did, iommu->domain_ids);
3100
cf484d0e
JR
3101 /*
3102 * We need a marker for copied context entries. This
3103 * marker needs to work for the old format as well as
3104 * for extended context entries.
3105 *
3106 * Bit 67 of the context entry is used. In the old
3107 * format this bit is available to software, in the
3108 * extended format it is the PGE bit, but PGE is ignored
3109 * by HW if PASIDs are disabled (and thus still
3110 * available).
3111 *
3112 * So disable PASIDs first and then mark the entry
3113 * copied. This means that we don't copy PASID
3114 * translations from the old kernel, but this is fine as
3115 * faults there are not fatal.
3116 */
3117 context_clear_pasid_enable(&ce);
3118 context_set_copied(&ce);
3119
091d42e4
JR
3120 new_ce[idx] = ce;
3121 }
3122
3123 tbl[tbl_idx + pos] = new_ce;
3124
3125 __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
3126
3127out_unmap:
dfddb969 3128 memunmap(old_ce);
091d42e4
JR
3129
3130out:
3131 return ret;
3132}
3133
3134static int copy_translation_tables(struct intel_iommu *iommu)
3135{
3136 struct context_entry **ctxt_tbls;
dfddb969 3137 struct root_entry *old_rt;
091d42e4
JR
3138 phys_addr_t old_rt_phys;
3139 int ctxt_table_entries;
3140 unsigned long flags;
3141 u64 rtaddr_reg;
3142 int bus, ret;
c3361f2f 3143 bool new_ext, ext;
091d42e4
JR
3144
3145 rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
3146 ext = !!(rtaddr_reg & DMA_RTADDR_RTT);
c3361f2f
JR
3147 new_ext = !!ecap_ecs(iommu->ecap);
3148
3149 /*
3150 * The RTT bit can only be changed when translation is disabled,
3151 * but disabling translation means to open a window for data
3152 * corruption. So bail out and don't copy anything if we would
3153 * have to change the bit.
3154 */
3155 if (new_ext != ext)
3156 return -EINVAL;
091d42e4
JR
3157
3158 old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
3159 if (!old_rt_phys)
3160 return -EINVAL;
3161
dfddb969 3162 old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
091d42e4
JR
3163 if (!old_rt)
3164 return -ENOMEM;
3165
3166 /* This is too big for the stack - allocate it from slab */
3167 ctxt_table_entries = ext ? 512 : 256;
3168 ret = -ENOMEM;
3169 ctxt_tbls = kzalloc(ctxt_table_entries * sizeof(void *), GFP_KERNEL);
3170 if (!ctxt_tbls)
3171 goto out_unmap;
3172
3173 for (bus = 0; bus < 256; bus++) {
3174 ret = copy_context_table(iommu, &old_rt[bus],
3175 ctxt_tbls, bus, ext);
3176 if (ret) {
3177 pr_err("%s: Failed to copy context table for bus %d\n",
3178 iommu->name, bus);
3179 continue;
3180 }
3181 }
3182
3183 spin_lock_irqsave(&iommu->lock, flags);
3184
3185 /* Context tables are copied, now write them to the root_entry table */
3186 for (bus = 0; bus < 256; bus++) {
3187 int idx = ext ? bus * 2 : bus;
3188 u64 val;
3189
3190 if (ctxt_tbls[idx]) {
3191 val = virt_to_phys(ctxt_tbls[idx]) | 1;
3192 iommu->root_entry[bus].lo = val;
3193 }
3194
3195 if (!ext || !ctxt_tbls[idx + 1])
3196 continue;
3197
3198 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3199 iommu->root_entry[bus].hi = val;
3200 }
3201
3202 spin_unlock_irqrestore(&iommu->lock, flags);
3203
3204 kfree(ctxt_tbls);
3205
3206 __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3207
3208 ret = 0;
3209
3210out_unmap:
dfddb969 3211 memunmap(old_rt);
091d42e4
JR
3212
3213 return ret;
3214}
3215
b779260b 3216static int __init init_dmars(void)
ba395927
KA
3217{
3218 struct dmar_drhd_unit *drhd;
3219 struct dmar_rmrr_unit *rmrr;
a87f4918 3220 bool copied_tables = false;
832bd858 3221 struct device *dev;
ba395927 3222 struct intel_iommu *iommu;
aa473240 3223 int i, ret, cpu;
2c2e2c38 3224
ba395927
KA
3225 /*
3226 * for each drhd
3227 * allocate root
3228 * initialize and program root entry to not present
3229 * endfor
3230 */
3231 for_each_drhd_unit(drhd) {
5e0d2a6f 3232 /*
3233 * lock not needed as this is only incremented in the single
3234 * threaded kernel __init code path all other access are read
3235 * only
3236 */
78d8e704 3237 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
1b198bb0
MT
3238 g_num_of_iommus++;
3239 continue;
3240 }
9f10e5bf 3241 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
5e0d2a6f 3242 }
3243
ffebeb46
JL
3244 /* Preallocate enough resources for IOMMU hot-addition */
3245 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3246 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3247
d9630fe9
WH
3248 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3249 GFP_KERNEL);
3250 if (!g_iommus) {
9f10e5bf 3251 pr_err("Allocating global iommu array failed\n");
d9630fe9
WH
3252 ret = -ENOMEM;
3253 goto error;
3254 }
3255
aa473240
OP
3256 for_each_possible_cpu(cpu) {
3257 struct deferred_flush_data *dfd = per_cpu_ptr(&deferred_flush,
3258 cpu);
3259
3260 dfd->tables = kzalloc(g_num_of_iommus *
3261 sizeof(struct deferred_flush_table),
3262 GFP_KERNEL);
3263 if (!dfd->tables) {
3264 ret = -ENOMEM;
3265 goto free_g_iommus;
3266 }
3267
3268 spin_lock_init(&dfd->lock);
3269 setup_timer(&dfd->timer, flush_unmaps_timeout, cpu);
5e0d2a6f 3270 }
3271
7c919779 3272 for_each_active_iommu(iommu, drhd) {
d9630fe9 3273 g_iommus[iommu->seq_id] = iommu;
ba395927 3274
b63d80d1
JR
3275 intel_iommu_init_qi(iommu);
3276
e61d98d8
SS
3277 ret = iommu_init_domains(iommu);
3278 if (ret)
989d51fc 3279 goto free_iommu;
e61d98d8 3280
4158c2ec
JR
3281 init_translation_status(iommu);
3282
091d42e4
JR
3283 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3284 iommu_disable_translation(iommu);
3285 clear_translation_pre_enabled(iommu);
3286 pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3287 iommu->name);
3288 }
4158c2ec 3289
ba395927
KA
3290 /*
3291 * TBD:
3292 * we could share the same root & context tables
25985edc 3293 * among all IOMMU's. Need to Split it later.
ba395927
KA
3294 */
3295 ret = iommu_alloc_root_entry(iommu);
ffebeb46 3296 if (ret)
989d51fc 3297 goto free_iommu;
5f0a7f76 3298
091d42e4
JR
3299 if (translation_pre_enabled(iommu)) {
3300 pr_info("Translation already enabled - trying to copy translation structures\n");
3301
3302 ret = copy_translation_tables(iommu);
3303 if (ret) {
3304 /*
3305 * We found the IOMMU with translation
3306 * enabled - but failed to copy over the
3307 * old root-entry table. Try to proceed
3308 * by disabling translation now and
3309 * allocating a clean root-entry table.
3310 * This might cause DMAR faults, but
3311 * probably the dump will still succeed.
3312 */
3313 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3314 iommu->name);
3315 iommu_disable_translation(iommu);
3316 clear_translation_pre_enabled(iommu);
3317 } else {
3318 pr_info("Copied translation tables from previous kernel for %s\n",
3319 iommu->name);
a87f4918 3320 copied_tables = true;
091d42e4
JR
3321 }
3322 }
3323
4ed0d3e6 3324 if (!ecap_pass_through(iommu->ecap))
19943b0e 3325 hw_pass_through = 0;
8a94ade4
DW
3326#ifdef CONFIG_INTEL_IOMMU_SVM
3327 if (pasid_enabled(iommu))
3328 intel_svm_alloc_pasid_tables(iommu);
3329#endif
ba395927
KA
3330 }
3331
a4c34ff1
JR
3332 /*
3333 * Now that qi is enabled on all iommus, set the root entry and flush
3334 * caches. This is required on some Intel X58 chipsets, otherwise the
3335 * flush_context function will loop forever and the boot hangs.
3336 */
3337 for_each_active_iommu(iommu, drhd) {
3338 iommu_flush_write_buffer(iommu);
3339 iommu_set_root_entry(iommu);
3340 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3341 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3342 }
3343
19943b0e 3344 if (iommu_pass_through)
e0fc7e0b
DW
3345 iommu_identity_mapping |= IDENTMAP_ALL;
3346
d3f13810 3347#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
e0fc7e0b 3348 iommu_identity_mapping |= IDENTMAP_GFX;
19943b0e 3349#endif
e0fc7e0b 3350
24427cd7
AR
3351 check_tylersburg_isoch();
3352
86080ccc
JR
3353 if (iommu_identity_mapping) {
3354 ret = si_domain_init(hw_pass_through);
3355 if (ret)
3356 goto free_iommu;
3357 }
3358
e0fc7e0b 3359
a87f4918
JR
3360 /*
3361 * If we copied translations from a previous kernel in the kdump
3362 * case, we can not assign the devices to domains now, as that
3363 * would eliminate the old mappings. So skip this part and defer
3364 * the assignment to device driver initialization time.
3365 */
3366 if (copied_tables)
3367 goto domains_done;
3368
ba395927 3369 /*
19943b0e
DW
3370 * If pass through is not set or not enabled, setup context entries for
3371 * identity mappings for rmrr, gfx, and isa and may fall back to static
3372 * identity mapping if iommu_identity_mapping is set.
ba395927 3373 */
19943b0e
DW
3374 if (iommu_identity_mapping) {
3375 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
4ed0d3e6 3376 if (ret) {
9f10e5bf 3377 pr_crit("Failed to setup IOMMU pass-through\n");
989d51fc 3378 goto free_iommu;
ba395927
KA
3379 }
3380 }
ba395927 3381 /*
19943b0e
DW
3382 * For each rmrr
3383 * for each dev attached to rmrr
3384 * do
3385 * locate drhd for dev, alloc domain for dev
3386 * allocate free domain
3387 * allocate page table entries for rmrr
3388 * if context not allocated for bus
3389 * allocate and init context
3390 * set present in root table for this bus
3391 * init context with domain, translation etc
3392 * endfor
3393 * endfor
ba395927 3394 */
9f10e5bf 3395 pr_info("Setting RMRR:\n");
19943b0e 3396 for_each_rmrr_units(rmrr) {
b683b230
JL
3397 /* some BIOS lists non-exist devices in DMAR table. */
3398 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
832bd858 3399 i, dev) {
0b9d9753 3400 ret = iommu_prepare_rmrr_dev(rmrr, dev);
19943b0e 3401 if (ret)
9f10e5bf 3402 pr_err("Mapping reserved region failed\n");
ba395927 3403 }
4ed0d3e6 3404 }
49a0429e 3405
19943b0e
DW
3406 iommu_prepare_isa();
3407
a87f4918
JR
3408domains_done:
3409
ba395927
KA
3410 /*
3411 * for each drhd
3412 * enable fault log
3413 * global invalidate context cache
3414 * global invalidate iotlb
3415 * enable translation
3416 */
7c919779 3417 for_each_iommu(iommu, drhd) {
51a63e67
JC
3418 if (drhd->ignored) {
3419 /*
3420 * we always have to disable PMRs or DMA may fail on
3421 * this device
3422 */
3423 if (force_on)
7c919779 3424 iommu_disable_protect_mem_regions(iommu);
ba395927 3425 continue;
51a63e67 3426 }
ba395927
KA
3427
3428 iommu_flush_write_buffer(iommu);
3429
a222a7f0
DW
3430#ifdef CONFIG_INTEL_IOMMU_SVM
3431 if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
3432 ret = intel_svm_enable_prq(iommu);
3433 if (ret)
3434 goto free_iommu;
3435 }
3436#endif
3460a6d9
KA
3437 ret = dmar_set_interrupt(iommu);
3438 if (ret)
989d51fc 3439 goto free_iommu;
3460a6d9 3440
8939ddf6
JR
3441 if (!translation_pre_enabled(iommu))
3442 iommu_enable_translation(iommu);
3443
b94996c9 3444 iommu_disable_protect_mem_regions(iommu);
ba395927
KA
3445 }
3446
3447 return 0;
989d51fc
JL
3448
3449free_iommu:
ffebeb46
JL
3450 for_each_active_iommu(iommu, drhd) {
3451 disable_dmar_iommu(iommu);
a868e6b7 3452 free_dmar_iommu(iommu);
ffebeb46 3453 }
989d51fc 3454free_g_iommus:
aa473240
OP
3455 for_each_possible_cpu(cpu)
3456 kfree(per_cpu_ptr(&deferred_flush, cpu)->tables);
d9630fe9 3457 kfree(g_iommus);
989d51fc 3458error:
ba395927
KA
3459 return ret;
3460}
3461
5a5e02a6 3462/* This takes a number of _MM_ pages, not VTD pages */
2aac6304 3463static unsigned long intel_alloc_iova(struct device *dev,
875764de
DW
3464 struct dmar_domain *domain,
3465 unsigned long nrpages, uint64_t dma_mask)
ba395927 3466{
22e2f9fa 3467 unsigned long iova_pfn = 0;
ba395927 3468
875764de
DW
3469 /* Restrict dma_mask to the width that the iommu can handle */
3470 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
8f6429c7
RM
3471 /* Ensure we reserve the whole size-aligned region */
3472 nrpages = __roundup_pow_of_two(nrpages);
875764de
DW
3473
3474 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
ba395927
KA
3475 /*
3476 * First try to allocate an io virtual address in
284901a9 3477 * DMA_BIT_MASK(32) and if that fails then try allocating
3609801e 3478 * from higher range
ba395927 3479 */
22e2f9fa
OP
3480 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3481 IOVA_PFN(DMA_BIT_MASK(32)));
3482 if (iova_pfn)
3483 return iova_pfn;
875764de 3484 }
22e2f9fa
OP
3485 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages, IOVA_PFN(dma_mask));
3486 if (unlikely(!iova_pfn)) {
9f10e5bf 3487 pr_err("Allocating %ld-page iova for %s failed",
207e3592 3488 nrpages, dev_name(dev));
2aac6304 3489 return 0;
f76aec76
KA
3490 }
3491
22e2f9fa 3492 return iova_pfn;
f76aec76
KA
3493}
3494
d4b709f4 3495static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
f76aec76 3496{
1c5ebba9 3497 struct dmar_domain *domain, *tmp;
b1ce5b79 3498 struct dmar_rmrr_unit *rmrr;
b1ce5b79
JR
3499 struct device *i_dev;
3500 int i, ret;
f76aec76 3501
1c5ebba9
JR
3502 domain = find_domain(dev);
3503 if (domain)
3504 goto out;
3505
3506 domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3507 if (!domain)
3508 goto out;
ba395927 3509
b1ce5b79
JR
3510 /* We have a new domain - setup possible RMRRs for the device */
3511 rcu_read_lock();
3512 for_each_rmrr_units(rmrr) {
3513 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3514 i, i_dev) {
3515 if (i_dev != dev)
3516 continue;
3517
3518 ret = domain_prepare_identity_map(dev, domain,
3519 rmrr->base_address,
3520 rmrr->end_address);
3521 if (ret)
3522 dev_err(dev, "Mapping reserved region failed\n");
3523 }
3524 }
3525 rcu_read_unlock();
3526
1c5ebba9
JR
3527 tmp = set_domain_for_dev(dev, domain);
3528 if (!tmp || domain != tmp) {
3529 domain_exit(domain);
3530 domain = tmp;
3531 }
3532
3533out:
3534
3535 if (!domain)
3536 pr_err("Allocating domain for %s failed\n", dev_name(dev));
3537
3538
f76aec76
KA
3539 return domain;
3540}
3541
d4b709f4 3542static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
147202aa
DW
3543{
3544 struct device_domain_info *info;
3545
3546 /* No lock here, assumes no domain exit in normal case */
d4b709f4 3547 info = dev->archdata.iommu;
147202aa
DW
3548 if (likely(info))
3549 return info->domain;
3550
3551 return __get_valid_domain_for_dev(dev);
3552}
3553
ecb509ec 3554/* Check if the dev needs to go through non-identity map and unmap process.*/
73676832 3555static int iommu_no_mapping(struct device *dev)
2c2e2c38
FY
3556{
3557 int found;
3558
3d89194a 3559 if (iommu_dummy(dev))
1e4c64c4
DW
3560 return 1;
3561
2c2e2c38 3562 if (!iommu_identity_mapping)
1e4c64c4 3563 return 0;
2c2e2c38 3564
9b226624 3565 found = identity_mapping(dev);
2c2e2c38 3566 if (found) {
ecb509ec 3567 if (iommu_should_identity_map(dev, 0))
2c2e2c38
FY
3568 return 1;
3569 else {
3570 /*
3571 * 32 bit DMA is removed from si_domain and fall back
3572 * to non-identity mapping.
3573 */
e6de0f8d 3574 dmar_remove_one_dev_info(si_domain, dev);
9f10e5bf
JR
3575 pr_info("32bit %s uses non-identity mapping\n",
3576 dev_name(dev));
2c2e2c38
FY
3577 return 0;
3578 }
3579 } else {
3580 /*
3581 * In case of a detached 64 bit DMA device from vm, the device
3582 * is put into si_domain for identity mapping.
3583 */
ecb509ec 3584 if (iommu_should_identity_map(dev, 0)) {
2c2e2c38 3585 int ret;
28ccce0d 3586 ret = domain_add_dev_info(si_domain, dev);
2c2e2c38 3587 if (!ret) {
9f10e5bf
JR
3588 pr_info("64bit %s uses identity mapping\n",
3589 dev_name(dev));
2c2e2c38
FY
3590 return 1;
3591 }
3592 }
3593 }
3594
1e4c64c4 3595 return 0;
2c2e2c38
FY
3596}
3597
5040a918 3598static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
bb9e6d65 3599 size_t size, int dir, u64 dma_mask)
f76aec76 3600{
f76aec76 3601 struct dmar_domain *domain;
5b6985ce 3602 phys_addr_t start_paddr;
2aac6304 3603 unsigned long iova_pfn;
f76aec76 3604 int prot = 0;
6865f0d1 3605 int ret;
8c11e798 3606 struct intel_iommu *iommu;
33041ec0 3607 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
f76aec76
KA
3608
3609 BUG_ON(dir == DMA_NONE);
2c2e2c38 3610
5040a918 3611 if (iommu_no_mapping(dev))
6865f0d1 3612 return paddr;
f76aec76 3613
5040a918 3614 domain = get_valid_domain_for_dev(dev);
f76aec76
KA
3615 if (!domain)
3616 return 0;
3617
8c11e798 3618 iommu = domain_get_iommu(domain);
88cb6a74 3619 size = aligned_nrpages(paddr, size);
f76aec76 3620
2aac6304
OP
3621 iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3622 if (!iova_pfn)
f76aec76
KA
3623 goto error;
3624
ba395927
KA
3625 /*
3626 * Check if DMAR supports zero-length reads on write only
3627 * mappings..
3628 */
3629 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
8c11e798 3630 !cap_zlr(iommu->cap))
ba395927
KA
3631 prot |= DMA_PTE_READ;
3632 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3633 prot |= DMA_PTE_WRITE;
3634 /*
6865f0d1 3635 * paddr - (paddr + size) might be partial page, we should map the whole
ba395927 3636 * page. Note: if two part of one page are separately mapped, we
6865f0d1 3637 * might have two guest_addr mapping to the same host paddr, but this
ba395927
KA
3638 * is not a big problem
3639 */
2aac6304 3640 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
33041ec0 3641 mm_to_dma_pfn(paddr_pfn), size, prot);
ba395927
KA
3642 if (ret)
3643 goto error;
3644
1f0ef2aa
DW
3645 /* it's a non-present to present mapping. Only flush if caching mode */
3646 if (cap_caching_mode(iommu->cap))
a1ddcbe9 3647 iommu_flush_iotlb_psi(iommu, domain,
2aac6304 3648 mm_to_dma_pfn(iova_pfn),
a1ddcbe9 3649 size, 0, 1);
1f0ef2aa 3650 else
8c11e798 3651 iommu_flush_write_buffer(iommu);
f76aec76 3652
2aac6304 3653 start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
03d6a246
DW
3654 start_paddr += paddr & ~PAGE_MASK;
3655 return start_paddr;
ba395927 3656
ba395927 3657error:
2aac6304 3658 if (iova_pfn)
22e2f9fa 3659 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
9f10e5bf 3660 pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
5040a918 3661 dev_name(dev), size, (unsigned long long)paddr, dir);
ba395927
KA
3662 return 0;
3663}
3664
ffbbef5c
FT
3665static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3666 unsigned long offset, size_t size,
3667 enum dma_data_direction dir,
00085f1e 3668 unsigned long attrs)
bb9e6d65 3669{
ffbbef5c 3670 return __intel_map_single(dev, page_to_phys(page) + offset, size,
46333e37 3671 dir, *dev->dma_mask);
bb9e6d65
FT
3672}
3673
aa473240 3674static void flush_unmaps(struct deferred_flush_data *flush_data)
5e0d2a6f 3675{
80b20dd8 3676 int i, j;
5e0d2a6f 3677
aa473240 3678 flush_data->timer_on = 0;
5e0d2a6f 3679
3680 /* just flush them all */
3681 for (i = 0; i < g_num_of_iommus; i++) {
a2bb8459 3682 struct intel_iommu *iommu = g_iommus[i];
aa473240
OP
3683 struct deferred_flush_table *flush_table =
3684 &flush_data->tables[i];
a2bb8459
WH
3685 if (!iommu)
3686 continue;
c42d9f32 3687
aa473240 3688 if (!flush_table->next)
9dd2fe89
YZ
3689 continue;
3690
78d5f0f5
NA
3691 /* In caching mode, global flushes turn emulation expensive */
3692 if (!cap_caching_mode(iommu->cap))
3693 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
93a23a72 3694 DMA_TLB_GLOBAL_FLUSH);
aa473240 3695 for (j = 0; j < flush_table->next; j++) {
93a23a72 3696 unsigned long mask;
314f1dc1 3697 struct deferred_flush_entry *entry =
aa473240 3698 &flush_table->entries[j];
2aac6304 3699 unsigned long iova_pfn = entry->iova_pfn;
769530e4 3700 unsigned long nrpages = entry->nrpages;
314f1dc1
OP
3701 struct dmar_domain *domain = entry->domain;
3702 struct page *freelist = entry->freelist;
78d5f0f5
NA
3703
3704 /* On real hardware multiple invalidations are expensive */
3705 if (cap_caching_mode(iommu->cap))
a1ddcbe9 3706 iommu_flush_iotlb_psi(iommu, domain,
2aac6304 3707 mm_to_dma_pfn(iova_pfn),
769530e4 3708 nrpages, !freelist, 0);
78d5f0f5 3709 else {
769530e4 3710 mask = ilog2(nrpages);
314f1dc1 3711 iommu_flush_dev_iotlb(domain,
2aac6304 3712 (uint64_t)iova_pfn << PAGE_SHIFT, mask);
78d5f0f5 3713 }
22e2f9fa 3714 free_iova_fast(&domain->iovad, iova_pfn, nrpages);
314f1dc1
OP
3715 if (freelist)
3716 dma_free_pagelist(freelist);
80b20dd8 3717 }
aa473240 3718 flush_table->next = 0;
5e0d2a6f 3719 }
3720
aa473240 3721 flush_data->size = 0;
5e0d2a6f 3722}
3723
aa473240 3724static void flush_unmaps_timeout(unsigned long cpuid)
5e0d2a6f 3725{
aa473240 3726 struct deferred_flush_data *flush_data = per_cpu_ptr(&deferred_flush, cpuid);
80b20dd8 3727 unsigned long flags;
3728
aa473240
OP
3729 spin_lock_irqsave(&flush_data->lock, flags);
3730 flush_unmaps(flush_data);
3731 spin_unlock_irqrestore(&flush_data->lock, flags);
5e0d2a6f 3732}
3733
2aac6304 3734static void add_unmap(struct dmar_domain *dom, unsigned long iova_pfn,
769530e4 3735 unsigned long nrpages, struct page *freelist)
5e0d2a6f 3736{
3737 unsigned long flags;
314f1dc1 3738 int entry_id, iommu_id;
8c11e798 3739 struct intel_iommu *iommu;
314f1dc1 3740 struct deferred_flush_entry *entry;
aa473240
OP
3741 struct deferred_flush_data *flush_data;
3742 unsigned int cpuid;
5e0d2a6f 3743
aa473240
OP
3744 cpuid = get_cpu();
3745 flush_data = per_cpu_ptr(&deferred_flush, cpuid);
3746
3747 /* Flush all CPUs' entries to avoid deferring too much. If
3748 * this becomes a bottleneck, can just flush us, and rely on
3749 * flush timer for the rest.
3750 */
3751 if (flush_data->size == HIGH_WATER_MARK) {
3752 int cpu;
3753
3754 for_each_online_cpu(cpu)
3755 flush_unmaps_timeout(cpu);
3756 }
3757
3758 spin_lock_irqsave(&flush_data->lock, flags);
80b20dd8 3759
8c11e798
WH
3760 iommu = domain_get_iommu(dom);
3761 iommu_id = iommu->seq_id;
c42d9f32 3762
aa473240
OP
3763 entry_id = flush_data->tables[iommu_id].next;
3764 ++(flush_data->tables[iommu_id].next);
5e0d2a6f 3765
aa473240 3766 entry = &flush_data->tables[iommu_id].entries[entry_id];
314f1dc1 3767 entry->domain = dom;
2aac6304 3768 entry->iova_pfn = iova_pfn;
769530e4 3769 entry->nrpages = nrpages;
314f1dc1 3770 entry->freelist = freelist;
5e0d2a6f 3771
aa473240
OP
3772 if (!flush_data->timer_on) {
3773 mod_timer(&flush_data->timer, jiffies + msecs_to_jiffies(10));
3774 flush_data->timer_on = 1;
5e0d2a6f 3775 }
aa473240
OP
3776 flush_data->size++;
3777 spin_unlock_irqrestore(&flush_data->lock, flags);
3778
3779 put_cpu();
5e0d2a6f 3780}
3781
769530e4 3782static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
ba395927 3783{
f76aec76 3784 struct dmar_domain *domain;
d794dc9b 3785 unsigned long start_pfn, last_pfn;
769530e4 3786 unsigned long nrpages;
2aac6304 3787 unsigned long iova_pfn;
8c11e798 3788 struct intel_iommu *iommu;
ea8ea460 3789 struct page *freelist;
ba395927 3790
73676832 3791 if (iommu_no_mapping(dev))
f76aec76 3792 return;
2c2e2c38 3793
1525a29a 3794 domain = find_domain(dev);
ba395927
KA
3795 BUG_ON(!domain);
3796
8c11e798
WH
3797 iommu = domain_get_iommu(domain);
3798
2aac6304 3799 iova_pfn = IOVA_PFN(dev_addr);
ba395927 3800
769530e4 3801 nrpages = aligned_nrpages(dev_addr, size);
2aac6304 3802 start_pfn = mm_to_dma_pfn(iova_pfn);
769530e4 3803 last_pfn = start_pfn + nrpages - 1;
ba395927 3804
d794dc9b 3805 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
207e3592 3806 dev_name(dev), start_pfn, last_pfn);
ba395927 3807
ea8ea460 3808 freelist = domain_unmap(domain, start_pfn, last_pfn);
d794dc9b 3809
5e0d2a6f 3810 if (intel_iommu_strict) {
a1ddcbe9 3811 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
769530e4 3812 nrpages, !freelist, 0);
5e0d2a6f 3813 /* free iova */
22e2f9fa 3814 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
ea8ea460 3815 dma_free_pagelist(freelist);
5e0d2a6f 3816 } else {
2aac6304 3817 add_unmap(domain, iova_pfn, nrpages, freelist);
5e0d2a6f 3818 /*
3819 * queue up the release of the unmap to save the 1/6th of the
3820 * cpu used up by the iotlb flush operation...
3821 */
5e0d2a6f 3822 }
ba395927
KA
3823}
3824
d41a4adb
JL
3825static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3826 size_t size, enum dma_data_direction dir,
00085f1e 3827 unsigned long attrs)
d41a4adb 3828{
769530e4 3829 intel_unmap(dev, dev_addr, size);
d41a4adb
JL
3830}
3831
5040a918 3832static void *intel_alloc_coherent(struct device *dev, size_t size,
baa676fc 3833 dma_addr_t *dma_handle, gfp_t flags,
00085f1e 3834 unsigned long attrs)
ba395927 3835{
36746436 3836 struct page *page = NULL;
ba395927
KA
3837 int order;
3838
5b6985ce 3839 size = PAGE_ALIGN(size);
ba395927 3840 order = get_order(size);
e8bb910d 3841
5040a918 3842 if (!iommu_no_mapping(dev))
e8bb910d 3843 flags &= ~(GFP_DMA | GFP_DMA32);
5040a918
DW
3844 else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3845 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
e8bb910d
AW
3846 flags |= GFP_DMA;
3847 else
3848 flags |= GFP_DMA32;
3849 }
ba395927 3850
d0164adc 3851 if (gfpflags_allow_blocking(flags)) {
36746436
AM
3852 unsigned int count = size >> PAGE_SHIFT;
3853
3854 page = dma_alloc_from_contiguous(dev, count, order);
3855 if (page && iommu_no_mapping(dev) &&
3856 page_to_phys(page) + size > dev->coherent_dma_mask) {
3857 dma_release_from_contiguous(dev, page, count);
3858 page = NULL;
3859 }
3860 }
3861
3862 if (!page)
3863 page = alloc_pages(flags, order);
3864 if (!page)
ba395927 3865 return NULL;
36746436 3866 memset(page_address(page), 0, size);
ba395927 3867
36746436 3868 *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
bb9e6d65 3869 DMA_BIDIRECTIONAL,
5040a918 3870 dev->coherent_dma_mask);
ba395927 3871 if (*dma_handle)
36746436
AM
3872 return page_address(page);
3873 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3874 __free_pages(page, order);
3875
ba395927
KA
3876 return NULL;
3877}
3878
5040a918 3879static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
00085f1e 3880 dma_addr_t dma_handle, unsigned long attrs)
ba395927
KA
3881{
3882 int order;
36746436 3883 struct page *page = virt_to_page(vaddr);
ba395927 3884
5b6985ce 3885 size = PAGE_ALIGN(size);
ba395927
KA
3886 order = get_order(size);
3887
769530e4 3888 intel_unmap(dev, dma_handle, size);
36746436
AM
3889 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3890 __free_pages(page, order);
ba395927
KA
3891}
3892
5040a918 3893static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
d7ab5c46 3894 int nelems, enum dma_data_direction dir,
00085f1e 3895 unsigned long attrs)
ba395927 3896{
769530e4
OP
3897 dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
3898 unsigned long nrpages = 0;
3899 struct scatterlist *sg;
3900 int i;
3901
3902 for_each_sg(sglist, sg, nelems, i) {
3903 nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
3904 }
3905
3906 intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
ba395927
KA
3907}
3908
ba395927 3909static int intel_nontranslate_map_sg(struct device *hddev,
c03ab37c 3910 struct scatterlist *sglist, int nelems, int dir)
ba395927
KA
3911{
3912 int i;
c03ab37c 3913 struct scatterlist *sg;
ba395927 3914
c03ab37c 3915 for_each_sg(sglist, sg, nelems, i) {
12d4d40e 3916 BUG_ON(!sg_page(sg));
e17f2b51 3917 sg->dma_address = sg_phys(sg);
c03ab37c 3918 sg->dma_length = sg->length;
ba395927
KA
3919 }
3920 return nelems;
3921}
3922
5040a918 3923static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
00085f1e 3924 enum dma_data_direction dir, unsigned long attrs)
ba395927 3925{
ba395927 3926 int i;
ba395927 3927 struct dmar_domain *domain;
f76aec76
KA
3928 size_t size = 0;
3929 int prot = 0;
2aac6304 3930 unsigned long iova_pfn;
f76aec76 3931 int ret;
c03ab37c 3932 struct scatterlist *sg;
b536d24d 3933 unsigned long start_vpfn;
8c11e798 3934 struct intel_iommu *iommu;
ba395927
KA
3935
3936 BUG_ON(dir == DMA_NONE);
5040a918
DW
3937 if (iommu_no_mapping(dev))
3938 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
ba395927 3939
5040a918 3940 domain = get_valid_domain_for_dev(dev);
f76aec76
KA
3941 if (!domain)
3942 return 0;
3943
8c11e798
WH
3944 iommu = domain_get_iommu(domain);
3945
b536d24d 3946 for_each_sg(sglist, sg, nelems, i)
88cb6a74 3947 size += aligned_nrpages(sg->offset, sg->length);
f76aec76 3948
2aac6304 3949 iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
5040a918 3950 *dev->dma_mask);
2aac6304 3951 if (!iova_pfn) {
c03ab37c 3952 sglist->dma_length = 0;
f76aec76
KA
3953 return 0;
3954 }
3955
3956 /*
3957 * Check if DMAR supports zero-length reads on write only
3958 * mappings..
3959 */
3960 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
8c11e798 3961 !cap_zlr(iommu->cap))
f76aec76
KA
3962 prot |= DMA_PTE_READ;
3963 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3964 prot |= DMA_PTE_WRITE;
3965
2aac6304 3966 start_vpfn = mm_to_dma_pfn(iova_pfn);
e1605495 3967
f532959b 3968 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
e1605495 3969 if (unlikely(ret)) {
e1605495
DW
3970 dma_pte_free_pagetable(domain, start_vpfn,
3971 start_vpfn + size - 1);
22e2f9fa 3972 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
e1605495 3973 return 0;
ba395927
KA
3974 }
3975
1f0ef2aa
DW
3976 /* it's a non-present to present mapping. Only flush if caching mode */
3977 if (cap_caching_mode(iommu->cap))
a1ddcbe9 3978 iommu_flush_iotlb_psi(iommu, domain, start_vpfn, size, 0, 1);
1f0ef2aa 3979 else
8c11e798 3980 iommu_flush_write_buffer(iommu);
1f0ef2aa 3981
ba395927
KA
3982 return nelems;
3983}
3984
dfb805e8
FT
3985static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3986{
3987 return !dma_addr;
3988}
3989
160c1d8e 3990struct dma_map_ops intel_dma_ops = {
baa676fc
AP
3991 .alloc = intel_alloc_coherent,
3992 .free = intel_free_coherent,
ba395927
KA
3993 .map_sg = intel_map_sg,
3994 .unmap_sg = intel_unmap_sg,
ffbbef5c
FT
3995 .map_page = intel_map_page,
3996 .unmap_page = intel_unmap_page,
dfb805e8 3997 .mapping_error = intel_mapping_error,
ba395927
KA
3998};
3999
4000static inline int iommu_domain_cache_init(void)
4001{
4002 int ret = 0;
4003
4004 iommu_domain_cache = kmem_cache_create("iommu_domain",
4005 sizeof(struct dmar_domain),
4006 0,
4007 SLAB_HWCACHE_ALIGN,
4008
4009 NULL);
4010 if (!iommu_domain_cache) {
9f10e5bf 4011 pr_err("Couldn't create iommu_domain cache\n");
ba395927
KA
4012 ret = -ENOMEM;
4013 }
4014
4015 return ret;
4016}
4017
4018static inline int iommu_devinfo_cache_init(void)
4019{
4020 int ret = 0;
4021
4022 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
4023 sizeof(struct device_domain_info),
4024 0,
4025 SLAB_HWCACHE_ALIGN,
ba395927
KA
4026 NULL);
4027 if (!iommu_devinfo_cache) {
9f10e5bf 4028 pr_err("Couldn't create devinfo cache\n");
ba395927
KA
4029 ret = -ENOMEM;
4030 }
4031
4032 return ret;
4033}
4034
ba395927
KA
4035static int __init iommu_init_mempool(void)
4036{
4037 int ret;
ae1ff3d6 4038 ret = iova_cache_get();
ba395927
KA
4039 if (ret)
4040 return ret;
4041
4042 ret = iommu_domain_cache_init();
4043 if (ret)
4044 goto domain_error;
4045
4046 ret = iommu_devinfo_cache_init();
4047 if (!ret)
4048 return ret;
4049
4050 kmem_cache_destroy(iommu_domain_cache);
4051domain_error:
ae1ff3d6 4052 iova_cache_put();
ba395927
KA
4053
4054 return -ENOMEM;
4055}
4056
4057static void __init iommu_exit_mempool(void)
4058{
4059 kmem_cache_destroy(iommu_devinfo_cache);
4060 kmem_cache_destroy(iommu_domain_cache);
ae1ff3d6 4061 iova_cache_put();
ba395927
KA
4062}
4063
556ab45f
DW
4064static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
4065{
4066 struct dmar_drhd_unit *drhd;
4067 u32 vtbar;
4068 int rc;
4069
4070 /* We know that this device on this chipset has its own IOMMU.
4071 * If we find it under a different IOMMU, then the BIOS is lying
4072 * to us. Hope that the IOMMU for this device is actually
4073 * disabled, and it needs no translation...
4074 */
4075 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
4076 if (rc) {
4077 /* "can't" happen */
4078 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
4079 return;
4080 }
4081 vtbar &= 0xffff0000;
4082
4083 /* we know that the this iommu should be at offset 0xa000 from vtbar */
4084 drhd = dmar_find_matched_drhd_unit(pdev);
4085 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
4086 TAINT_FIRMWARE_WORKAROUND,
4087 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
4088 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4089}
4090DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
4091
ba395927
KA
4092static void __init init_no_remapping_devices(void)
4093{
4094 struct dmar_drhd_unit *drhd;
832bd858 4095 struct device *dev;
b683b230 4096 int i;
ba395927
KA
4097
4098 for_each_drhd_unit(drhd) {
4099 if (!drhd->include_all) {
b683b230
JL
4100 for_each_active_dev_scope(drhd->devices,
4101 drhd->devices_cnt, i, dev)
4102 break;
832bd858 4103 /* ignore DMAR unit if no devices exist */
ba395927
KA
4104 if (i == drhd->devices_cnt)
4105 drhd->ignored = 1;
4106 }
4107 }
4108
7c919779 4109 for_each_active_drhd_unit(drhd) {
7c919779 4110 if (drhd->include_all)
ba395927
KA
4111 continue;
4112
b683b230
JL
4113 for_each_active_dev_scope(drhd->devices,
4114 drhd->devices_cnt, i, dev)
832bd858 4115 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
ba395927 4116 break;
ba395927
KA
4117 if (i < drhd->devices_cnt)
4118 continue;
4119
c0771df8
DW
4120 /* This IOMMU has *only* gfx devices. Either bypass it or
4121 set the gfx_mapped flag, as appropriate */
4122 if (dmar_map_gfx) {
4123 intel_iommu_gfx_mapped = 1;
4124 } else {
4125 drhd->ignored = 1;
b683b230
JL
4126 for_each_active_dev_scope(drhd->devices,
4127 drhd->devices_cnt, i, dev)
832bd858 4128 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
ba395927
KA
4129 }
4130 }
4131}
4132
f59c7b69
FY
4133#ifdef CONFIG_SUSPEND
4134static int init_iommu_hw(void)
4135{
4136 struct dmar_drhd_unit *drhd;
4137 struct intel_iommu *iommu = NULL;
4138
4139 for_each_active_iommu(iommu, drhd)
4140 if (iommu->qi)
4141 dmar_reenable_qi(iommu);
4142
b779260b
JC
4143 for_each_iommu(iommu, drhd) {
4144 if (drhd->ignored) {
4145 /*
4146 * we always have to disable PMRs or DMA may fail on
4147 * this device
4148 */
4149 if (force_on)
4150 iommu_disable_protect_mem_regions(iommu);
4151 continue;
4152 }
4153
f59c7b69
FY
4154 iommu_flush_write_buffer(iommu);
4155
4156 iommu_set_root_entry(iommu);
4157
4158 iommu->flush.flush_context(iommu, 0, 0, 0,
1f0ef2aa 4159 DMA_CCMD_GLOBAL_INVL);
2a41ccee
JL
4160 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4161 iommu_enable_translation(iommu);
b94996c9 4162 iommu_disable_protect_mem_regions(iommu);
f59c7b69
FY
4163 }
4164
4165 return 0;
4166}
4167
4168static void iommu_flush_all(void)
4169{
4170 struct dmar_drhd_unit *drhd;
4171 struct intel_iommu *iommu;
4172
4173 for_each_active_iommu(iommu, drhd) {
4174 iommu->flush.flush_context(iommu, 0, 0, 0,
1f0ef2aa 4175 DMA_CCMD_GLOBAL_INVL);
f59c7b69 4176 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
1f0ef2aa 4177 DMA_TLB_GLOBAL_FLUSH);
f59c7b69
FY
4178 }
4179}
4180
134fac3f 4181static int iommu_suspend(void)
f59c7b69
FY
4182{
4183 struct dmar_drhd_unit *drhd;
4184 struct intel_iommu *iommu = NULL;
4185 unsigned long flag;
4186
4187 for_each_active_iommu(iommu, drhd) {
4188 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
4189 GFP_ATOMIC);
4190 if (!iommu->iommu_state)
4191 goto nomem;
4192 }
4193
4194 iommu_flush_all();
4195
4196 for_each_active_iommu(iommu, drhd) {
4197 iommu_disable_translation(iommu);
4198
1f5b3c3f 4199 raw_spin_lock_irqsave(&iommu->register_lock, flag);
f59c7b69
FY
4200
4201 iommu->iommu_state[SR_DMAR_FECTL_REG] =
4202 readl(iommu->reg + DMAR_FECTL_REG);
4203 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
4204 readl(iommu->reg + DMAR_FEDATA_REG);
4205 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
4206 readl(iommu->reg + DMAR_FEADDR_REG);
4207 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
4208 readl(iommu->reg + DMAR_FEUADDR_REG);
4209
1f5b3c3f 4210 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
f59c7b69
FY
4211 }
4212 return 0;
4213
4214nomem:
4215 for_each_active_iommu(iommu, drhd)
4216 kfree(iommu->iommu_state);
4217
4218 return -ENOMEM;
4219}
4220
134fac3f 4221static void iommu_resume(void)
f59c7b69
FY
4222{
4223 struct dmar_drhd_unit *drhd;
4224 struct intel_iommu *iommu = NULL;
4225 unsigned long flag;
4226
4227 if (init_iommu_hw()) {
b779260b
JC
4228 if (force_on)
4229 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
4230 else
4231 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
134fac3f 4232 return;
f59c7b69
FY
4233 }
4234
4235 for_each_active_iommu(iommu, drhd) {
4236
1f5b3c3f 4237 raw_spin_lock_irqsave(&iommu->register_lock, flag);
f59c7b69
FY
4238
4239 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
4240 iommu->reg + DMAR_FECTL_REG);
4241 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
4242 iommu->reg + DMAR_FEDATA_REG);
4243 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
4244 iommu->reg + DMAR_FEADDR_REG);
4245 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
4246 iommu->reg + DMAR_FEUADDR_REG);
4247
1f5b3c3f 4248 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
f59c7b69
FY
4249 }
4250
4251 for_each_active_iommu(iommu, drhd)
4252 kfree(iommu->iommu_state);
f59c7b69
FY
4253}
4254
134fac3f 4255static struct syscore_ops iommu_syscore_ops = {
f59c7b69
FY
4256 .resume = iommu_resume,
4257 .suspend = iommu_suspend,
4258};
4259
134fac3f 4260static void __init init_iommu_pm_ops(void)
f59c7b69 4261{
134fac3f 4262 register_syscore_ops(&iommu_syscore_ops);
f59c7b69
FY
4263}
4264
4265#else
99592ba4 4266static inline void init_iommu_pm_ops(void) {}
f59c7b69
FY
4267#endif /* CONFIG_PM */
4268
318fe7df 4269
c2a0b538 4270int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
318fe7df
SS
4271{
4272 struct acpi_dmar_reserved_memory *rmrr;
4273 struct dmar_rmrr_unit *rmrru;
4274
4275 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
4276 if (!rmrru)
4277 return -ENOMEM;
4278
4279 rmrru->hdr = header;
4280 rmrr = (struct acpi_dmar_reserved_memory *)header;
4281 rmrru->base_address = rmrr->base_address;
4282 rmrru->end_address = rmrr->end_address;
2e455289
JL
4283 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
4284 ((void *)rmrr) + rmrr->header.length,
4285 &rmrru->devices_cnt);
4286 if (rmrru->devices_cnt && rmrru->devices == NULL) {
4287 kfree(rmrru);
4288 return -ENOMEM;
4289 }
318fe7df 4290
2e455289 4291 list_add(&rmrru->list, &dmar_rmrr_units);
318fe7df 4292
2e455289 4293 return 0;
318fe7df
SS
4294}
4295
6b197249
JL
4296static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4297{
4298 struct dmar_atsr_unit *atsru;
4299 struct acpi_dmar_atsr *tmp;
4300
4301 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4302 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4303 if (atsr->segment != tmp->segment)
4304 continue;
4305 if (atsr->header.length != tmp->header.length)
4306 continue;
4307 if (memcmp(atsr, tmp, atsr->header.length) == 0)
4308 return atsru;
4309 }
4310
4311 return NULL;
4312}
4313
4314int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
318fe7df
SS
4315{
4316 struct acpi_dmar_atsr *atsr;
4317 struct dmar_atsr_unit *atsru;
4318
6b197249
JL
4319 if (system_state != SYSTEM_BOOTING && !intel_iommu_enabled)
4320 return 0;
4321
318fe7df 4322 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
6b197249
JL
4323 atsru = dmar_find_atsr(atsr);
4324 if (atsru)
4325 return 0;
4326
4327 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
318fe7df
SS
4328 if (!atsru)
4329 return -ENOMEM;
4330
6b197249
JL
4331 /*
4332 * If memory is allocated from slab by ACPI _DSM method, we need to
4333 * copy the memory content because the memory buffer will be freed
4334 * on return.
4335 */
4336 atsru->hdr = (void *)(atsru + 1);
4337 memcpy(atsru->hdr, hdr, hdr->length);
318fe7df 4338 atsru->include_all = atsr->flags & 0x1;
2e455289
JL
4339 if (!atsru->include_all) {
4340 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4341 (void *)atsr + atsr->header.length,
4342 &atsru->devices_cnt);
4343 if (atsru->devices_cnt && atsru->devices == NULL) {
4344 kfree(atsru);
4345 return -ENOMEM;
4346 }
4347 }
318fe7df 4348
0e242612 4349 list_add_rcu(&atsru->list, &dmar_atsr_units);
318fe7df
SS
4350
4351 return 0;
4352}
4353
9bdc531e
JL
4354static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4355{
4356 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4357 kfree(atsru);
4358}
4359
6b197249
JL
4360int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4361{
4362 struct acpi_dmar_atsr *atsr;
4363 struct dmar_atsr_unit *atsru;
4364
4365 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4366 atsru = dmar_find_atsr(atsr);
4367 if (atsru) {
4368 list_del_rcu(&atsru->list);
4369 synchronize_rcu();
4370 intel_iommu_free_atsr(atsru);
4371 }
4372
4373 return 0;
4374}
4375
4376int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4377{
4378 int i;
4379 struct device *dev;
4380 struct acpi_dmar_atsr *atsr;
4381 struct dmar_atsr_unit *atsru;
4382
4383 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4384 atsru = dmar_find_atsr(atsr);
4385 if (!atsru)
4386 return 0;
4387
194dc870 4388 if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
6b197249
JL
4389 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4390 i, dev)
4391 return -EBUSY;
194dc870 4392 }
6b197249
JL
4393
4394 return 0;
4395}
4396
ffebeb46
JL
4397static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4398{
4399 int sp, ret = 0;
4400 struct intel_iommu *iommu = dmaru->iommu;
4401
4402 if (g_iommus[iommu->seq_id])
4403 return 0;
4404
4405 if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
9f10e5bf 4406 pr_warn("%s: Doesn't support hardware pass through.\n",
ffebeb46
JL
4407 iommu->name);
4408 return -ENXIO;
4409 }
4410 if (!ecap_sc_support(iommu->ecap) &&
4411 domain_update_iommu_snooping(iommu)) {
9f10e5bf 4412 pr_warn("%s: Doesn't support snooping.\n",
ffebeb46
JL
4413 iommu->name);
4414 return -ENXIO;
4415 }
4416 sp = domain_update_iommu_superpage(iommu) - 1;
4417 if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
9f10e5bf 4418 pr_warn("%s: Doesn't support large page.\n",
ffebeb46
JL
4419 iommu->name);
4420 return -ENXIO;
4421 }
4422
4423 /*
4424 * Disable translation if already enabled prior to OS handover.
4425 */
4426 if (iommu->gcmd & DMA_GCMD_TE)
4427 iommu_disable_translation(iommu);
4428
4429 g_iommus[iommu->seq_id] = iommu;
4430 ret = iommu_init_domains(iommu);
4431 if (ret == 0)
4432 ret = iommu_alloc_root_entry(iommu);
4433 if (ret)
4434 goto out;
4435
8a94ade4
DW
4436#ifdef CONFIG_INTEL_IOMMU_SVM
4437 if (pasid_enabled(iommu))
4438 intel_svm_alloc_pasid_tables(iommu);
4439#endif
4440
ffebeb46
JL
4441 if (dmaru->ignored) {
4442 /*
4443 * we always have to disable PMRs or DMA may fail on this device
4444 */
4445 if (force_on)
4446 iommu_disable_protect_mem_regions(iommu);
4447 return 0;
4448 }
4449
4450 intel_iommu_init_qi(iommu);
4451 iommu_flush_write_buffer(iommu);
a222a7f0
DW
4452
4453#ifdef CONFIG_INTEL_IOMMU_SVM
4454 if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
4455 ret = intel_svm_enable_prq(iommu);
4456 if (ret)
4457 goto disable_iommu;
4458 }
4459#endif
ffebeb46
JL
4460 ret = dmar_set_interrupt(iommu);
4461 if (ret)
4462 goto disable_iommu;
4463
4464 iommu_set_root_entry(iommu);
4465 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4466 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4467 iommu_enable_translation(iommu);
4468
ffebeb46
JL
4469 iommu_disable_protect_mem_regions(iommu);
4470 return 0;
4471
4472disable_iommu:
4473 disable_dmar_iommu(iommu);
4474out:
4475 free_dmar_iommu(iommu);
4476 return ret;
4477}
4478
6b197249
JL
4479int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4480{
ffebeb46
JL
4481 int ret = 0;
4482 struct intel_iommu *iommu = dmaru->iommu;
4483
4484 if (!intel_iommu_enabled)
4485 return 0;
4486 if (iommu == NULL)
4487 return -EINVAL;
4488
4489 if (insert) {
4490 ret = intel_iommu_add(dmaru);
4491 } else {
4492 disable_dmar_iommu(iommu);
4493 free_dmar_iommu(iommu);
4494 }
4495
4496 return ret;
6b197249
JL
4497}
4498
9bdc531e
JL
4499static void intel_iommu_free_dmars(void)
4500{
4501 struct dmar_rmrr_unit *rmrru, *rmrr_n;
4502 struct dmar_atsr_unit *atsru, *atsr_n;
4503
4504 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4505 list_del(&rmrru->list);
4506 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4507 kfree(rmrru);
318fe7df
SS
4508 }
4509
9bdc531e
JL
4510 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4511 list_del(&atsru->list);
4512 intel_iommu_free_atsr(atsru);
4513 }
318fe7df
SS
4514}
4515
4516int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4517{
b683b230 4518 int i, ret = 1;
318fe7df 4519 struct pci_bus *bus;
832bd858
DW
4520 struct pci_dev *bridge = NULL;
4521 struct device *tmp;
318fe7df
SS
4522 struct acpi_dmar_atsr *atsr;
4523 struct dmar_atsr_unit *atsru;
4524
4525 dev = pci_physfn(dev);
318fe7df 4526 for (bus = dev->bus; bus; bus = bus->parent) {
b5f82ddf 4527 bridge = bus->self;
d14053b3
DW
4528 /* If it's an integrated device, allow ATS */
4529 if (!bridge)
4530 return 1;
4531 /* Connected via non-PCIe: no ATS */
4532 if (!pci_is_pcie(bridge) ||
62f87c0e 4533 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
318fe7df 4534 return 0;
d14053b3 4535 /* If we found the root port, look it up in the ATSR */
b5f82ddf 4536 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
318fe7df 4537 break;
318fe7df
SS
4538 }
4539
0e242612 4540 rcu_read_lock();
b5f82ddf
JL
4541 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4542 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4543 if (atsr->segment != pci_domain_nr(dev->bus))
4544 continue;
4545
b683b230 4546 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
832bd858 4547 if (tmp == &bridge->dev)
b683b230 4548 goto out;
b5f82ddf
JL
4549
4550 if (atsru->include_all)
b683b230 4551 goto out;
b5f82ddf 4552 }
b683b230
JL
4553 ret = 0;
4554out:
0e242612 4555 rcu_read_unlock();
318fe7df 4556
b683b230 4557 return ret;
318fe7df
SS
4558}
4559
59ce0515
JL
4560int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4561{
4562 int ret = 0;
4563 struct dmar_rmrr_unit *rmrru;
4564 struct dmar_atsr_unit *atsru;
4565 struct acpi_dmar_atsr *atsr;
4566 struct acpi_dmar_reserved_memory *rmrr;
4567
4568 if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
4569 return 0;
4570
4571 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4572 rmrr = container_of(rmrru->hdr,
4573 struct acpi_dmar_reserved_memory, header);
4574 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4575 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4576 ((void *)rmrr) + rmrr->header.length,
4577 rmrr->segment, rmrru->devices,
4578 rmrru->devices_cnt);
27e24950 4579 if(ret < 0)
59ce0515 4580 return ret;
e6a8c9b3 4581 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
27e24950
JL
4582 dmar_remove_dev_scope(info, rmrr->segment,
4583 rmrru->devices, rmrru->devices_cnt);
59ce0515
JL
4584 }
4585 }
4586
4587 list_for_each_entry(atsru, &dmar_atsr_units, list) {
4588 if (atsru->include_all)
4589 continue;
4590
4591 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4592 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4593 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4594 (void *)atsr + atsr->header.length,
4595 atsr->segment, atsru->devices,
4596 atsru->devices_cnt);
4597 if (ret > 0)
4598 break;
4599 else if(ret < 0)
4600 return ret;
e6a8c9b3 4601 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
59ce0515
JL
4602 if (dmar_remove_dev_scope(info, atsr->segment,
4603 atsru->devices, atsru->devices_cnt))
4604 break;
4605 }
4606 }
4607
4608 return 0;
4609}
4610
99dcaded
FY
4611/*
4612 * Here we only respond to action of unbound device from driver.
4613 *
4614 * Added device is not attached to its DMAR domain here yet. That will happen
4615 * when mapping the device to iova.
4616 */
4617static int device_notifier(struct notifier_block *nb,
4618 unsigned long action, void *data)
4619{
4620 struct device *dev = data;
99dcaded
FY
4621 struct dmar_domain *domain;
4622
3d89194a 4623 if (iommu_dummy(dev))
44cd613c
DW
4624 return 0;
4625
1196c2fb 4626 if (action != BUS_NOTIFY_REMOVED_DEVICE)
7e7dfab7
JL
4627 return 0;
4628
1525a29a 4629 domain = find_domain(dev);
99dcaded
FY
4630 if (!domain)
4631 return 0;
4632
e6de0f8d 4633 dmar_remove_one_dev_info(domain, dev);
ab8dfe25 4634 if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
7e7dfab7 4635 domain_exit(domain);
a97590e5 4636
99dcaded
FY
4637 return 0;
4638}
4639
4640static struct notifier_block device_nb = {
4641 .notifier_call = device_notifier,
4642};
4643
75f05569
JL
4644static int intel_iommu_memory_notifier(struct notifier_block *nb,
4645 unsigned long val, void *v)
4646{
4647 struct memory_notify *mhp = v;
4648 unsigned long long start, end;
4649 unsigned long start_vpfn, last_vpfn;
4650
4651 switch (val) {
4652 case MEM_GOING_ONLINE:
4653 start = mhp->start_pfn << PAGE_SHIFT;
4654 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4655 if (iommu_domain_identity_map(si_domain, start, end)) {
9f10e5bf 4656 pr_warn("Failed to build identity map for [%llx-%llx]\n",
75f05569
JL
4657 start, end);
4658 return NOTIFY_BAD;
4659 }
4660 break;
4661
4662 case MEM_OFFLINE:
4663 case MEM_CANCEL_ONLINE:
4664 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4665 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4666 while (start_vpfn <= last_vpfn) {
4667 struct iova *iova;
4668 struct dmar_drhd_unit *drhd;
4669 struct intel_iommu *iommu;
ea8ea460 4670 struct page *freelist;
75f05569
JL
4671
4672 iova = find_iova(&si_domain->iovad, start_vpfn);
4673 if (iova == NULL) {
9f10e5bf 4674 pr_debug("Failed get IOVA for PFN %lx\n",
75f05569
JL
4675 start_vpfn);
4676 break;
4677 }
4678
4679 iova = split_and_remove_iova(&si_domain->iovad, iova,
4680 start_vpfn, last_vpfn);
4681 if (iova == NULL) {
9f10e5bf 4682 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
75f05569
JL
4683 start_vpfn, last_vpfn);
4684 return NOTIFY_BAD;
4685 }
4686
ea8ea460
DW
4687 freelist = domain_unmap(si_domain, iova->pfn_lo,
4688 iova->pfn_hi);
4689
75f05569
JL
4690 rcu_read_lock();
4691 for_each_active_iommu(iommu, drhd)
a1ddcbe9 4692 iommu_flush_iotlb_psi(iommu, si_domain,
a156ef99 4693 iova->pfn_lo, iova_size(iova),
ea8ea460 4694 !freelist, 0);
75f05569 4695 rcu_read_unlock();
ea8ea460 4696 dma_free_pagelist(freelist);
75f05569
JL
4697
4698 start_vpfn = iova->pfn_hi + 1;
4699 free_iova_mem(iova);
4700 }
4701 break;
4702 }
4703
4704 return NOTIFY_OK;
4705}
4706
4707static struct notifier_block intel_iommu_memory_nb = {
4708 .notifier_call = intel_iommu_memory_notifier,
4709 .priority = 0
4710};
4711
22e2f9fa
OP
4712static void free_all_cpu_cached_iovas(unsigned int cpu)
4713{
4714 int i;
4715
4716 for (i = 0; i < g_num_of_iommus; i++) {
4717 struct intel_iommu *iommu = g_iommus[i];
4718 struct dmar_domain *domain;
0caa7616 4719 int did;
22e2f9fa
OP
4720
4721 if (!iommu)
4722 continue;
4723
3bd4f911 4724 for (did = 0; did < cap_ndoms(iommu->cap); did++) {
0caa7616 4725 domain = get_iommu_domain(iommu, (u16)did);
22e2f9fa
OP
4726
4727 if (!domain)
4728 continue;
4729 free_cpu_cached_iovas(cpu, &domain->iovad);
4730 }
4731 }
4732}
4733
aa473240
OP
4734static int intel_iommu_cpu_notifier(struct notifier_block *nfb,
4735 unsigned long action, void *v)
4736{
4737 unsigned int cpu = (unsigned long)v;
4738
4739 switch (action) {
4740 case CPU_DEAD:
4741 case CPU_DEAD_FROZEN:
22e2f9fa 4742 free_all_cpu_cached_iovas(cpu);
aa473240
OP
4743 flush_unmaps_timeout(cpu);
4744 break;
4745 }
4746 return NOTIFY_OK;
4747}
4748
4749static struct notifier_block intel_iommu_cpu_nb = {
4750 .notifier_call = intel_iommu_cpu_notifier,
4751};
a5459cfe
AW
4752
4753static ssize_t intel_iommu_show_version(struct device *dev,
4754 struct device_attribute *attr,
4755 char *buf)
4756{
4757 struct intel_iommu *iommu = dev_get_drvdata(dev);
4758 u32 ver = readl(iommu->reg + DMAR_VER_REG);
4759 return sprintf(buf, "%d:%d\n",
4760 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4761}
4762static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4763
4764static ssize_t intel_iommu_show_address(struct device *dev,
4765 struct device_attribute *attr,
4766 char *buf)
4767{
4768 struct intel_iommu *iommu = dev_get_drvdata(dev);
4769 return sprintf(buf, "%llx\n", iommu->reg_phys);
4770}
4771static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4772
4773static ssize_t intel_iommu_show_cap(struct device *dev,
4774 struct device_attribute *attr,
4775 char *buf)
4776{
4777 struct intel_iommu *iommu = dev_get_drvdata(dev);
4778 return sprintf(buf, "%llx\n", iommu->cap);
4779}
4780static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4781
4782static ssize_t intel_iommu_show_ecap(struct device *dev,
4783 struct device_attribute *attr,
4784 char *buf)
4785{
4786 struct intel_iommu *iommu = dev_get_drvdata(dev);
4787 return sprintf(buf, "%llx\n", iommu->ecap);
4788}
4789static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4790
2238c082
AW
4791static ssize_t intel_iommu_show_ndoms(struct device *dev,
4792 struct device_attribute *attr,
4793 char *buf)
4794{
4795 struct intel_iommu *iommu = dev_get_drvdata(dev);
4796 return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4797}
4798static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4799
4800static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4801 struct device_attribute *attr,
4802 char *buf)
4803{
4804 struct intel_iommu *iommu = dev_get_drvdata(dev);
4805 return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4806 cap_ndoms(iommu->cap)));
4807}
4808static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4809
a5459cfe
AW
4810static struct attribute *intel_iommu_attrs[] = {
4811 &dev_attr_version.attr,
4812 &dev_attr_address.attr,
4813 &dev_attr_cap.attr,
4814 &dev_attr_ecap.attr,
2238c082
AW
4815 &dev_attr_domains_supported.attr,
4816 &dev_attr_domains_used.attr,
a5459cfe
AW
4817 NULL,
4818};
4819
4820static struct attribute_group intel_iommu_group = {
4821 .name = "intel-iommu",
4822 .attrs = intel_iommu_attrs,
4823};
4824
4825const struct attribute_group *intel_iommu_groups[] = {
4826 &intel_iommu_group,
4827 NULL,
4828};
4829
ba395927
KA
4830int __init intel_iommu_init(void)
4831{
9bdc531e 4832 int ret = -ENODEV;
3a93c841 4833 struct dmar_drhd_unit *drhd;
7c919779 4834 struct intel_iommu *iommu;
ba395927 4835
a59b50e9
JC
4836 /* VT-d is required for a TXT/tboot launch, so enforce that */
4837 force_on = tboot_force_iommu();
4838
3a5670e8
JL
4839 if (iommu_init_mempool()) {
4840 if (force_on)
4841 panic("tboot: Failed to initialize iommu memory\n");
4842 return -ENOMEM;
4843 }
4844
4845 down_write(&dmar_global_lock);
a59b50e9
JC
4846 if (dmar_table_init()) {
4847 if (force_on)
4848 panic("tboot: Failed to initialize DMAR table\n");
9bdc531e 4849 goto out_free_dmar;
a59b50e9 4850 }
ba395927 4851
c2c7286a 4852 if (dmar_dev_scope_init() < 0) {
a59b50e9
JC
4853 if (force_on)
4854 panic("tboot: Failed to initialize DMAR device scope\n");
9bdc531e 4855 goto out_free_dmar;
a59b50e9 4856 }
1886e8a9 4857
75f1cdf1 4858 if (no_iommu || dmar_disabled)
9bdc531e 4859 goto out_free_dmar;
2ae21010 4860
318fe7df 4861 if (list_empty(&dmar_rmrr_units))
9f10e5bf 4862 pr_info("No RMRR found\n");
318fe7df
SS
4863
4864 if (list_empty(&dmar_atsr_units))
9f10e5bf 4865 pr_info("No ATSR found\n");
318fe7df 4866
51a63e67
JC
4867 if (dmar_init_reserved_ranges()) {
4868 if (force_on)
4869 panic("tboot: Failed to reserve iommu ranges\n");
3a5670e8 4870 goto out_free_reserved_range;
51a63e67 4871 }
ba395927
KA
4872
4873 init_no_remapping_devices();
4874
b779260b 4875 ret = init_dmars();
ba395927 4876 if (ret) {
a59b50e9
JC
4877 if (force_on)
4878 panic("tboot: Failed to initialize DMARs\n");
9f10e5bf 4879 pr_err("Initialization failed\n");
9bdc531e 4880 goto out_free_reserved_range;
ba395927 4881 }
3a5670e8 4882 up_write(&dmar_global_lock);
9f10e5bf 4883 pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
ba395927 4884
75f1cdf1
FT
4885#ifdef CONFIG_SWIOTLB
4886 swiotlb = 0;
4887#endif
19943b0e 4888 dma_ops = &intel_dma_ops;
4ed0d3e6 4889
134fac3f 4890 init_iommu_pm_ops();
a8bcbb0d 4891
a5459cfe
AW
4892 for_each_active_iommu(iommu, drhd)
4893 iommu->iommu_dev = iommu_device_create(NULL, iommu,
4894 intel_iommu_groups,
2439d4aa 4895 "%s", iommu->name);
a5459cfe 4896
4236d97d 4897 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
99dcaded 4898 bus_register_notifier(&pci_bus_type, &device_nb);
75f05569
JL
4899 if (si_domain && !hw_pass_through)
4900 register_memory_notifier(&intel_iommu_memory_nb);
aa473240 4901 register_hotcpu_notifier(&intel_iommu_cpu_nb);
99dcaded 4902
8bc1f85c
ED
4903 intel_iommu_enabled = 1;
4904
ba395927 4905 return 0;
9bdc531e
JL
4906
4907out_free_reserved_range:
4908 put_iova_domain(&reserved_iova_list);
9bdc531e
JL
4909out_free_dmar:
4910 intel_iommu_free_dmars();
3a5670e8
JL
4911 up_write(&dmar_global_lock);
4912 iommu_exit_mempool();
9bdc531e 4913 return ret;
ba395927 4914}
e820482c 4915
2452d9db 4916static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
579305f7
AW
4917{
4918 struct intel_iommu *iommu = opaque;
4919
2452d9db 4920 domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
579305f7
AW
4921 return 0;
4922}
4923
4924/*
4925 * NB - intel-iommu lacks any sort of reference counting for the users of
4926 * dependent devices. If multiple endpoints have intersecting dependent
4927 * devices, unbinding the driver from any one of them will possibly leave
4928 * the others unable to operate.
4929 */
2452d9db 4930static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
3199aa6b 4931{
0bcb3e28 4932 if (!iommu || !dev || !dev_is_pci(dev))
3199aa6b
HW
4933 return;
4934
2452d9db 4935 pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
3199aa6b
HW
4936}
4937
127c7615 4938static void __dmar_remove_one_dev_info(struct device_domain_info *info)
c7151a8d 4939{
c7151a8d
WH
4940 struct intel_iommu *iommu;
4941 unsigned long flags;
c7151a8d 4942
55d94043
JR
4943 assert_spin_locked(&device_domain_lock);
4944
127c7615 4945 if (WARN_ON(!info))
c7151a8d
WH
4946 return;
4947
127c7615 4948 iommu = info->iommu;
c7151a8d 4949
127c7615
JR
4950 if (info->dev) {
4951 iommu_disable_dev_iotlb(info);
4952 domain_context_clear(iommu, info->dev);
4953 }
c7151a8d 4954
b608ac3b 4955 unlink_domain_info(info);
c7151a8d 4956
d160aca5 4957 spin_lock_irqsave(&iommu->lock, flags);
127c7615 4958 domain_detach_iommu(info->domain, iommu);
d160aca5 4959 spin_unlock_irqrestore(&iommu->lock, flags);
c7151a8d 4960
127c7615 4961 free_devinfo_mem(info);
c7151a8d 4962}
c7151a8d 4963
55d94043
JR
4964static void dmar_remove_one_dev_info(struct dmar_domain *domain,
4965 struct device *dev)
4966{
127c7615 4967 struct device_domain_info *info;
55d94043 4968 unsigned long flags;
3e7abe25 4969
55d94043 4970 spin_lock_irqsave(&device_domain_lock, flags);
127c7615
JR
4971 info = dev->archdata.iommu;
4972 __dmar_remove_one_dev_info(info);
55d94043 4973 spin_unlock_irqrestore(&device_domain_lock, flags);
c7151a8d
WH
4974}
4975
2c2e2c38 4976static int md_domain_init(struct dmar_domain *domain, int guest_width)
5e98c4b1
WH
4977{
4978 int adjust_width;
4979
0fb5fe87
RM
4980 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
4981 DMA_32BIT_PFN);
5e98c4b1
WH
4982 domain_reserve_special_ranges(domain);
4983
4984 /* calculate AGAW */
4985 domain->gaw = guest_width;
4986 adjust_width = guestwidth_to_adjustwidth(guest_width);
4987 domain->agaw = width_to_agaw(adjust_width);
4988
5e98c4b1 4989 domain->iommu_coherency = 0;
c5b15255 4990 domain->iommu_snooping = 0;
6dd9a7c7 4991 domain->iommu_superpage = 0;
fe40f1e0 4992 domain->max_addr = 0;
5e98c4b1
WH
4993
4994 /* always allocate the top pgd */
4c923d47 4995 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
5e98c4b1
WH
4996 if (!domain->pgd)
4997 return -ENOMEM;
4998 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4999 return 0;
5000}
5001
00a77deb 5002static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
38717946 5003{
5d450806 5004 struct dmar_domain *dmar_domain;
00a77deb
JR
5005 struct iommu_domain *domain;
5006
5007 if (type != IOMMU_DOMAIN_UNMANAGED)
5008 return NULL;
38717946 5009
ab8dfe25 5010 dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
5d450806 5011 if (!dmar_domain) {
9f10e5bf 5012 pr_err("Can't allocate dmar_domain\n");
00a77deb 5013 return NULL;
38717946 5014 }
2c2e2c38 5015 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
9f10e5bf 5016 pr_err("Domain initialization failed\n");
92d03cc8 5017 domain_exit(dmar_domain);
00a77deb 5018 return NULL;
38717946 5019 }
8140a95d 5020 domain_update_iommu_cap(dmar_domain);
faa3d6f5 5021
00a77deb 5022 domain = &dmar_domain->domain;
8a0e715b
JR
5023 domain->geometry.aperture_start = 0;
5024 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
5025 domain->geometry.force_aperture = true;
5026
00a77deb 5027 return domain;
38717946 5028}
38717946 5029
00a77deb 5030static void intel_iommu_domain_free(struct iommu_domain *domain)
38717946 5031{
00a77deb 5032 domain_exit(to_dmar_domain(domain));
38717946 5033}
38717946 5034
4c5478c9
JR
5035static int intel_iommu_attach_device(struct iommu_domain *domain,
5036 struct device *dev)
38717946 5037{
00a77deb 5038 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
fe40f1e0
WH
5039 struct intel_iommu *iommu;
5040 int addr_width;
156baca8 5041 u8 bus, devfn;
faa3d6f5 5042
c875d2c1
AW
5043 if (device_is_rmrr_locked(dev)) {
5044 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n");
5045 return -EPERM;
5046 }
5047
7207d8f9
DW
5048 /* normally dev is not mapped */
5049 if (unlikely(domain_context_mapped(dev))) {
faa3d6f5
WH
5050 struct dmar_domain *old_domain;
5051
1525a29a 5052 old_domain = find_domain(dev);
faa3d6f5 5053 if (old_domain) {
d160aca5 5054 rcu_read_lock();
de7e8886 5055 dmar_remove_one_dev_info(old_domain, dev);
d160aca5 5056 rcu_read_unlock();
62c22167
JR
5057
5058 if (!domain_type_is_vm_or_si(old_domain) &&
5059 list_empty(&old_domain->devices))
5060 domain_exit(old_domain);
faa3d6f5
WH
5061 }
5062 }
5063
156baca8 5064 iommu = device_to_iommu(dev, &bus, &devfn);
fe40f1e0
WH
5065 if (!iommu)
5066 return -ENODEV;
5067
5068 /* check if this iommu agaw is sufficient for max mapped address */
5069 addr_width = agaw_to_width(iommu->agaw);
a99c47a2
TL
5070 if (addr_width > cap_mgaw(iommu->cap))
5071 addr_width = cap_mgaw(iommu->cap);
5072
5073 if (dmar_domain->max_addr > (1LL << addr_width)) {
9f10e5bf 5074 pr_err("%s: iommu width (%d) is not "
fe40f1e0 5075 "sufficient for the mapped address (%llx)\n",
a99c47a2 5076 __func__, addr_width, dmar_domain->max_addr);
fe40f1e0
WH
5077 return -EFAULT;
5078 }
a99c47a2
TL
5079 dmar_domain->gaw = addr_width;
5080
5081 /*
5082 * Knock out extra levels of page tables if necessary
5083 */
5084 while (iommu->agaw < dmar_domain->agaw) {
5085 struct dma_pte *pte;
5086
5087 pte = dmar_domain->pgd;
5088 if (dma_pte_present(pte)) {
25cbff16
SY
5089 dmar_domain->pgd = (struct dma_pte *)
5090 phys_to_virt(dma_pte_addr(pte));
7a661013 5091 free_pgtable_page(pte);
a99c47a2
TL
5092 }
5093 dmar_domain->agaw--;
5094 }
fe40f1e0 5095
28ccce0d 5096 return domain_add_dev_info(dmar_domain, dev);
38717946 5097}
38717946 5098
4c5478c9
JR
5099static void intel_iommu_detach_device(struct iommu_domain *domain,
5100 struct device *dev)
38717946 5101{
e6de0f8d 5102 dmar_remove_one_dev_info(to_dmar_domain(domain), dev);
faa3d6f5 5103}
c7151a8d 5104
b146a1c9
JR
5105static int intel_iommu_map(struct iommu_domain *domain,
5106 unsigned long iova, phys_addr_t hpa,
5009065d 5107 size_t size, int iommu_prot)
faa3d6f5 5108{
00a77deb 5109 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
fe40f1e0 5110 u64 max_addr;
dde57a21 5111 int prot = 0;
faa3d6f5 5112 int ret;
fe40f1e0 5113
dde57a21
JR
5114 if (iommu_prot & IOMMU_READ)
5115 prot |= DMA_PTE_READ;
5116 if (iommu_prot & IOMMU_WRITE)
5117 prot |= DMA_PTE_WRITE;
9cf06697
SY
5118 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
5119 prot |= DMA_PTE_SNP;
dde57a21 5120
163cc52c 5121 max_addr = iova + size;
dde57a21 5122 if (dmar_domain->max_addr < max_addr) {
fe40f1e0
WH
5123 u64 end;
5124
5125 /* check if minimum agaw is sufficient for mapped address */
8954da1f 5126 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
fe40f1e0 5127 if (end < max_addr) {
9f10e5bf 5128 pr_err("%s: iommu width (%d) is not "
fe40f1e0 5129 "sufficient for the mapped address (%llx)\n",
8954da1f 5130 __func__, dmar_domain->gaw, max_addr);
fe40f1e0
WH
5131 return -EFAULT;
5132 }
dde57a21 5133 dmar_domain->max_addr = max_addr;
fe40f1e0 5134 }
ad051221
DW
5135 /* Round up size to next multiple of PAGE_SIZE, if it and
5136 the low bits of hpa would take us onto the next page */
88cb6a74 5137 size = aligned_nrpages(hpa, size);
ad051221
DW
5138 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
5139 hpa >> VTD_PAGE_SHIFT, size, prot);
faa3d6f5 5140 return ret;
38717946 5141}
38717946 5142
5009065d 5143static size_t intel_iommu_unmap(struct iommu_domain *domain,
ea8ea460 5144 unsigned long iova, size_t size)
38717946 5145{
00a77deb 5146 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
ea8ea460
DW
5147 struct page *freelist = NULL;
5148 struct intel_iommu *iommu;
5149 unsigned long start_pfn, last_pfn;
5150 unsigned int npages;
42e8c186 5151 int iommu_id, level = 0;
5cf0a76f
DW
5152
5153 /* Cope with horrid API which requires us to unmap more than the
5154 size argument if it happens to be a large-page mapping. */
dc02e46e 5155 BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5cf0a76f
DW
5156
5157 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
5158 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4b99d352 5159
ea8ea460
DW
5160 start_pfn = iova >> VTD_PAGE_SHIFT;
5161 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
5162
5163 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
5164
5165 npages = last_pfn - start_pfn + 1;
5166
29a27719 5167 for_each_domain_iommu(iommu_id, dmar_domain) {
a1ddcbe9 5168 iommu = g_iommus[iommu_id];
ea8ea460 5169
42e8c186
JR
5170 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
5171 start_pfn, npages, !freelist, 0);
ea8ea460
DW
5172 }
5173
5174 dma_free_pagelist(freelist);
fe40f1e0 5175
163cc52c
DW
5176 if (dmar_domain->max_addr == iova + size)
5177 dmar_domain->max_addr = iova;
b146a1c9 5178
5cf0a76f 5179 return size;
38717946 5180}
38717946 5181
d14d6577 5182static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
bb5547ac 5183 dma_addr_t iova)
38717946 5184{
00a77deb 5185 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
38717946 5186 struct dma_pte *pte;
5cf0a76f 5187 int level = 0;
faa3d6f5 5188 u64 phys = 0;
38717946 5189
5cf0a76f 5190 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
38717946 5191 if (pte)
faa3d6f5 5192 phys = dma_pte_addr(pte);
38717946 5193
faa3d6f5 5194 return phys;
38717946 5195}
a8bcbb0d 5196
5d587b8d 5197static bool intel_iommu_capable(enum iommu_cap cap)
dbb9fd86 5198{
dbb9fd86 5199 if (cap == IOMMU_CAP_CACHE_COHERENCY)
5d587b8d 5200 return domain_update_iommu_snooping(NULL) == 1;
323f99cb 5201 if (cap == IOMMU_CAP_INTR_REMAP)
5d587b8d 5202 return irq_remapping_enabled == 1;
dbb9fd86 5203
5d587b8d 5204 return false;
dbb9fd86
SY
5205}
5206
abdfdde2
AW
5207static int intel_iommu_add_device(struct device *dev)
5208{
a5459cfe 5209 struct intel_iommu *iommu;
abdfdde2 5210 struct iommu_group *group;
156baca8 5211 u8 bus, devfn;
70ae6f0d 5212
a5459cfe
AW
5213 iommu = device_to_iommu(dev, &bus, &devfn);
5214 if (!iommu)
70ae6f0d
AW
5215 return -ENODEV;
5216
a5459cfe 5217 iommu_device_link(iommu->iommu_dev, dev);
a4ff1fc2 5218
e17f9ff4 5219 group = iommu_group_get_for_dev(dev);
783f157b 5220
e17f9ff4
AW
5221 if (IS_ERR(group))
5222 return PTR_ERR(group);
bcb71abe 5223
abdfdde2 5224 iommu_group_put(group);
e17f9ff4 5225 return 0;
abdfdde2 5226}
70ae6f0d 5227
abdfdde2
AW
5228static void intel_iommu_remove_device(struct device *dev)
5229{
a5459cfe
AW
5230 struct intel_iommu *iommu;
5231 u8 bus, devfn;
5232
5233 iommu = device_to_iommu(dev, &bus, &devfn);
5234 if (!iommu)
5235 return;
5236
abdfdde2 5237 iommu_group_remove_device(dev);
a5459cfe
AW
5238
5239 iommu_device_unlink(iommu->iommu_dev, dev);
70ae6f0d
AW
5240}
5241
2f26e0a9 5242#ifdef CONFIG_INTEL_IOMMU_SVM
ef41459a
JP
5243#define MAX_NR_PASID_BITS (20)
5244static inline unsigned long intel_iommu_get_pts(struct intel_iommu *iommu)
5245{
5246 /*
5247 * Convert ecap_pss to extend context entry pts encoding, also
5248 * respect the soft pasid_max value set by the iommu.
5249 * - number of PASID bits = ecap_pss + 1
5250 * - number of PASID table entries = 2^(pts + 5)
5251 * Therefore, pts = ecap_pss - 4
5252 * e.g. KBL ecap_pss = 0x13, PASID has 20 bits, pts = 15
5253 */
5254 if (ecap_pss(iommu->ecap) < 5)
5255 return 0;
5256
5257 /* pasid_max is encoded as actual number of entries not the bits */
5258 return find_first_bit((unsigned long *)&iommu->pasid_max,
5259 MAX_NR_PASID_BITS) - 5;
5260}
5261
2f26e0a9
DW
5262int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct intel_svm_dev *sdev)
5263{
5264 struct device_domain_info *info;
5265 struct context_entry *context;
5266 struct dmar_domain *domain;
5267 unsigned long flags;
5268 u64 ctx_lo;
5269 int ret;
5270
5271 domain = get_valid_domain_for_dev(sdev->dev);
5272 if (!domain)
5273 return -EINVAL;
5274
5275 spin_lock_irqsave(&device_domain_lock, flags);
5276 spin_lock(&iommu->lock);
5277
5278 ret = -EINVAL;
5279 info = sdev->dev->archdata.iommu;
5280 if (!info || !info->pasid_supported)
5281 goto out;
5282
5283 context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
5284 if (WARN_ON(!context))
5285 goto out;
5286
5287 ctx_lo = context[0].lo;
5288
5289 sdev->did = domain->iommu_did[iommu->seq_id];
5290 sdev->sid = PCI_DEVID(info->bus, info->devfn);
5291
5292 if (!(ctx_lo & CONTEXT_PASIDE)) {
5293 context[1].hi = (u64)virt_to_phys(iommu->pasid_state_table);
ef41459a
JP
5294 context[1].lo = (u64)virt_to_phys(iommu->pasid_table) |
5295 intel_iommu_get_pts(iommu);
5296
2f26e0a9
DW
5297 wmb();
5298 /* CONTEXT_TT_MULTI_LEVEL and CONTEXT_TT_DEV_IOTLB are both
5299 * extended to permit requests-with-PASID if the PASIDE bit
5300 * is set. which makes sense. For CONTEXT_TT_PASS_THROUGH,
5301 * however, the PASIDE bit is ignored and requests-with-PASID
5302 * are unconditionally blocked. Which makes less sense.
5303 * So convert from CONTEXT_TT_PASS_THROUGH to one of the new
5304 * "guest mode" translation types depending on whether ATS
5305 * is available or not. Annoyingly, we can't use the new
5306 * modes *unless* PASIDE is set. */
5307 if ((ctx_lo & CONTEXT_TT_MASK) == (CONTEXT_TT_PASS_THROUGH << 2)) {
5308 ctx_lo &= ~CONTEXT_TT_MASK;
5309 if (info->ats_supported)
5310 ctx_lo |= CONTEXT_TT_PT_PASID_DEV_IOTLB << 2;
5311 else
5312 ctx_lo |= CONTEXT_TT_PT_PASID << 2;
5313 }
5314 ctx_lo |= CONTEXT_PASIDE;
907fea34
DW
5315 if (iommu->pasid_state_table)
5316 ctx_lo |= CONTEXT_DINVE;
a222a7f0
DW
5317 if (info->pri_supported)
5318 ctx_lo |= CONTEXT_PRS;
2f26e0a9
DW
5319 context[0].lo = ctx_lo;
5320 wmb();
5321 iommu->flush.flush_context(iommu, sdev->did, sdev->sid,
5322 DMA_CCMD_MASK_NOBIT,
5323 DMA_CCMD_DEVICE_INVL);
5324 }
5325
5326 /* Enable PASID support in the device, if it wasn't already */
5327 if (!info->pasid_enabled)
5328 iommu_enable_dev_iotlb(info);
5329
5330 if (info->ats_enabled) {
5331 sdev->dev_iotlb = 1;
5332 sdev->qdep = info->ats_qdep;
5333 if (sdev->qdep >= QI_DEV_EIOTLB_MAX_INVS)
5334 sdev->qdep = 0;
5335 }
5336 ret = 0;
5337
5338 out:
5339 spin_unlock(&iommu->lock);
5340 spin_unlock_irqrestore(&device_domain_lock, flags);
5341
5342 return ret;
5343}
5344
5345struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
5346{
5347 struct intel_iommu *iommu;
5348 u8 bus, devfn;
5349
5350 if (iommu_dummy(dev)) {
5351 dev_warn(dev,
5352 "No IOMMU translation for device; cannot enable SVM\n");
5353 return NULL;
5354 }
5355
5356 iommu = device_to_iommu(dev, &bus, &devfn);
5357 if ((!iommu)) {
b9997e38 5358 dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
2f26e0a9
DW
5359 return NULL;
5360 }
5361
5362 if (!iommu->pasid_table) {
b9997e38 5363 dev_err(dev, "PASID not enabled on IOMMU; cannot enable SVM\n");
2f26e0a9
DW
5364 return NULL;
5365 }
5366
5367 return iommu;
5368}
5369#endif /* CONFIG_INTEL_IOMMU_SVM */
5370
b22f6434 5371static const struct iommu_ops intel_iommu_ops = {
5d587b8d 5372 .capable = intel_iommu_capable,
00a77deb
JR
5373 .domain_alloc = intel_iommu_domain_alloc,
5374 .domain_free = intel_iommu_domain_free,
a8bcbb0d
JR
5375 .attach_dev = intel_iommu_attach_device,
5376 .detach_dev = intel_iommu_detach_device,
b146a1c9
JR
5377 .map = intel_iommu_map,
5378 .unmap = intel_iommu_unmap,
315786eb 5379 .map_sg = default_iommu_map_sg,
a8bcbb0d 5380 .iova_to_phys = intel_iommu_iova_to_phys,
abdfdde2
AW
5381 .add_device = intel_iommu_add_device,
5382 .remove_device = intel_iommu_remove_device,
a960fadb 5383 .device_group = pci_device_group,
6d1c56a9 5384 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
a8bcbb0d 5385};
9af88143 5386
9452618e
DV
5387static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
5388{
5389 /* G4x/GM45 integrated gfx dmar support is totally busted. */
9f10e5bf 5390 pr_info("Disabling IOMMU for graphics on this chipset\n");
9452618e
DV
5391 dmar_map_gfx = 0;
5392}
5393
5394DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
5395DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
5396DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
5397DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
5398DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
5399DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
5400DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
5401
d34d6517 5402static void quirk_iommu_rwbf(struct pci_dev *dev)
9af88143
DW
5403{
5404 /*
5405 * Mobile 4 Series Chipset neglects to set RWBF capability,
210561ff 5406 * but needs it. Same seems to hold for the desktop versions.
9af88143 5407 */
9f10e5bf 5408 pr_info("Forcing write-buffer flush capability\n");
9af88143
DW
5409 rwbf_quirk = 1;
5410}
5411
5412DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
210561ff
DV
5413DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
5414DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
5415DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
5416DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
5417DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
5418DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
e0fc7e0b 5419
eecfd57f
AJ
5420#define GGC 0x52
5421#define GGC_MEMORY_SIZE_MASK (0xf << 8)
5422#define GGC_MEMORY_SIZE_NONE (0x0 << 8)
5423#define GGC_MEMORY_SIZE_1M (0x1 << 8)
5424#define GGC_MEMORY_SIZE_2M (0x3 << 8)
5425#define GGC_MEMORY_VT_ENABLED (0x8 << 8)
5426#define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
5427#define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
5428#define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
5429
d34d6517 5430static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
9eecabcb
DW
5431{
5432 unsigned short ggc;
5433
eecfd57f 5434 if (pci_read_config_word(dev, GGC, &ggc))
9eecabcb
DW
5435 return;
5436
eecfd57f 5437 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
9f10e5bf 5438 pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
9eecabcb 5439 dmar_map_gfx = 0;
6fbcfb3e
DW
5440 } else if (dmar_map_gfx) {
5441 /* we have to ensure the gfx device is idle before we flush */
9f10e5bf 5442 pr_info("Disabling batched IOTLB flush on Ironlake\n");
6fbcfb3e
DW
5443 intel_iommu_strict = 1;
5444 }
9eecabcb
DW
5445}
5446DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
5447DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
5448DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
5449DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
5450
e0fc7e0b
DW
5451/* On Tylersburg chipsets, some BIOSes have been known to enable the
5452 ISOCH DMAR unit for the Azalia sound device, but not give it any
5453 TLB entries, which causes it to deadlock. Check for that. We do
5454 this in a function called from init_dmars(), instead of in a PCI
5455 quirk, because we don't want to print the obnoxious "BIOS broken"
5456 message if VT-d is actually disabled.
5457*/
5458static void __init check_tylersburg_isoch(void)
5459{
5460 struct pci_dev *pdev;
5461 uint32_t vtisochctrl;
5462
5463 /* If there's no Azalia in the system anyway, forget it. */
5464 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
5465 if (!pdev)
5466 return;
5467 pci_dev_put(pdev);
5468
5469 /* System Management Registers. Might be hidden, in which case
5470 we can't do the sanity check. But that's OK, because the
5471 known-broken BIOSes _don't_ actually hide it, so far. */
5472 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
5473 if (!pdev)
5474 return;
5475
5476 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
5477 pci_dev_put(pdev);
5478 return;
5479 }
5480
5481 pci_dev_put(pdev);
5482
5483 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
5484 if (vtisochctrl & 1)
5485 return;
5486
5487 /* Drop all bits other than the number of TLB entries */
5488 vtisochctrl &= 0x1c;
5489
5490 /* If we have the recommended number of TLB entries (16), fine. */
5491 if (vtisochctrl == 0x10)
5492 return;
5493
5494 /* Zero TLB entries? You get to ride the short bus to school. */
5495 if (!vtisochctrl) {
5496 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5497 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5498 dmi_get_system_info(DMI_BIOS_VENDOR),
5499 dmi_get_system_info(DMI_BIOS_VERSION),
5500 dmi_get_system_info(DMI_PRODUCT_VERSION));
5501 iommu_identity_mapping |= IDENTMAP_AZALIA;
5502 return;
5503 }
9f10e5bf
JR
5504
5505 pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
e0fc7e0b
DW
5506 vtisochctrl);
5507}