]> git.ipfire.org Git - people/arne_f/kernel.git/blame - fs/btrfs/extent-tree.c
Btrfs: fix qgroup sanity tests
[people/arne_f/kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
3fed40cc 36#include "math.h"
6ab0a202 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
fec577fb 39
709c0486
AJ
40#undef SCRAMBLE_DELAYED_REFS
41
9e622d6b
MX
42/*
43 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
0e4f8f88
CM
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
9e622d6b
MX
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
0e4f8f88
CM
55 */
56enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
60};
61
fb25e914
JB
62/*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75};
76
ce93ec54
JB
77static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
5d4f98a2
YZ
80static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
c682f9b3 82 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
c682f9b3 85 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
86static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
98 int level, struct btrfs_key *ins,
99 int no_quota);
6a63209f 100static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
11833d66
YZ
103static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
9ed74f2d
JB
105static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
fb25e914 107static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27
MX
108 u64 num_bytes, int reserve,
109 int delalloc);
5d80366e
JB
110static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
48a3b636
ES
112int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
6a63209f 114
817d52f8
JB
115static noinline int
116block_group_cache_done(struct btrfs_block_group_cache *cache)
117{
118 smp_mb();
36cce922
JB
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
121}
122
0f9dd46c
JB
123static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124{
125 return (cache->flags & bits) == bits;
126}
127
62a45b60 128static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
129{
130 atomic_inc(&cache->count);
131}
132
133void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134{
f0486c68
YZ
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
34d52cb6 138 kfree(cache->free_space_ctl);
11dfe35a 139 kfree(cache);
f0486c68 140 }
11dfe35a
JB
141}
142
0f9dd46c
JB
143/*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
b2950863 147static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
148 struct btrfs_block_group_cache *block_group)
149{
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
a1897fdd
LB
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
0f9dd46c
JB
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181}
182
183/*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187static struct btrfs_block_group_cache *
188block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190{
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
a1897fdd 219 if (ret) {
11dfe35a 220 btrfs_get_block_group(ret);
a1897fdd
LB
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
0f9dd46c
JB
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227}
228
11833d66
YZ
229static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
817d52f8 231{
11833d66
YZ
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238}
817d52f8 239
11833d66
YZ
240static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242{
243 u64 start, end;
817d52f8 244
11833d66
YZ
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
817d52f8
JB
252}
253
11833d66
YZ
254static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
817d52f8 256{
817d52f8
JB
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
06b2331f
YZ
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
835d974f
JB
267 if (ret)
268 return ret;
06b2331f
YZ
269 }
270
817d52f8
JB
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
835d974f
JB
276 if (ret)
277 return ret;
11833d66 278
817d52f8 279 while (nr--) {
51bf5f0b
JB
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
835d974f
JB
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
817d52f8 305 }
11833d66 306
817d52f8
JB
307 kfree(logical);
308 }
817d52f8
JB
309 return 0;
310}
311
11833d66
YZ
312static struct btrfs_caching_control *
313get_caching_control(struct btrfs_block_group_cache *cache)
314{
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
dde5abee
JB
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
11833d66
YZ
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327}
328
329static void put_caching_control(struct btrfs_caching_control *ctl)
330{
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333}
334
0f9dd46c
JB
335/*
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
339 */
817d52f8 340static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
0f9dd46c
JB
341 struct btrfs_fs_info *info, u64 start, u64 end)
342{
817d52f8 343 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
344 int ret;
345
346 while (start < end) {
11833d66 347 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 348 &extent_start, &extent_end,
e6138876
JB
349 EXTENT_DIRTY | EXTENT_UPTODATE,
350 NULL);
0f9dd46c
JB
351 if (ret)
352 break;
353
06b2331f 354 if (extent_start <= start) {
0f9dd46c
JB
355 start = extent_end + 1;
356 } else if (extent_start > start && extent_start < end) {
357 size = extent_start - start;
817d52f8 358 total_added += size;
ea6a478e
JB
359 ret = btrfs_add_free_space(block_group, start,
360 size);
79787eaa 361 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
362 start = extent_end + 1;
363 } else {
364 break;
365 }
366 }
367
368 if (start < end) {
369 size = end - start;
817d52f8 370 total_added += size;
ea6a478e 371 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 372 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
373 }
374
817d52f8 375 return total_added;
0f9dd46c
JB
376}
377
d458b054 378static noinline void caching_thread(struct btrfs_work *work)
e37c9e69 379{
bab39bf9
JB
380 struct btrfs_block_group_cache *block_group;
381 struct btrfs_fs_info *fs_info;
382 struct btrfs_caching_control *caching_ctl;
383 struct btrfs_root *extent_root;
e37c9e69 384 struct btrfs_path *path;
5f39d397 385 struct extent_buffer *leaf;
11833d66 386 struct btrfs_key key;
817d52f8 387 u64 total_found = 0;
11833d66
YZ
388 u64 last = 0;
389 u32 nritems;
36cce922 390 int ret = -ENOMEM;
f510cfec 391
bab39bf9
JB
392 caching_ctl = container_of(work, struct btrfs_caching_control, work);
393 block_group = caching_ctl->block_group;
394 fs_info = block_group->fs_info;
395 extent_root = fs_info->extent_root;
396
e37c9e69
CM
397 path = btrfs_alloc_path();
398 if (!path)
bab39bf9 399 goto out;
7d7d6068 400
817d52f8 401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 402
5cd57b2c 403 /*
817d52f8
JB
404 * We don't want to deadlock with somebody trying to allocate a new
405 * extent for the extent root while also trying to search the extent
406 * root to add free space. So we skip locking and search the commit
407 * root, since its read-only
5cd57b2c
CM
408 */
409 path->skip_locking = 1;
817d52f8 410 path->search_commit_root = 1;
026fd317 411 path->reada = 1;
817d52f8 412
e4404d6e 413 key.objectid = last;
e37c9e69 414 key.offset = 0;
11833d66 415 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 416again:
11833d66 417 mutex_lock(&caching_ctl->mutex);
013f1b12 418 /* need to make sure the commit_root doesn't disappear */
9e351cc8 419 down_read(&fs_info->commit_root_sem);
013f1b12 420
52ee28d2 421next:
11833d66 422 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 423 if (ret < 0)
ef8bbdfe 424 goto err;
a512bbf8 425
11833d66
YZ
426 leaf = path->nodes[0];
427 nritems = btrfs_header_nritems(leaf);
428
d397712b 429 while (1) {
7841cb28 430 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 431 last = (u64)-1;
817d52f8 432 break;
f25784b3 433 }
817d52f8 434
11833d66
YZ
435 if (path->slots[0] < nritems) {
436 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
437 } else {
438 ret = find_next_key(path, 0, &key);
439 if (ret)
e37c9e69 440 break;
817d52f8 441
c9ea7b24 442 if (need_resched() ||
9e351cc8 443 rwsem_is_contended(&fs_info->commit_root_sem)) {
589d8ade 444 caching_ctl->progress = last;
ff5714cc 445 btrfs_release_path(path);
9e351cc8 446 up_read(&fs_info->commit_root_sem);
589d8ade 447 mutex_unlock(&caching_ctl->mutex);
11833d66 448 cond_resched();
589d8ade
JB
449 goto again;
450 }
0a3896d0
JB
451
452 ret = btrfs_next_leaf(extent_root, path);
453 if (ret < 0)
454 goto err;
455 if (ret)
456 break;
589d8ade
JB
457 leaf = path->nodes[0];
458 nritems = btrfs_header_nritems(leaf);
459 continue;
11833d66 460 }
817d52f8 461
52ee28d2
LB
462 if (key.objectid < last) {
463 key.objectid = last;
464 key.offset = 0;
465 key.type = BTRFS_EXTENT_ITEM_KEY;
466
467 caching_ctl->progress = last;
468 btrfs_release_path(path);
469 goto next;
470 }
471
11833d66
YZ
472 if (key.objectid < block_group->key.objectid) {
473 path->slots[0]++;
817d52f8 474 continue;
e37c9e69 475 }
0f9dd46c 476
e37c9e69 477 if (key.objectid >= block_group->key.objectid +
0f9dd46c 478 block_group->key.offset)
e37c9e69 479 break;
7d7d6068 480
3173a18f
JB
481 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
482 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
483 total_found += add_new_free_space(block_group,
484 fs_info, last,
485 key.objectid);
3173a18f
JB
486 if (key.type == BTRFS_METADATA_ITEM_KEY)
487 last = key.objectid +
707e8a07 488 fs_info->tree_root->nodesize;
3173a18f
JB
489 else
490 last = key.objectid + key.offset;
817d52f8 491
11833d66
YZ
492 if (total_found > (1024 * 1024 * 2)) {
493 total_found = 0;
494 wake_up(&caching_ctl->wait);
495 }
817d52f8 496 }
e37c9e69
CM
497 path->slots[0]++;
498 }
817d52f8 499 ret = 0;
e37c9e69 500
817d52f8
JB
501 total_found += add_new_free_space(block_group, fs_info, last,
502 block_group->key.objectid +
503 block_group->key.offset);
11833d66 504 caching_ctl->progress = (u64)-1;
817d52f8
JB
505
506 spin_lock(&block_group->lock);
11833d66 507 block_group->caching_ctl = NULL;
817d52f8
JB
508 block_group->cached = BTRFS_CACHE_FINISHED;
509 spin_unlock(&block_group->lock);
0f9dd46c 510
54aa1f4d 511err:
e37c9e69 512 btrfs_free_path(path);
9e351cc8 513 up_read(&fs_info->commit_root_sem);
817d52f8 514
11833d66
YZ
515 free_excluded_extents(extent_root, block_group);
516
517 mutex_unlock(&caching_ctl->mutex);
bab39bf9 518out:
36cce922
JB
519 if (ret) {
520 spin_lock(&block_group->lock);
521 block_group->caching_ctl = NULL;
522 block_group->cached = BTRFS_CACHE_ERROR;
523 spin_unlock(&block_group->lock);
524 }
11833d66
YZ
525 wake_up(&caching_ctl->wait);
526
527 put_caching_control(caching_ctl);
11dfe35a 528 btrfs_put_block_group(block_group);
817d52f8
JB
529}
530
9d66e233 531static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 532 int load_cache_only)
817d52f8 533{
291c7d2f 534 DEFINE_WAIT(wait);
11833d66
YZ
535 struct btrfs_fs_info *fs_info = cache->fs_info;
536 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
537 int ret = 0;
538
291c7d2f 539 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
540 if (!caching_ctl)
541 return -ENOMEM;
291c7d2f
JB
542
543 INIT_LIST_HEAD(&caching_ctl->list);
544 mutex_init(&caching_ctl->mutex);
545 init_waitqueue_head(&caching_ctl->wait);
546 caching_ctl->block_group = cache;
547 caching_ctl->progress = cache->key.objectid;
548 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
549 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
550 caching_thread, NULL, NULL);
291c7d2f
JB
551
552 spin_lock(&cache->lock);
553 /*
554 * This should be a rare occasion, but this could happen I think in the
555 * case where one thread starts to load the space cache info, and then
556 * some other thread starts a transaction commit which tries to do an
557 * allocation while the other thread is still loading the space cache
558 * info. The previous loop should have kept us from choosing this block
559 * group, but if we've moved to the state where we will wait on caching
560 * block groups we need to first check if we're doing a fast load here,
561 * so we can wait for it to finish, otherwise we could end up allocating
562 * from a block group who's cache gets evicted for one reason or
563 * another.
564 */
565 while (cache->cached == BTRFS_CACHE_FAST) {
566 struct btrfs_caching_control *ctl;
567
568 ctl = cache->caching_ctl;
569 atomic_inc(&ctl->count);
570 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 spin_unlock(&cache->lock);
572
573 schedule();
574
575 finish_wait(&ctl->wait, &wait);
576 put_caching_control(ctl);
577 spin_lock(&cache->lock);
578 }
579
580 if (cache->cached != BTRFS_CACHE_NO) {
581 spin_unlock(&cache->lock);
582 kfree(caching_ctl);
11833d66 583 return 0;
291c7d2f
JB
584 }
585 WARN_ON(cache->caching_ctl);
586 cache->caching_ctl = caching_ctl;
587 cache->cached = BTRFS_CACHE_FAST;
588 spin_unlock(&cache->lock);
11833d66 589
d53ba474 590 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 591 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
592 ret = load_free_space_cache(fs_info, cache);
593
594 spin_lock(&cache->lock);
595 if (ret == 1) {
291c7d2f 596 cache->caching_ctl = NULL;
9d66e233
JB
597 cache->cached = BTRFS_CACHE_FINISHED;
598 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 599 caching_ctl->progress = (u64)-1;
9d66e233 600 } else {
291c7d2f
JB
601 if (load_cache_only) {
602 cache->caching_ctl = NULL;
603 cache->cached = BTRFS_CACHE_NO;
604 } else {
605 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 606 cache->has_caching_ctl = 1;
291c7d2f 607 }
9d66e233
JB
608 }
609 spin_unlock(&cache->lock);
cb83b7b8
JB
610 mutex_unlock(&caching_ctl->mutex);
611
291c7d2f 612 wake_up(&caching_ctl->wait);
3c14874a 613 if (ret == 1) {
291c7d2f 614 put_caching_control(caching_ctl);
3c14874a 615 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 616 return 0;
3c14874a 617 }
291c7d2f
JB
618 } else {
619 /*
620 * We are not going to do the fast caching, set cached to the
621 * appropriate value and wakeup any waiters.
622 */
623 spin_lock(&cache->lock);
624 if (load_cache_only) {
625 cache->caching_ctl = NULL;
626 cache->cached = BTRFS_CACHE_NO;
627 } else {
628 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 629 cache->has_caching_ctl = 1;
291c7d2f
JB
630 }
631 spin_unlock(&cache->lock);
632 wake_up(&caching_ctl->wait);
9d66e233
JB
633 }
634
291c7d2f
JB
635 if (load_cache_only) {
636 put_caching_control(caching_ctl);
11833d66 637 return 0;
817d52f8 638 }
817d52f8 639
9e351cc8 640 down_write(&fs_info->commit_root_sem);
291c7d2f 641 atomic_inc(&caching_ctl->count);
11833d66 642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 643 up_write(&fs_info->commit_root_sem);
11833d66 644
11dfe35a 645 btrfs_get_block_group(cache);
11833d66 646
e66f0bb1 647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 648
ef8bbdfe 649 return ret;
e37c9e69
CM
650}
651
0f9dd46c
JB
652/*
653 * return the block group that starts at or after bytenr
654 */
d397712b
CM
655static struct btrfs_block_group_cache *
656btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 657{
0f9dd46c 658 struct btrfs_block_group_cache *cache;
0ef3e66b 659
0f9dd46c 660 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 661
0f9dd46c 662 return cache;
0ef3e66b
CM
663}
664
0f9dd46c 665/*
9f55684c 666 * return the block group that contains the given bytenr
0f9dd46c 667 */
d397712b
CM
668struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 struct btrfs_fs_info *info,
670 u64 bytenr)
be744175 671{
0f9dd46c 672 struct btrfs_block_group_cache *cache;
be744175 673
0f9dd46c 674 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 675
0f9dd46c 676 return cache;
be744175 677}
0b86a832 678
0f9dd46c
JB
679static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 u64 flags)
6324fbf3 681{
0f9dd46c 682 struct list_head *head = &info->space_info;
0f9dd46c 683 struct btrfs_space_info *found;
4184ea7f 684
52ba6929 685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 686
4184ea7f
CM
687 rcu_read_lock();
688 list_for_each_entry_rcu(found, head, list) {
67377734 689 if (found->flags & flags) {
4184ea7f 690 rcu_read_unlock();
0f9dd46c 691 return found;
4184ea7f 692 }
0f9dd46c 693 }
4184ea7f 694 rcu_read_unlock();
0f9dd46c 695 return NULL;
6324fbf3
CM
696}
697
4184ea7f
CM
698/*
699 * after adding space to the filesystem, we need to clear the full flags
700 * on all the space infos.
701 */
702void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
703{
704 struct list_head *head = &info->space_info;
705 struct btrfs_space_info *found;
706
707 rcu_read_lock();
708 list_for_each_entry_rcu(found, head, list)
709 found->full = 0;
710 rcu_read_unlock();
711}
712
1a4ed8fd
FM
713/* simple helper to search for an existing data extent at a given offset */
714int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
715{
716 int ret;
717 struct btrfs_key key;
31840ae1 718 struct btrfs_path *path;
e02119d5 719
31840ae1 720 path = btrfs_alloc_path();
d8926bb3
MF
721 if (!path)
722 return -ENOMEM;
723
e02119d5
CM
724 key.objectid = start;
725 key.offset = len;
3173a18f 726 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 0, 0);
31840ae1 729 btrfs_free_path(path);
7bb86316
CM
730 return ret;
731}
732
a22285a6 733/*
3173a18f 734 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
735 *
736 * the head node for delayed ref is used to store the sum of all the
737 * reference count modifications queued up in the rbtree. the head
738 * node may also store the extent flags to set. This way you can check
739 * to see what the reference count and extent flags would be if all of
740 * the delayed refs are not processed.
741 */
742int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 struct btrfs_root *root, u64 bytenr,
3173a18f 744 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
745{
746 struct btrfs_delayed_ref_head *head;
747 struct btrfs_delayed_ref_root *delayed_refs;
748 struct btrfs_path *path;
749 struct btrfs_extent_item *ei;
750 struct extent_buffer *leaf;
751 struct btrfs_key key;
752 u32 item_size;
753 u64 num_refs;
754 u64 extent_flags;
755 int ret;
756
3173a18f
JB
757 /*
758 * If we don't have skinny metadata, don't bother doing anything
759 * different
760 */
761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 762 offset = root->nodesize;
3173a18f
JB
763 metadata = 0;
764 }
765
a22285a6
YZ
766 path = btrfs_alloc_path();
767 if (!path)
768 return -ENOMEM;
769
a22285a6
YZ
770 if (!trans) {
771 path->skip_locking = 1;
772 path->search_commit_root = 1;
773 }
639eefc8
FDBM
774
775search_again:
776 key.objectid = bytenr;
777 key.offset = offset;
778 if (metadata)
779 key.type = BTRFS_METADATA_ITEM_KEY;
780 else
781 key.type = BTRFS_EXTENT_ITEM_KEY;
782
a22285a6
YZ
783 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
784 &key, path, 0, 0);
785 if (ret < 0)
786 goto out_free;
787
3173a18f 788 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
789 if (path->slots[0]) {
790 path->slots[0]--;
791 btrfs_item_key_to_cpu(path->nodes[0], &key,
792 path->slots[0]);
793 if (key.objectid == bytenr &&
794 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 795 key.offset == root->nodesize)
74be9510
FDBM
796 ret = 0;
797 }
3173a18f
JB
798 }
799
a22285a6
YZ
800 if (ret == 0) {
801 leaf = path->nodes[0];
802 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
803 if (item_size >= sizeof(*ei)) {
804 ei = btrfs_item_ptr(leaf, path->slots[0],
805 struct btrfs_extent_item);
806 num_refs = btrfs_extent_refs(leaf, ei);
807 extent_flags = btrfs_extent_flags(leaf, ei);
808 } else {
809#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
810 struct btrfs_extent_item_v0 *ei0;
811 BUG_ON(item_size != sizeof(*ei0));
812 ei0 = btrfs_item_ptr(leaf, path->slots[0],
813 struct btrfs_extent_item_v0);
814 num_refs = btrfs_extent_refs_v0(leaf, ei0);
815 /* FIXME: this isn't correct for data */
816 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
817#else
818 BUG();
819#endif
820 }
821 BUG_ON(num_refs == 0);
822 } else {
823 num_refs = 0;
824 extent_flags = 0;
825 ret = 0;
826 }
827
828 if (!trans)
829 goto out;
830
831 delayed_refs = &trans->transaction->delayed_refs;
832 spin_lock(&delayed_refs->lock);
833 head = btrfs_find_delayed_ref_head(trans, bytenr);
834 if (head) {
835 if (!mutex_trylock(&head->mutex)) {
836 atomic_inc(&head->node.refs);
837 spin_unlock(&delayed_refs->lock);
838
b3b4aa74 839 btrfs_release_path(path);
a22285a6 840
8cc33e5c
DS
841 /*
842 * Mutex was contended, block until it's released and try
843 * again
844 */
a22285a6
YZ
845 mutex_lock(&head->mutex);
846 mutex_unlock(&head->mutex);
847 btrfs_put_delayed_ref(&head->node);
639eefc8 848 goto search_again;
a22285a6 849 }
d7df2c79 850 spin_lock(&head->lock);
a22285a6
YZ
851 if (head->extent_op && head->extent_op->update_flags)
852 extent_flags |= head->extent_op->flags_to_set;
853 else
854 BUG_ON(num_refs == 0);
855
856 num_refs += head->node.ref_mod;
d7df2c79 857 spin_unlock(&head->lock);
a22285a6
YZ
858 mutex_unlock(&head->mutex);
859 }
860 spin_unlock(&delayed_refs->lock);
861out:
862 WARN_ON(num_refs == 0);
863 if (refs)
864 *refs = num_refs;
865 if (flags)
866 *flags = extent_flags;
867out_free:
868 btrfs_free_path(path);
869 return ret;
870}
871
d8d5f3e1
CM
872/*
873 * Back reference rules. Back refs have three main goals:
874 *
875 * 1) differentiate between all holders of references to an extent so that
876 * when a reference is dropped we can make sure it was a valid reference
877 * before freeing the extent.
878 *
879 * 2) Provide enough information to quickly find the holders of an extent
880 * if we notice a given block is corrupted or bad.
881 *
882 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
883 * maintenance. This is actually the same as #2, but with a slightly
884 * different use case.
885 *
5d4f98a2
YZ
886 * There are two kinds of back refs. The implicit back refs is optimized
887 * for pointers in non-shared tree blocks. For a given pointer in a block,
888 * back refs of this kind provide information about the block's owner tree
889 * and the pointer's key. These information allow us to find the block by
890 * b-tree searching. The full back refs is for pointers in tree blocks not
891 * referenced by their owner trees. The location of tree block is recorded
892 * in the back refs. Actually the full back refs is generic, and can be
893 * used in all cases the implicit back refs is used. The major shortcoming
894 * of the full back refs is its overhead. Every time a tree block gets
895 * COWed, we have to update back refs entry for all pointers in it.
896 *
897 * For a newly allocated tree block, we use implicit back refs for
898 * pointers in it. This means most tree related operations only involve
899 * implicit back refs. For a tree block created in old transaction, the
900 * only way to drop a reference to it is COW it. So we can detect the
901 * event that tree block loses its owner tree's reference and do the
902 * back refs conversion.
903 *
904 * When a tree block is COW'd through a tree, there are four cases:
905 *
906 * The reference count of the block is one and the tree is the block's
907 * owner tree. Nothing to do in this case.
908 *
909 * The reference count of the block is one and the tree is not the
910 * block's owner tree. In this case, full back refs is used for pointers
911 * in the block. Remove these full back refs, add implicit back refs for
912 * every pointers in the new block.
913 *
914 * The reference count of the block is greater than one and the tree is
915 * the block's owner tree. In this case, implicit back refs is used for
916 * pointers in the block. Add full back refs for every pointers in the
917 * block, increase lower level extents' reference counts. The original
918 * implicit back refs are entailed to the new block.
919 *
920 * The reference count of the block is greater than one and the tree is
921 * not the block's owner tree. Add implicit back refs for every pointer in
922 * the new block, increase lower level extents' reference count.
923 *
924 * Back Reference Key composing:
925 *
926 * The key objectid corresponds to the first byte in the extent,
927 * The key type is used to differentiate between types of back refs.
928 * There are different meanings of the key offset for different types
929 * of back refs.
930 *
d8d5f3e1
CM
931 * File extents can be referenced by:
932 *
933 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 934 * - different files inside a single subvolume
d8d5f3e1
CM
935 * - different offsets inside a file (bookend extents in file.c)
936 *
5d4f98a2 937 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
938 *
939 * - Objectid of the subvolume root
d8d5f3e1 940 * - objectid of the file holding the reference
5d4f98a2
YZ
941 * - original offset in the file
942 * - how many bookend extents
d8d5f3e1 943 *
5d4f98a2
YZ
944 * The key offset for the implicit back refs is hash of the first
945 * three fields.
d8d5f3e1 946 *
5d4f98a2 947 * The extent ref structure for the full back refs has field for:
d8d5f3e1 948 *
5d4f98a2 949 * - number of pointers in the tree leaf
d8d5f3e1 950 *
5d4f98a2
YZ
951 * The key offset for the implicit back refs is the first byte of
952 * the tree leaf
d8d5f3e1 953 *
5d4f98a2
YZ
954 * When a file extent is allocated, The implicit back refs is used.
955 * the fields are filled in:
d8d5f3e1 956 *
5d4f98a2 957 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 958 *
5d4f98a2
YZ
959 * When a file extent is removed file truncation, we find the
960 * corresponding implicit back refs and check the following fields:
d8d5f3e1 961 *
5d4f98a2 962 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 963 *
5d4f98a2 964 * Btree extents can be referenced by:
d8d5f3e1 965 *
5d4f98a2 966 * - Different subvolumes
d8d5f3e1 967 *
5d4f98a2
YZ
968 * Both the implicit back refs and the full back refs for tree blocks
969 * only consist of key. The key offset for the implicit back refs is
970 * objectid of block's owner tree. The key offset for the full back refs
971 * is the first byte of parent block.
d8d5f3e1 972 *
5d4f98a2
YZ
973 * When implicit back refs is used, information about the lowest key and
974 * level of the tree block are required. These information are stored in
975 * tree block info structure.
d8d5f3e1 976 */
31840ae1 977
5d4f98a2
YZ
978#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
980 struct btrfs_root *root,
981 struct btrfs_path *path,
982 u64 owner, u32 extra_size)
7bb86316 983{
5d4f98a2
YZ
984 struct btrfs_extent_item *item;
985 struct btrfs_extent_item_v0 *ei0;
986 struct btrfs_extent_ref_v0 *ref0;
987 struct btrfs_tree_block_info *bi;
988 struct extent_buffer *leaf;
7bb86316 989 struct btrfs_key key;
5d4f98a2
YZ
990 struct btrfs_key found_key;
991 u32 new_size = sizeof(*item);
992 u64 refs;
993 int ret;
994
995 leaf = path->nodes[0];
996 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
997
998 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
999 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1000 struct btrfs_extent_item_v0);
1001 refs = btrfs_extent_refs_v0(leaf, ei0);
1002
1003 if (owner == (u64)-1) {
1004 while (1) {
1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006 ret = btrfs_next_leaf(root, path);
1007 if (ret < 0)
1008 return ret;
79787eaa 1009 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1010 leaf = path->nodes[0];
1011 }
1012 btrfs_item_key_to_cpu(leaf, &found_key,
1013 path->slots[0]);
1014 BUG_ON(key.objectid != found_key.objectid);
1015 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1016 path->slots[0]++;
1017 continue;
1018 }
1019 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1020 struct btrfs_extent_ref_v0);
1021 owner = btrfs_ref_objectid_v0(leaf, ref0);
1022 break;
1023 }
1024 }
b3b4aa74 1025 btrfs_release_path(path);
5d4f98a2
YZ
1026
1027 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1028 new_size += sizeof(*bi);
1029
1030 new_size -= sizeof(*ei0);
1031 ret = btrfs_search_slot(trans, root, &key, path,
1032 new_size + extra_size, 1);
1033 if (ret < 0)
1034 return ret;
79787eaa 1035 BUG_ON(ret); /* Corruption */
5d4f98a2 1036
4b90c680 1037 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1038
1039 leaf = path->nodes[0];
1040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1041 btrfs_set_extent_refs(leaf, item, refs);
1042 /* FIXME: get real generation */
1043 btrfs_set_extent_generation(leaf, item, 0);
1044 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1045 btrfs_set_extent_flags(leaf, item,
1046 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1047 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1048 bi = (struct btrfs_tree_block_info *)(item + 1);
1049 /* FIXME: get first key of the block */
1050 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1051 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1052 } else {
1053 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1054 }
1055 btrfs_mark_buffer_dirty(leaf);
1056 return 0;
1057}
1058#endif
1059
1060static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1061{
1062 u32 high_crc = ~(u32)0;
1063 u32 low_crc = ~(u32)0;
1064 __le64 lenum;
1065
1066 lenum = cpu_to_le64(root_objectid);
14a958e6 1067 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1068 lenum = cpu_to_le64(owner);
14a958e6 1069 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1070 lenum = cpu_to_le64(offset);
14a958e6 1071 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1072
1073 return ((u64)high_crc << 31) ^ (u64)low_crc;
1074}
1075
1076static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1077 struct btrfs_extent_data_ref *ref)
1078{
1079 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1080 btrfs_extent_data_ref_objectid(leaf, ref),
1081 btrfs_extent_data_ref_offset(leaf, ref));
1082}
1083
1084static int match_extent_data_ref(struct extent_buffer *leaf,
1085 struct btrfs_extent_data_ref *ref,
1086 u64 root_objectid, u64 owner, u64 offset)
1087{
1088 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1089 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1090 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1091 return 0;
1092 return 1;
1093}
1094
1095static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root,
1097 struct btrfs_path *path,
1098 u64 bytenr, u64 parent,
1099 u64 root_objectid,
1100 u64 owner, u64 offset)
1101{
1102 struct btrfs_key key;
1103 struct btrfs_extent_data_ref *ref;
31840ae1 1104 struct extent_buffer *leaf;
5d4f98a2 1105 u32 nritems;
74493f7a 1106 int ret;
5d4f98a2
YZ
1107 int recow;
1108 int err = -ENOENT;
74493f7a 1109
31840ae1 1110 key.objectid = bytenr;
5d4f98a2
YZ
1111 if (parent) {
1112 key.type = BTRFS_SHARED_DATA_REF_KEY;
1113 key.offset = parent;
1114 } else {
1115 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1116 key.offset = hash_extent_data_ref(root_objectid,
1117 owner, offset);
1118 }
1119again:
1120 recow = 0;
1121 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1122 if (ret < 0) {
1123 err = ret;
1124 goto fail;
1125 }
31840ae1 1126
5d4f98a2
YZ
1127 if (parent) {
1128 if (!ret)
1129 return 0;
1130#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1131 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1132 btrfs_release_path(path);
5d4f98a2
YZ
1133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1134 if (ret < 0) {
1135 err = ret;
1136 goto fail;
1137 }
1138 if (!ret)
1139 return 0;
1140#endif
1141 goto fail;
31840ae1
ZY
1142 }
1143
1144 leaf = path->nodes[0];
5d4f98a2
YZ
1145 nritems = btrfs_header_nritems(leaf);
1146 while (1) {
1147 if (path->slots[0] >= nritems) {
1148 ret = btrfs_next_leaf(root, path);
1149 if (ret < 0)
1150 err = ret;
1151 if (ret)
1152 goto fail;
1153
1154 leaf = path->nodes[0];
1155 nritems = btrfs_header_nritems(leaf);
1156 recow = 1;
1157 }
1158
1159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1160 if (key.objectid != bytenr ||
1161 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1162 goto fail;
1163
1164 ref = btrfs_item_ptr(leaf, path->slots[0],
1165 struct btrfs_extent_data_ref);
1166
1167 if (match_extent_data_ref(leaf, ref, root_objectid,
1168 owner, offset)) {
1169 if (recow) {
b3b4aa74 1170 btrfs_release_path(path);
5d4f98a2
YZ
1171 goto again;
1172 }
1173 err = 0;
1174 break;
1175 }
1176 path->slots[0]++;
31840ae1 1177 }
5d4f98a2
YZ
1178fail:
1179 return err;
31840ae1
ZY
1180}
1181
5d4f98a2
YZ
1182static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1183 struct btrfs_root *root,
1184 struct btrfs_path *path,
1185 u64 bytenr, u64 parent,
1186 u64 root_objectid, u64 owner,
1187 u64 offset, int refs_to_add)
31840ae1
ZY
1188{
1189 struct btrfs_key key;
1190 struct extent_buffer *leaf;
5d4f98a2 1191 u32 size;
31840ae1
ZY
1192 u32 num_refs;
1193 int ret;
74493f7a 1194
74493f7a 1195 key.objectid = bytenr;
5d4f98a2
YZ
1196 if (parent) {
1197 key.type = BTRFS_SHARED_DATA_REF_KEY;
1198 key.offset = parent;
1199 size = sizeof(struct btrfs_shared_data_ref);
1200 } else {
1201 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1202 key.offset = hash_extent_data_ref(root_objectid,
1203 owner, offset);
1204 size = sizeof(struct btrfs_extent_data_ref);
1205 }
74493f7a 1206
5d4f98a2
YZ
1207 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1208 if (ret && ret != -EEXIST)
1209 goto fail;
1210
1211 leaf = path->nodes[0];
1212 if (parent) {
1213 struct btrfs_shared_data_ref *ref;
31840ae1 1214 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1215 struct btrfs_shared_data_ref);
1216 if (ret == 0) {
1217 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1218 } else {
1219 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1220 num_refs += refs_to_add;
1221 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1222 }
5d4f98a2
YZ
1223 } else {
1224 struct btrfs_extent_data_ref *ref;
1225 while (ret == -EEXIST) {
1226 ref = btrfs_item_ptr(leaf, path->slots[0],
1227 struct btrfs_extent_data_ref);
1228 if (match_extent_data_ref(leaf, ref, root_objectid,
1229 owner, offset))
1230 break;
b3b4aa74 1231 btrfs_release_path(path);
5d4f98a2
YZ
1232 key.offset++;
1233 ret = btrfs_insert_empty_item(trans, root, path, &key,
1234 size);
1235 if (ret && ret != -EEXIST)
1236 goto fail;
31840ae1 1237
5d4f98a2
YZ
1238 leaf = path->nodes[0];
1239 }
1240 ref = btrfs_item_ptr(leaf, path->slots[0],
1241 struct btrfs_extent_data_ref);
1242 if (ret == 0) {
1243 btrfs_set_extent_data_ref_root(leaf, ref,
1244 root_objectid);
1245 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1246 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1247 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1248 } else {
1249 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1250 num_refs += refs_to_add;
1251 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1252 }
31840ae1 1253 }
5d4f98a2
YZ
1254 btrfs_mark_buffer_dirty(leaf);
1255 ret = 0;
1256fail:
b3b4aa74 1257 btrfs_release_path(path);
7bb86316 1258 return ret;
74493f7a
CM
1259}
1260
5d4f98a2
YZ
1261static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
fcebe456 1264 int refs_to_drop, int *last_ref)
31840ae1 1265{
5d4f98a2
YZ
1266 struct btrfs_key key;
1267 struct btrfs_extent_data_ref *ref1 = NULL;
1268 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1269 struct extent_buffer *leaf;
5d4f98a2 1270 u32 num_refs = 0;
31840ae1
ZY
1271 int ret = 0;
1272
1273 leaf = path->nodes[0];
5d4f98a2
YZ
1274 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1275
1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1277 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_extent_data_ref);
1279 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1280 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1281 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1282 struct btrfs_shared_data_ref);
1283 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1284#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1285 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1286 struct btrfs_extent_ref_v0 *ref0;
1287 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_extent_ref_v0);
1289 num_refs = btrfs_ref_count_v0(leaf, ref0);
1290#endif
1291 } else {
1292 BUG();
1293 }
1294
56bec294
CM
1295 BUG_ON(num_refs < refs_to_drop);
1296 num_refs -= refs_to_drop;
5d4f98a2 1297
31840ae1
ZY
1298 if (num_refs == 0) {
1299 ret = btrfs_del_item(trans, root, path);
fcebe456 1300 *last_ref = 1;
31840ae1 1301 } else {
5d4f98a2
YZ
1302 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1303 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1304 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1305 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1306#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1307 else {
1308 struct btrfs_extent_ref_v0 *ref0;
1309 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1310 struct btrfs_extent_ref_v0);
1311 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1312 }
1313#endif
31840ae1
ZY
1314 btrfs_mark_buffer_dirty(leaf);
1315 }
31840ae1
ZY
1316 return ret;
1317}
1318
9ed0dea0 1319static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1320 struct btrfs_extent_inline_ref *iref)
15916de8 1321{
5d4f98a2
YZ
1322 struct btrfs_key key;
1323 struct extent_buffer *leaf;
1324 struct btrfs_extent_data_ref *ref1;
1325 struct btrfs_shared_data_ref *ref2;
1326 u32 num_refs = 0;
1327
1328 leaf = path->nodes[0];
1329 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1330 if (iref) {
1331 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1332 BTRFS_EXTENT_DATA_REF_KEY) {
1333 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1334 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1335 } else {
1336 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1337 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1338 }
1339 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1340 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1341 struct btrfs_extent_data_ref);
1342 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1343 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1344 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1345 struct btrfs_shared_data_ref);
1346 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1347#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1348 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1349 struct btrfs_extent_ref_v0 *ref0;
1350 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1351 struct btrfs_extent_ref_v0);
1352 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1353#endif
5d4f98a2
YZ
1354 } else {
1355 WARN_ON(1);
1356 }
1357 return num_refs;
1358}
15916de8 1359
5d4f98a2
YZ
1360static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1361 struct btrfs_root *root,
1362 struct btrfs_path *path,
1363 u64 bytenr, u64 parent,
1364 u64 root_objectid)
1f3c79a2 1365{
5d4f98a2 1366 struct btrfs_key key;
1f3c79a2 1367 int ret;
1f3c79a2 1368
5d4f98a2
YZ
1369 key.objectid = bytenr;
1370 if (parent) {
1371 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1372 key.offset = parent;
1373 } else {
1374 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1375 key.offset = root_objectid;
1f3c79a2
LH
1376 }
1377
5d4f98a2
YZ
1378 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1379 if (ret > 0)
1380 ret = -ENOENT;
1381#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1382 if (ret == -ENOENT && parent) {
b3b4aa74 1383 btrfs_release_path(path);
5d4f98a2
YZ
1384 key.type = BTRFS_EXTENT_REF_V0_KEY;
1385 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1386 if (ret > 0)
1387 ret = -ENOENT;
1388 }
1f3c79a2 1389#endif
5d4f98a2 1390 return ret;
1f3c79a2
LH
1391}
1392
5d4f98a2
YZ
1393static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1394 struct btrfs_root *root,
1395 struct btrfs_path *path,
1396 u64 bytenr, u64 parent,
1397 u64 root_objectid)
31840ae1 1398{
5d4f98a2 1399 struct btrfs_key key;
31840ae1 1400 int ret;
31840ae1 1401
5d4f98a2
YZ
1402 key.objectid = bytenr;
1403 if (parent) {
1404 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1405 key.offset = parent;
1406 } else {
1407 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1408 key.offset = root_objectid;
1409 }
1410
1411 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1412 btrfs_release_path(path);
31840ae1
ZY
1413 return ret;
1414}
1415
5d4f98a2 1416static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1417{
5d4f98a2
YZ
1418 int type;
1419 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1420 if (parent > 0)
1421 type = BTRFS_SHARED_BLOCK_REF_KEY;
1422 else
1423 type = BTRFS_TREE_BLOCK_REF_KEY;
1424 } else {
1425 if (parent > 0)
1426 type = BTRFS_SHARED_DATA_REF_KEY;
1427 else
1428 type = BTRFS_EXTENT_DATA_REF_KEY;
1429 }
1430 return type;
31840ae1 1431}
56bec294 1432
2c47e605
YZ
1433static int find_next_key(struct btrfs_path *path, int level,
1434 struct btrfs_key *key)
56bec294 1435
02217ed2 1436{
2c47e605 1437 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1438 if (!path->nodes[level])
1439 break;
5d4f98a2
YZ
1440 if (path->slots[level] + 1 >=
1441 btrfs_header_nritems(path->nodes[level]))
1442 continue;
1443 if (level == 0)
1444 btrfs_item_key_to_cpu(path->nodes[level], key,
1445 path->slots[level] + 1);
1446 else
1447 btrfs_node_key_to_cpu(path->nodes[level], key,
1448 path->slots[level] + 1);
1449 return 0;
1450 }
1451 return 1;
1452}
037e6390 1453
5d4f98a2
YZ
1454/*
1455 * look for inline back ref. if back ref is found, *ref_ret is set
1456 * to the address of inline back ref, and 0 is returned.
1457 *
1458 * if back ref isn't found, *ref_ret is set to the address where it
1459 * should be inserted, and -ENOENT is returned.
1460 *
1461 * if insert is true and there are too many inline back refs, the path
1462 * points to the extent item, and -EAGAIN is returned.
1463 *
1464 * NOTE: inline back refs are ordered in the same way that back ref
1465 * items in the tree are ordered.
1466 */
1467static noinline_for_stack
1468int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1469 struct btrfs_root *root,
1470 struct btrfs_path *path,
1471 struct btrfs_extent_inline_ref **ref_ret,
1472 u64 bytenr, u64 num_bytes,
1473 u64 parent, u64 root_objectid,
1474 u64 owner, u64 offset, int insert)
1475{
1476 struct btrfs_key key;
1477 struct extent_buffer *leaf;
1478 struct btrfs_extent_item *ei;
1479 struct btrfs_extent_inline_ref *iref;
1480 u64 flags;
1481 u64 item_size;
1482 unsigned long ptr;
1483 unsigned long end;
1484 int extra_size;
1485 int type;
1486 int want;
1487 int ret;
1488 int err = 0;
3173a18f
JB
1489 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1490 SKINNY_METADATA);
26b8003f 1491
db94535d 1492 key.objectid = bytenr;
31840ae1 1493 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1494 key.offset = num_bytes;
31840ae1 1495
5d4f98a2
YZ
1496 want = extent_ref_type(parent, owner);
1497 if (insert) {
1498 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1499 path->keep_locks = 1;
5d4f98a2
YZ
1500 } else
1501 extra_size = -1;
3173a18f
JB
1502
1503 /*
1504 * Owner is our parent level, so we can just add one to get the level
1505 * for the block we are interested in.
1506 */
1507 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1508 key.type = BTRFS_METADATA_ITEM_KEY;
1509 key.offset = owner;
1510 }
1511
1512again:
5d4f98a2 1513 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1514 if (ret < 0) {
5d4f98a2
YZ
1515 err = ret;
1516 goto out;
1517 }
3173a18f
JB
1518
1519 /*
1520 * We may be a newly converted file system which still has the old fat
1521 * extent entries for metadata, so try and see if we have one of those.
1522 */
1523 if (ret > 0 && skinny_metadata) {
1524 skinny_metadata = false;
1525 if (path->slots[0]) {
1526 path->slots[0]--;
1527 btrfs_item_key_to_cpu(path->nodes[0], &key,
1528 path->slots[0]);
1529 if (key.objectid == bytenr &&
1530 key.type == BTRFS_EXTENT_ITEM_KEY &&
1531 key.offset == num_bytes)
1532 ret = 0;
1533 }
1534 if (ret) {
9ce49a0b 1535 key.objectid = bytenr;
3173a18f
JB
1536 key.type = BTRFS_EXTENT_ITEM_KEY;
1537 key.offset = num_bytes;
1538 btrfs_release_path(path);
1539 goto again;
1540 }
1541 }
1542
79787eaa
JM
1543 if (ret && !insert) {
1544 err = -ENOENT;
1545 goto out;
fae7f21c 1546 } else if (WARN_ON(ret)) {
492104c8 1547 err = -EIO;
492104c8 1548 goto out;
79787eaa 1549 }
5d4f98a2
YZ
1550
1551 leaf = path->nodes[0];
1552 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1553#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1554 if (item_size < sizeof(*ei)) {
1555 if (!insert) {
1556 err = -ENOENT;
1557 goto out;
1558 }
1559 ret = convert_extent_item_v0(trans, root, path, owner,
1560 extra_size);
1561 if (ret < 0) {
1562 err = ret;
1563 goto out;
1564 }
1565 leaf = path->nodes[0];
1566 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1567 }
1568#endif
1569 BUG_ON(item_size < sizeof(*ei));
1570
5d4f98a2
YZ
1571 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1572 flags = btrfs_extent_flags(leaf, ei);
1573
1574 ptr = (unsigned long)(ei + 1);
1575 end = (unsigned long)ei + item_size;
1576
3173a18f 1577 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1578 ptr += sizeof(struct btrfs_tree_block_info);
1579 BUG_ON(ptr > end);
5d4f98a2
YZ
1580 }
1581
1582 err = -ENOENT;
1583 while (1) {
1584 if (ptr >= end) {
1585 WARN_ON(ptr > end);
1586 break;
1587 }
1588 iref = (struct btrfs_extent_inline_ref *)ptr;
1589 type = btrfs_extent_inline_ref_type(leaf, iref);
1590 if (want < type)
1591 break;
1592 if (want > type) {
1593 ptr += btrfs_extent_inline_ref_size(type);
1594 continue;
1595 }
1596
1597 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1598 struct btrfs_extent_data_ref *dref;
1599 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1600 if (match_extent_data_ref(leaf, dref, root_objectid,
1601 owner, offset)) {
1602 err = 0;
1603 break;
1604 }
1605 if (hash_extent_data_ref_item(leaf, dref) <
1606 hash_extent_data_ref(root_objectid, owner, offset))
1607 break;
1608 } else {
1609 u64 ref_offset;
1610 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1611 if (parent > 0) {
1612 if (parent == ref_offset) {
1613 err = 0;
1614 break;
1615 }
1616 if (ref_offset < parent)
1617 break;
1618 } else {
1619 if (root_objectid == ref_offset) {
1620 err = 0;
1621 break;
1622 }
1623 if (ref_offset < root_objectid)
1624 break;
1625 }
1626 }
1627 ptr += btrfs_extent_inline_ref_size(type);
1628 }
1629 if (err == -ENOENT && insert) {
1630 if (item_size + extra_size >=
1631 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1632 err = -EAGAIN;
1633 goto out;
1634 }
1635 /*
1636 * To add new inline back ref, we have to make sure
1637 * there is no corresponding back ref item.
1638 * For simplicity, we just do not add new inline back
1639 * ref if there is any kind of item for this block
1640 */
2c47e605
YZ
1641 if (find_next_key(path, 0, &key) == 0 &&
1642 key.objectid == bytenr &&
85d4198e 1643 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1644 err = -EAGAIN;
1645 goto out;
1646 }
1647 }
1648 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1649out:
85d4198e 1650 if (insert) {
5d4f98a2
YZ
1651 path->keep_locks = 0;
1652 btrfs_unlock_up_safe(path, 1);
1653 }
1654 return err;
1655}
1656
1657/*
1658 * helper to add new inline back ref
1659 */
1660static noinline_for_stack
fd279fae 1661void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1662 struct btrfs_path *path,
1663 struct btrfs_extent_inline_ref *iref,
1664 u64 parent, u64 root_objectid,
1665 u64 owner, u64 offset, int refs_to_add,
1666 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1667{
1668 struct extent_buffer *leaf;
1669 struct btrfs_extent_item *ei;
1670 unsigned long ptr;
1671 unsigned long end;
1672 unsigned long item_offset;
1673 u64 refs;
1674 int size;
1675 int type;
5d4f98a2
YZ
1676
1677 leaf = path->nodes[0];
1678 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1679 item_offset = (unsigned long)iref - (unsigned long)ei;
1680
1681 type = extent_ref_type(parent, owner);
1682 size = btrfs_extent_inline_ref_size(type);
1683
4b90c680 1684 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1685
1686 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1687 refs = btrfs_extent_refs(leaf, ei);
1688 refs += refs_to_add;
1689 btrfs_set_extent_refs(leaf, ei, refs);
1690 if (extent_op)
1691 __run_delayed_extent_op(extent_op, leaf, ei);
1692
1693 ptr = (unsigned long)ei + item_offset;
1694 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1695 if (ptr < end - size)
1696 memmove_extent_buffer(leaf, ptr + size, ptr,
1697 end - size - ptr);
1698
1699 iref = (struct btrfs_extent_inline_ref *)ptr;
1700 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1701 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1702 struct btrfs_extent_data_ref *dref;
1703 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1704 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1705 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1706 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1707 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1708 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1709 struct btrfs_shared_data_ref *sref;
1710 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1711 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1712 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1713 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1717 }
1718 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1719}
1720
1721static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1722 struct btrfs_root *root,
1723 struct btrfs_path *path,
1724 struct btrfs_extent_inline_ref **ref_ret,
1725 u64 bytenr, u64 num_bytes, u64 parent,
1726 u64 root_objectid, u64 owner, u64 offset)
1727{
1728 int ret;
1729
1730 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1731 bytenr, num_bytes, parent,
1732 root_objectid, owner, offset, 0);
1733 if (ret != -ENOENT)
54aa1f4d 1734 return ret;
5d4f98a2 1735
b3b4aa74 1736 btrfs_release_path(path);
5d4f98a2
YZ
1737 *ref_ret = NULL;
1738
1739 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1740 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1741 root_objectid);
1742 } else {
1743 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1744 root_objectid, owner, offset);
b9473439 1745 }
5d4f98a2
YZ
1746 return ret;
1747}
31840ae1 1748
5d4f98a2
YZ
1749/*
1750 * helper to update/remove inline back ref
1751 */
1752static noinline_for_stack
afe5fea7 1753void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1754 struct btrfs_path *path,
1755 struct btrfs_extent_inline_ref *iref,
1756 int refs_to_mod,
fcebe456
JB
1757 struct btrfs_delayed_extent_op *extent_op,
1758 int *last_ref)
5d4f98a2
YZ
1759{
1760 struct extent_buffer *leaf;
1761 struct btrfs_extent_item *ei;
1762 struct btrfs_extent_data_ref *dref = NULL;
1763 struct btrfs_shared_data_ref *sref = NULL;
1764 unsigned long ptr;
1765 unsigned long end;
1766 u32 item_size;
1767 int size;
1768 int type;
5d4f98a2
YZ
1769 u64 refs;
1770
1771 leaf = path->nodes[0];
1772 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1773 refs = btrfs_extent_refs(leaf, ei);
1774 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1775 refs += refs_to_mod;
1776 btrfs_set_extent_refs(leaf, ei, refs);
1777 if (extent_op)
1778 __run_delayed_extent_op(extent_op, leaf, ei);
1779
1780 type = btrfs_extent_inline_ref_type(leaf, iref);
1781
1782 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1783 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1784 refs = btrfs_extent_data_ref_count(leaf, dref);
1785 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1786 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1787 refs = btrfs_shared_data_ref_count(leaf, sref);
1788 } else {
1789 refs = 1;
1790 BUG_ON(refs_to_mod != -1);
56bec294 1791 }
31840ae1 1792
5d4f98a2
YZ
1793 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1794 refs += refs_to_mod;
1795
1796 if (refs > 0) {
1797 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1798 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1799 else
1800 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1801 } else {
fcebe456 1802 *last_ref = 1;
5d4f98a2
YZ
1803 size = btrfs_extent_inline_ref_size(type);
1804 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1805 ptr = (unsigned long)iref;
1806 end = (unsigned long)ei + item_size;
1807 if (ptr + size < end)
1808 memmove_extent_buffer(leaf, ptr, ptr + size,
1809 end - ptr - size);
1810 item_size -= size;
afe5fea7 1811 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1812 }
1813 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1814}
1815
1816static noinline_for_stack
1817int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1818 struct btrfs_root *root,
1819 struct btrfs_path *path,
1820 u64 bytenr, u64 num_bytes, u64 parent,
1821 u64 root_objectid, u64 owner,
1822 u64 offset, int refs_to_add,
1823 struct btrfs_delayed_extent_op *extent_op)
1824{
1825 struct btrfs_extent_inline_ref *iref;
1826 int ret;
1827
1828 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1829 bytenr, num_bytes, parent,
1830 root_objectid, owner, offset, 1);
1831 if (ret == 0) {
1832 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1833 update_inline_extent_backref(root, path, iref,
fcebe456 1834 refs_to_add, extent_op, NULL);
5d4f98a2 1835 } else if (ret == -ENOENT) {
fd279fae 1836 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1837 root_objectid, owner, offset,
1838 refs_to_add, extent_op);
1839 ret = 0;
771ed689 1840 }
5d4f98a2
YZ
1841 return ret;
1842}
31840ae1 1843
5d4f98a2
YZ
1844static int insert_extent_backref(struct btrfs_trans_handle *trans,
1845 struct btrfs_root *root,
1846 struct btrfs_path *path,
1847 u64 bytenr, u64 parent, u64 root_objectid,
1848 u64 owner, u64 offset, int refs_to_add)
1849{
1850 int ret;
1851 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1852 BUG_ON(refs_to_add != 1);
1853 ret = insert_tree_block_ref(trans, root, path, bytenr,
1854 parent, root_objectid);
1855 } else {
1856 ret = insert_extent_data_ref(trans, root, path, bytenr,
1857 parent, root_objectid,
1858 owner, offset, refs_to_add);
1859 }
1860 return ret;
1861}
56bec294 1862
5d4f98a2
YZ
1863static int remove_extent_backref(struct btrfs_trans_handle *trans,
1864 struct btrfs_root *root,
1865 struct btrfs_path *path,
1866 struct btrfs_extent_inline_ref *iref,
fcebe456 1867 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1868{
143bede5 1869 int ret = 0;
b9473439 1870
5d4f98a2
YZ
1871 BUG_ON(!is_data && refs_to_drop != 1);
1872 if (iref) {
afe5fea7 1873 update_inline_extent_backref(root, path, iref,
fcebe456 1874 -refs_to_drop, NULL, last_ref);
5d4f98a2 1875 } else if (is_data) {
fcebe456
JB
1876 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1877 last_ref);
5d4f98a2 1878 } else {
fcebe456 1879 *last_ref = 1;
5d4f98a2
YZ
1880 ret = btrfs_del_item(trans, root, path);
1881 }
1882 return ret;
1883}
1884
86557861 1885#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1886static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1887 u64 *discarded_bytes)
5d4f98a2 1888{
86557861
JM
1889 int j, ret = 0;
1890 u64 bytes_left, end;
4d89d377 1891 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1892
4d89d377
JM
1893 if (WARN_ON(start != aligned_start)) {
1894 len -= aligned_start - start;
1895 len = round_down(len, 1 << 9);
1896 start = aligned_start;
1897 }
d04c6b88 1898
4d89d377 1899 *discarded_bytes = 0;
86557861
JM
1900
1901 if (!len)
1902 return 0;
1903
1904 end = start + len;
1905 bytes_left = len;
1906
1907 /* Skip any superblocks on this device. */
1908 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1909 u64 sb_start = btrfs_sb_offset(j);
1910 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1911 u64 size = sb_start - start;
1912
1913 if (!in_range(sb_start, start, bytes_left) &&
1914 !in_range(sb_end, start, bytes_left) &&
1915 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1916 continue;
1917
1918 /*
1919 * Superblock spans beginning of range. Adjust start and
1920 * try again.
1921 */
1922 if (sb_start <= start) {
1923 start += sb_end - start;
1924 if (start > end) {
1925 bytes_left = 0;
1926 break;
1927 }
1928 bytes_left = end - start;
1929 continue;
1930 }
1931
1932 if (size) {
1933 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1934 GFP_NOFS, 0);
1935 if (!ret)
1936 *discarded_bytes += size;
1937 else if (ret != -EOPNOTSUPP)
1938 return ret;
1939 }
1940
1941 start = sb_end;
1942 if (start > end) {
1943 bytes_left = 0;
1944 break;
1945 }
1946 bytes_left = end - start;
1947 }
1948
1949 if (bytes_left) {
1950 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
1951 GFP_NOFS, 0);
1952 if (!ret)
86557861 1953 *discarded_bytes += bytes_left;
4d89d377 1954 }
d04c6b88 1955 return ret;
5d4f98a2 1956}
5d4f98a2 1957
1edb647b
FM
1958int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1959 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 1960{
5d4f98a2 1961 int ret;
5378e607 1962 u64 discarded_bytes = 0;
a1d3c478 1963 struct btrfs_bio *bbio = NULL;
5d4f98a2 1964
e244a0ae 1965
5d4f98a2 1966 /* Tell the block device(s) that the sectors can be discarded */
3ec706c8 1967 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
a1d3c478 1968 bytenr, &num_bytes, &bbio, 0);
79787eaa 1969 /* Error condition is -ENOMEM */
5d4f98a2 1970 if (!ret) {
a1d3c478 1971 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
1972 int i;
1973
5d4f98a2 1974
a1d3c478 1975 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 1976 u64 bytes;
d5e2003c
JB
1977 if (!stripe->dev->can_discard)
1978 continue;
1979
5378e607
LD
1980 ret = btrfs_issue_discard(stripe->dev->bdev,
1981 stripe->physical,
d04c6b88
JM
1982 stripe->length,
1983 &bytes);
5378e607 1984 if (!ret)
d04c6b88 1985 discarded_bytes += bytes;
5378e607 1986 else if (ret != -EOPNOTSUPP)
79787eaa 1987 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
1988
1989 /*
1990 * Just in case we get back EOPNOTSUPP for some reason,
1991 * just ignore the return value so we don't screw up
1992 * people calling discard_extent.
1993 */
1994 ret = 0;
5d4f98a2 1995 }
6e9606d2 1996 btrfs_put_bbio(bbio);
5d4f98a2 1997 }
5378e607
LD
1998
1999 if (actual_bytes)
2000 *actual_bytes = discarded_bytes;
2001
5d4f98a2 2002
53b381b3
DW
2003 if (ret == -EOPNOTSUPP)
2004 ret = 0;
5d4f98a2 2005 return ret;
5d4f98a2
YZ
2006}
2007
79787eaa 2008/* Can return -ENOMEM */
5d4f98a2
YZ
2009int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2010 struct btrfs_root *root,
2011 u64 bytenr, u64 num_bytes, u64 parent,
fcebe456
JB
2012 u64 root_objectid, u64 owner, u64 offset,
2013 int no_quota)
5d4f98a2
YZ
2014{
2015 int ret;
66d7e7f0
AJ
2016 struct btrfs_fs_info *fs_info = root->fs_info;
2017
5d4f98a2
YZ
2018 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2019 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2020
2021 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
2022 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2023 num_bytes,
5d4f98a2 2024 parent, root_objectid, (int)owner,
fcebe456 2025 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2 2026 } else {
66d7e7f0
AJ
2027 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2028 num_bytes,
5d4f98a2 2029 parent, root_objectid, owner, offset,
fcebe456 2030 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2
YZ
2031 }
2032 return ret;
2033}
2034
2035static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2036 struct btrfs_root *root,
c682f9b3 2037 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2038 u64 parent, u64 root_objectid,
2039 u64 owner, u64 offset, int refs_to_add,
2040 struct btrfs_delayed_extent_op *extent_op)
2041{
fcebe456 2042 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
2043 struct btrfs_path *path;
2044 struct extent_buffer *leaf;
2045 struct btrfs_extent_item *item;
fcebe456 2046 struct btrfs_key key;
c682f9b3
QW
2047 u64 bytenr = node->bytenr;
2048 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2049 u64 refs;
2050 int ret;
c682f9b3 2051 int no_quota = node->no_quota;
5d4f98a2
YZ
2052
2053 path = btrfs_alloc_path();
2054 if (!path)
2055 return -ENOMEM;
2056
fcebe456
JB
2057 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
2058 no_quota = 1;
2059
5d4f98a2
YZ
2060 path->reada = 1;
2061 path->leave_spinning = 1;
2062 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
2063 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2064 bytenr, num_bytes, parent,
5d4f98a2
YZ
2065 root_objectid, owner, offset,
2066 refs_to_add, extent_op);
0ed4792a 2067 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2068 goto out;
fcebe456
JB
2069
2070 /*
2071 * Ok we had -EAGAIN which means we didn't have space to insert and
2072 * inline extent ref, so just update the reference count and add a
2073 * normal backref.
2074 */
5d4f98a2 2075 leaf = path->nodes[0];
fcebe456 2076 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2077 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2078 refs = btrfs_extent_refs(leaf, item);
2079 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2080 if (extent_op)
2081 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2082
5d4f98a2 2083 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2084 btrfs_release_path(path);
56bec294
CM
2085
2086 path->reada = 1;
b9473439 2087 path->leave_spinning = 1;
56bec294
CM
2088 /* now insert the actual backref */
2089 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2090 path, bytenr, parent, root_objectid,
2091 owner, offset, refs_to_add);
79787eaa
JM
2092 if (ret)
2093 btrfs_abort_transaction(trans, root, ret);
5d4f98a2 2094out:
56bec294 2095 btrfs_free_path(path);
30d133fc 2096 return ret;
56bec294
CM
2097}
2098
5d4f98a2
YZ
2099static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2100 struct btrfs_root *root,
2101 struct btrfs_delayed_ref_node *node,
2102 struct btrfs_delayed_extent_op *extent_op,
2103 int insert_reserved)
56bec294 2104{
5d4f98a2
YZ
2105 int ret = 0;
2106 struct btrfs_delayed_data_ref *ref;
2107 struct btrfs_key ins;
2108 u64 parent = 0;
2109 u64 ref_root = 0;
2110 u64 flags = 0;
2111
2112 ins.objectid = node->bytenr;
2113 ins.offset = node->num_bytes;
2114 ins.type = BTRFS_EXTENT_ITEM_KEY;
2115
2116 ref = btrfs_delayed_node_to_data_ref(node);
599c75ec
LB
2117 trace_run_delayed_data_ref(node, ref, node->action);
2118
5d4f98a2
YZ
2119 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2120 parent = ref->parent;
fcebe456 2121 ref_root = ref->root;
5d4f98a2
YZ
2122
2123 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2124 if (extent_op)
5d4f98a2 2125 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2126 ret = alloc_reserved_file_extent(trans, root,
2127 parent, ref_root, flags,
2128 ref->objectid, ref->offset,
2129 &ins, node->ref_mod);
5d4f98a2 2130 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3 2131 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
5d4f98a2
YZ
2132 ref_root, ref->objectid,
2133 ref->offset, node->ref_mod,
c682f9b3 2134 extent_op);
5d4f98a2 2135 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3 2136 ret = __btrfs_free_extent(trans, root, node, parent,
5d4f98a2
YZ
2137 ref_root, ref->objectid,
2138 ref->offset, node->ref_mod,
c682f9b3 2139 extent_op);
5d4f98a2
YZ
2140 } else {
2141 BUG();
2142 }
2143 return ret;
2144}
2145
2146static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2147 struct extent_buffer *leaf,
2148 struct btrfs_extent_item *ei)
2149{
2150 u64 flags = btrfs_extent_flags(leaf, ei);
2151 if (extent_op->update_flags) {
2152 flags |= extent_op->flags_to_set;
2153 btrfs_set_extent_flags(leaf, ei, flags);
2154 }
2155
2156 if (extent_op->update_key) {
2157 struct btrfs_tree_block_info *bi;
2158 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2159 bi = (struct btrfs_tree_block_info *)(ei + 1);
2160 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2161 }
2162}
2163
2164static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2165 struct btrfs_root *root,
2166 struct btrfs_delayed_ref_node *node,
2167 struct btrfs_delayed_extent_op *extent_op)
2168{
2169 struct btrfs_key key;
2170 struct btrfs_path *path;
2171 struct btrfs_extent_item *ei;
2172 struct extent_buffer *leaf;
2173 u32 item_size;
56bec294 2174 int ret;
5d4f98a2 2175 int err = 0;
b1c79e09 2176 int metadata = !extent_op->is_data;
5d4f98a2 2177
79787eaa
JM
2178 if (trans->aborted)
2179 return 0;
2180
3173a18f
JB
2181 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2182 metadata = 0;
2183
5d4f98a2
YZ
2184 path = btrfs_alloc_path();
2185 if (!path)
2186 return -ENOMEM;
2187
2188 key.objectid = node->bytenr;
5d4f98a2 2189
3173a18f 2190 if (metadata) {
3173a18f 2191 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2192 key.offset = extent_op->level;
3173a18f
JB
2193 } else {
2194 key.type = BTRFS_EXTENT_ITEM_KEY;
2195 key.offset = node->num_bytes;
2196 }
2197
2198again:
5d4f98a2
YZ
2199 path->reada = 1;
2200 path->leave_spinning = 1;
2201 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2202 path, 0, 1);
2203 if (ret < 0) {
2204 err = ret;
2205 goto out;
2206 }
2207 if (ret > 0) {
3173a18f 2208 if (metadata) {
55994887
FDBM
2209 if (path->slots[0] > 0) {
2210 path->slots[0]--;
2211 btrfs_item_key_to_cpu(path->nodes[0], &key,
2212 path->slots[0]);
2213 if (key.objectid == node->bytenr &&
2214 key.type == BTRFS_EXTENT_ITEM_KEY &&
2215 key.offset == node->num_bytes)
2216 ret = 0;
2217 }
2218 if (ret > 0) {
2219 btrfs_release_path(path);
2220 metadata = 0;
3173a18f 2221
55994887
FDBM
2222 key.objectid = node->bytenr;
2223 key.offset = node->num_bytes;
2224 key.type = BTRFS_EXTENT_ITEM_KEY;
2225 goto again;
2226 }
2227 } else {
2228 err = -EIO;
2229 goto out;
3173a18f 2230 }
5d4f98a2
YZ
2231 }
2232
2233 leaf = path->nodes[0];
2234 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2235#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2236 if (item_size < sizeof(*ei)) {
2237 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2238 path, (u64)-1, 0);
2239 if (ret < 0) {
2240 err = ret;
2241 goto out;
2242 }
2243 leaf = path->nodes[0];
2244 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2245 }
2246#endif
2247 BUG_ON(item_size < sizeof(*ei));
2248 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2249 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2250
5d4f98a2
YZ
2251 btrfs_mark_buffer_dirty(leaf);
2252out:
2253 btrfs_free_path(path);
2254 return err;
56bec294
CM
2255}
2256
5d4f98a2
YZ
2257static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2258 struct btrfs_root *root,
2259 struct btrfs_delayed_ref_node *node,
2260 struct btrfs_delayed_extent_op *extent_op,
2261 int insert_reserved)
56bec294
CM
2262{
2263 int ret = 0;
5d4f98a2
YZ
2264 struct btrfs_delayed_tree_ref *ref;
2265 struct btrfs_key ins;
2266 u64 parent = 0;
2267 u64 ref_root = 0;
3173a18f
JB
2268 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2269 SKINNY_METADATA);
56bec294 2270
5d4f98a2 2271 ref = btrfs_delayed_node_to_tree_ref(node);
599c75ec
LB
2272 trace_run_delayed_tree_ref(node, ref, node->action);
2273
5d4f98a2
YZ
2274 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2275 parent = ref->parent;
fcebe456 2276 ref_root = ref->root;
5d4f98a2 2277
3173a18f
JB
2278 ins.objectid = node->bytenr;
2279 if (skinny_metadata) {
2280 ins.offset = ref->level;
2281 ins.type = BTRFS_METADATA_ITEM_KEY;
2282 } else {
2283 ins.offset = node->num_bytes;
2284 ins.type = BTRFS_EXTENT_ITEM_KEY;
2285 }
2286
5d4f98a2
YZ
2287 BUG_ON(node->ref_mod != 1);
2288 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2289 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2290 ret = alloc_reserved_tree_block(trans, root,
2291 parent, ref_root,
2292 extent_op->flags_to_set,
2293 &extent_op->key,
fcebe456
JB
2294 ref->level, &ins,
2295 node->no_quota);
5d4f98a2 2296 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3
QW
2297 ret = __btrfs_inc_extent_ref(trans, root, node,
2298 parent, ref_root,
2299 ref->level, 0, 1,
fcebe456 2300 extent_op);
5d4f98a2 2301 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3
QW
2302 ret = __btrfs_free_extent(trans, root, node,
2303 parent, ref_root,
2304 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2305 } else {
2306 BUG();
2307 }
56bec294
CM
2308 return ret;
2309}
2310
2311/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2312static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2313 struct btrfs_root *root,
2314 struct btrfs_delayed_ref_node *node,
2315 struct btrfs_delayed_extent_op *extent_op,
2316 int insert_reserved)
56bec294 2317{
79787eaa
JM
2318 int ret = 0;
2319
857cc2fc
JB
2320 if (trans->aborted) {
2321 if (insert_reserved)
2322 btrfs_pin_extent(root, node->bytenr,
2323 node->num_bytes, 1);
79787eaa 2324 return 0;
857cc2fc 2325 }
79787eaa 2326
5d4f98a2 2327 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2328 struct btrfs_delayed_ref_head *head;
2329 /*
2330 * we've hit the end of the chain and we were supposed
2331 * to insert this extent into the tree. But, it got
2332 * deleted before we ever needed to insert it, so all
2333 * we have to do is clean up the accounting
2334 */
5d4f98a2
YZ
2335 BUG_ON(extent_op);
2336 head = btrfs_delayed_node_to_head(node);
599c75ec
LB
2337 trace_run_delayed_ref_head(node, head, node->action);
2338
56bec294 2339 if (insert_reserved) {
f0486c68
YZ
2340 btrfs_pin_extent(root, node->bytenr,
2341 node->num_bytes, 1);
5d4f98a2
YZ
2342 if (head->is_data) {
2343 ret = btrfs_del_csums(trans, root,
2344 node->bytenr,
2345 node->num_bytes);
5d4f98a2 2346 }
56bec294 2347 }
79787eaa 2348 return ret;
56bec294
CM
2349 }
2350
5d4f98a2
YZ
2351 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2352 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2353 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2354 insert_reserved);
2355 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2356 node->type == BTRFS_SHARED_DATA_REF_KEY)
2357 ret = run_delayed_data_ref(trans, root, node, extent_op,
2358 insert_reserved);
2359 else
2360 BUG();
2361 return ret;
56bec294
CM
2362}
2363
c6fc2454 2364static inline struct btrfs_delayed_ref_node *
56bec294
CM
2365select_delayed_ref(struct btrfs_delayed_ref_head *head)
2366{
cffc3374
FM
2367 struct btrfs_delayed_ref_node *ref;
2368
c6fc2454
QW
2369 if (list_empty(&head->ref_list))
2370 return NULL;
d7df2c79 2371
cffc3374
FM
2372 /*
2373 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2374 * This is to prevent a ref count from going down to zero, which deletes
2375 * the extent item from the extent tree, when there still are references
2376 * to add, which would fail because they would not find the extent item.
2377 */
2378 list_for_each_entry(ref, &head->ref_list, list) {
2379 if (ref->action == BTRFS_ADD_DELAYED_REF)
2380 return ref;
2381 }
2382
c6fc2454
QW
2383 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2384 list);
56bec294
CM
2385}
2386
79787eaa
JM
2387/*
2388 * Returns 0 on success or if called with an already aborted transaction.
2389 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2390 */
d7df2c79
JB
2391static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2392 struct btrfs_root *root,
2393 unsigned long nr)
56bec294 2394{
56bec294
CM
2395 struct btrfs_delayed_ref_root *delayed_refs;
2396 struct btrfs_delayed_ref_node *ref;
2397 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2398 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2399 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2400 ktime_t start = ktime_get();
56bec294 2401 int ret;
d7df2c79 2402 unsigned long count = 0;
0a2b2a84 2403 unsigned long actual_count = 0;
56bec294 2404 int must_insert_reserved = 0;
56bec294
CM
2405
2406 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2407 while (1) {
2408 if (!locked_ref) {
d7df2c79 2409 if (count >= nr)
56bec294 2410 break;
56bec294 2411
d7df2c79
JB
2412 spin_lock(&delayed_refs->lock);
2413 locked_ref = btrfs_select_ref_head(trans);
2414 if (!locked_ref) {
2415 spin_unlock(&delayed_refs->lock);
2416 break;
2417 }
c3e69d58
CM
2418
2419 /* grab the lock that says we are going to process
2420 * all the refs for this head */
2421 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2422 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2423 /*
2424 * we may have dropped the spin lock to get the head
2425 * mutex lock, and that might have given someone else
2426 * time to free the head. If that's true, it has been
2427 * removed from our list and we can move on.
2428 */
2429 if (ret == -EAGAIN) {
2430 locked_ref = NULL;
2431 count++;
2432 continue;
56bec294
CM
2433 }
2434 }
a28ec197 2435
d7df2c79 2436 spin_lock(&locked_ref->lock);
ae1e206b 2437
d1270cd9
AJ
2438 /*
2439 * locked_ref is the head node, so we have to go one
2440 * node back for any delayed ref updates
2441 */
2442 ref = select_delayed_ref(locked_ref);
2443
2444 if (ref && ref->seq &&
097b8a7c 2445 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2446 spin_unlock(&locked_ref->lock);
093486c4 2447 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2448 spin_lock(&delayed_refs->lock);
2449 locked_ref->processing = 0;
d1270cd9
AJ
2450 delayed_refs->num_heads_ready++;
2451 spin_unlock(&delayed_refs->lock);
d7df2c79 2452 locked_ref = NULL;
d1270cd9 2453 cond_resched();
27a377db 2454 count++;
d1270cd9
AJ
2455 continue;
2456 }
2457
56bec294
CM
2458 /*
2459 * record the must insert reserved flag before we
2460 * drop the spin lock.
2461 */
2462 must_insert_reserved = locked_ref->must_insert_reserved;
2463 locked_ref->must_insert_reserved = 0;
7bb86316 2464
5d4f98a2
YZ
2465 extent_op = locked_ref->extent_op;
2466 locked_ref->extent_op = NULL;
2467
56bec294 2468 if (!ref) {
d7df2c79
JB
2469
2470
56bec294
CM
2471 /* All delayed refs have been processed, Go ahead
2472 * and send the head node to run_one_delayed_ref,
2473 * so that any accounting fixes can happen
2474 */
2475 ref = &locked_ref->node;
5d4f98a2
YZ
2476
2477 if (extent_op && must_insert_reserved) {
78a6184a 2478 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2479 extent_op = NULL;
2480 }
2481
2482 if (extent_op) {
d7df2c79 2483 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2484 ret = run_delayed_extent_op(trans, root,
2485 ref, extent_op);
78a6184a 2486 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2487
79787eaa 2488 if (ret) {
857cc2fc
JB
2489 /*
2490 * Need to reset must_insert_reserved if
2491 * there was an error so the abort stuff
2492 * can cleanup the reserved space
2493 * properly.
2494 */
2495 if (must_insert_reserved)
2496 locked_ref->must_insert_reserved = 1;
d7df2c79 2497 locked_ref->processing = 0;
c2cf52eb 2498 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2499 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2500 return ret;
2501 }
d7df2c79 2502 continue;
5d4f98a2 2503 }
02217ed2 2504
d7df2c79
JB
2505 /*
2506 * Need to drop our head ref lock and re-aqcuire the
2507 * delayed ref lock and then re-check to make sure
2508 * nobody got added.
2509 */
2510 spin_unlock(&locked_ref->lock);
2511 spin_lock(&delayed_refs->lock);
2512 spin_lock(&locked_ref->lock);
c6fc2454 2513 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2514 locked_ref->extent_op) {
d7df2c79
JB
2515 spin_unlock(&locked_ref->lock);
2516 spin_unlock(&delayed_refs->lock);
2517 continue;
2518 }
2519 ref->in_tree = 0;
2520 delayed_refs->num_heads--;
c46effa6
LB
2521 rb_erase(&locked_ref->href_node,
2522 &delayed_refs->href_root);
d7df2c79
JB
2523 spin_unlock(&delayed_refs->lock);
2524 } else {
0a2b2a84 2525 actual_count++;
d7df2c79 2526 ref->in_tree = 0;
c6fc2454 2527 list_del(&ref->list);
c46effa6 2528 }
d7df2c79
JB
2529 atomic_dec(&delayed_refs->num_entries);
2530
093486c4 2531 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2532 /*
2533 * when we play the delayed ref, also correct the
2534 * ref_mod on head
2535 */
2536 switch (ref->action) {
2537 case BTRFS_ADD_DELAYED_REF:
2538 case BTRFS_ADD_DELAYED_EXTENT:
2539 locked_ref->node.ref_mod -= ref->ref_mod;
2540 break;
2541 case BTRFS_DROP_DELAYED_REF:
2542 locked_ref->node.ref_mod += ref->ref_mod;
2543 break;
2544 default:
2545 WARN_ON(1);
2546 }
2547 }
d7df2c79 2548 spin_unlock(&locked_ref->lock);
925baedd 2549
5d4f98a2 2550 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2551 must_insert_reserved);
eb099670 2552
78a6184a 2553 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2554 if (ret) {
d7df2c79 2555 locked_ref->processing = 0;
093486c4
MX
2556 btrfs_delayed_ref_unlock(locked_ref);
2557 btrfs_put_delayed_ref(ref);
c2cf52eb 2558 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2559 return ret;
2560 }
2561
093486c4
MX
2562 /*
2563 * If this node is a head, that means all the refs in this head
2564 * have been dealt with, and we will pick the next head to deal
2565 * with, so we must unlock the head and drop it from the cluster
2566 * list before we release it.
2567 */
2568 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2569 if (locked_ref->is_data &&
2570 locked_ref->total_ref_mod < 0) {
2571 spin_lock(&delayed_refs->lock);
2572 delayed_refs->pending_csums -= ref->num_bytes;
2573 spin_unlock(&delayed_refs->lock);
2574 }
093486c4
MX
2575 btrfs_delayed_ref_unlock(locked_ref);
2576 locked_ref = NULL;
2577 }
2578 btrfs_put_delayed_ref(ref);
2579 count++;
c3e69d58 2580 cond_resched();
c3e69d58 2581 }
0a2b2a84
JB
2582
2583 /*
2584 * We don't want to include ref heads since we can have empty ref heads
2585 * and those will drastically skew our runtime down since we just do
2586 * accounting, no actual extent tree updates.
2587 */
2588 if (actual_count > 0) {
2589 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2590 u64 avg;
2591
2592 /*
2593 * We weigh the current average higher than our current runtime
2594 * to avoid large swings in the average.
2595 */
2596 spin_lock(&delayed_refs->lock);
2597 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2598 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2599 spin_unlock(&delayed_refs->lock);
2600 }
d7df2c79 2601 return 0;
c3e69d58
CM
2602}
2603
709c0486
AJ
2604#ifdef SCRAMBLE_DELAYED_REFS
2605/*
2606 * Normally delayed refs get processed in ascending bytenr order. This
2607 * correlates in most cases to the order added. To expose dependencies on this
2608 * order, we start to process the tree in the middle instead of the beginning
2609 */
2610static u64 find_middle(struct rb_root *root)
2611{
2612 struct rb_node *n = root->rb_node;
2613 struct btrfs_delayed_ref_node *entry;
2614 int alt = 1;
2615 u64 middle;
2616 u64 first = 0, last = 0;
2617
2618 n = rb_first(root);
2619 if (n) {
2620 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2621 first = entry->bytenr;
2622 }
2623 n = rb_last(root);
2624 if (n) {
2625 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2626 last = entry->bytenr;
2627 }
2628 n = root->rb_node;
2629
2630 while (n) {
2631 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2632 WARN_ON(!entry->in_tree);
2633
2634 middle = entry->bytenr;
2635
2636 if (alt)
2637 n = n->rb_left;
2638 else
2639 n = n->rb_right;
2640
2641 alt = 1 - alt;
2642 }
2643 return middle;
2644}
2645#endif
2646
1be41b78
JB
2647static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2648{
2649 u64 num_bytes;
2650
2651 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2652 sizeof(struct btrfs_extent_inline_ref));
2653 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2654 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2655
2656 /*
2657 * We don't ever fill up leaves all the way so multiply by 2 just to be
2658 * closer to what we're really going to want to ouse.
2659 */
f8c269d7 2660 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2661}
2662
1262133b
JB
2663/*
2664 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2665 * would require to store the csums for that many bytes.
2666 */
28f75a0e 2667u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2668{
2669 u64 csum_size;
2670 u64 num_csums_per_leaf;
2671 u64 num_csums;
2672
2673 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2674 num_csums_per_leaf = div64_u64(csum_size,
2675 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2676 num_csums = div64_u64(csum_bytes, root->sectorsize);
2677 num_csums += num_csums_per_leaf - 1;
2678 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2679 return num_csums;
2680}
2681
0a2b2a84 2682int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2683 struct btrfs_root *root)
2684{
2685 struct btrfs_block_rsv *global_rsv;
2686 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2687 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2688 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2689 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2690 int ret = 0;
2691
2692 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2693 num_heads = heads_to_leaves(root, num_heads);
2694 if (num_heads > 1)
707e8a07 2695 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2696 num_bytes <<= 1;
28f75a0e 2697 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2698 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2699 num_dirty_bgs);
1be41b78
JB
2700 global_rsv = &root->fs_info->global_block_rsv;
2701
2702 /*
2703 * If we can't allocate any more chunks lets make sure we have _lots_ of
2704 * wiggle room since running delayed refs can create more delayed refs.
2705 */
cb723e49
JB
2706 if (global_rsv->space_info->full) {
2707 num_dirty_bgs_bytes <<= 1;
1be41b78 2708 num_bytes <<= 1;
cb723e49 2709 }
1be41b78
JB
2710
2711 spin_lock(&global_rsv->lock);
cb723e49 2712 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2713 ret = 1;
2714 spin_unlock(&global_rsv->lock);
2715 return ret;
2716}
2717
0a2b2a84
JB
2718int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2719 struct btrfs_root *root)
2720{
2721 struct btrfs_fs_info *fs_info = root->fs_info;
2722 u64 num_entries =
2723 atomic_read(&trans->transaction->delayed_refs.num_entries);
2724 u64 avg_runtime;
a79b7d4b 2725 u64 val;
0a2b2a84
JB
2726
2727 smp_mb();
2728 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2729 val = num_entries * avg_runtime;
0a2b2a84
JB
2730 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2731 return 1;
a79b7d4b
CM
2732 if (val >= NSEC_PER_SEC / 2)
2733 return 2;
0a2b2a84
JB
2734
2735 return btrfs_check_space_for_delayed_refs(trans, root);
2736}
2737
a79b7d4b
CM
2738struct async_delayed_refs {
2739 struct btrfs_root *root;
2740 int count;
2741 int error;
2742 int sync;
2743 struct completion wait;
2744 struct btrfs_work work;
2745};
2746
2747static void delayed_ref_async_start(struct btrfs_work *work)
2748{
2749 struct async_delayed_refs *async;
2750 struct btrfs_trans_handle *trans;
2751 int ret;
2752
2753 async = container_of(work, struct async_delayed_refs, work);
2754
2755 trans = btrfs_join_transaction(async->root);
2756 if (IS_ERR(trans)) {
2757 async->error = PTR_ERR(trans);
2758 goto done;
2759 }
2760
2761 /*
2762 * trans->sync means that when we call end_transaciton, we won't
2763 * wait on delayed refs
2764 */
2765 trans->sync = true;
2766 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2767 if (ret)
2768 async->error = ret;
2769
2770 ret = btrfs_end_transaction(trans, async->root);
2771 if (ret && !async->error)
2772 async->error = ret;
2773done:
2774 if (async->sync)
2775 complete(&async->wait);
2776 else
2777 kfree(async);
2778}
2779
2780int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2781 unsigned long count, int wait)
2782{
2783 struct async_delayed_refs *async;
2784 int ret;
2785
2786 async = kmalloc(sizeof(*async), GFP_NOFS);
2787 if (!async)
2788 return -ENOMEM;
2789
2790 async->root = root->fs_info->tree_root;
2791 async->count = count;
2792 async->error = 0;
2793 if (wait)
2794 async->sync = 1;
2795 else
2796 async->sync = 0;
2797 init_completion(&async->wait);
2798
9e0af237
LB
2799 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2800 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2801
2802 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2803
2804 if (wait) {
2805 wait_for_completion(&async->wait);
2806 ret = async->error;
2807 kfree(async);
2808 return ret;
2809 }
2810 return 0;
2811}
2812
c3e69d58
CM
2813/*
2814 * this starts processing the delayed reference count updates and
2815 * extent insertions we have queued up so far. count can be
2816 * 0, which means to process everything in the tree at the start
2817 * of the run (but not newly added entries), or it can be some target
2818 * number you'd like to process.
79787eaa
JM
2819 *
2820 * Returns 0 on success or if called with an aborted transaction
2821 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2822 */
2823int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2824 struct btrfs_root *root, unsigned long count)
2825{
2826 struct rb_node *node;
2827 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2828 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2829 int ret;
2830 int run_all = count == (unsigned long)-1;
d9a0540a 2831 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2832
79787eaa
JM
2833 /* We'll clean this up in btrfs_cleanup_transaction */
2834 if (trans->aborted)
2835 return 0;
2836
c3e69d58
CM
2837 if (root == root->fs_info->extent_root)
2838 root = root->fs_info->tree_root;
2839
2840 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2841 if (count == 0)
d7df2c79 2842 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2843
c3e69d58 2844again:
709c0486
AJ
2845#ifdef SCRAMBLE_DELAYED_REFS
2846 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2847#endif
d9a0540a 2848 trans->can_flush_pending_bgs = false;
d7df2c79
JB
2849 ret = __btrfs_run_delayed_refs(trans, root, count);
2850 if (ret < 0) {
2851 btrfs_abort_transaction(trans, root, ret);
2852 return ret;
eb099670 2853 }
c3e69d58 2854
56bec294 2855 if (run_all) {
d7df2c79 2856 if (!list_empty(&trans->new_bgs))
ea658bad 2857 btrfs_create_pending_block_groups(trans, root);
ea658bad 2858
d7df2c79 2859 spin_lock(&delayed_refs->lock);
c46effa6 2860 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2861 if (!node) {
2862 spin_unlock(&delayed_refs->lock);
56bec294 2863 goto out;
d7df2c79 2864 }
c3e69d58 2865 count = (unsigned long)-1;
e9d0b13b 2866
56bec294 2867 while (node) {
c46effa6
LB
2868 head = rb_entry(node, struct btrfs_delayed_ref_head,
2869 href_node);
2870 if (btrfs_delayed_ref_is_head(&head->node)) {
2871 struct btrfs_delayed_ref_node *ref;
5caf2a00 2872
c46effa6 2873 ref = &head->node;
56bec294
CM
2874 atomic_inc(&ref->refs);
2875
2876 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2877 /*
2878 * Mutex was contended, block until it's
2879 * released and try again
2880 */
56bec294
CM
2881 mutex_lock(&head->mutex);
2882 mutex_unlock(&head->mutex);
2883
2884 btrfs_put_delayed_ref(ref);
1887be66 2885 cond_resched();
56bec294 2886 goto again;
c46effa6
LB
2887 } else {
2888 WARN_ON(1);
56bec294
CM
2889 }
2890 node = rb_next(node);
2891 }
2892 spin_unlock(&delayed_refs->lock);
d7df2c79 2893 cond_resched();
56bec294 2894 goto again;
5f39d397 2895 }
54aa1f4d 2896out:
edf39272 2897 assert_qgroups_uptodate(trans);
d9a0540a 2898 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
2899 return 0;
2900}
2901
5d4f98a2
YZ
2902int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2903 struct btrfs_root *root,
2904 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 2905 int level, int is_data)
5d4f98a2
YZ
2906{
2907 struct btrfs_delayed_extent_op *extent_op;
2908 int ret;
2909
78a6184a 2910 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
2911 if (!extent_op)
2912 return -ENOMEM;
2913
2914 extent_op->flags_to_set = flags;
2915 extent_op->update_flags = 1;
2916 extent_op->update_key = 0;
2917 extent_op->is_data = is_data ? 1 : 0;
b1c79e09 2918 extent_op->level = level;
5d4f98a2 2919
66d7e7f0
AJ
2920 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2921 num_bytes, extent_op);
5d4f98a2 2922 if (ret)
78a6184a 2923 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2924 return ret;
2925}
2926
2927static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2928 struct btrfs_root *root,
2929 struct btrfs_path *path,
2930 u64 objectid, u64 offset, u64 bytenr)
2931{
2932 struct btrfs_delayed_ref_head *head;
2933 struct btrfs_delayed_ref_node *ref;
2934 struct btrfs_delayed_data_ref *data_ref;
2935 struct btrfs_delayed_ref_root *delayed_refs;
5d4f98a2
YZ
2936 int ret = 0;
2937
5d4f98a2
YZ
2938 delayed_refs = &trans->transaction->delayed_refs;
2939 spin_lock(&delayed_refs->lock);
2940 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
2941 if (!head) {
2942 spin_unlock(&delayed_refs->lock);
2943 return 0;
2944 }
5d4f98a2
YZ
2945
2946 if (!mutex_trylock(&head->mutex)) {
2947 atomic_inc(&head->node.refs);
2948 spin_unlock(&delayed_refs->lock);
2949
b3b4aa74 2950 btrfs_release_path(path);
5d4f98a2 2951
8cc33e5c
DS
2952 /*
2953 * Mutex was contended, block until it's released and let
2954 * caller try again
2955 */
5d4f98a2
YZ
2956 mutex_lock(&head->mutex);
2957 mutex_unlock(&head->mutex);
2958 btrfs_put_delayed_ref(&head->node);
2959 return -EAGAIN;
2960 }
d7df2c79 2961 spin_unlock(&delayed_refs->lock);
5d4f98a2 2962
d7df2c79 2963 spin_lock(&head->lock);
c6fc2454 2964 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
2965 /* If it's a shared ref we know a cross reference exists */
2966 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2967 ret = 1;
2968 break;
2969 }
5d4f98a2 2970
d7df2c79 2971 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 2972
d7df2c79
JB
2973 /*
2974 * If our ref doesn't match the one we're currently looking at
2975 * then we have a cross reference.
2976 */
2977 if (data_ref->root != root->root_key.objectid ||
2978 data_ref->objectid != objectid ||
2979 data_ref->offset != offset) {
2980 ret = 1;
2981 break;
2982 }
5d4f98a2 2983 }
d7df2c79 2984 spin_unlock(&head->lock);
5d4f98a2 2985 mutex_unlock(&head->mutex);
5d4f98a2
YZ
2986 return ret;
2987}
2988
2989static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2990 struct btrfs_root *root,
2991 struct btrfs_path *path,
2992 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
2993{
2994 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 2995 struct extent_buffer *leaf;
5d4f98a2
YZ
2996 struct btrfs_extent_data_ref *ref;
2997 struct btrfs_extent_inline_ref *iref;
2998 struct btrfs_extent_item *ei;
f321e491 2999 struct btrfs_key key;
5d4f98a2 3000 u32 item_size;
be20aa9d 3001 int ret;
925baedd 3002
be20aa9d 3003 key.objectid = bytenr;
31840ae1 3004 key.offset = (u64)-1;
f321e491 3005 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3006
be20aa9d
CM
3007 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3008 if (ret < 0)
3009 goto out;
79787eaa 3010 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3011
3012 ret = -ENOENT;
3013 if (path->slots[0] == 0)
31840ae1 3014 goto out;
be20aa9d 3015
31840ae1 3016 path->slots[0]--;
f321e491 3017 leaf = path->nodes[0];
5d4f98a2 3018 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3019
5d4f98a2 3020 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3021 goto out;
f321e491 3022
5d4f98a2
YZ
3023 ret = 1;
3024 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3025#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3026 if (item_size < sizeof(*ei)) {
3027 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3028 goto out;
3029 }
3030#endif
3031 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3032
5d4f98a2
YZ
3033 if (item_size != sizeof(*ei) +
3034 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3035 goto out;
be20aa9d 3036
5d4f98a2
YZ
3037 if (btrfs_extent_generation(leaf, ei) <=
3038 btrfs_root_last_snapshot(&root->root_item))
3039 goto out;
3040
3041 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3042 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3043 BTRFS_EXTENT_DATA_REF_KEY)
3044 goto out;
3045
3046 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3047 if (btrfs_extent_refs(leaf, ei) !=
3048 btrfs_extent_data_ref_count(leaf, ref) ||
3049 btrfs_extent_data_ref_root(leaf, ref) !=
3050 root->root_key.objectid ||
3051 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3052 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3053 goto out;
3054
3055 ret = 0;
3056out:
3057 return ret;
3058}
3059
3060int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3061 struct btrfs_root *root,
3062 u64 objectid, u64 offset, u64 bytenr)
3063{
3064 struct btrfs_path *path;
3065 int ret;
3066 int ret2;
3067
3068 path = btrfs_alloc_path();
3069 if (!path)
3070 return -ENOENT;
3071
3072 do {
3073 ret = check_committed_ref(trans, root, path, objectid,
3074 offset, bytenr);
3075 if (ret && ret != -ENOENT)
f321e491 3076 goto out;
80ff3856 3077
5d4f98a2
YZ
3078 ret2 = check_delayed_ref(trans, root, path, objectid,
3079 offset, bytenr);
3080 } while (ret2 == -EAGAIN);
3081
3082 if (ret2 && ret2 != -ENOENT) {
3083 ret = ret2;
3084 goto out;
f321e491 3085 }
5d4f98a2
YZ
3086
3087 if (ret != -ENOENT || ret2 != -ENOENT)
3088 ret = 0;
be20aa9d 3089out:
80ff3856 3090 btrfs_free_path(path);
f0486c68
YZ
3091 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3092 WARN_ON(ret > 0);
f321e491 3093 return ret;
be20aa9d 3094}
c5739bba 3095
5d4f98a2 3096static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3097 struct btrfs_root *root,
5d4f98a2 3098 struct extent_buffer *buf,
e339a6b0 3099 int full_backref, int inc)
31840ae1
ZY
3100{
3101 u64 bytenr;
5d4f98a2
YZ
3102 u64 num_bytes;
3103 u64 parent;
31840ae1 3104 u64 ref_root;
31840ae1 3105 u32 nritems;
31840ae1
ZY
3106 struct btrfs_key key;
3107 struct btrfs_file_extent_item *fi;
3108 int i;
3109 int level;
3110 int ret = 0;
31840ae1 3111 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
66d7e7f0 3112 u64, u64, u64, u64, u64, u64, int);
31840ae1 3113
fccb84c9
DS
3114
3115 if (btrfs_test_is_dummy_root(root))
faa2dbf0 3116 return 0;
fccb84c9 3117
31840ae1 3118 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3119 nritems = btrfs_header_nritems(buf);
3120 level = btrfs_header_level(buf);
3121
27cdeb70 3122 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3123 return 0;
31840ae1 3124
5d4f98a2
YZ
3125 if (inc)
3126 process_func = btrfs_inc_extent_ref;
3127 else
3128 process_func = btrfs_free_extent;
31840ae1 3129
5d4f98a2
YZ
3130 if (full_backref)
3131 parent = buf->start;
3132 else
3133 parent = 0;
3134
3135 for (i = 0; i < nritems; i++) {
31840ae1 3136 if (level == 0) {
5d4f98a2 3137 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3138 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3139 continue;
5d4f98a2 3140 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3141 struct btrfs_file_extent_item);
3142 if (btrfs_file_extent_type(buf, fi) ==
3143 BTRFS_FILE_EXTENT_INLINE)
3144 continue;
3145 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3146 if (bytenr == 0)
3147 continue;
5d4f98a2
YZ
3148
3149 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3150 key.offset -= btrfs_file_extent_offset(buf, fi);
3151 ret = process_func(trans, root, bytenr, num_bytes,
3152 parent, ref_root, key.objectid,
e339a6b0 3153 key.offset, 1);
31840ae1
ZY
3154 if (ret)
3155 goto fail;
3156 } else {
5d4f98a2 3157 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3158 num_bytes = root->nodesize;
5d4f98a2 3159 ret = process_func(trans, root, bytenr, num_bytes,
66d7e7f0 3160 parent, ref_root, level - 1, 0,
e339a6b0 3161 1);
31840ae1
ZY
3162 if (ret)
3163 goto fail;
3164 }
3165 }
3166 return 0;
3167fail:
5d4f98a2
YZ
3168 return ret;
3169}
3170
3171int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3172 struct extent_buffer *buf, int full_backref)
5d4f98a2 3173{
e339a6b0 3174 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3175}
3176
3177int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3178 struct extent_buffer *buf, int full_backref)
5d4f98a2 3179{
e339a6b0 3180 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3181}
3182
9078a3e1
CM
3183static int write_one_cache_group(struct btrfs_trans_handle *trans,
3184 struct btrfs_root *root,
3185 struct btrfs_path *path,
3186 struct btrfs_block_group_cache *cache)
3187{
3188 int ret;
9078a3e1 3189 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3190 unsigned long bi;
3191 struct extent_buffer *leaf;
9078a3e1 3192
9078a3e1 3193 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3194 if (ret) {
3195 if (ret > 0)
3196 ret = -ENOENT;
54aa1f4d 3197 goto fail;
df95e7f0 3198 }
5f39d397
CM
3199
3200 leaf = path->nodes[0];
3201 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3202 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3203 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3204fail:
24b89d08 3205 btrfs_release_path(path);
df95e7f0 3206 return ret;
9078a3e1
CM
3207
3208}
3209
4a8c9a62
YZ
3210static struct btrfs_block_group_cache *
3211next_block_group(struct btrfs_root *root,
3212 struct btrfs_block_group_cache *cache)
3213{
3214 struct rb_node *node;
292cbd51 3215
4a8c9a62 3216 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3217
3218 /* If our block group was removed, we need a full search. */
3219 if (RB_EMPTY_NODE(&cache->cache_node)) {
3220 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3221
3222 spin_unlock(&root->fs_info->block_group_cache_lock);
3223 btrfs_put_block_group(cache);
3224 cache = btrfs_lookup_first_block_group(root->fs_info,
3225 next_bytenr);
3226 return cache;
3227 }
4a8c9a62
YZ
3228 node = rb_next(&cache->cache_node);
3229 btrfs_put_block_group(cache);
3230 if (node) {
3231 cache = rb_entry(node, struct btrfs_block_group_cache,
3232 cache_node);
11dfe35a 3233 btrfs_get_block_group(cache);
4a8c9a62
YZ
3234 } else
3235 cache = NULL;
3236 spin_unlock(&root->fs_info->block_group_cache_lock);
3237 return cache;
3238}
3239
0af3d00b
JB
3240static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3241 struct btrfs_trans_handle *trans,
3242 struct btrfs_path *path)
3243{
3244 struct btrfs_root *root = block_group->fs_info->tree_root;
3245 struct inode *inode = NULL;
3246 u64 alloc_hint = 0;
2b20982e 3247 int dcs = BTRFS_DC_ERROR;
f8c269d7 3248 u64 num_pages = 0;
0af3d00b
JB
3249 int retries = 0;
3250 int ret = 0;
3251
3252 /*
3253 * If this block group is smaller than 100 megs don't bother caching the
3254 * block group.
3255 */
3256 if (block_group->key.offset < (100 * 1024 * 1024)) {
3257 spin_lock(&block_group->lock);
3258 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3259 spin_unlock(&block_group->lock);
3260 return 0;
3261 }
3262
0c0ef4bc
JB
3263 if (trans->aborted)
3264 return 0;
0af3d00b
JB
3265again:
3266 inode = lookup_free_space_inode(root, block_group, path);
3267 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3268 ret = PTR_ERR(inode);
b3b4aa74 3269 btrfs_release_path(path);
0af3d00b
JB
3270 goto out;
3271 }
3272
3273 if (IS_ERR(inode)) {
3274 BUG_ON(retries);
3275 retries++;
3276
3277 if (block_group->ro)
3278 goto out_free;
3279
3280 ret = create_free_space_inode(root, trans, block_group, path);
3281 if (ret)
3282 goto out_free;
3283 goto again;
3284 }
3285
5b0e95bf
JB
3286 /* We've already setup this transaction, go ahead and exit */
3287 if (block_group->cache_generation == trans->transid &&
3288 i_size_read(inode)) {
3289 dcs = BTRFS_DC_SETUP;
3290 goto out_put;
3291 }
3292
0af3d00b
JB
3293 /*
3294 * We want to set the generation to 0, that way if anything goes wrong
3295 * from here on out we know not to trust this cache when we load up next
3296 * time.
3297 */
3298 BTRFS_I(inode)->generation = 0;
3299 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3300 if (ret) {
3301 /*
3302 * So theoretically we could recover from this, simply set the
3303 * super cache generation to 0 so we know to invalidate the
3304 * cache, but then we'd have to keep track of the block groups
3305 * that fail this way so we know we _have_ to reset this cache
3306 * before the next commit or risk reading stale cache. So to
3307 * limit our exposure to horrible edge cases lets just abort the
3308 * transaction, this only happens in really bad situations
3309 * anyway.
3310 */
3311 btrfs_abort_transaction(trans, root, ret);
3312 goto out_put;
3313 }
0af3d00b
JB
3314 WARN_ON(ret);
3315
3316 if (i_size_read(inode) > 0) {
7b61cd92
MX
3317 ret = btrfs_check_trunc_cache_free_space(root,
3318 &root->fs_info->global_block_rsv);
3319 if (ret)
3320 goto out_put;
3321
1bbc621e 3322 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3323 if (ret)
3324 goto out_put;
3325 }
3326
3327 spin_lock(&block_group->lock);
cf7c1ef6 3328 if (block_group->cached != BTRFS_CACHE_FINISHED ||
e4c88f00 3329 !btrfs_test_opt(root, SPACE_CACHE)) {
cf7c1ef6
LB
3330 /*
3331 * don't bother trying to write stuff out _if_
3332 * a) we're not cached,
3333 * b) we're with nospace_cache mount option.
3334 */
2b20982e 3335 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3336 spin_unlock(&block_group->lock);
3337 goto out_put;
3338 }
3339 spin_unlock(&block_group->lock);
3340
6fc823b1
JB
3341 /*
3342 * Try to preallocate enough space based on how big the block group is.
3343 * Keep in mind this has to include any pinned space which could end up
3344 * taking up quite a bit since it's not folded into the other space
3345 * cache.
3346 */
f8c269d7 3347 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
0af3d00b
JB
3348 if (!num_pages)
3349 num_pages = 1;
3350
0af3d00b
JB
3351 num_pages *= 16;
3352 num_pages *= PAGE_CACHE_SIZE;
3353
e2d1f923 3354 ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
0af3d00b
JB
3355 if (ret)
3356 goto out_put;
3357
3358 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3359 num_pages, num_pages,
3360 &alloc_hint);
2b20982e
JB
3361 if (!ret)
3362 dcs = BTRFS_DC_SETUP;
0af3d00b 3363 btrfs_free_reserved_data_space(inode, num_pages);
c09544e0 3364
0af3d00b
JB
3365out_put:
3366 iput(inode);
3367out_free:
b3b4aa74 3368 btrfs_release_path(path);
0af3d00b
JB
3369out:
3370 spin_lock(&block_group->lock);
e65cbb94 3371 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3372 block_group->cache_generation = trans->transid;
2b20982e 3373 block_group->disk_cache_state = dcs;
0af3d00b
JB
3374 spin_unlock(&block_group->lock);
3375
3376 return ret;
3377}
3378
dcdf7f6d
JB
3379int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3380 struct btrfs_root *root)
3381{
3382 struct btrfs_block_group_cache *cache, *tmp;
3383 struct btrfs_transaction *cur_trans = trans->transaction;
3384 struct btrfs_path *path;
3385
3386 if (list_empty(&cur_trans->dirty_bgs) ||
3387 !btrfs_test_opt(root, SPACE_CACHE))
3388 return 0;
3389
3390 path = btrfs_alloc_path();
3391 if (!path)
3392 return -ENOMEM;
3393
3394 /* Could add new block groups, use _safe just in case */
3395 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3396 dirty_list) {
3397 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3398 cache_save_setup(cache, trans, path);
3399 }
3400
3401 btrfs_free_path(path);
3402 return 0;
3403}
3404
1bbc621e
CM
3405/*
3406 * transaction commit does final block group cache writeback during a
3407 * critical section where nothing is allowed to change the FS. This is
3408 * required in order for the cache to actually match the block group,
3409 * but can introduce a lot of latency into the commit.
3410 *
3411 * So, btrfs_start_dirty_block_groups is here to kick off block group
3412 * cache IO. There's a chance we'll have to redo some of it if the
3413 * block group changes again during the commit, but it greatly reduces
3414 * the commit latency by getting rid of the easy block groups while
3415 * we're still allowing others to join the commit.
3416 */
3417int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3418 struct btrfs_root *root)
9078a3e1 3419{
4a8c9a62 3420 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3421 struct btrfs_transaction *cur_trans = trans->transaction;
3422 int ret = 0;
c9dc4c65 3423 int should_put;
1bbc621e
CM
3424 struct btrfs_path *path = NULL;
3425 LIST_HEAD(dirty);
3426 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3427 int num_started = 0;
1bbc621e
CM
3428 int loops = 0;
3429
3430 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3431 if (list_empty(&cur_trans->dirty_bgs)) {
3432 spin_unlock(&cur_trans->dirty_bgs_lock);
3433 return 0;
1bbc621e 3434 }
b58d1a9e 3435 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3436 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3437
1bbc621e 3438again:
1bbc621e
CM
3439 /*
3440 * make sure all the block groups on our dirty list actually
3441 * exist
3442 */
3443 btrfs_create_pending_block_groups(trans, root);
3444
3445 if (!path) {
3446 path = btrfs_alloc_path();
3447 if (!path)
3448 return -ENOMEM;
3449 }
3450
b58d1a9e
FM
3451 /*
3452 * cache_write_mutex is here only to save us from balance or automatic
3453 * removal of empty block groups deleting this block group while we are
3454 * writing out the cache
3455 */
3456 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3457 while (!list_empty(&dirty)) {
3458 cache = list_first_entry(&dirty,
3459 struct btrfs_block_group_cache,
3460 dirty_list);
1bbc621e
CM
3461 /*
3462 * this can happen if something re-dirties a block
3463 * group that is already under IO. Just wait for it to
3464 * finish and then do it all again
3465 */
3466 if (!list_empty(&cache->io_list)) {
3467 list_del_init(&cache->io_list);
3468 btrfs_wait_cache_io(root, trans, cache,
3469 &cache->io_ctl, path,
3470 cache->key.objectid);
3471 btrfs_put_block_group(cache);
3472 }
3473
3474
3475 /*
3476 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3477 * if it should update the cache_state. Don't delete
3478 * until after we wait.
3479 *
3480 * Since we're not running in the commit critical section
3481 * we need the dirty_bgs_lock to protect from update_block_group
3482 */
3483 spin_lock(&cur_trans->dirty_bgs_lock);
3484 list_del_init(&cache->dirty_list);
3485 spin_unlock(&cur_trans->dirty_bgs_lock);
3486
3487 should_put = 1;
3488
3489 cache_save_setup(cache, trans, path);
3490
3491 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3492 cache->io_ctl.inode = NULL;
3493 ret = btrfs_write_out_cache(root, trans, cache, path);
3494 if (ret == 0 && cache->io_ctl.inode) {
3495 num_started++;
3496 should_put = 0;
3497
3498 /*
3499 * the cache_write_mutex is protecting
3500 * the io_list
3501 */
3502 list_add_tail(&cache->io_list, io);
3503 } else {
3504 /*
3505 * if we failed to write the cache, the
3506 * generation will be bad and life goes on
3507 */
3508 ret = 0;
3509 }
3510 }
ff1f8250 3511 if (!ret) {
1bbc621e 3512 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3513 /*
3514 * Our block group might still be attached to the list
3515 * of new block groups in the transaction handle of some
3516 * other task (struct btrfs_trans_handle->new_bgs). This
3517 * means its block group item isn't yet in the extent
3518 * tree. If this happens ignore the error, as we will
3519 * try again later in the critical section of the
3520 * transaction commit.
3521 */
3522 if (ret == -ENOENT) {
3523 ret = 0;
3524 spin_lock(&cur_trans->dirty_bgs_lock);
3525 if (list_empty(&cache->dirty_list)) {
3526 list_add_tail(&cache->dirty_list,
3527 &cur_trans->dirty_bgs);
3528 btrfs_get_block_group(cache);
3529 }
3530 spin_unlock(&cur_trans->dirty_bgs_lock);
3531 } else if (ret) {
3532 btrfs_abort_transaction(trans, root, ret);
3533 }
3534 }
1bbc621e
CM
3535
3536 /* if its not on the io list, we need to put the block group */
3537 if (should_put)
3538 btrfs_put_block_group(cache);
3539
3540 if (ret)
3541 break;
b58d1a9e
FM
3542
3543 /*
3544 * Avoid blocking other tasks for too long. It might even save
3545 * us from writing caches for block groups that are going to be
3546 * removed.
3547 */
3548 mutex_unlock(&trans->transaction->cache_write_mutex);
3549 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3550 }
b58d1a9e 3551 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3552
3553 /*
3554 * go through delayed refs for all the stuff we've just kicked off
3555 * and then loop back (just once)
3556 */
3557 ret = btrfs_run_delayed_refs(trans, root, 0);
3558 if (!ret && loops == 0) {
3559 loops++;
3560 spin_lock(&cur_trans->dirty_bgs_lock);
3561 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3562 /*
3563 * dirty_bgs_lock protects us from concurrent block group
3564 * deletes too (not just cache_write_mutex).
3565 */
3566 if (!list_empty(&dirty)) {
3567 spin_unlock(&cur_trans->dirty_bgs_lock);
3568 goto again;
3569 }
1bbc621e 3570 spin_unlock(&cur_trans->dirty_bgs_lock);
1bbc621e
CM
3571 }
3572
3573 btrfs_free_path(path);
3574 return ret;
3575}
3576
3577int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3578 struct btrfs_root *root)
3579{
3580 struct btrfs_block_group_cache *cache;
3581 struct btrfs_transaction *cur_trans = trans->transaction;
3582 int ret = 0;
3583 int should_put;
3584 struct btrfs_path *path;
3585 struct list_head *io = &cur_trans->io_bgs;
3586 int num_started = 0;
9078a3e1
CM
3587
3588 path = btrfs_alloc_path();
3589 if (!path)
3590 return -ENOMEM;
3591
ce93ec54
JB
3592 /*
3593 * We don't need the lock here since we are protected by the transaction
3594 * commit. We want to do the cache_save_setup first and then run the
3595 * delayed refs to make sure we have the best chance at doing this all
3596 * in one shot.
3597 */
3598 while (!list_empty(&cur_trans->dirty_bgs)) {
3599 cache = list_first_entry(&cur_trans->dirty_bgs,
3600 struct btrfs_block_group_cache,
3601 dirty_list);
c9dc4c65
CM
3602
3603 /*
3604 * this can happen if cache_save_setup re-dirties a block
3605 * group that is already under IO. Just wait for it to
3606 * finish and then do it all again
3607 */
3608 if (!list_empty(&cache->io_list)) {
3609 list_del_init(&cache->io_list);
3610 btrfs_wait_cache_io(root, trans, cache,
3611 &cache->io_ctl, path,
3612 cache->key.objectid);
3613 btrfs_put_block_group(cache);
c9dc4c65
CM
3614 }
3615
1bbc621e
CM
3616 /*
3617 * don't remove from the dirty list until after we've waited
3618 * on any pending IO
3619 */
ce93ec54 3620 list_del_init(&cache->dirty_list);
c9dc4c65
CM
3621 should_put = 1;
3622
1bbc621e 3623 cache_save_setup(cache, trans, path);
c9dc4c65 3624
ce93ec54 3625 if (!ret)
c9dc4c65
CM
3626 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3627
3628 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3629 cache->io_ctl.inode = NULL;
3630 ret = btrfs_write_out_cache(root, trans, cache, path);
3631 if (ret == 0 && cache->io_ctl.inode) {
3632 num_started++;
3633 should_put = 0;
1bbc621e 3634 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3635 } else {
3636 /*
3637 * if we failed to write the cache, the
3638 * generation will be bad and life goes on
3639 */
3640 ret = 0;
3641 }
3642 }
ff1f8250 3643 if (!ret) {
ce93ec54 3644 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3645 if (ret)
3646 btrfs_abort_transaction(trans, root, ret);
3647 }
c9dc4c65
CM
3648
3649 /* if its not on the io list, we need to put the block group */
3650 if (should_put)
3651 btrfs_put_block_group(cache);
3652 }
3653
1bbc621e
CM
3654 while (!list_empty(io)) {
3655 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3656 io_list);
3657 list_del_init(&cache->io_list);
c9dc4c65
CM
3658 btrfs_wait_cache_io(root, trans, cache,
3659 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3660 btrfs_put_block_group(cache);
3661 }
3662
9078a3e1 3663 btrfs_free_path(path);
ce93ec54 3664 return ret;
9078a3e1
CM
3665}
3666
d2fb3437
YZ
3667int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3668{
3669 struct btrfs_block_group_cache *block_group;
3670 int readonly = 0;
3671
3672 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3673 if (!block_group || block_group->ro)
3674 readonly = 1;
3675 if (block_group)
fa9c0d79 3676 btrfs_put_block_group(block_group);
d2fb3437
YZ
3677 return readonly;
3678}
3679
6ab0a202
JM
3680static const char *alloc_name(u64 flags)
3681{
3682 switch (flags) {
3683 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3684 return "mixed";
3685 case BTRFS_BLOCK_GROUP_METADATA:
3686 return "metadata";
3687 case BTRFS_BLOCK_GROUP_DATA:
3688 return "data";
3689 case BTRFS_BLOCK_GROUP_SYSTEM:
3690 return "system";
3691 default:
3692 WARN_ON(1);
3693 return "invalid-combination";
3694 };
3695}
3696
593060d7
CM
3697static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3698 u64 total_bytes, u64 bytes_used,
3699 struct btrfs_space_info **space_info)
3700{
3701 struct btrfs_space_info *found;
b742bb82
YZ
3702 int i;
3703 int factor;
b150a4f1 3704 int ret;
b742bb82
YZ
3705
3706 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3707 BTRFS_BLOCK_GROUP_RAID10))
3708 factor = 2;
3709 else
3710 factor = 1;
593060d7
CM
3711
3712 found = __find_space_info(info, flags);
3713 if (found) {
25179201 3714 spin_lock(&found->lock);
593060d7 3715 found->total_bytes += total_bytes;
89a55897 3716 found->disk_total += total_bytes * factor;
593060d7 3717 found->bytes_used += bytes_used;
b742bb82 3718 found->disk_used += bytes_used * factor;
2e6e5183
FM
3719 if (total_bytes > 0)
3720 found->full = 0;
25179201 3721 spin_unlock(&found->lock);
593060d7
CM
3722 *space_info = found;
3723 return 0;
3724 }
c146afad 3725 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3726 if (!found)
3727 return -ENOMEM;
3728
908c7f19 3729 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3730 if (ret) {
3731 kfree(found);
3732 return ret;
3733 }
3734
c1895442 3735 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3736 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3737 init_rwsem(&found->groups_sem);
0f9dd46c 3738 spin_lock_init(&found->lock);
52ba6929 3739 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3740 found->total_bytes = total_bytes;
89a55897 3741 found->disk_total = total_bytes * factor;
593060d7 3742 found->bytes_used = bytes_used;
b742bb82 3743 found->disk_used = bytes_used * factor;
593060d7 3744 found->bytes_pinned = 0;
e8569813 3745 found->bytes_reserved = 0;
c146afad 3746 found->bytes_readonly = 0;
f0486c68 3747 found->bytes_may_use = 0;
6af3e3ad 3748 found->full = 0;
0e4f8f88 3749 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3750 found->chunk_alloc = 0;
fdb5effd
JB
3751 found->flush = 0;
3752 init_waitqueue_head(&found->wait);
633c0aad 3753 INIT_LIST_HEAD(&found->ro_bgs);
6ab0a202
JM
3754
3755 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3756 info->space_info_kobj, "%s",
3757 alloc_name(found->flags));
3758 if (ret) {
3759 kfree(found);
3760 return ret;
3761 }
3762
593060d7 3763 *space_info = found;
4184ea7f 3764 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3765 if (flags & BTRFS_BLOCK_GROUP_DATA)
3766 info->data_sinfo = found;
6ab0a202
JM
3767
3768 return ret;
593060d7
CM
3769}
3770
8790d502
CM
3771static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3772{
899c81ea
ID
3773 u64 extra_flags = chunk_to_extended(flags) &
3774 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3775
de98ced9 3776 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3777 if (flags & BTRFS_BLOCK_GROUP_DATA)
3778 fs_info->avail_data_alloc_bits |= extra_flags;
3779 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3780 fs_info->avail_metadata_alloc_bits |= extra_flags;
3781 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3782 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3783 write_sequnlock(&fs_info->profiles_lock);
8790d502 3784}
593060d7 3785
fc67c450
ID
3786/*
3787 * returns target flags in extended format or 0 if restripe for this
3788 * chunk_type is not in progress
c6664b42
ID
3789 *
3790 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
3791 */
3792static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3793{
3794 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3795 u64 target = 0;
3796
fc67c450
ID
3797 if (!bctl)
3798 return 0;
3799
3800 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3801 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3802 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3803 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3804 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3805 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3806 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3807 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3808 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3809 }
3810
3811 return target;
3812}
3813
a46d11a8
ID
3814/*
3815 * @flags: available profiles in extended format (see ctree.h)
3816 *
e4d8ec0f
ID
3817 * Returns reduced profile in chunk format. If profile changing is in
3818 * progress (either running or paused) picks the target profile (if it's
3819 * already available), otherwise falls back to plain reducing.
a46d11a8 3820 */
48a3b636 3821static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 3822{
95669976 3823 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 3824 u64 target;
9c170b26
ZL
3825 u64 raid_type;
3826 u64 allowed = 0;
a061fc8d 3827
fc67c450
ID
3828 /*
3829 * see if restripe for this chunk_type is in progress, if so
3830 * try to reduce to the target profile
3831 */
e4d8ec0f 3832 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
3833 target = get_restripe_target(root->fs_info, flags);
3834 if (target) {
3835 /* pick target profile only if it's already available */
3836 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 3837 spin_unlock(&root->fs_info->balance_lock);
fc67c450 3838 return extended_to_chunk(target);
e4d8ec0f
ID
3839 }
3840 }
3841 spin_unlock(&root->fs_info->balance_lock);
3842
53b381b3 3843 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
3844 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3845 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
3846 allowed |= btrfs_raid_group[raid_type];
3847 }
3848 allowed &= flags;
3849
3850 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
3851 allowed = BTRFS_BLOCK_GROUP_RAID6;
3852 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
3853 allowed = BTRFS_BLOCK_GROUP_RAID5;
3854 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
3855 allowed = BTRFS_BLOCK_GROUP_RAID10;
3856 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
3857 allowed = BTRFS_BLOCK_GROUP_RAID1;
3858 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
3859 allowed = BTRFS_BLOCK_GROUP_RAID0;
3860
3861 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
3862
3863 return extended_to_chunk(flags | allowed);
ec44a35c
CM
3864}
3865
f8213bdc 3866static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 3867{
de98ced9 3868 unsigned seq;
f8213bdc 3869 u64 flags;
de98ced9
MX
3870
3871 do {
f8213bdc 3872 flags = orig_flags;
de98ced9
MX
3873 seq = read_seqbegin(&root->fs_info->profiles_lock);
3874
3875 if (flags & BTRFS_BLOCK_GROUP_DATA)
3876 flags |= root->fs_info->avail_data_alloc_bits;
3877 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3878 flags |= root->fs_info->avail_system_alloc_bits;
3879 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3880 flags |= root->fs_info->avail_metadata_alloc_bits;
3881 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 3882
b742bb82 3883 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
3884}
3885
6d07bcec 3886u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 3887{
b742bb82 3888 u64 flags;
53b381b3 3889 u64 ret;
9ed74f2d 3890
b742bb82
YZ
3891 if (data)
3892 flags = BTRFS_BLOCK_GROUP_DATA;
3893 else if (root == root->fs_info->chunk_root)
3894 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 3895 else
b742bb82 3896 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 3897
53b381b3
DW
3898 ret = get_alloc_profile(root, flags);
3899 return ret;
6a63209f 3900}
9ed74f2d 3901
6a63209f 3902/*
6a63209f
JB
3903 * This will check the space that the inode allocates from to make sure we have
3904 * enough space for bytes.
6a63209f 3905 */
e2d1f923 3906int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
6a63209f 3907{
6a63209f 3908 struct btrfs_space_info *data_sinfo;
0ca1f7ce 3909 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 3910 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 3911 u64 used;
94b947b2 3912 int ret = 0;
c99f1b0c
ZL
3913 int need_commit = 2;
3914 int have_pinned_space;
6a63209f 3915
6a63209f 3916 /* make sure bytes are sectorsize aligned */
fda2832f 3917 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 3918
9dced186 3919 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 3920 need_commit = 0;
9dced186 3921 ASSERT(current->journal_info);
0af3d00b
JB
3922 }
3923
b4d7c3c9 3924 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
3925 if (!data_sinfo)
3926 goto alloc;
9ed74f2d 3927
6a63209f
JB
3928again:
3929 /* make sure we have enough space to handle the data first */
3930 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
3931 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3932 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3933 data_sinfo->bytes_may_use;
ab6e2410
JB
3934
3935 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 3936 struct btrfs_trans_handle *trans;
9ed74f2d 3937
6a63209f
JB
3938 /*
3939 * if we don't have enough free bytes in this space then we need
3940 * to alloc a new chunk.
3941 */
b9fd47cd 3942 if (!data_sinfo->full) {
6a63209f 3943 u64 alloc_target;
9ed74f2d 3944
0e4f8f88 3945 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 3946 spin_unlock(&data_sinfo->lock);
33b4d47f 3947alloc:
6a63209f 3948 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
3949 /*
3950 * It is ugly that we don't call nolock join
3951 * transaction for the free space inode case here.
3952 * But it is safe because we only do the data space
3953 * reservation for the free space cache in the
3954 * transaction context, the common join transaction
3955 * just increase the counter of the current transaction
3956 * handler, doesn't try to acquire the trans_lock of
3957 * the fs.
3958 */
7a7eaa40 3959 trans = btrfs_join_transaction(root);
a22285a6
YZ
3960 if (IS_ERR(trans))
3961 return PTR_ERR(trans);
9ed74f2d 3962
6a63209f 3963 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
3964 alloc_target,
3965 CHUNK_ALLOC_NO_FORCE);
6a63209f 3966 btrfs_end_transaction(trans, root);
d52a5b5f
MX
3967 if (ret < 0) {
3968 if (ret != -ENOSPC)
3969 return ret;
c99f1b0c
ZL
3970 else {
3971 have_pinned_space = 1;
d52a5b5f 3972 goto commit_trans;
c99f1b0c 3973 }
d52a5b5f 3974 }
9ed74f2d 3975
b4d7c3c9
LZ
3976 if (!data_sinfo)
3977 data_sinfo = fs_info->data_sinfo;
3978
6a63209f
JB
3979 goto again;
3980 }
f2bb8f5c
JB
3981
3982 /*
b150a4f1 3983 * If we don't have enough pinned space to deal with this
94b947b2
ZL
3984 * allocation, and no removed chunk in current transaction,
3985 * don't bother committing the transaction.
f2bb8f5c 3986 */
c99f1b0c
ZL
3987 have_pinned_space = percpu_counter_compare(
3988 &data_sinfo->total_bytes_pinned,
3989 used + bytes - data_sinfo->total_bytes);
6a63209f 3990 spin_unlock(&data_sinfo->lock);
6a63209f 3991
4e06bdd6 3992 /* commit the current transaction and try again */
d52a5b5f 3993commit_trans:
c99f1b0c 3994 if (need_commit &&
a4abeea4 3995 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 3996 need_commit--;
b150a4f1 3997
9a4e7276
ZL
3998 if (need_commit > 0)
3999 btrfs_wait_ordered_roots(fs_info, -1);
4000
7a7eaa40 4001 trans = btrfs_join_transaction(root);
a22285a6
YZ
4002 if (IS_ERR(trans))
4003 return PTR_ERR(trans);
c99f1b0c
ZL
4004 if (have_pinned_space >= 0 ||
4005 trans->transaction->have_free_bgs ||
4006 need_commit > 0) {
94b947b2
ZL
4007 ret = btrfs_commit_transaction(trans, root);
4008 if (ret)
4009 return ret;
d7c15171
ZL
4010 /*
4011 * make sure that all running delayed iput are
4012 * done
4013 */
4014 down_write(&root->fs_info->delayed_iput_sem);
4015 up_write(&root->fs_info->delayed_iput_sem);
94b947b2
ZL
4016 goto again;
4017 } else {
4018 btrfs_end_transaction(trans, root);
4019 }
4e06bdd6 4020 }
9ed74f2d 4021
cab45e22
JM
4022 trace_btrfs_space_reservation(root->fs_info,
4023 "space_info:enospc",
4024 data_sinfo->flags, bytes, 1);
6a63209f
JB
4025 return -ENOSPC;
4026 }
e2d1f923 4027 ret = btrfs_qgroup_reserve(root, write_bytes);
237c0e9f
DY
4028 if (ret)
4029 goto out;
6a63209f 4030 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 4031 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4032 data_sinfo->flags, bytes, 1);
237c0e9f 4033out:
6a63209f 4034 spin_unlock(&data_sinfo->lock);
6a63209f 4035
237c0e9f 4036 return ret;
9ed74f2d 4037}
6a63209f 4038
6a63209f 4039/*
fb25e914 4040 * Called if we need to clear a data reservation for this inode.
6a63209f 4041 */
0ca1f7ce 4042void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
e3ccfa98 4043{
0ca1f7ce 4044 struct btrfs_root *root = BTRFS_I(inode)->root;
6a63209f 4045 struct btrfs_space_info *data_sinfo;
e3ccfa98 4046
6a63209f 4047 /* make sure bytes are sectorsize aligned */
fda2832f 4048 bytes = ALIGN(bytes, root->sectorsize);
e3ccfa98 4049
b4d7c3c9 4050 data_sinfo = root->fs_info->data_sinfo;
6a63209f 4051 spin_lock(&data_sinfo->lock);
7ee9e440 4052 WARN_ON(data_sinfo->bytes_may_use < bytes);
6a63209f 4053 data_sinfo->bytes_may_use -= bytes;
8c2a3ca2 4054 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4055 data_sinfo->flags, bytes, 0);
6a63209f 4056 spin_unlock(&data_sinfo->lock);
e3ccfa98
JB
4057}
4058
97e728d4 4059static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4060{
97e728d4
JB
4061 struct list_head *head = &info->space_info;
4062 struct btrfs_space_info *found;
e3ccfa98 4063
97e728d4
JB
4064 rcu_read_lock();
4065 list_for_each_entry_rcu(found, head, list) {
4066 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4067 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4068 }
97e728d4 4069 rcu_read_unlock();
e3ccfa98
JB
4070}
4071
3c76cd84
MX
4072static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4073{
4074 return (global->size << 1);
4075}
4076
e5bc2458 4077static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4078 struct btrfs_space_info *sinfo, int force)
32c00aff 4079{
fb25e914 4080 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4081 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4082 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4083 u64 thresh;
e3ccfa98 4084
0e4f8f88
CM
4085 if (force == CHUNK_ALLOC_FORCE)
4086 return 1;
4087
fb25e914
JB
4088 /*
4089 * We need to take into account the global rsv because for all intents
4090 * and purposes it's used space. Don't worry about locking the
4091 * global_rsv, it doesn't change except when the transaction commits.
4092 */
54338b5c 4093 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4094 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4095
0e4f8f88
CM
4096 /*
4097 * in limited mode, we want to have some free space up to
4098 * about 1% of the FS size.
4099 */
4100 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4101 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
0e4f8f88
CM
4102 thresh = max_t(u64, 64 * 1024 * 1024,
4103 div_factor_fine(thresh, 1));
4104
4105 if (num_bytes - num_allocated < thresh)
4106 return 1;
4107 }
0e4f8f88 4108
698d0082 4109 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
14ed0ca6 4110 return 0;
424499db 4111 return 1;
32c00aff
JB
4112}
4113
39c2d7fa 4114static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
15d1ff81
LB
4115{
4116 u64 num_dev;
4117
53b381b3
DW
4118 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4119 BTRFS_BLOCK_GROUP_RAID0 |
4120 BTRFS_BLOCK_GROUP_RAID5 |
4121 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4122 num_dev = root->fs_info->fs_devices->rw_devices;
4123 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4124 num_dev = 2;
4125 else
4126 num_dev = 1; /* DUP or single */
4127
39c2d7fa 4128 return num_dev;
15d1ff81
LB
4129}
4130
39c2d7fa
FM
4131/*
4132 * If @is_allocation is true, reserve space in the system space info necessary
4133 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4134 * removing a chunk.
4135 */
4136void check_system_chunk(struct btrfs_trans_handle *trans,
4137 struct btrfs_root *root,
4617ea3a 4138 u64 type)
15d1ff81
LB
4139{
4140 struct btrfs_space_info *info;
4141 u64 left;
4142 u64 thresh;
4fbcdf66 4143 int ret = 0;
39c2d7fa 4144 u64 num_devs;
4fbcdf66
FM
4145
4146 /*
4147 * Needed because we can end up allocating a system chunk and for an
4148 * atomic and race free space reservation in the chunk block reserve.
4149 */
4150 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
15d1ff81
LB
4151
4152 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4153 spin_lock(&info->lock);
4154 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4fbcdf66
FM
4155 info->bytes_reserved - info->bytes_readonly -
4156 info->bytes_may_use;
15d1ff81
LB
4157 spin_unlock(&info->lock);
4158
39c2d7fa
FM
4159 num_devs = get_profile_num_devs(root, type);
4160
4161 /* num_devs device items to update and 1 chunk item to add or remove */
4617ea3a
FM
4162 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4163 btrfs_calc_trans_metadata_size(root, 1);
39c2d7fa 4164
15d1ff81 4165 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
c2cf52eb
SK
4166 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4167 left, thresh, type);
15d1ff81
LB
4168 dump_space_info(info, 0, 0);
4169 }
4170
4171 if (left < thresh) {
4172 u64 flags;
4173
4174 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4fbcdf66
FM
4175 /*
4176 * Ignore failure to create system chunk. We might end up not
4177 * needing it, as we might not need to COW all nodes/leafs from
4178 * the paths we visit in the chunk tree (they were already COWed
4179 * or created in the current transaction for example).
4180 */
4181 ret = btrfs_alloc_chunk(trans, root, flags);
4182 }
4183
4184 if (!ret) {
4185 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4186 &root->fs_info->chunk_block_rsv,
4187 thresh, BTRFS_RESERVE_NO_FLUSH);
4188 if (!ret)
4189 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4190 }
4191}
4192
6324fbf3 4193static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4194 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4195{
6324fbf3 4196 struct btrfs_space_info *space_info;
97e728d4 4197 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4198 int wait_for_alloc = 0;
9ed74f2d 4199 int ret = 0;
9ed74f2d 4200
c6b305a8
JB
4201 /* Don't re-enter if we're already allocating a chunk */
4202 if (trans->allocating_chunk)
4203 return -ENOSPC;
4204
6324fbf3 4205 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4206 if (!space_info) {
4207 ret = update_space_info(extent_root->fs_info, flags,
4208 0, 0, &space_info);
79787eaa 4209 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4210 }
79787eaa 4211 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4212
6d74119f 4213again:
25179201 4214 spin_lock(&space_info->lock);
9e622d6b 4215 if (force < space_info->force_alloc)
0e4f8f88 4216 force = space_info->force_alloc;
25179201 4217 if (space_info->full) {
09fb99a6
FDBM
4218 if (should_alloc_chunk(extent_root, space_info, force))
4219 ret = -ENOSPC;
4220 else
4221 ret = 0;
25179201 4222 spin_unlock(&space_info->lock);
09fb99a6 4223 return ret;
9ed74f2d
JB
4224 }
4225
698d0082 4226 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4227 spin_unlock(&space_info->lock);
6d74119f
JB
4228 return 0;
4229 } else if (space_info->chunk_alloc) {
4230 wait_for_alloc = 1;
4231 } else {
4232 space_info->chunk_alloc = 1;
9ed74f2d 4233 }
0e4f8f88 4234
25179201 4235 spin_unlock(&space_info->lock);
9ed74f2d 4236
6d74119f
JB
4237 mutex_lock(&fs_info->chunk_mutex);
4238
4239 /*
4240 * The chunk_mutex is held throughout the entirety of a chunk
4241 * allocation, so once we've acquired the chunk_mutex we know that the
4242 * other guy is done and we need to recheck and see if we should
4243 * allocate.
4244 */
4245 if (wait_for_alloc) {
4246 mutex_unlock(&fs_info->chunk_mutex);
4247 wait_for_alloc = 0;
4248 goto again;
4249 }
4250
c6b305a8
JB
4251 trans->allocating_chunk = true;
4252
67377734
JB
4253 /*
4254 * If we have mixed data/metadata chunks we want to make sure we keep
4255 * allocating mixed chunks instead of individual chunks.
4256 */
4257 if (btrfs_mixed_space_info(space_info))
4258 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4259
97e728d4
JB
4260 /*
4261 * if we're doing a data chunk, go ahead and make sure that
4262 * we keep a reasonable number of metadata chunks allocated in the
4263 * FS as well.
4264 */
9ed74f2d 4265 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4266 fs_info->data_chunk_allocations++;
4267 if (!(fs_info->data_chunk_allocations %
4268 fs_info->metadata_ratio))
4269 force_metadata_allocation(fs_info);
9ed74f2d
JB
4270 }
4271
15d1ff81
LB
4272 /*
4273 * Check if we have enough space in SYSTEM chunk because we may need
4274 * to update devices.
4275 */
4617ea3a 4276 check_system_chunk(trans, extent_root, flags);
15d1ff81 4277
2b82032c 4278 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4279 trans->allocating_chunk = false;
92b8e897 4280
9ed74f2d 4281 spin_lock(&space_info->lock);
a81cb9a2
AO
4282 if (ret < 0 && ret != -ENOSPC)
4283 goto out;
9ed74f2d 4284 if (ret)
6324fbf3 4285 space_info->full = 1;
424499db
YZ
4286 else
4287 ret = 1;
6d74119f 4288
0e4f8f88 4289 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4290out:
6d74119f 4291 space_info->chunk_alloc = 0;
9ed74f2d 4292 spin_unlock(&space_info->lock);
a25c75d5 4293 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4294 /*
4295 * When we allocate a new chunk we reserve space in the chunk block
4296 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4297 * add new nodes/leafs to it if we end up needing to do it when
4298 * inserting the chunk item and updating device items as part of the
4299 * second phase of chunk allocation, performed by
4300 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4301 * large number of new block groups to create in our transaction
4302 * handle's new_bgs list to avoid exhausting the chunk block reserve
4303 * in extreme cases - like having a single transaction create many new
4304 * block groups when starting to write out the free space caches of all
4305 * the block groups that were made dirty during the lifetime of the
4306 * transaction.
4307 */
d9a0540a
FM
4308 if (trans->can_flush_pending_bgs &&
4309 trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
00d80e34
FM
4310 btrfs_create_pending_block_groups(trans, trans->root);
4311 btrfs_trans_release_chunk_metadata(trans);
4312 }
0f9dd46c 4313 return ret;
6324fbf3 4314}
9ed74f2d 4315
a80c8dcf
JB
4316static int can_overcommit(struct btrfs_root *root,
4317 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4318 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4319{
96f1bb57 4320 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
a80c8dcf 4321 u64 profile = btrfs_get_alloc_profile(root, 0);
3c76cd84 4322 u64 space_size;
a80c8dcf
JB
4323 u64 avail;
4324 u64 used;
4325
4326 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4327 space_info->bytes_pinned + space_info->bytes_readonly;
4328
96f1bb57
JB
4329 /*
4330 * We only want to allow over committing if we have lots of actual space
4331 * free, but if we don't have enough space to handle the global reserve
4332 * space then we could end up having a real enospc problem when trying
4333 * to allocate a chunk or some other such important allocation.
4334 */
3c76cd84
MX
4335 spin_lock(&global_rsv->lock);
4336 space_size = calc_global_rsv_need_space(global_rsv);
4337 spin_unlock(&global_rsv->lock);
4338 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4339 return 0;
4340
4341 used += space_info->bytes_may_use;
a80c8dcf
JB
4342
4343 spin_lock(&root->fs_info->free_chunk_lock);
4344 avail = root->fs_info->free_chunk_space;
4345 spin_unlock(&root->fs_info->free_chunk_lock);
4346
4347 /*
4348 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4349 * space is actually useable. For raid56, the space info used
4350 * doesn't include the parity drive, so we don't have to
4351 * change the math
a80c8dcf
JB
4352 */
4353 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4354 BTRFS_BLOCK_GROUP_RAID1 |
4355 BTRFS_BLOCK_GROUP_RAID10))
4356 avail >>= 1;
4357
4358 /*
561c294d
MX
4359 * If we aren't flushing all things, let us overcommit up to
4360 * 1/2th of the space. If we can flush, don't let us overcommit
4361 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4362 */
08e007d2 4363 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4364 avail >>= 3;
a80c8dcf 4365 else
14575aef 4366 avail >>= 1;
a80c8dcf 4367
14575aef 4368 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4369 return 1;
4370 return 0;
4371}
4372
48a3b636 4373static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4374 unsigned long nr_pages, int nr_items)
da633a42
MX
4375{
4376 struct super_block *sb = root->fs_info->sb;
da633a42 4377
925a6efb
JB
4378 if (down_read_trylock(&sb->s_umount)) {
4379 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4380 up_read(&sb->s_umount);
4381 } else {
da633a42
MX
4382 /*
4383 * We needn't worry the filesystem going from r/w to r/o though
4384 * we don't acquire ->s_umount mutex, because the filesystem
4385 * should guarantee the delalloc inodes list be empty after
4386 * the filesystem is readonly(all dirty pages are written to
4387 * the disk).
4388 */
6c255e67 4389 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4390 if (!current->journal_info)
6c255e67 4391 btrfs_wait_ordered_roots(root->fs_info, nr_items);
da633a42
MX
4392 }
4393}
4394
18cd8ea6
MX
4395static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4396{
4397 u64 bytes;
4398 int nr;
4399
4400 bytes = btrfs_calc_trans_metadata_size(root, 1);
4401 nr = (int)div64_u64(to_reclaim, bytes);
4402 if (!nr)
4403 nr = 1;
4404 return nr;
4405}
4406
c61a16a7
MX
4407#define EXTENT_SIZE_PER_ITEM (256 * 1024)
4408
9ed74f2d 4409/*
5da9d01b 4410 * shrink metadata reservation for delalloc
9ed74f2d 4411 */
f4c738c2
JB
4412static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4413 bool wait_ordered)
5da9d01b 4414{
0ca1f7ce 4415 struct btrfs_block_rsv *block_rsv;
0019f10d 4416 struct btrfs_space_info *space_info;
663350ac 4417 struct btrfs_trans_handle *trans;
f4c738c2 4418 u64 delalloc_bytes;
5da9d01b 4419 u64 max_reclaim;
b1953bce 4420 long time_left;
d3ee29e3
MX
4421 unsigned long nr_pages;
4422 int loops;
b0244199 4423 int items;
08e007d2 4424 enum btrfs_reserve_flush_enum flush;
5da9d01b 4425
c61a16a7 4426 /* Calc the number of the pages we need flush for space reservation */
b0244199
MX
4427 items = calc_reclaim_items_nr(root, to_reclaim);
4428 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4429
663350ac 4430 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4431 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4432 space_info = block_rsv->space_info;
bf9022e0 4433
963d678b
MX
4434 delalloc_bytes = percpu_counter_sum_positive(
4435 &root->fs_info->delalloc_bytes);
f4c738c2 4436 if (delalloc_bytes == 0) {
fdb5effd 4437 if (trans)
f4c738c2 4438 return;
38c135af 4439 if (wait_ordered)
b0244199 4440 btrfs_wait_ordered_roots(root->fs_info, items);
f4c738c2 4441 return;
fdb5effd
JB
4442 }
4443
d3ee29e3 4444 loops = 0;
f4c738c2
JB
4445 while (delalloc_bytes && loops < 3) {
4446 max_reclaim = min(delalloc_bytes, to_reclaim);
4447 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
6c255e67 4448 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4449 /*
4450 * We need to wait for the async pages to actually start before
4451 * we do anything.
4452 */
9f3a074d
MX
4453 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4454 if (!max_reclaim)
4455 goto skip_async;
4456
4457 if (max_reclaim <= nr_pages)
4458 max_reclaim = 0;
4459 else
4460 max_reclaim -= nr_pages;
dea31f52 4461
9f3a074d
MX
4462 wait_event(root->fs_info->async_submit_wait,
4463 atomic_read(&root->fs_info->async_delalloc_pages) <=
4464 (int)max_reclaim);
4465skip_async:
08e007d2
MX
4466 if (!trans)
4467 flush = BTRFS_RESERVE_FLUSH_ALL;
4468 else
4469 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4470 spin_lock(&space_info->lock);
08e007d2 4471 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4472 spin_unlock(&space_info->lock);
4473 break;
4474 }
0019f10d 4475 spin_unlock(&space_info->lock);
5da9d01b 4476
36e39c40 4477 loops++;
f104d044 4478 if (wait_ordered && !trans) {
b0244199 4479 btrfs_wait_ordered_roots(root->fs_info, items);
f104d044 4480 } else {
f4c738c2 4481 time_left = schedule_timeout_killable(1);
f104d044
JB
4482 if (time_left)
4483 break;
4484 }
963d678b
MX
4485 delalloc_bytes = percpu_counter_sum_positive(
4486 &root->fs_info->delalloc_bytes);
5da9d01b 4487 }
5da9d01b
YZ
4488}
4489
663350ac
JB
4490/**
4491 * maybe_commit_transaction - possibly commit the transaction if its ok to
4492 * @root - the root we're allocating for
4493 * @bytes - the number of bytes we want to reserve
4494 * @force - force the commit
8bb8ab2e 4495 *
663350ac
JB
4496 * This will check to make sure that committing the transaction will actually
4497 * get us somewhere and then commit the transaction if it does. Otherwise it
4498 * will return -ENOSPC.
8bb8ab2e 4499 */
663350ac
JB
4500static int may_commit_transaction(struct btrfs_root *root,
4501 struct btrfs_space_info *space_info,
4502 u64 bytes, int force)
4503{
4504 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4505 struct btrfs_trans_handle *trans;
4506
4507 trans = (struct btrfs_trans_handle *)current->journal_info;
4508 if (trans)
4509 return -EAGAIN;
4510
4511 if (force)
4512 goto commit;
4513
4514 /* See if there is enough pinned space to make this reservation */
b150a4f1 4515 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4516 bytes) >= 0)
663350ac 4517 goto commit;
663350ac
JB
4518
4519 /*
4520 * See if there is some space in the delayed insertion reservation for
4521 * this reservation.
4522 */
4523 if (space_info != delayed_rsv->space_info)
4524 return -ENOSPC;
4525
4526 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4527 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4528 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4529 spin_unlock(&delayed_rsv->lock);
4530 return -ENOSPC;
4531 }
4532 spin_unlock(&delayed_rsv->lock);
4533
4534commit:
4535 trans = btrfs_join_transaction(root);
4536 if (IS_ERR(trans))
4537 return -ENOSPC;
4538
4539 return btrfs_commit_transaction(trans, root);
4540}
4541
96c3f433 4542enum flush_state {
67b0fd63
JB
4543 FLUSH_DELAYED_ITEMS_NR = 1,
4544 FLUSH_DELAYED_ITEMS = 2,
4545 FLUSH_DELALLOC = 3,
4546 FLUSH_DELALLOC_WAIT = 4,
ea658bad
JB
4547 ALLOC_CHUNK = 5,
4548 COMMIT_TRANS = 6,
96c3f433
JB
4549};
4550
4551static int flush_space(struct btrfs_root *root,
4552 struct btrfs_space_info *space_info, u64 num_bytes,
4553 u64 orig_bytes, int state)
4554{
4555 struct btrfs_trans_handle *trans;
4556 int nr;
f4c738c2 4557 int ret = 0;
96c3f433
JB
4558
4559 switch (state) {
96c3f433
JB
4560 case FLUSH_DELAYED_ITEMS_NR:
4561 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4562 if (state == FLUSH_DELAYED_ITEMS_NR)
4563 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4564 else
96c3f433 4565 nr = -1;
18cd8ea6 4566
96c3f433
JB
4567 trans = btrfs_join_transaction(root);
4568 if (IS_ERR(trans)) {
4569 ret = PTR_ERR(trans);
4570 break;
4571 }
4572 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4573 btrfs_end_transaction(trans, root);
4574 break;
67b0fd63
JB
4575 case FLUSH_DELALLOC:
4576 case FLUSH_DELALLOC_WAIT:
24af7dd1 4577 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4578 state == FLUSH_DELALLOC_WAIT);
4579 break;
ea658bad
JB
4580 case ALLOC_CHUNK:
4581 trans = btrfs_join_transaction(root);
4582 if (IS_ERR(trans)) {
4583 ret = PTR_ERR(trans);
4584 break;
4585 }
4586 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4587 btrfs_get_alloc_profile(root, 0),
4588 CHUNK_ALLOC_NO_FORCE);
4589 btrfs_end_transaction(trans, root);
4590 if (ret == -ENOSPC)
4591 ret = 0;
4592 break;
96c3f433
JB
4593 case COMMIT_TRANS:
4594 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4595 break;
4596 default:
4597 ret = -ENOSPC;
4598 break;
4599 }
4600
4601 return ret;
4602}
21c7e756
MX
4603
4604static inline u64
4605btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4606 struct btrfs_space_info *space_info)
4607{
4608 u64 used;
4609 u64 expected;
4610 u64 to_reclaim;
4611
4612 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4613 16 * 1024 * 1024);
4614 spin_lock(&space_info->lock);
4615 if (can_overcommit(root, space_info, to_reclaim,
4616 BTRFS_RESERVE_FLUSH_ALL)) {
4617 to_reclaim = 0;
4618 goto out;
4619 }
4620
4621 used = space_info->bytes_used + space_info->bytes_reserved +
4622 space_info->bytes_pinned + space_info->bytes_readonly +
4623 space_info->bytes_may_use;
4624 if (can_overcommit(root, space_info, 1024 * 1024,
4625 BTRFS_RESERVE_FLUSH_ALL))
4626 expected = div_factor_fine(space_info->total_bytes, 95);
4627 else
4628 expected = div_factor_fine(space_info->total_bytes, 90);
4629
4630 if (used > expected)
4631 to_reclaim = used - expected;
4632 else
4633 to_reclaim = 0;
4634 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4635 space_info->bytes_reserved);
4636out:
4637 spin_unlock(&space_info->lock);
4638
4639 return to_reclaim;
4640}
4641
4642static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4643 struct btrfs_fs_info *fs_info, u64 used)
4644{
365c5313
JB
4645 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4646
4647 /* If we're just plain full then async reclaim just slows us down. */
4648 if (space_info->bytes_used >= thresh)
4649 return 0;
4650
4651 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
21c7e756
MX
4652 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4653}
4654
4655static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
25ce459c
LB
4656 struct btrfs_fs_info *fs_info,
4657 int flush_state)
21c7e756
MX
4658{
4659 u64 used;
4660
4661 spin_lock(&space_info->lock);
25ce459c
LB
4662 /*
4663 * We run out of space and have not got any free space via flush_space,
4664 * so don't bother doing async reclaim.
4665 */
4666 if (flush_state > COMMIT_TRANS && space_info->full) {
4667 spin_unlock(&space_info->lock);
4668 return 0;
4669 }
4670
21c7e756
MX
4671 used = space_info->bytes_used + space_info->bytes_reserved +
4672 space_info->bytes_pinned + space_info->bytes_readonly +
4673 space_info->bytes_may_use;
4674 if (need_do_async_reclaim(space_info, fs_info, used)) {
4675 spin_unlock(&space_info->lock);
4676 return 1;
4677 }
4678 spin_unlock(&space_info->lock);
4679
4680 return 0;
4681}
4682
4683static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4684{
4685 struct btrfs_fs_info *fs_info;
4686 struct btrfs_space_info *space_info;
4687 u64 to_reclaim;
4688 int flush_state;
4689
4690 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4691 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4692
4693 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4694 space_info);
4695 if (!to_reclaim)
4696 return;
4697
4698 flush_state = FLUSH_DELAYED_ITEMS_NR;
4699 do {
4700 flush_space(fs_info->fs_root, space_info, to_reclaim,
4701 to_reclaim, flush_state);
4702 flush_state++;
25ce459c
LB
4703 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4704 flush_state))
21c7e756 4705 return;
365c5313 4706 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
4707}
4708
4709void btrfs_init_async_reclaim_work(struct work_struct *work)
4710{
4711 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4712}
4713
4a92b1b8
JB
4714/**
4715 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4716 * @root - the root we're allocating for
4717 * @block_rsv - the block_rsv we're allocating for
4718 * @orig_bytes - the number of bytes we want
48fc7f7e 4719 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 4720 *
4a92b1b8
JB
4721 * This will reserve orgi_bytes number of bytes from the space info associated
4722 * with the block_rsv. If there is not enough space it will make an attempt to
4723 * flush out space to make room. It will do this by flushing delalloc if
4724 * possible or committing the transaction. If flush is 0 then no attempts to
4725 * regain reservations will be made and this will fail if there is not enough
4726 * space already.
8bb8ab2e 4727 */
4a92b1b8 4728static int reserve_metadata_bytes(struct btrfs_root *root,
8bb8ab2e 4729 struct btrfs_block_rsv *block_rsv,
08e007d2
MX
4730 u64 orig_bytes,
4731 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4732{
f0486c68 4733 struct btrfs_space_info *space_info = block_rsv->space_info;
2bf64758 4734 u64 used;
8bb8ab2e 4735 u64 num_bytes = orig_bytes;
67b0fd63 4736 int flush_state = FLUSH_DELAYED_ITEMS_NR;
8bb8ab2e 4737 int ret = 0;
fdb5effd 4738 bool flushing = false;
9ed74f2d 4739
8bb8ab2e 4740again:
fdb5effd 4741 ret = 0;
8bb8ab2e 4742 spin_lock(&space_info->lock);
fdb5effd 4743 /*
08e007d2
MX
4744 * We only want to wait if somebody other than us is flushing and we
4745 * are actually allowed to flush all things.
fdb5effd 4746 */
08e007d2
MX
4747 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4748 space_info->flush) {
fdb5effd
JB
4749 spin_unlock(&space_info->lock);
4750 /*
4751 * If we have a trans handle we can't wait because the flusher
4752 * may have to commit the transaction, which would mean we would
4753 * deadlock since we are waiting for the flusher to finish, but
4754 * hold the current transaction open.
4755 */
663350ac 4756 if (current->journal_info)
fdb5effd 4757 return -EAGAIN;
b9688bb8
AJ
4758 ret = wait_event_killable(space_info->wait, !space_info->flush);
4759 /* Must have been killed, return */
4760 if (ret)
fdb5effd
JB
4761 return -EINTR;
4762
4763 spin_lock(&space_info->lock);
4764 }
4765
4766 ret = -ENOSPC;
2bf64758
JB
4767 used = space_info->bytes_used + space_info->bytes_reserved +
4768 space_info->bytes_pinned + space_info->bytes_readonly +
4769 space_info->bytes_may_use;
9ed74f2d 4770
8bb8ab2e
JB
4771 /*
4772 * The idea here is that we've not already over-reserved the block group
4773 * then we can go ahead and save our reservation first and then start
4774 * flushing if we need to. Otherwise if we've already overcommitted
4775 * lets start flushing stuff first and then come back and try to make
4776 * our reservation.
4777 */
2bf64758
JB
4778 if (used <= space_info->total_bytes) {
4779 if (used + orig_bytes <= space_info->total_bytes) {
fb25e914 4780 space_info->bytes_may_use += orig_bytes;
8c2a3ca2 4781 trace_btrfs_space_reservation(root->fs_info,
2bcc0328 4782 "space_info", space_info->flags, orig_bytes, 1);
8bb8ab2e
JB
4783 ret = 0;
4784 } else {
4785 /*
4786 * Ok set num_bytes to orig_bytes since we aren't
4787 * overocmmitted, this way we only try and reclaim what
4788 * we need.
4789 */
4790 num_bytes = orig_bytes;
4791 }
4792 } else {
4793 /*
4794 * Ok we're over committed, set num_bytes to the overcommitted
4795 * amount plus the amount of bytes that we need for this
4796 * reservation.
4797 */
2bf64758 4798 num_bytes = used - space_info->total_bytes +
96c3f433 4799 (orig_bytes * 2);
8bb8ab2e 4800 }
9ed74f2d 4801
44734ed1
JB
4802 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4803 space_info->bytes_may_use += orig_bytes;
4804 trace_btrfs_space_reservation(root->fs_info, "space_info",
4805 space_info->flags, orig_bytes,
4806 1);
4807 ret = 0;
2bf64758
JB
4808 }
4809
8bb8ab2e
JB
4810 /*
4811 * Couldn't make our reservation, save our place so while we're trying
4812 * to reclaim space we can actually use it instead of somebody else
4813 * stealing it from us.
08e007d2
MX
4814 *
4815 * We make the other tasks wait for the flush only when we can flush
4816 * all things.
8bb8ab2e 4817 */
72bcd99d 4818 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
fdb5effd
JB
4819 flushing = true;
4820 space_info->flush = 1;
21c7e756
MX
4821 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4822 used += orig_bytes;
f6acfd50
JB
4823 /*
4824 * We will do the space reservation dance during log replay,
4825 * which means we won't have fs_info->fs_root set, so don't do
4826 * the async reclaim as we will panic.
4827 */
4828 if (!root->fs_info->log_root_recovering &&
4829 need_do_async_reclaim(space_info, root->fs_info, used) &&
21c7e756
MX
4830 !work_busy(&root->fs_info->async_reclaim_work))
4831 queue_work(system_unbound_wq,
4832 &root->fs_info->async_reclaim_work);
8bb8ab2e 4833 }
f0486c68 4834 spin_unlock(&space_info->lock);
9ed74f2d 4835
08e007d2 4836 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
8bb8ab2e 4837 goto out;
f0486c68 4838
96c3f433
JB
4839 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4840 flush_state);
4841 flush_state++;
08e007d2
MX
4842
4843 /*
4844 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4845 * would happen. So skip delalloc flush.
4846 */
4847 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4848 (flush_state == FLUSH_DELALLOC ||
4849 flush_state == FLUSH_DELALLOC_WAIT))
4850 flush_state = ALLOC_CHUNK;
4851
96c3f433 4852 if (!ret)
8bb8ab2e 4853 goto again;
08e007d2
MX
4854 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4855 flush_state < COMMIT_TRANS)
4856 goto again;
4857 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4858 flush_state <= COMMIT_TRANS)
8bb8ab2e
JB
4859 goto again;
4860
4861out:
5d80366e
JB
4862 if (ret == -ENOSPC &&
4863 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4864 struct btrfs_block_rsv *global_rsv =
4865 &root->fs_info->global_block_rsv;
4866
4867 if (block_rsv != global_rsv &&
4868 !block_rsv_use_bytes(global_rsv, orig_bytes))
4869 ret = 0;
4870 }
cab45e22
JM
4871 if (ret == -ENOSPC)
4872 trace_btrfs_space_reservation(root->fs_info,
4873 "space_info:enospc",
4874 space_info->flags, orig_bytes, 1);
fdb5effd 4875 if (flushing) {
8bb8ab2e 4876 spin_lock(&space_info->lock);
fdb5effd
JB
4877 space_info->flush = 0;
4878 wake_up_all(&space_info->wait);
8bb8ab2e 4879 spin_unlock(&space_info->lock);
f0486c68 4880 }
f0486c68
YZ
4881 return ret;
4882}
4883
79787eaa
JM
4884static struct btrfs_block_rsv *get_block_rsv(
4885 const struct btrfs_trans_handle *trans,
4886 const struct btrfs_root *root)
f0486c68 4887{
4c13d758
JB
4888 struct btrfs_block_rsv *block_rsv = NULL;
4889
e9cf439f
AM
4890 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4891 (root == root->fs_info->csum_root && trans->adding_csums) ||
4892 (root == root->fs_info->uuid_root))
f7a81ea4
SB
4893 block_rsv = trans->block_rsv;
4894
4c13d758 4895 if (!block_rsv)
f0486c68
YZ
4896 block_rsv = root->block_rsv;
4897
4898 if (!block_rsv)
4899 block_rsv = &root->fs_info->empty_block_rsv;
4900
4901 return block_rsv;
4902}
4903
4904static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4905 u64 num_bytes)
4906{
4907 int ret = -ENOSPC;
4908 spin_lock(&block_rsv->lock);
4909 if (block_rsv->reserved >= num_bytes) {
4910 block_rsv->reserved -= num_bytes;
4911 if (block_rsv->reserved < block_rsv->size)
4912 block_rsv->full = 0;
4913 ret = 0;
4914 }
4915 spin_unlock(&block_rsv->lock);
4916 return ret;
4917}
4918
4919static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4920 u64 num_bytes, int update_size)
4921{
4922 spin_lock(&block_rsv->lock);
4923 block_rsv->reserved += num_bytes;
4924 if (update_size)
4925 block_rsv->size += num_bytes;
4926 else if (block_rsv->reserved >= block_rsv->size)
4927 block_rsv->full = 1;
4928 spin_unlock(&block_rsv->lock);
4929}
4930
d52be818
JB
4931int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4932 struct btrfs_block_rsv *dest, u64 num_bytes,
4933 int min_factor)
4934{
4935 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4936 u64 min_bytes;
4937
4938 if (global_rsv->space_info != dest->space_info)
4939 return -ENOSPC;
4940
4941 spin_lock(&global_rsv->lock);
4942 min_bytes = div_factor(global_rsv->size, min_factor);
4943 if (global_rsv->reserved < min_bytes + num_bytes) {
4944 spin_unlock(&global_rsv->lock);
4945 return -ENOSPC;
4946 }
4947 global_rsv->reserved -= num_bytes;
4948 if (global_rsv->reserved < global_rsv->size)
4949 global_rsv->full = 0;
4950 spin_unlock(&global_rsv->lock);
4951
4952 block_rsv_add_bytes(dest, num_bytes, 1);
4953 return 0;
4954}
4955
8c2a3ca2
JB
4956static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4957 struct btrfs_block_rsv *block_rsv,
62a45b60 4958 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
4959{
4960 struct btrfs_space_info *space_info = block_rsv->space_info;
4961
4962 spin_lock(&block_rsv->lock);
4963 if (num_bytes == (u64)-1)
4964 num_bytes = block_rsv->size;
4965 block_rsv->size -= num_bytes;
4966 if (block_rsv->reserved >= block_rsv->size) {
4967 num_bytes = block_rsv->reserved - block_rsv->size;
4968 block_rsv->reserved = block_rsv->size;
4969 block_rsv->full = 1;
4970 } else {
4971 num_bytes = 0;
4972 }
4973 spin_unlock(&block_rsv->lock);
4974
4975 if (num_bytes > 0) {
4976 if (dest) {
e9e22899
JB
4977 spin_lock(&dest->lock);
4978 if (!dest->full) {
4979 u64 bytes_to_add;
4980
4981 bytes_to_add = dest->size - dest->reserved;
4982 bytes_to_add = min(num_bytes, bytes_to_add);
4983 dest->reserved += bytes_to_add;
4984 if (dest->reserved >= dest->size)
4985 dest->full = 1;
4986 num_bytes -= bytes_to_add;
4987 }
4988 spin_unlock(&dest->lock);
4989 }
4990 if (num_bytes) {
f0486c68 4991 spin_lock(&space_info->lock);
fb25e914 4992 space_info->bytes_may_use -= num_bytes;
8c2a3ca2 4993 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4994 space_info->flags, num_bytes, 0);
f0486c68 4995 spin_unlock(&space_info->lock);
4e06bdd6 4996 }
9ed74f2d 4997 }
f0486c68 4998}
4e06bdd6 4999
f0486c68
YZ
5000static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5001 struct btrfs_block_rsv *dst, u64 num_bytes)
5002{
5003 int ret;
9ed74f2d 5004
f0486c68
YZ
5005 ret = block_rsv_use_bytes(src, num_bytes);
5006 if (ret)
5007 return ret;
9ed74f2d 5008
f0486c68 5009 block_rsv_add_bytes(dst, num_bytes, 1);
9ed74f2d
JB
5010 return 0;
5011}
5012
66d8f3dd 5013void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5014{
f0486c68
YZ
5015 memset(rsv, 0, sizeof(*rsv));
5016 spin_lock_init(&rsv->lock);
66d8f3dd 5017 rsv->type = type;
f0486c68
YZ
5018}
5019
66d8f3dd
MX
5020struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5021 unsigned short type)
f0486c68
YZ
5022{
5023 struct btrfs_block_rsv *block_rsv;
5024 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 5025
f0486c68
YZ
5026 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5027 if (!block_rsv)
5028 return NULL;
9ed74f2d 5029
66d8f3dd 5030 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5031 block_rsv->space_info = __find_space_info(fs_info,
5032 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5033 return block_rsv;
5034}
9ed74f2d 5035
f0486c68
YZ
5036void btrfs_free_block_rsv(struct btrfs_root *root,
5037 struct btrfs_block_rsv *rsv)
5038{
2aaa6655
JB
5039 if (!rsv)
5040 return;
dabdb640
JB
5041 btrfs_block_rsv_release(root, rsv, (u64)-1);
5042 kfree(rsv);
9ed74f2d
JB
5043}
5044
cdfb080e
CM
5045void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5046{
5047 kfree(rsv);
5048}
5049
08e007d2
MX
5050int btrfs_block_rsv_add(struct btrfs_root *root,
5051 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5052 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5053{
f0486c68 5054 int ret;
9ed74f2d 5055
f0486c68
YZ
5056 if (num_bytes == 0)
5057 return 0;
8bb8ab2e 5058
61b520a9 5059 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5060 if (!ret) {
5061 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5062 return 0;
5063 }
9ed74f2d 5064
f0486c68 5065 return ret;
f0486c68 5066}
9ed74f2d 5067
4a92b1b8 5068int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 5069 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5070{
5071 u64 num_bytes = 0;
f0486c68 5072 int ret = -ENOSPC;
9ed74f2d 5073
f0486c68
YZ
5074 if (!block_rsv)
5075 return 0;
9ed74f2d 5076
f0486c68 5077 spin_lock(&block_rsv->lock);
36ba022a
JB
5078 num_bytes = div_factor(block_rsv->size, min_factor);
5079 if (block_rsv->reserved >= num_bytes)
5080 ret = 0;
5081 spin_unlock(&block_rsv->lock);
9ed74f2d 5082
36ba022a
JB
5083 return ret;
5084}
5085
08e007d2
MX
5086int btrfs_block_rsv_refill(struct btrfs_root *root,
5087 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5088 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5089{
5090 u64 num_bytes = 0;
5091 int ret = -ENOSPC;
5092
5093 if (!block_rsv)
5094 return 0;
5095
5096 spin_lock(&block_rsv->lock);
5097 num_bytes = min_reserved;
13553e52 5098 if (block_rsv->reserved >= num_bytes)
f0486c68 5099 ret = 0;
13553e52 5100 else
f0486c68 5101 num_bytes -= block_rsv->reserved;
f0486c68 5102 spin_unlock(&block_rsv->lock);
13553e52 5103
f0486c68
YZ
5104 if (!ret)
5105 return 0;
5106
aa38a711 5107 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5108 if (!ret) {
5109 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5110 return 0;
6a63209f 5111 }
9ed74f2d 5112
13553e52 5113 return ret;
f0486c68
YZ
5114}
5115
5116int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5117 struct btrfs_block_rsv *dst_rsv,
5118 u64 num_bytes)
5119{
5120 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5121}
5122
5123void btrfs_block_rsv_release(struct btrfs_root *root,
5124 struct btrfs_block_rsv *block_rsv,
5125 u64 num_bytes)
5126{
5127 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5128 if (global_rsv == block_rsv ||
f0486c68
YZ
5129 block_rsv->space_info != global_rsv->space_info)
5130 global_rsv = NULL;
8c2a3ca2
JB
5131 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5132 num_bytes);
6a63209f
JB
5133}
5134
5135/*
8929ecfa
YZ
5136 * helper to calculate size of global block reservation.
5137 * the desired value is sum of space used by extent tree,
5138 * checksum tree and root tree
6a63209f 5139 */
8929ecfa 5140static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
6a63209f 5141{
8929ecfa
YZ
5142 struct btrfs_space_info *sinfo;
5143 u64 num_bytes;
5144 u64 meta_used;
5145 u64 data_used;
6c41761f 5146 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
6a63209f 5147
8929ecfa
YZ
5148 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5149 spin_lock(&sinfo->lock);
5150 data_used = sinfo->bytes_used;
5151 spin_unlock(&sinfo->lock);
33b4d47f 5152
8929ecfa
YZ
5153 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5154 spin_lock(&sinfo->lock);
6d48755d
JB
5155 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5156 data_used = 0;
8929ecfa
YZ
5157 meta_used = sinfo->bytes_used;
5158 spin_unlock(&sinfo->lock);
ab6e2410 5159
8929ecfa
YZ
5160 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5161 csum_size * 2;
f8c269d7 5162 num_bytes += div_u64(data_used + meta_used, 50);
4e06bdd6 5163
8929ecfa 5164 if (num_bytes * 3 > meta_used)
f8c269d7 5165 num_bytes = div_u64(meta_used, 3);
ab6e2410 5166
707e8a07 5167 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
8929ecfa 5168}
6a63209f 5169
8929ecfa
YZ
5170static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5171{
5172 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5173 struct btrfs_space_info *sinfo = block_rsv->space_info;
5174 u64 num_bytes;
6a63209f 5175
8929ecfa 5176 num_bytes = calc_global_metadata_size(fs_info);
33b4d47f 5177
8929ecfa 5178 spin_lock(&sinfo->lock);
1f699d38 5179 spin_lock(&block_rsv->lock);
4e06bdd6 5180
fdf30d1c 5181 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4e06bdd6 5182
8929ecfa 5183 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
6d48755d
JB
5184 sinfo->bytes_reserved + sinfo->bytes_readonly +
5185 sinfo->bytes_may_use;
8929ecfa
YZ
5186
5187 if (sinfo->total_bytes > num_bytes) {
5188 num_bytes = sinfo->total_bytes - num_bytes;
5189 block_rsv->reserved += num_bytes;
fb25e914 5190 sinfo->bytes_may_use += num_bytes;
8c2a3ca2 5191 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5192 sinfo->flags, num_bytes, 1);
6a63209f 5193 }
6a63209f 5194
8929ecfa
YZ
5195 if (block_rsv->reserved >= block_rsv->size) {
5196 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5197 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5198 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5199 sinfo->flags, num_bytes, 0);
8929ecfa
YZ
5200 block_rsv->reserved = block_rsv->size;
5201 block_rsv->full = 1;
5202 }
182608c8 5203
8929ecfa 5204 spin_unlock(&block_rsv->lock);
1f699d38 5205 spin_unlock(&sinfo->lock);
6a63209f
JB
5206}
5207
f0486c68 5208static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5209{
f0486c68 5210 struct btrfs_space_info *space_info;
6a63209f 5211
f0486c68
YZ
5212 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5213 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5214
f0486c68 5215 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5216 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5217 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5218 fs_info->trans_block_rsv.space_info = space_info;
5219 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5220 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5221
8929ecfa
YZ
5222 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5223 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5224 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5225 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5226 if (fs_info->quota_root)
5227 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5228 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5229
8929ecfa 5230 update_global_block_rsv(fs_info);
6a63209f
JB
5231}
5232
8929ecfa 5233static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5234{
8c2a3ca2
JB
5235 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5236 (u64)-1);
8929ecfa
YZ
5237 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5238 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5239 WARN_ON(fs_info->trans_block_rsv.size > 0);
5240 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5241 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5242 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5243 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5244 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5245}
5246
a22285a6
YZ
5247void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5248 struct btrfs_root *root)
6a63209f 5249{
0e721106
JB
5250 if (!trans->block_rsv)
5251 return;
5252
a22285a6
YZ
5253 if (!trans->bytes_reserved)
5254 return;
6a63209f 5255
e77266e4 5256 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5257 trans->transid, trans->bytes_reserved, 0);
b24e03db 5258 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5259 trans->bytes_reserved = 0;
5260}
6a63209f 5261
4fbcdf66
FM
5262/*
5263 * To be called after all the new block groups attached to the transaction
5264 * handle have been created (btrfs_create_pending_block_groups()).
5265 */
5266void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5267{
5268 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5269
5270 if (!trans->chunk_bytes_reserved)
5271 return;
5272
5273 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5274
5275 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5276 trans->chunk_bytes_reserved);
5277 trans->chunk_bytes_reserved = 0;
5278}
5279
79787eaa 5280/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5281int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5282 struct inode *inode)
5283{
5284 struct btrfs_root *root = BTRFS_I(inode)->root;
5285 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5286 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5287
5288 /*
fcb80c2a
JB
5289 * We need to hold space in order to delete our orphan item once we've
5290 * added it, so this takes the reservation so we can release it later
5291 * when we are truly done with the orphan item.
d68fc57b 5292 */
ff5714cc 5293 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5294 trace_btrfs_space_reservation(root->fs_info, "orphan",
5295 btrfs_ino(inode), num_bytes, 1);
d68fc57b 5296 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
6a63209f
JB
5297}
5298
d68fc57b 5299void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5300{
d68fc57b 5301 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5302 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5303 trace_btrfs_space_reservation(root->fs_info, "orphan",
5304 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5305 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5306}
97e728d4 5307
d5c12070
MX
5308/*
5309 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5310 * root: the root of the parent directory
5311 * rsv: block reservation
5312 * items: the number of items that we need do reservation
5313 * qgroup_reserved: used to return the reserved size in qgroup
5314 *
5315 * This function is used to reserve the space for snapshot/subvolume
5316 * creation and deletion. Those operations are different with the
5317 * common file/directory operations, they change two fs/file trees
5318 * and root tree, the number of items that the qgroup reserves is
5319 * different with the free space reservation. So we can not use
5320 * the space reseravtion mechanism in start_transaction().
5321 */
5322int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5323 struct btrfs_block_rsv *rsv,
5324 int items,
ee3441b4
JM
5325 u64 *qgroup_reserved,
5326 bool use_global_rsv)
a22285a6 5327{
d5c12070
MX
5328 u64 num_bytes;
5329 int ret;
ee3441b4 5330 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070
MX
5331
5332 if (root->fs_info->quota_enabled) {
5333 /* One for parent inode, two for dir entries */
707e8a07 5334 num_bytes = 3 * root->nodesize;
d5c12070
MX
5335 ret = btrfs_qgroup_reserve(root, num_bytes);
5336 if (ret)
5337 return ret;
5338 } else {
5339 num_bytes = 0;
5340 }
5341
5342 *qgroup_reserved = num_bytes;
5343
5344 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5345 rsv->space_info = __find_space_info(root->fs_info,
5346 BTRFS_BLOCK_GROUP_METADATA);
5347 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5348 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5349
5350 if (ret == -ENOSPC && use_global_rsv)
5351 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5352
d5c12070
MX
5353 if (ret) {
5354 if (*qgroup_reserved)
5355 btrfs_qgroup_free(root, *qgroup_reserved);
5356 }
5357
5358 return ret;
5359}
5360
5361void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5362 struct btrfs_block_rsv *rsv,
5363 u64 qgroup_reserved)
5364{
5365 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5366}
5367
7709cde3
JB
5368/**
5369 * drop_outstanding_extent - drop an outstanding extent
5370 * @inode: the inode we're dropping the extent for
dcab6a3b 5371 * @num_bytes: the number of bytes we're relaseing.
7709cde3
JB
5372 *
5373 * This is called when we are freeing up an outstanding extent, either called
5374 * after an error or after an extent is written. This will return the number of
5375 * reserved extents that need to be freed. This must be called with
5376 * BTRFS_I(inode)->lock held.
5377 */
dcab6a3b 5378static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5379{
7fd2ae21 5380 unsigned drop_inode_space = 0;
9e0baf60 5381 unsigned dropped_extents = 0;
dcab6a3b 5382 unsigned num_extents = 0;
9e0baf60 5383
dcab6a3b
JB
5384 num_extents = (unsigned)div64_u64(num_bytes +
5385 BTRFS_MAX_EXTENT_SIZE - 1,
5386 BTRFS_MAX_EXTENT_SIZE);
5387 ASSERT(num_extents);
5388 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5389 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5390
7fd2ae21 5391 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5392 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5393 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5394 drop_inode_space = 1;
7fd2ae21 5395
9e0baf60
JB
5396 /*
5397 * If we have more or the same amount of outsanding extents than we have
5398 * reserved then we need to leave the reserved extents count alone.
5399 */
5400 if (BTRFS_I(inode)->outstanding_extents >=
5401 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5402 return drop_inode_space;
9e0baf60
JB
5403
5404 dropped_extents = BTRFS_I(inode)->reserved_extents -
5405 BTRFS_I(inode)->outstanding_extents;
5406 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5407 return dropped_extents + drop_inode_space;
9e0baf60
JB
5408}
5409
7709cde3
JB
5410/**
5411 * calc_csum_metadata_size - return the amount of metada space that must be
5412 * reserved/free'd for the given bytes.
5413 * @inode: the inode we're manipulating
5414 * @num_bytes: the number of bytes in question
5415 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5416 *
5417 * This adjusts the number of csum_bytes in the inode and then returns the
5418 * correct amount of metadata that must either be reserved or freed. We
5419 * calculate how many checksums we can fit into one leaf and then divide the
5420 * number of bytes that will need to be checksumed by this value to figure out
5421 * how many checksums will be required. If we are adding bytes then the number
5422 * may go up and we will return the number of additional bytes that must be
5423 * reserved. If it is going down we will return the number of bytes that must
5424 * be freed.
5425 *
5426 * This must be called with BTRFS_I(inode)->lock held.
5427 */
5428static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5429 int reserve)
6324fbf3 5430{
7709cde3 5431 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5432 u64 old_csums, num_csums;
7709cde3
JB
5433
5434 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5435 BTRFS_I(inode)->csum_bytes == 0)
5436 return 0;
5437
28f75a0e 5438 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5439 if (reserve)
5440 BTRFS_I(inode)->csum_bytes += num_bytes;
5441 else
5442 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5443 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5444
5445 /* No change, no need to reserve more */
5446 if (old_csums == num_csums)
5447 return 0;
5448
5449 if (reserve)
5450 return btrfs_calc_trans_metadata_size(root,
5451 num_csums - old_csums);
5452
5453 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5454}
c146afad 5455
0ca1f7ce
YZ
5456int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5457{
5458 struct btrfs_root *root = BTRFS_I(inode)->root;
5459 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5460 u64 to_reserve = 0;
660d3f6c 5461 u64 csum_bytes;
9e0baf60 5462 unsigned nr_extents = 0;
660d3f6c 5463 int extra_reserve = 0;
08e007d2 5464 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5465 int ret = 0;
c64c2bd8 5466 bool delalloc_lock = true;
88e081bf
WS
5467 u64 to_free = 0;
5468 unsigned dropped;
6324fbf3 5469
c64c2bd8
JB
5470 /* If we are a free space inode we need to not flush since we will be in
5471 * the middle of a transaction commit. We also don't need the delalloc
5472 * mutex since we won't race with anybody. We need this mostly to make
5473 * lockdep shut its filthy mouth.
5474 */
5475 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5476 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8
JB
5477 delalloc_lock = false;
5478 }
c09544e0 5479
08e007d2
MX
5480 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5481 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5482 schedule_timeout(1);
ec44a35c 5483
c64c2bd8
JB
5484 if (delalloc_lock)
5485 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5486
0ca1f7ce 5487 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5488
9e0baf60 5489 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5490 nr_extents = (unsigned)div64_u64(num_bytes +
5491 BTRFS_MAX_EXTENT_SIZE - 1,
5492 BTRFS_MAX_EXTENT_SIZE);
5493 BTRFS_I(inode)->outstanding_extents += nr_extents;
5494 nr_extents = 0;
9e0baf60
JB
5495
5496 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5497 BTRFS_I(inode)->reserved_extents)
9e0baf60
JB
5498 nr_extents = BTRFS_I(inode)->outstanding_extents -
5499 BTRFS_I(inode)->reserved_extents;
57a45ced 5500
7fd2ae21
JB
5501 /*
5502 * Add an item to reserve for updating the inode when we complete the
5503 * delalloc io.
5504 */
72ac3c0d
JB
5505 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5506 &BTRFS_I(inode)->runtime_flags)) {
7fd2ae21 5507 nr_extents++;
660d3f6c 5508 extra_reserve = 1;
593060d7 5509 }
7fd2ae21
JB
5510
5511 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
7709cde3 5512 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5513 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5514 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5515
88e081bf 5516 if (root->fs_info->quota_enabled) {
237c0e9f 5517 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
88e081bf
WS
5518 if (ret)
5519 goto out_fail;
5520 }
c5567237 5521
88e081bf
WS
5522 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5523 if (unlikely(ret)) {
5524 if (root->fs_info->quota_enabled)
237c0e9f 5525 btrfs_qgroup_free(root, nr_extents * root->nodesize);
88e081bf 5526 goto out_fail;
9e0baf60 5527 }
25179201 5528
660d3f6c
JB
5529 spin_lock(&BTRFS_I(inode)->lock);
5530 if (extra_reserve) {
72ac3c0d
JB
5531 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5532 &BTRFS_I(inode)->runtime_flags);
660d3f6c
JB
5533 nr_extents--;
5534 }
5535 BTRFS_I(inode)->reserved_extents += nr_extents;
5536 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
5537
5538 if (delalloc_lock)
5539 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 5540
8c2a3ca2 5541 if (to_reserve)
67871254 5542 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 5543 btrfs_ino(inode), to_reserve, 1);
0ca1f7ce
YZ
5544 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5545
0ca1f7ce 5546 return 0;
88e081bf
WS
5547
5548out_fail:
5549 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5550 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
5551 /*
5552 * If the inodes csum_bytes is the same as the original
5553 * csum_bytes then we know we haven't raced with any free()ers
5554 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 5555 */
f4881bc7 5556 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 5557 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
5558 } else {
5559 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5560 u64 bytes;
5561
5562 /*
5563 * This is tricky, but first we need to figure out how much we
5564 * free'd from any free-ers that occured during this
5565 * reservation, so we reset ->csum_bytes to the csum_bytes
5566 * before we dropped our lock, and then call the free for the
5567 * number of bytes that were freed while we were trying our
5568 * reservation.
5569 */
5570 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5571 BTRFS_I(inode)->csum_bytes = csum_bytes;
5572 to_free = calc_csum_metadata_size(inode, bytes, 0);
5573
5574
5575 /*
5576 * Now we need to see how much we would have freed had we not
5577 * been making this reservation and our ->csum_bytes were not
5578 * artificially inflated.
5579 */
5580 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5581 bytes = csum_bytes - orig_csum_bytes;
5582 bytes = calc_csum_metadata_size(inode, bytes, 0);
5583
5584 /*
5585 * Now reset ->csum_bytes to what it should be. If bytes is
5586 * more than to_free then we would have free'd more space had we
5587 * not had an artificially high ->csum_bytes, so we need to free
5588 * the remainder. If bytes is the same or less then we don't
5589 * need to do anything, the other free-ers did the correct
5590 * thing.
5591 */
5592 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5593 if (bytes > to_free)
5594 to_free = bytes - to_free;
5595 else
5596 to_free = 0;
5597 }
88e081bf 5598 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 5599 if (dropped)
88e081bf
WS
5600 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5601
5602 if (to_free) {
5603 btrfs_block_rsv_release(root, block_rsv, to_free);
5604 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5605 btrfs_ino(inode), to_free, 0);
5606 }
5607 if (delalloc_lock)
5608 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5609 return ret;
0ca1f7ce
YZ
5610}
5611
7709cde3
JB
5612/**
5613 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5614 * @inode: the inode to release the reservation for
5615 * @num_bytes: the number of bytes we're releasing
5616 *
5617 * This will release the metadata reservation for an inode. This can be called
5618 * once we complete IO for a given set of bytes to release their metadata
5619 * reservations.
5620 */
0ca1f7ce
YZ
5621void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5622{
5623 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
5624 u64 to_free = 0;
5625 unsigned dropped;
0ca1f7ce
YZ
5626
5627 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 5628 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5629 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 5630
0934856d
MX
5631 if (num_bytes)
5632 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 5633 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
5634 if (dropped > 0)
5635 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 5636
6a3891c5
JB
5637 if (btrfs_test_is_dummy_root(root))
5638 return;
5639
8c2a3ca2
JB
5640 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5641 btrfs_ino(inode), to_free, 0);
c5567237 5642
0ca1f7ce
YZ
5643 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5644 to_free);
5645}
5646
7709cde3
JB
5647/**
5648 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5649 * @inode: inode we're writing to
5650 * @num_bytes: the number of bytes we want to allocate
5651 *
5652 * This will do the following things
5653 *
5654 * o reserve space in the data space info for num_bytes
5655 * o reserve space in the metadata space info based on number of outstanding
5656 * extents and how much csums will be needed
5657 * o add to the inodes ->delalloc_bytes
5658 * o add it to the fs_info's delalloc inodes list.
5659 *
5660 * This will return 0 for success and -ENOSPC if there is no space left.
5661 */
0ca1f7ce
YZ
5662int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5663{
5664 int ret;
5665
e2d1f923 5666 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
d397712b 5667 if (ret)
0ca1f7ce
YZ
5668 return ret;
5669
5670 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5671 if (ret) {
5672 btrfs_free_reserved_data_space(inode, num_bytes);
5673 return ret;
5674 }
5675
5676 return 0;
5677}
5678
7709cde3
JB
5679/**
5680 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5681 * @inode: inode we're releasing space for
5682 * @num_bytes: the number of bytes we want to free up
5683 *
5684 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5685 * called in the case that we don't need the metadata AND data reservations
5686 * anymore. So if there is an error or we insert an inline extent.
5687 *
5688 * This function will release the metadata space that was not used and will
5689 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5690 * list if there are no delalloc bytes left.
5691 */
0ca1f7ce
YZ
5692void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5693{
5694 btrfs_delalloc_release_metadata(inode, num_bytes);
5695 btrfs_free_reserved_data_space(inode, num_bytes);
6324fbf3
CM
5696}
5697
ce93ec54
JB
5698static int update_block_group(struct btrfs_trans_handle *trans,
5699 struct btrfs_root *root, u64 bytenr,
5700 u64 num_bytes, int alloc)
9078a3e1 5701{
0af3d00b 5702 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 5703 struct btrfs_fs_info *info = root->fs_info;
db94535d 5704 u64 total = num_bytes;
9078a3e1 5705 u64 old_val;
db94535d 5706 u64 byte_in_group;
0af3d00b 5707 int factor;
3e1ad54f 5708
5d4f98a2 5709 /* block accounting for super block */
eb73c1b7 5710 spin_lock(&info->delalloc_root_lock);
6c41761f 5711 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
5712 if (alloc)
5713 old_val += num_bytes;
5714 else
5715 old_val -= num_bytes;
6c41761f 5716 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 5717 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 5718
d397712b 5719 while (total) {
db94535d 5720 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 5721 if (!cache)
79787eaa 5722 return -ENOENT;
b742bb82
YZ
5723 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5724 BTRFS_BLOCK_GROUP_RAID1 |
5725 BTRFS_BLOCK_GROUP_RAID10))
5726 factor = 2;
5727 else
5728 factor = 1;
9d66e233
JB
5729 /*
5730 * If this block group has free space cache written out, we
5731 * need to make sure to load it if we are removing space. This
5732 * is because we need the unpinning stage to actually add the
5733 * space back to the block group, otherwise we will leak space.
5734 */
5735 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 5736 cache_block_group(cache, 1);
0af3d00b 5737
db94535d
CM
5738 byte_in_group = bytenr - cache->key.objectid;
5739 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 5740
25179201 5741 spin_lock(&cache->space_info->lock);
c286ac48 5742 spin_lock(&cache->lock);
0af3d00b 5743
73bc1876 5744 if (btrfs_test_opt(root, SPACE_CACHE) &&
0af3d00b
JB
5745 cache->disk_cache_state < BTRFS_DC_CLEAR)
5746 cache->disk_cache_state = BTRFS_DC_CLEAR;
5747
9078a3e1 5748 old_val = btrfs_block_group_used(&cache->item);
db94535d 5749 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 5750 if (alloc) {
db94535d 5751 old_val += num_bytes;
11833d66
YZ
5752 btrfs_set_block_group_used(&cache->item, old_val);
5753 cache->reserved -= num_bytes;
11833d66 5754 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
5755 cache->space_info->bytes_used += num_bytes;
5756 cache->space_info->disk_used += num_bytes * factor;
c286ac48 5757 spin_unlock(&cache->lock);
25179201 5758 spin_unlock(&cache->space_info->lock);
cd1bc465 5759 } else {
db94535d 5760 old_val -= num_bytes;
ae0ab003
FM
5761 btrfs_set_block_group_used(&cache->item, old_val);
5762 cache->pinned += num_bytes;
5763 cache->space_info->bytes_pinned += num_bytes;
5764 cache->space_info->bytes_used -= num_bytes;
5765 cache->space_info->disk_used -= num_bytes * factor;
5766 spin_unlock(&cache->lock);
5767 spin_unlock(&cache->space_info->lock);
47ab2a6c 5768
ae0ab003
FM
5769 set_extent_dirty(info->pinned_extents,
5770 bytenr, bytenr + num_bytes - 1,
5771 GFP_NOFS | __GFP_NOFAIL);
47ab2a6c
JB
5772 /*
5773 * No longer have used bytes in this block group, queue
5774 * it for deletion.
5775 */
5776 if (old_val == 0) {
5777 spin_lock(&info->unused_bgs_lock);
5778 if (list_empty(&cache->bg_list)) {
5779 btrfs_get_block_group(cache);
5780 list_add_tail(&cache->bg_list,
5781 &info->unused_bgs);
5782 }
5783 spin_unlock(&info->unused_bgs_lock);
5784 }
cd1bc465 5785 }
1bbc621e
CM
5786
5787 spin_lock(&trans->transaction->dirty_bgs_lock);
5788 if (list_empty(&cache->dirty_list)) {
5789 list_add_tail(&cache->dirty_list,
5790 &trans->transaction->dirty_bgs);
5791 trans->transaction->num_dirty_bgs++;
5792 btrfs_get_block_group(cache);
5793 }
5794 spin_unlock(&trans->transaction->dirty_bgs_lock);
5795
fa9c0d79 5796 btrfs_put_block_group(cache);
db94535d
CM
5797 total -= num_bytes;
5798 bytenr += num_bytes;
9078a3e1
CM
5799 }
5800 return 0;
5801}
6324fbf3 5802
a061fc8d
CM
5803static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5804{
0f9dd46c 5805 struct btrfs_block_group_cache *cache;
d2fb3437 5806 u64 bytenr;
0f9dd46c 5807
a1897fdd
LB
5808 spin_lock(&root->fs_info->block_group_cache_lock);
5809 bytenr = root->fs_info->first_logical_byte;
5810 spin_unlock(&root->fs_info->block_group_cache_lock);
5811
5812 if (bytenr < (u64)-1)
5813 return bytenr;
5814
0f9dd46c
JB
5815 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5816 if (!cache)
a061fc8d 5817 return 0;
0f9dd46c 5818
d2fb3437 5819 bytenr = cache->key.objectid;
fa9c0d79 5820 btrfs_put_block_group(cache);
d2fb3437
YZ
5821
5822 return bytenr;
a061fc8d
CM
5823}
5824
f0486c68
YZ
5825static int pin_down_extent(struct btrfs_root *root,
5826 struct btrfs_block_group_cache *cache,
5827 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 5828{
11833d66
YZ
5829 spin_lock(&cache->space_info->lock);
5830 spin_lock(&cache->lock);
5831 cache->pinned += num_bytes;
5832 cache->space_info->bytes_pinned += num_bytes;
5833 if (reserved) {
5834 cache->reserved -= num_bytes;
5835 cache->space_info->bytes_reserved -= num_bytes;
5836 }
5837 spin_unlock(&cache->lock);
5838 spin_unlock(&cache->space_info->lock);
68b38550 5839
f0486c68
YZ
5840 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5841 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
e2d1f923 5842 if (reserved)
0be5dc67 5843 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
f0486c68
YZ
5844 return 0;
5845}
68b38550 5846
f0486c68
YZ
5847/*
5848 * this function must be called within transaction
5849 */
5850int btrfs_pin_extent(struct btrfs_root *root,
5851 u64 bytenr, u64 num_bytes, int reserved)
5852{
5853 struct btrfs_block_group_cache *cache;
68b38550 5854
f0486c68 5855 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 5856 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
5857
5858 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5859
5860 btrfs_put_block_group(cache);
11833d66
YZ
5861 return 0;
5862}
5863
f0486c68 5864/*
e688b725
CM
5865 * this function must be called within transaction
5866 */
dcfac415 5867int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
5868 u64 bytenr, u64 num_bytes)
5869{
5870 struct btrfs_block_group_cache *cache;
b50c6e25 5871 int ret;
e688b725
CM
5872
5873 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
5874 if (!cache)
5875 return -EINVAL;
e688b725
CM
5876
5877 /*
5878 * pull in the free space cache (if any) so that our pin
5879 * removes the free space from the cache. We have load_only set
5880 * to one because the slow code to read in the free extents does check
5881 * the pinned extents.
5882 */
f6373bf3 5883 cache_block_group(cache, 1);
e688b725
CM
5884
5885 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5886
5887 /* remove us from the free space cache (if we're there at all) */
b50c6e25 5888 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 5889 btrfs_put_block_group(cache);
b50c6e25 5890 return ret;
e688b725
CM
5891}
5892
8c2a1a30
JB
5893static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5894{
5895 int ret;
5896 struct btrfs_block_group_cache *block_group;
5897 struct btrfs_caching_control *caching_ctl;
5898
5899 block_group = btrfs_lookup_block_group(root->fs_info, start);
5900 if (!block_group)
5901 return -EINVAL;
5902
5903 cache_block_group(block_group, 0);
5904 caching_ctl = get_caching_control(block_group);
5905
5906 if (!caching_ctl) {
5907 /* Logic error */
5908 BUG_ON(!block_group_cache_done(block_group));
5909 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5910 } else {
5911 mutex_lock(&caching_ctl->mutex);
5912
5913 if (start >= caching_ctl->progress) {
5914 ret = add_excluded_extent(root, start, num_bytes);
5915 } else if (start + num_bytes <= caching_ctl->progress) {
5916 ret = btrfs_remove_free_space(block_group,
5917 start, num_bytes);
5918 } else {
5919 num_bytes = caching_ctl->progress - start;
5920 ret = btrfs_remove_free_space(block_group,
5921 start, num_bytes);
5922 if (ret)
5923 goto out_lock;
5924
5925 num_bytes = (start + num_bytes) -
5926 caching_ctl->progress;
5927 start = caching_ctl->progress;
5928 ret = add_excluded_extent(root, start, num_bytes);
5929 }
5930out_lock:
5931 mutex_unlock(&caching_ctl->mutex);
5932 put_caching_control(caching_ctl);
5933 }
5934 btrfs_put_block_group(block_group);
5935 return ret;
5936}
5937
5938int btrfs_exclude_logged_extents(struct btrfs_root *log,
5939 struct extent_buffer *eb)
5940{
5941 struct btrfs_file_extent_item *item;
5942 struct btrfs_key key;
5943 int found_type;
5944 int i;
5945
5946 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5947 return 0;
5948
5949 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5950 btrfs_item_key_to_cpu(eb, &key, i);
5951 if (key.type != BTRFS_EXTENT_DATA_KEY)
5952 continue;
5953 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5954 found_type = btrfs_file_extent_type(eb, item);
5955 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5956 continue;
5957 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5958 continue;
5959 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5960 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5961 __exclude_logged_extent(log, key.objectid, key.offset);
5962 }
5963
5964 return 0;
5965}
5966
fb25e914
JB
5967/**
5968 * btrfs_update_reserved_bytes - update the block_group and space info counters
5969 * @cache: The cache we are manipulating
5970 * @num_bytes: The number of bytes in question
5971 * @reserve: One of the reservation enums
e570fd27 5972 * @delalloc: The blocks are allocated for the delalloc write
fb25e914
JB
5973 *
5974 * This is called by the allocator when it reserves space, or by somebody who is
5975 * freeing space that was never actually used on disk. For example if you
5976 * reserve some space for a new leaf in transaction A and before transaction A
5977 * commits you free that leaf, you call this with reserve set to 0 in order to
5978 * clear the reservation.
5979 *
5980 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5981 * ENOSPC accounting. For data we handle the reservation through clearing the
5982 * delalloc bits in the io_tree. We have to do this since we could end up
5983 * allocating less disk space for the amount of data we have reserved in the
5984 * case of compression.
5985 *
5986 * If this is a reservation and the block group has become read only we cannot
5987 * make the reservation and return -EAGAIN, otherwise this function always
5988 * succeeds.
f0486c68 5989 */
fb25e914 5990static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27 5991 u64 num_bytes, int reserve, int delalloc)
11833d66 5992{
fb25e914 5993 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 5994 int ret = 0;
79787eaa 5995
fb25e914
JB
5996 spin_lock(&space_info->lock);
5997 spin_lock(&cache->lock);
5998 if (reserve != RESERVE_FREE) {
f0486c68
YZ
5999 if (cache->ro) {
6000 ret = -EAGAIN;
6001 } else {
fb25e914
JB
6002 cache->reserved += num_bytes;
6003 space_info->bytes_reserved += num_bytes;
6004 if (reserve == RESERVE_ALLOC) {
8c2a3ca2 6005 trace_btrfs_space_reservation(cache->fs_info,
2bcc0328
LB
6006 "space_info", space_info->flags,
6007 num_bytes, 0);
fb25e914
JB
6008 space_info->bytes_may_use -= num_bytes;
6009 }
e570fd27
MX
6010
6011 if (delalloc)
6012 cache->delalloc_bytes += num_bytes;
f0486c68 6013 }
fb25e914
JB
6014 } else {
6015 if (cache->ro)
6016 space_info->bytes_readonly += num_bytes;
6017 cache->reserved -= num_bytes;
6018 space_info->bytes_reserved -= num_bytes;
e570fd27
MX
6019
6020 if (delalloc)
6021 cache->delalloc_bytes -= num_bytes;
324ae4df 6022 }
fb25e914
JB
6023 spin_unlock(&cache->lock);
6024 spin_unlock(&space_info->lock);
f0486c68 6025 return ret;
324ae4df 6026}
9078a3e1 6027
143bede5 6028void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6029 struct btrfs_root *root)
e8569813 6030{
e8569813 6031 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
6032 struct btrfs_caching_control *next;
6033 struct btrfs_caching_control *caching_ctl;
6034 struct btrfs_block_group_cache *cache;
e8569813 6035
9e351cc8 6036 down_write(&fs_info->commit_root_sem);
25179201 6037
11833d66
YZ
6038 list_for_each_entry_safe(caching_ctl, next,
6039 &fs_info->caching_block_groups, list) {
6040 cache = caching_ctl->block_group;
6041 if (block_group_cache_done(cache)) {
6042 cache->last_byte_to_unpin = (u64)-1;
6043 list_del_init(&caching_ctl->list);
6044 put_caching_control(caching_ctl);
e8569813 6045 } else {
11833d66 6046 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6047 }
e8569813 6048 }
11833d66
YZ
6049
6050 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6051 fs_info->pinned_extents = &fs_info->freed_extents[1];
6052 else
6053 fs_info->pinned_extents = &fs_info->freed_extents[0];
6054
9e351cc8 6055 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6056
6057 update_global_block_rsv(fs_info);
e8569813
ZY
6058}
6059
678886bd
FM
6060static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6061 const bool return_free_space)
ccd467d6 6062{
11833d66
YZ
6063 struct btrfs_fs_info *fs_info = root->fs_info;
6064 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6065 struct btrfs_space_info *space_info;
6066 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
11833d66 6067 u64 len;
7b398f8e 6068 bool readonly;
ccd467d6 6069
11833d66 6070 while (start <= end) {
7b398f8e 6071 readonly = false;
11833d66
YZ
6072 if (!cache ||
6073 start >= cache->key.objectid + cache->key.offset) {
6074 if (cache)
6075 btrfs_put_block_group(cache);
6076 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6077 BUG_ON(!cache); /* Logic error */
11833d66
YZ
6078 }
6079
6080 len = cache->key.objectid + cache->key.offset - start;
6081 len = min(len, end + 1 - start);
6082
6083 if (start < cache->last_byte_to_unpin) {
6084 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6085 if (return_free_space)
6086 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6087 }
6088
f0486c68 6089 start += len;
7b398f8e 6090 space_info = cache->space_info;
f0486c68 6091
7b398f8e 6092 spin_lock(&space_info->lock);
11833d66
YZ
6093 spin_lock(&cache->lock);
6094 cache->pinned -= len;
7b398f8e 6095 space_info->bytes_pinned -= len;
d288db5d 6096 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6097 if (cache->ro) {
6098 space_info->bytes_readonly += len;
6099 readonly = true;
6100 }
11833d66 6101 spin_unlock(&cache->lock);
7b398f8e
JB
6102 if (!readonly && global_rsv->space_info == space_info) {
6103 spin_lock(&global_rsv->lock);
6104 if (!global_rsv->full) {
6105 len = min(len, global_rsv->size -
6106 global_rsv->reserved);
6107 global_rsv->reserved += len;
6108 space_info->bytes_may_use += len;
6109 if (global_rsv->reserved >= global_rsv->size)
6110 global_rsv->full = 1;
6111 }
6112 spin_unlock(&global_rsv->lock);
6113 }
6114 spin_unlock(&space_info->lock);
ccd467d6 6115 }
11833d66
YZ
6116
6117 if (cache)
6118 btrfs_put_block_group(cache);
ccd467d6
CM
6119 return 0;
6120}
6121
6122int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6123 struct btrfs_root *root)
a28ec197 6124{
11833d66 6125 struct btrfs_fs_info *fs_info = root->fs_info;
e33e17ee
JM
6126 struct btrfs_block_group_cache *block_group, *tmp;
6127 struct list_head *deleted_bgs;
11833d66 6128 struct extent_io_tree *unpin;
1a5bc167
CM
6129 u64 start;
6130 u64 end;
a28ec197 6131 int ret;
a28ec197 6132
11833d66
YZ
6133 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6134 unpin = &fs_info->freed_extents[1];
6135 else
6136 unpin = &fs_info->freed_extents[0];
6137
e33e17ee 6138 while (!trans->aborted) {
d4b450cd 6139 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6140 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6141 EXTENT_DIRTY, NULL);
d4b450cd
FM
6142 if (ret) {
6143 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6144 break;
d4b450cd 6145 }
1f3c79a2 6146
5378e607
LD
6147 if (btrfs_test_opt(root, DISCARD))
6148 ret = btrfs_discard_extent(root, start,
6149 end + 1 - start, NULL);
1f3c79a2 6150
1a5bc167 6151 clear_extent_dirty(unpin, start, end, GFP_NOFS);
678886bd 6152 unpin_extent_range(root, start, end, true);
d4b450cd 6153 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6154 cond_resched();
a28ec197 6155 }
817d52f8 6156
e33e17ee
JM
6157 /*
6158 * Transaction is finished. We don't need the lock anymore. We
6159 * do need to clean up the block groups in case of a transaction
6160 * abort.
6161 */
6162 deleted_bgs = &trans->transaction->deleted_bgs;
6163 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6164 u64 trimmed = 0;
6165
6166 ret = -EROFS;
6167 if (!trans->aborted)
6168 ret = btrfs_discard_extent(root,
6169 block_group->key.objectid,
6170 block_group->key.offset,
6171 &trimmed);
6172
6173 list_del_init(&block_group->bg_list);
6174 btrfs_put_block_group_trimming(block_group);
6175 btrfs_put_block_group(block_group);
6176
6177 if (ret) {
6178 const char *errstr = btrfs_decode_error(ret);
6179 btrfs_warn(fs_info,
6180 "Discard failed while removing blockgroup: errno=%d %s\n",
6181 ret, errstr);
6182 }
6183 }
6184
e20d96d6
CM
6185 return 0;
6186}
6187
b150a4f1
JB
6188static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6189 u64 owner, u64 root_objectid)
6190{
6191 struct btrfs_space_info *space_info;
6192 u64 flags;
6193
6194 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6195 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6196 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6197 else
6198 flags = BTRFS_BLOCK_GROUP_METADATA;
6199 } else {
6200 flags = BTRFS_BLOCK_GROUP_DATA;
6201 }
6202
6203 space_info = __find_space_info(fs_info, flags);
6204 BUG_ON(!space_info); /* Logic bug */
6205 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6206}
6207
6208
5d4f98a2
YZ
6209static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6210 struct btrfs_root *root,
c682f9b3 6211 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6212 u64 root_objectid, u64 owner_objectid,
6213 u64 owner_offset, int refs_to_drop,
c682f9b3 6214 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6215{
e2fa7227 6216 struct btrfs_key key;
5d4f98a2 6217 struct btrfs_path *path;
1261ec42
CM
6218 struct btrfs_fs_info *info = root->fs_info;
6219 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6220 struct extent_buffer *leaf;
5d4f98a2
YZ
6221 struct btrfs_extent_item *ei;
6222 struct btrfs_extent_inline_ref *iref;
a28ec197 6223 int ret;
5d4f98a2 6224 int is_data;
952fccac
CM
6225 int extent_slot = 0;
6226 int found_extent = 0;
6227 int num_to_del = 1;
c682f9b3 6228 int no_quota = node->no_quota;
5d4f98a2
YZ
6229 u32 item_size;
6230 u64 refs;
c682f9b3
QW
6231 u64 bytenr = node->bytenr;
6232 u64 num_bytes = node->num_bytes;
fcebe456 6233 int last_ref = 0;
3173a18f
JB
6234 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6235 SKINNY_METADATA);
037e6390 6236
fcebe456
JB
6237 if (!info->quota_enabled || !is_fstree(root_objectid))
6238 no_quota = 1;
6239
5caf2a00 6240 path = btrfs_alloc_path();
54aa1f4d
CM
6241 if (!path)
6242 return -ENOMEM;
5f26f772 6243
3c12ac72 6244 path->reada = 1;
b9473439 6245 path->leave_spinning = 1;
5d4f98a2
YZ
6246
6247 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6248 BUG_ON(!is_data && refs_to_drop != 1);
6249
3173a18f
JB
6250 if (is_data)
6251 skinny_metadata = 0;
6252
5d4f98a2
YZ
6253 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6254 bytenr, num_bytes, parent,
6255 root_objectid, owner_objectid,
6256 owner_offset);
7bb86316 6257 if (ret == 0) {
952fccac 6258 extent_slot = path->slots[0];
5d4f98a2
YZ
6259 while (extent_slot >= 0) {
6260 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6261 extent_slot);
5d4f98a2 6262 if (key.objectid != bytenr)
952fccac 6263 break;
5d4f98a2
YZ
6264 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6265 key.offset == num_bytes) {
952fccac
CM
6266 found_extent = 1;
6267 break;
6268 }
3173a18f
JB
6269 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6270 key.offset == owner_objectid) {
6271 found_extent = 1;
6272 break;
6273 }
952fccac
CM
6274 if (path->slots[0] - extent_slot > 5)
6275 break;
5d4f98a2 6276 extent_slot--;
952fccac 6277 }
5d4f98a2
YZ
6278#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6279 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6280 if (found_extent && item_size < sizeof(*ei))
6281 found_extent = 0;
6282#endif
31840ae1 6283 if (!found_extent) {
5d4f98a2 6284 BUG_ON(iref);
56bec294 6285 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6286 NULL, refs_to_drop,
fcebe456 6287 is_data, &last_ref);
005d6427
DS
6288 if (ret) {
6289 btrfs_abort_transaction(trans, extent_root, ret);
6290 goto out;
6291 }
b3b4aa74 6292 btrfs_release_path(path);
b9473439 6293 path->leave_spinning = 1;
5d4f98a2
YZ
6294
6295 key.objectid = bytenr;
6296 key.type = BTRFS_EXTENT_ITEM_KEY;
6297 key.offset = num_bytes;
6298
3173a18f
JB
6299 if (!is_data && skinny_metadata) {
6300 key.type = BTRFS_METADATA_ITEM_KEY;
6301 key.offset = owner_objectid;
6302 }
6303
31840ae1
ZY
6304 ret = btrfs_search_slot(trans, extent_root,
6305 &key, path, -1, 1);
3173a18f
JB
6306 if (ret > 0 && skinny_metadata && path->slots[0]) {
6307 /*
6308 * Couldn't find our skinny metadata item,
6309 * see if we have ye olde extent item.
6310 */
6311 path->slots[0]--;
6312 btrfs_item_key_to_cpu(path->nodes[0], &key,
6313 path->slots[0]);
6314 if (key.objectid == bytenr &&
6315 key.type == BTRFS_EXTENT_ITEM_KEY &&
6316 key.offset == num_bytes)
6317 ret = 0;
6318 }
6319
6320 if (ret > 0 && skinny_metadata) {
6321 skinny_metadata = false;
9ce49a0b 6322 key.objectid = bytenr;
3173a18f
JB
6323 key.type = BTRFS_EXTENT_ITEM_KEY;
6324 key.offset = num_bytes;
6325 btrfs_release_path(path);
6326 ret = btrfs_search_slot(trans, extent_root,
6327 &key, path, -1, 1);
6328 }
6329
f3465ca4 6330 if (ret) {
c2cf52eb 6331 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6332 ret, bytenr);
b783e62d
JB
6333 if (ret > 0)
6334 btrfs_print_leaf(extent_root,
6335 path->nodes[0]);
f3465ca4 6336 }
005d6427
DS
6337 if (ret < 0) {
6338 btrfs_abort_transaction(trans, extent_root, ret);
6339 goto out;
6340 }
31840ae1
ZY
6341 extent_slot = path->slots[0];
6342 }
fae7f21c 6343 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6344 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6345 btrfs_err(info,
6346 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6347 bytenr, parent, root_objectid, owner_objectid,
6348 owner_offset);
c4a050bb
JB
6349 btrfs_abort_transaction(trans, extent_root, ret);
6350 goto out;
79787eaa 6351 } else {
005d6427
DS
6352 btrfs_abort_transaction(trans, extent_root, ret);
6353 goto out;
7bb86316 6354 }
5f39d397
CM
6355
6356 leaf = path->nodes[0];
5d4f98a2
YZ
6357 item_size = btrfs_item_size_nr(leaf, extent_slot);
6358#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6359 if (item_size < sizeof(*ei)) {
6360 BUG_ON(found_extent || extent_slot != path->slots[0]);
6361 ret = convert_extent_item_v0(trans, extent_root, path,
6362 owner_objectid, 0);
005d6427
DS
6363 if (ret < 0) {
6364 btrfs_abort_transaction(trans, extent_root, ret);
6365 goto out;
6366 }
5d4f98a2 6367
b3b4aa74 6368 btrfs_release_path(path);
5d4f98a2
YZ
6369 path->leave_spinning = 1;
6370
6371 key.objectid = bytenr;
6372 key.type = BTRFS_EXTENT_ITEM_KEY;
6373 key.offset = num_bytes;
6374
6375 ret = btrfs_search_slot(trans, extent_root, &key, path,
6376 -1, 1);
6377 if (ret) {
c2cf52eb 6378 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6379 ret, bytenr);
5d4f98a2
YZ
6380 btrfs_print_leaf(extent_root, path->nodes[0]);
6381 }
005d6427
DS
6382 if (ret < 0) {
6383 btrfs_abort_transaction(trans, extent_root, ret);
6384 goto out;
6385 }
6386
5d4f98a2
YZ
6387 extent_slot = path->slots[0];
6388 leaf = path->nodes[0];
6389 item_size = btrfs_item_size_nr(leaf, extent_slot);
6390 }
6391#endif
6392 BUG_ON(item_size < sizeof(*ei));
952fccac 6393 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6394 struct btrfs_extent_item);
3173a18f
JB
6395 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6396 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6397 struct btrfs_tree_block_info *bi;
6398 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6399 bi = (struct btrfs_tree_block_info *)(ei + 1);
6400 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6401 }
56bec294 6402
5d4f98a2 6403 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
6404 if (refs < refs_to_drop) {
6405 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 6406 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538
JB
6407 ret = -EINVAL;
6408 btrfs_abort_transaction(trans, extent_root, ret);
6409 goto out;
6410 }
56bec294 6411 refs -= refs_to_drop;
5f39d397 6412
5d4f98a2
YZ
6413 if (refs > 0) {
6414 if (extent_op)
6415 __run_delayed_extent_op(extent_op, leaf, ei);
6416 /*
6417 * In the case of inline back ref, reference count will
6418 * be updated by remove_extent_backref
952fccac 6419 */
5d4f98a2
YZ
6420 if (iref) {
6421 BUG_ON(!found_extent);
6422 } else {
6423 btrfs_set_extent_refs(leaf, ei, refs);
6424 btrfs_mark_buffer_dirty(leaf);
6425 }
6426 if (found_extent) {
6427 ret = remove_extent_backref(trans, extent_root, path,
6428 iref, refs_to_drop,
fcebe456 6429 is_data, &last_ref);
005d6427
DS
6430 if (ret) {
6431 btrfs_abort_transaction(trans, extent_root, ret);
6432 goto out;
6433 }
952fccac 6434 }
b150a4f1
JB
6435 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6436 root_objectid);
5d4f98a2 6437 } else {
5d4f98a2
YZ
6438 if (found_extent) {
6439 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 6440 extent_data_ref_count(path, iref));
5d4f98a2
YZ
6441 if (iref) {
6442 BUG_ON(path->slots[0] != extent_slot);
6443 } else {
6444 BUG_ON(path->slots[0] != extent_slot + 1);
6445 path->slots[0] = extent_slot;
6446 num_to_del = 2;
6447 }
78fae27e 6448 }
b9473439 6449
fcebe456 6450 last_ref = 1;
952fccac
CM
6451 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6452 num_to_del);
005d6427
DS
6453 if (ret) {
6454 btrfs_abort_transaction(trans, extent_root, ret);
6455 goto out;
6456 }
b3b4aa74 6457 btrfs_release_path(path);
21af804c 6458
5d4f98a2 6459 if (is_data) {
459931ec 6460 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427
DS
6461 if (ret) {
6462 btrfs_abort_transaction(trans, extent_root, ret);
6463 goto out;
6464 }
459931ec
CM
6465 }
6466
ce93ec54 6467 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427
DS
6468 if (ret) {
6469 btrfs_abort_transaction(trans, extent_root, ret);
6470 goto out;
6471 }
a28ec197 6472 }
fcebe456
JB
6473 btrfs_release_path(path);
6474
79787eaa 6475out:
5caf2a00 6476 btrfs_free_path(path);
a28ec197
CM
6477 return ret;
6478}
6479
1887be66 6480/*
f0486c68 6481 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6482 * delayed ref for that extent as well. This searches the delayed ref tree for
6483 * a given extent, and if there are no other delayed refs to be processed, it
6484 * removes it from the tree.
6485 */
6486static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6487 struct btrfs_root *root, u64 bytenr)
6488{
6489 struct btrfs_delayed_ref_head *head;
6490 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6491 int ret = 0;
1887be66
CM
6492
6493 delayed_refs = &trans->transaction->delayed_refs;
6494 spin_lock(&delayed_refs->lock);
6495 head = btrfs_find_delayed_ref_head(trans, bytenr);
6496 if (!head)
cf93da7b 6497 goto out_delayed_unlock;
1887be66 6498
d7df2c79 6499 spin_lock(&head->lock);
c6fc2454 6500 if (!list_empty(&head->ref_list))
1887be66
CM
6501 goto out;
6502
5d4f98a2
YZ
6503 if (head->extent_op) {
6504 if (!head->must_insert_reserved)
6505 goto out;
78a6184a 6506 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6507 head->extent_op = NULL;
6508 }
6509
1887be66
CM
6510 /*
6511 * waiting for the lock here would deadlock. If someone else has it
6512 * locked they are already in the process of dropping it anyway
6513 */
6514 if (!mutex_trylock(&head->mutex))
6515 goto out;
6516
6517 /*
6518 * at this point we have a head with no other entries. Go
6519 * ahead and process it.
6520 */
6521 head->node.in_tree = 0;
c46effa6 6522 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 6523
d7df2c79 6524 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6525
6526 /*
6527 * we don't take a ref on the node because we're removing it from the
6528 * tree, so we just steal the ref the tree was holding.
6529 */
c3e69d58 6530 delayed_refs->num_heads--;
d7df2c79 6531 if (head->processing == 0)
c3e69d58 6532 delayed_refs->num_heads_ready--;
d7df2c79
JB
6533 head->processing = 0;
6534 spin_unlock(&head->lock);
1887be66
CM
6535 spin_unlock(&delayed_refs->lock);
6536
f0486c68
YZ
6537 BUG_ON(head->extent_op);
6538 if (head->must_insert_reserved)
6539 ret = 1;
6540
6541 mutex_unlock(&head->mutex);
1887be66 6542 btrfs_put_delayed_ref(&head->node);
f0486c68 6543 return ret;
1887be66 6544out:
d7df2c79 6545 spin_unlock(&head->lock);
cf93da7b
CM
6546
6547out_delayed_unlock:
1887be66
CM
6548 spin_unlock(&delayed_refs->lock);
6549 return 0;
6550}
6551
f0486c68
YZ
6552void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6553 struct btrfs_root *root,
6554 struct extent_buffer *buf,
5581a51a 6555 u64 parent, int last_ref)
f0486c68 6556{
b150a4f1 6557 int pin = 1;
f0486c68
YZ
6558 int ret;
6559
6560 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
6561 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6562 buf->start, buf->len,
6563 parent, root->root_key.objectid,
6564 btrfs_header_level(buf),
5581a51a 6565 BTRFS_DROP_DELAYED_REF, NULL, 0);
79787eaa 6566 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
6567 }
6568
6569 if (!last_ref)
6570 return;
6571
f0486c68 6572 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
6573 struct btrfs_block_group_cache *cache;
6574
f0486c68
YZ
6575 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6576 ret = check_ref_cleanup(trans, root, buf->start);
6577 if (!ret)
37be25bc 6578 goto out;
f0486c68
YZ
6579 }
6580
6219872d
FM
6581 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6582
f0486c68
YZ
6583 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6584 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 6585 btrfs_put_block_group(cache);
37be25bc 6586 goto out;
f0486c68
YZ
6587 }
6588
6589 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6590
6591 btrfs_add_free_space(cache, buf->start, buf->len);
e570fd27 6592 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6219872d 6593 btrfs_put_block_group(cache);
0be5dc67 6594 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 6595 pin = 0;
f0486c68
YZ
6596 }
6597out:
b150a4f1
JB
6598 if (pin)
6599 add_pinned_bytes(root->fs_info, buf->len,
6600 btrfs_header_level(buf),
6601 root->root_key.objectid);
6602
a826d6dc
JB
6603 /*
6604 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6605 * anymore.
6606 */
6607 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
6608}
6609
79787eaa 6610/* Can return -ENOMEM */
66d7e7f0
AJ
6611int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6612 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
fcebe456 6613 u64 owner, u64 offset, int no_quota)
925baedd
CM
6614{
6615 int ret;
66d7e7f0 6616 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 6617
fccb84c9 6618 if (btrfs_test_is_dummy_root(root))
faa2dbf0 6619 return 0;
fccb84c9 6620
b150a4f1
JB
6621 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6622
56bec294
CM
6623 /*
6624 * tree log blocks never actually go into the extent allocation
6625 * tree, just update pinning info and exit early.
56bec294 6626 */
5d4f98a2
YZ
6627 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6628 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 6629 /* unlocks the pinned mutex */
11833d66 6630 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 6631 ret = 0;
5d4f98a2 6632 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
6633 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6634 num_bytes,
5d4f98a2 6635 parent, root_objectid, (int)owner,
fcebe456 6636 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
5d4f98a2 6637 } else {
66d7e7f0
AJ
6638 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6639 num_bytes,
6640 parent, root_objectid, owner,
6641 offset, BTRFS_DROP_DELAYED_REF,
fcebe456 6642 NULL, no_quota);
56bec294 6643 }
925baedd
CM
6644 return ret;
6645}
6646
817d52f8
JB
6647/*
6648 * when we wait for progress in the block group caching, its because
6649 * our allocation attempt failed at least once. So, we must sleep
6650 * and let some progress happen before we try again.
6651 *
6652 * This function will sleep at least once waiting for new free space to
6653 * show up, and then it will check the block group free space numbers
6654 * for our min num_bytes. Another option is to have it go ahead
6655 * and look in the rbtree for a free extent of a given size, but this
6656 * is a good start.
36cce922
JB
6657 *
6658 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6659 * any of the information in this block group.
817d52f8 6660 */
36cce922 6661static noinline void
817d52f8
JB
6662wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6663 u64 num_bytes)
6664{
11833d66 6665 struct btrfs_caching_control *caching_ctl;
817d52f8 6666
11833d66
YZ
6667 caching_ctl = get_caching_control(cache);
6668 if (!caching_ctl)
36cce922 6669 return;
817d52f8 6670
11833d66 6671 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 6672 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
6673
6674 put_caching_control(caching_ctl);
11833d66
YZ
6675}
6676
6677static noinline int
6678wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6679{
6680 struct btrfs_caching_control *caching_ctl;
36cce922 6681 int ret = 0;
11833d66
YZ
6682
6683 caching_ctl = get_caching_control(cache);
6684 if (!caching_ctl)
36cce922 6685 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
6686
6687 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
6688 if (cache->cached == BTRFS_CACHE_ERROR)
6689 ret = -EIO;
11833d66 6690 put_caching_control(caching_ctl);
36cce922 6691 return ret;
817d52f8
JB
6692}
6693
31e50229 6694int __get_raid_index(u64 flags)
b742bb82 6695{
7738a53a 6696 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 6697 return BTRFS_RAID_RAID10;
7738a53a 6698 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 6699 return BTRFS_RAID_RAID1;
7738a53a 6700 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 6701 return BTRFS_RAID_DUP;
7738a53a 6702 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 6703 return BTRFS_RAID_RAID0;
53b381b3 6704 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 6705 return BTRFS_RAID_RAID5;
53b381b3 6706 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 6707 return BTRFS_RAID_RAID6;
7738a53a 6708
e942f883 6709 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
6710}
6711
6ab0a202 6712int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 6713{
31e50229 6714 return __get_raid_index(cache->flags);
7738a53a
ID
6715}
6716
6ab0a202
JM
6717static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6718 [BTRFS_RAID_RAID10] = "raid10",
6719 [BTRFS_RAID_RAID1] = "raid1",
6720 [BTRFS_RAID_DUP] = "dup",
6721 [BTRFS_RAID_RAID0] = "raid0",
6722 [BTRFS_RAID_SINGLE] = "single",
6723 [BTRFS_RAID_RAID5] = "raid5",
6724 [BTRFS_RAID_RAID6] = "raid6",
6725};
6726
1b8e5df6 6727static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
6728{
6729 if (type >= BTRFS_NR_RAID_TYPES)
6730 return NULL;
6731
6732 return btrfs_raid_type_names[type];
6733}
6734
817d52f8 6735enum btrfs_loop_type {
285ff5af
JB
6736 LOOP_CACHING_NOWAIT = 0,
6737 LOOP_CACHING_WAIT = 1,
6738 LOOP_ALLOC_CHUNK = 2,
6739 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
6740};
6741
e570fd27
MX
6742static inline void
6743btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6744 int delalloc)
6745{
6746 if (delalloc)
6747 down_read(&cache->data_rwsem);
6748}
6749
6750static inline void
6751btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6752 int delalloc)
6753{
6754 btrfs_get_block_group(cache);
6755 if (delalloc)
6756 down_read(&cache->data_rwsem);
6757}
6758
6759static struct btrfs_block_group_cache *
6760btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6761 struct btrfs_free_cluster *cluster,
6762 int delalloc)
6763{
6764 struct btrfs_block_group_cache *used_bg;
6765 bool locked = false;
6766again:
6767 spin_lock(&cluster->refill_lock);
6768 if (locked) {
6769 if (used_bg == cluster->block_group)
6770 return used_bg;
6771
6772 up_read(&used_bg->data_rwsem);
6773 btrfs_put_block_group(used_bg);
6774 }
6775
6776 used_bg = cluster->block_group;
6777 if (!used_bg)
6778 return NULL;
6779
6780 if (used_bg == block_group)
6781 return used_bg;
6782
6783 btrfs_get_block_group(used_bg);
6784
6785 if (!delalloc)
6786 return used_bg;
6787
6788 if (down_read_trylock(&used_bg->data_rwsem))
6789 return used_bg;
6790
6791 spin_unlock(&cluster->refill_lock);
6792 down_read(&used_bg->data_rwsem);
6793 locked = true;
6794 goto again;
6795}
6796
6797static inline void
6798btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6799 int delalloc)
6800{
6801 if (delalloc)
6802 up_read(&cache->data_rwsem);
6803 btrfs_put_block_group(cache);
6804}
6805
fec577fb
CM
6806/*
6807 * walks the btree of allocated extents and find a hole of a given size.
6808 * The key ins is changed to record the hole:
a4820398 6809 * ins->objectid == start position
62e2749e 6810 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 6811 * ins->offset == the size of the hole.
fec577fb 6812 * Any available blocks before search_start are skipped.
a4820398
MX
6813 *
6814 * If there is no suitable free space, we will record the max size of
6815 * the free space extent currently.
fec577fb 6816 */
00361589 6817static noinline int find_free_extent(struct btrfs_root *orig_root,
98ed5174 6818 u64 num_bytes, u64 empty_size,
98ed5174 6819 u64 hint_byte, struct btrfs_key *ins,
e570fd27 6820 u64 flags, int delalloc)
fec577fb 6821{
80eb234a 6822 int ret = 0;
d397712b 6823 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 6824 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 6825 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 6826 u64 search_start = 0;
a4820398 6827 u64 max_extent_size = 0;
239b14b3 6828 int empty_cluster = 2 * 1024 * 1024;
80eb234a 6829 struct btrfs_space_info *space_info;
fa9c0d79 6830 int loop = 0;
b6919a58
DS
6831 int index = __get_raid_index(flags);
6832 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
fb25e914 6833 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
0a24325e 6834 bool failed_cluster_refill = false;
1cdda9b8 6835 bool failed_alloc = false;
67377734 6836 bool use_cluster = true;
60d2adbb 6837 bool have_caching_bg = false;
fec577fb 6838
db94535d 6839 WARN_ON(num_bytes < root->sectorsize);
962a298f 6840 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
6841 ins->objectid = 0;
6842 ins->offset = 0;
b1a4d965 6843
b6919a58 6844 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 6845
b6919a58 6846 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 6847 if (!space_info) {
b6919a58 6848 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
6849 return -ENOSPC;
6850 }
2552d17e 6851
67377734
JB
6852 /*
6853 * If the space info is for both data and metadata it means we have a
6854 * small filesystem and we can't use the clustering stuff.
6855 */
6856 if (btrfs_mixed_space_info(space_info))
6857 use_cluster = false;
6858
b6919a58 6859 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
fa9c0d79 6860 last_ptr = &root->fs_info->meta_alloc_cluster;
536ac8ae
CM
6861 if (!btrfs_test_opt(root, SSD))
6862 empty_cluster = 64 * 1024;
239b14b3
CM
6863 }
6864
b6919a58 6865 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
67377734 6866 btrfs_test_opt(root, SSD)) {
fa9c0d79
CM
6867 last_ptr = &root->fs_info->data_alloc_cluster;
6868 }
0f9dd46c 6869
239b14b3 6870 if (last_ptr) {
fa9c0d79
CM
6871 spin_lock(&last_ptr->lock);
6872 if (last_ptr->block_group)
6873 hint_byte = last_ptr->window_start;
6874 spin_unlock(&last_ptr->lock);
239b14b3 6875 }
fa9c0d79 6876
a061fc8d 6877 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 6878 search_start = max(search_start, hint_byte);
0b86a832 6879
817d52f8 6880 if (!last_ptr)
fa9c0d79 6881 empty_cluster = 0;
fa9c0d79 6882
2552d17e 6883 if (search_start == hint_byte) {
2552d17e
JB
6884 block_group = btrfs_lookup_block_group(root->fs_info,
6885 search_start);
817d52f8
JB
6886 /*
6887 * we don't want to use the block group if it doesn't match our
6888 * allocation bits, or if its not cached.
ccf0e725
JB
6889 *
6890 * However if we are re-searching with an ideal block group
6891 * picked out then we don't care that the block group is cached.
817d52f8 6892 */
b6919a58 6893 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 6894 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 6895 down_read(&space_info->groups_sem);
44fb5511
CM
6896 if (list_empty(&block_group->list) ||
6897 block_group->ro) {
6898 /*
6899 * someone is removing this block group,
6900 * we can't jump into the have_block_group
6901 * target because our list pointers are not
6902 * valid
6903 */
6904 btrfs_put_block_group(block_group);
6905 up_read(&space_info->groups_sem);
ccf0e725 6906 } else {
b742bb82 6907 index = get_block_group_index(block_group);
e570fd27 6908 btrfs_lock_block_group(block_group, delalloc);
44fb5511 6909 goto have_block_group;
ccf0e725 6910 }
2552d17e 6911 } else if (block_group) {
fa9c0d79 6912 btrfs_put_block_group(block_group);
2552d17e 6913 }
42e70e7a 6914 }
2552d17e 6915search:
60d2adbb 6916 have_caching_bg = false;
80eb234a 6917 down_read(&space_info->groups_sem);
b742bb82
YZ
6918 list_for_each_entry(block_group, &space_info->block_groups[index],
6919 list) {
6226cb0a 6920 u64 offset;
817d52f8 6921 int cached;
8a1413a2 6922
e570fd27 6923 btrfs_grab_block_group(block_group, delalloc);
2552d17e 6924 search_start = block_group->key.objectid;
42e70e7a 6925
83a50de9
CM
6926 /*
6927 * this can happen if we end up cycling through all the
6928 * raid types, but we want to make sure we only allocate
6929 * for the proper type.
6930 */
b6919a58 6931 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
6932 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6933 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
6934 BTRFS_BLOCK_GROUP_RAID5 |
6935 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
6936 BTRFS_BLOCK_GROUP_RAID10;
6937
6938 /*
6939 * if they asked for extra copies and this block group
6940 * doesn't provide them, bail. This does allow us to
6941 * fill raid0 from raid1.
6942 */
b6919a58 6943 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
6944 goto loop;
6945 }
6946
2552d17e 6947have_block_group:
291c7d2f
JB
6948 cached = block_group_cache_done(block_group);
6949 if (unlikely(!cached)) {
f6373bf3 6950 ret = cache_block_group(block_group, 0);
1d4284bd
CM
6951 BUG_ON(ret < 0);
6952 ret = 0;
817d52f8
JB
6953 }
6954
36cce922
JB
6955 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6956 goto loop;
ea6a478e 6957 if (unlikely(block_group->ro))
2552d17e 6958 goto loop;
0f9dd46c 6959
0a24325e 6960 /*
062c05c4
AO
6961 * Ok we want to try and use the cluster allocator, so
6962 * lets look there
0a24325e 6963 */
062c05c4 6964 if (last_ptr) {
215a63d1 6965 struct btrfs_block_group_cache *used_block_group;
8de972b4 6966 unsigned long aligned_cluster;
fa9c0d79
CM
6967 /*
6968 * the refill lock keeps out other
6969 * people trying to start a new cluster
6970 */
e570fd27
MX
6971 used_block_group = btrfs_lock_cluster(block_group,
6972 last_ptr,
6973 delalloc);
6974 if (!used_block_group)
44fb5511 6975 goto refill_cluster;
274bd4fb 6976
e570fd27
MX
6977 if (used_block_group != block_group &&
6978 (used_block_group->ro ||
6979 !block_group_bits(used_block_group, flags)))
6980 goto release_cluster;
44fb5511 6981
274bd4fb 6982 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
6983 last_ptr,
6984 num_bytes,
6985 used_block_group->key.objectid,
6986 &max_extent_size);
fa9c0d79
CM
6987 if (offset) {
6988 /* we have a block, we're done */
6989 spin_unlock(&last_ptr->refill_lock);
3f7de037 6990 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
6991 used_block_group,
6992 search_start, num_bytes);
215a63d1 6993 if (used_block_group != block_group) {
e570fd27
MX
6994 btrfs_release_block_group(block_group,
6995 delalloc);
215a63d1
MX
6996 block_group = used_block_group;
6997 }
fa9c0d79
CM
6998 goto checks;
6999 }
7000
274bd4fb 7001 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7002release_cluster:
062c05c4
AO
7003 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7004 * set up a new clusters, so lets just skip it
7005 * and let the allocator find whatever block
7006 * it can find. If we reach this point, we
7007 * will have tried the cluster allocator
7008 * plenty of times and not have found
7009 * anything, so we are likely way too
7010 * fragmented for the clustering stuff to find
a5f6f719
AO
7011 * anything.
7012 *
7013 * However, if the cluster is taken from the
7014 * current block group, release the cluster
7015 * first, so that we stand a better chance of
7016 * succeeding in the unclustered
7017 * allocation. */
7018 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7019 used_block_group != block_group) {
062c05c4 7020 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7021 btrfs_release_block_group(used_block_group,
7022 delalloc);
062c05c4
AO
7023 goto unclustered_alloc;
7024 }
7025
fa9c0d79
CM
7026 /*
7027 * this cluster didn't work out, free it and
7028 * start over
7029 */
7030 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7031
e570fd27
MX
7032 if (used_block_group != block_group)
7033 btrfs_release_block_group(used_block_group,
7034 delalloc);
7035refill_cluster:
a5f6f719
AO
7036 if (loop >= LOOP_NO_EMPTY_SIZE) {
7037 spin_unlock(&last_ptr->refill_lock);
7038 goto unclustered_alloc;
7039 }
7040
8de972b4
CM
7041 aligned_cluster = max_t(unsigned long,
7042 empty_cluster + empty_size,
7043 block_group->full_stripe_len);
7044
fa9c0d79 7045 /* allocate a cluster in this block group */
00361589
JB
7046 ret = btrfs_find_space_cluster(root, block_group,
7047 last_ptr, search_start,
7048 num_bytes,
7049 aligned_cluster);
fa9c0d79
CM
7050 if (ret == 0) {
7051 /*
7052 * now pull our allocation out of this
7053 * cluster
7054 */
7055 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7056 last_ptr,
7057 num_bytes,
7058 search_start,
7059 &max_extent_size);
fa9c0d79
CM
7060 if (offset) {
7061 /* we found one, proceed */
7062 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
7063 trace_btrfs_reserve_extent_cluster(root,
7064 block_group, search_start,
7065 num_bytes);
fa9c0d79
CM
7066 goto checks;
7067 }
0a24325e
JB
7068 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7069 && !failed_cluster_refill) {
817d52f8
JB
7070 spin_unlock(&last_ptr->refill_lock);
7071
0a24325e 7072 failed_cluster_refill = true;
817d52f8
JB
7073 wait_block_group_cache_progress(block_group,
7074 num_bytes + empty_cluster + empty_size);
7075 goto have_block_group;
fa9c0d79 7076 }
817d52f8 7077
fa9c0d79
CM
7078 /*
7079 * at this point we either didn't find a cluster
7080 * or we weren't able to allocate a block from our
7081 * cluster. Free the cluster we've been trying
7082 * to use, and go to the next block group
7083 */
0a24325e 7084 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7085 spin_unlock(&last_ptr->refill_lock);
0a24325e 7086 goto loop;
fa9c0d79
CM
7087 }
7088
062c05c4 7089unclustered_alloc:
a5f6f719
AO
7090 spin_lock(&block_group->free_space_ctl->tree_lock);
7091 if (cached &&
7092 block_group->free_space_ctl->free_space <
7093 num_bytes + empty_cluster + empty_size) {
a4820398
MX
7094 if (block_group->free_space_ctl->free_space >
7095 max_extent_size)
7096 max_extent_size =
7097 block_group->free_space_ctl->free_space;
a5f6f719
AO
7098 spin_unlock(&block_group->free_space_ctl->tree_lock);
7099 goto loop;
7100 }
7101 spin_unlock(&block_group->free_space_ctl->tree_lock);
7102
6226cb0a 7103 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7104 num_bytes, empty_size,
7105 &max_extent_size);
1cdda9b8
JB
7106 /*
7107 * If we didn't find a chunk, and we haven't failed on this
7108 * block group before, and this block group is in the middle of
7109 * caching and we are ok with waiting, then go ahead and wait
7110 * for progress to be made, and set failed_alloc to true.
7111 *
7112 * If failed_alloc is true then we've already waited on this
7113 * block group once and should move on to the next block group.
7114 */
7115 if (!offset && !failed_alloc && !cached &&
7116 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7117 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7118 num_bytes + empty_size);
7119 failed_alloc = true;
817d52f8 7120 goto have_block_group;
1cdda9b8 7121 } else if (!offset) {
60d2adbb
MX
7122 if (!cached)
7123 have_caching_bg = true;
1cdda9b8 7124 goto loop;
817d52f8 7125 }
fa9c0d79 7126checks:
4e54b17a 7127 search_start = ALIGN(offset, root->stripesize);
25179201 7128
2552d17e
JB
7129 /* move on to the next group */
7130 if (search_start + num_bytes >
215a63d1
MX
7131 block_group->key.objectid + block_group->key.offset) {
7132 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7133 goto loop;
6226cb0a 7134 }
f5a31e16 7135
f0486c68 7136 if (offset < search_start)
215a63d1 7137 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7138 search_start - offset);
7139 BUG_ON(offset > search_start);
2552d17e 7140
215a63d1 7141 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
e570fd27 7142 alloc_type, delalloc);
f0486c68 7143 if (ret == -EAGAIN) {
215a63d1 7144 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7145 goto loop;
0f9dd46c 7146 }
0b86a832 7147
f0486c68 7148 /* we are all good, lets return */
2552d17e
JB
7149 ins->objectid = search_start;
7150 ins->offset = num_bytes;
d2fb3437 7151
3f7de037
JB
7152 trace_btrfs_reserve_extent(orig_root, block_group,
7153 search_start, num_bytes);
e570fd27 7154 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7155 break;
7156loop:
0a24325e 7157 failed_cluster_refill = false;
1cdda9b8 7158 failed_alloc = false;
b742bb82 7159 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7160 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7161 }
7162 up_read(&space_info->groups_sem);
7163
60d2adbb
MX
7164 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7165 goto search;
7166
b742bb82
YZ
7167 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7168 goto search;
7169
285ff5af 7170 /*
ccf0e725
JB
7171 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7172 * caching kthreads as we move along
817d52f8
JB
7173 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7174 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7175 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7176 * again
fa9c0d79 7177 */
723bda20 7178 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7179 index = 0;
723bda20 7180 loop++;
817d52f8 7181 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7182 struct btrfs_trans_handle *trans;
f017f15f
WS
7183 int exist = 0;
7184
7185 trans = current->journal_info;
7186 if (trans)
7187 exist = 1;
7188 else
7189 trans = btrfs_join_transaction(root);
00361589 7190
00361589
JB
7191 if (IS_ERR(trans)) {
7192 ret = PTR_ERR(trans);
7193 goto out;
7194 }
7195
b6919a58 7196 ret = do_chunk_alloc(trans, root, flags,
ea658bad
JB
7197 CHUNK_ALLOC_FORCE);
7198 /*
7199 * Do not bail out on ENOSPC since we
7200 * can do more things.
7201 */
00361589 7202 if (ret < 0 && ret != -ENOSPC)
ea658bad
JB
7203 btrfs_abort_transaction(trans,
7204 root, ret);
00361589
JB
7205 else
7206 ret = 0;
f017f15f
WS
7207 if (!exist)
7208 btrfs_end_transaction(trans, root);
00361589 7209 if (ret)
ea658bad 7210 goto out;
2552d17e
JB
7211 }
7212
723bda20
JB
7213 if (loop == LOOP_NO_EMPTY_SIZE) {
7214 empty_size = 0;
7215 empty_cluster = 0;
fa9c0d79 7216 }
723bda20
JB
7217
7218 goto search;
2552d17e
JB
7219 } else if (!ins->objectid) {
7220 ret = -ENOSPC;
d82a6f1d 7221 } else if (ins->objectid) {
80eb234a 7222 ret = 0;
be744175 7223 }
79787eaa 7224out:
a4820398
MX
7225 if (ret == -ENOSPC)
7226 ins->offset = max_extent_size;
0f70abe2 7227 return ret;
fec577fb 7228}
ec44a35c 7229
9ed74f2d
JB
7230static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7231 int dump_block_groups)
0f9dd46c
JB
7232{
7233 struct btrfs_block_group_cache *cache;
b742bb82 7234 int index = 0;
0f9dd46c 7235
9ed74f2d 7236 spin_lock(&info->lock);
efe120a0 7237 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7238 info->flags,
7239 info->total_bytes - info->bytes_used - info->bytes_pinned -
7240 info->bytes_reserved - info->bytes_readonly,
d397712b 7241 (info->full) ? "" : "not ");
efe120a0 7242 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7243 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7244 info->total_bytes, info->bytes_used, info->bytes_pinned,
7245 info->bytes_reserved, info->bytes_may_use,
7246 info->bytes_readonly);
9ed74f2d
JB
7247 spin_unlock(&info->lock);
7248
7249 if (!dump_block_groups)
7250 return;
0f9dd46c 7251
80eb234a 7252 down_read(&info->groups_sem);
b742bb82
YZ
7253again:
7254 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7255 spin_lock(&cache->lock);
efe120a0
FH
7256 printk(KERN_INFO "BTRFS: "
7257 "block group %llu has %llu bytes, "
7258 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7259 cache->key.objectid, cache->key.offset,
7260 btrfs_block_group_used(&cache->item), cache->pinned,
7261 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7262 btrfs_dump_free_space(cache, bytes);
7263 spin_unlock(&cache->lock);
7264 }
b742bb82
YZ
7265 if (++index < BTRFS_NR_RAID_TYPES)
7266 goto again;
80eb234a 7267 up_read(&info->groups_sem);
0f9dd46c 7268}
e8569813 7269
00361589 7270int btrfs_reserve_extent(struct btrfs_root *root,
11833d66
YZ
7271 u64 num_bytes, u64 min_alloc_size,
7272 u64 empty_size, u64 hint_byte,
e570fd27 7273 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7274{
9e622d6b 7275 bool final_tried = false;
b6919a58 7276 u64 flags;
fec577fb 7277 int ret;
925baedd 7278
b6919a58 7279 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7280again:
db94535d 7281 WARN_ON(num_bytes < root->sectorsize);
00361589 7282 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
e570fd27 7283 flags, delalloc);
3b951516 7284
9e622d6b 7285 if (ret == -ENOSPC) {
a4820398
MX
7286 if (!final_tried && ins->offset) {
7287 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7288 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7289 num_bytes = max(num_bytes, min_alloc_size);
9e622d6b
MX
7290 if (num_bytes == min_alloc_size)
7291 final_tried = true;
7292 goto again;
7293 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7294 struct btrfs_space_info *sinfo;
7295
b6919a58 7296 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7297 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7298 flags, num_bytes);
53804280
JM
7299 if (sinfo)
7300 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7301 }
925baedd 7302 }
0f9dd46c
JB
7303
7304 return ret;
e6dcd2dc
CM
7305}
7306
e688b725 7307static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7308 u64 start, u64 len,
7309 int pin, int delalloc)
65b51a00 7310{
0f9dd46c 7311 struct btrfs_block_group_cache *cache;
1f3c79a2 7312 int ret = 0;
0f9dd46c 7313
0f9dd46c
JB
7314 cache = btrfs_lookup_block_group(root->fs_info, start);
7315 if (!cache) {
c2cf52eb 7316 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 7317 start);
0f9dd46c
JB
7318 return -ENOSPC;
7319 }
1f3c79a2 7320
e688b725
CM
7321 if (pin)
7322 pin_down_extent(root, cache, start, len, 1);
7323 else {
dcc82f47
FM
7324 if (btrfs_test_opt(root, DISCARD))
7325 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 7326 btrfs_add_free_space(cache, start, len);
e570fd27 7327 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
e688b725 7328 }
31193213 7329
fa9c0d79 7330 btrfs_put_block_group(cache);
817d52f8 7331
1abe9b8a 7332 trace_btrfs_reserved_extent_free(root, start, len);
7333
e6dcd2dc
CM
7334 return ret;
7335}
7336
e688b725 7337int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 7338 u64 start, u64 len, int delalloc)
e688b725 7339{
e570fd27 7340 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
7341}
7342
7343int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7344 u64 start, u64 len)
7345{
e570fd27 7346 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
7347}
7348
5d4f98a2
YZ
7349static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7350 struct btrfs_root *root,
7351 u64 parent, u64 root_objectid,
7352 u64 flags, u64 owner, u64 offset,
7353 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
7354{
7355 int ret;
5d4f98a2 7356 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 7357 struct btrfs_extent_item *extent_item;
5d4f98a2 7358 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 7359 struct btrfs_path *path;
5d4f98a2
YZ
7360 struct extent_buffer *leaf;
7361 int type;
7362 u32 size;
26b8003f 7363
5d4f98a2
YZ
7364 if (parent > 0)
7365 type = BTRFS_SHARED_DATA_REF_KEY;
7366 else
7367 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 7368
5d4f98a2 7369 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
7370
7371 path = btrfs_alloc_path();
db5b493a
TI
7372 if (!path)
7373 return -ENOMEM;
47e4bb98 7374
b9473439 7375 path->leave_spinning = 1;
5d4f98a2
YZ
7376 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7377 ins, size);
79787eaa
JM
7378 if (ret) {
7379 btrfs_free_path(path);
7380 return ret;
7381 }
0f9dd46c 7382
5d4f98a2
YZ
7383 leaf = path->nodes[0];
7384 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 7385 struct btrfs_extent_item);
5d4f98a2
YZ
7386 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7387 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7388 btrfs_set_extent_flags(leaf, extent_item,
7389 flags | BTRFS_EXTENT_FLAG_DATA);
7390
7391 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7392 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7393 if (parent > 0) {
7394 struct btrfs_shared_data_ref *ref;
7395 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7396 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7397 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7398 } else {
7399 struct btrfs_extent_data_ref *ref;
7400 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7401 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7402 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7403 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7404 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7405 }
47e4bb98
CM
7406
7407 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 7408 btrfs_free_path(path);
f510cfec 7409
ce93ec54 7410 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 7411 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7412 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7413 ins->objectid, ins->offset);
f5947066
CM
7414 BUG();
7415 }
0be5dc67 7416 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
7417 return ret;
7418}
7419
5d4f98a2
YZ
7420static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7421 struct btrfs_root *root,
7422 u64 parent, u64 root_objectid,
7423 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
7424 int level, struct btrfs_key *ins,
7425 int no_quota)
e6dcd2dc
CM
7426{
7427 int ret;
5d4f98a2
YZ
7428 struct btrfs_fs_info *fs_info = root->fs_info;
7429 struct btrfs_extent_item *extent_item;
7430 struct btrfs_tree_block_info *block_info;
7431 struct btrfs_extent_inline_ref *iref;
7432 struct btrfs_path *path;
7433 struct extent_buffer *leaf;
3173a18f 7434 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 7435 u64 num_bytes = ins->offset;
3173a18f
JB
7436 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7437 SKINNY_METADATA);
7438
7439 if (!skinny_metadata)
7440 size += sizeof(*block_info);
1c2308f8 7441
5d4f98a2 7442 path = btrfs_alloc_path();
857cc2fc
JB
7443 if (!path) {
7444 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7445 root->nodesize);
d8926bb3 7446 return -ENOMEM;
857cc2fc 7447 }
56bec294 7448
5d4f98a2
YZ
7449 path->leave_spinning = 1;
7450 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7451 ins, size);
79787eaa 7452 if (ret) {
dd825259 7453 btrfs_free_path(path);
857cc2fc 7454 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7455 root->nodesize);
79787eaa
JM
7456 return ret;
7457 }
5d4f98a2
YZ
7458
7459 leaf = path->nodes[0];
7460 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7461 struct btrfs_extent_item);
7462 btrfs_set_extent_refs(leaf, extent_item, 1);
7463 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7464 btrfs_set_extent_flags(leaf, extent_item,
7465 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 7466
3173a18f
JB
7467 if (skinny_metadata) {
7468 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 7469 num_bytes = root->nodesize;
3173a18f
JB
7470 } else {
7471 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7472 btrfs_set_tree_block_key(leaf, block_info, key);
7473 btrfs_set_tree_block_level(leaf, block_info, level);
7474 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7475 }
5d4f98a2 7476
5d4f98a2
YZ
7477 if (parent > 0) {
7478 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7479 btrfs_set_extent_inline_ref_type(leaf, iref,
7480 BTRFS_SHARED_BLOCK_REF_KEY);
7481 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7482 } else {
7483 btrfs_set_extent_inline_ref_type(leaf, iref,
7484 BTRFS_TREE_BLOCK_REF_KEY);
7485 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7486 }
7487
7488 btrfs_mark_buffer_dirty(leaf);
7489 btrfs_free_path(path);
7490
ce93ec54
JB
7491 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7492 1);
79787eaa 7493 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7494 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7495 ins->objectid, ins->offset);
5d4f98a2
YZ
7496 BUG();
7497 }
0be5dc67 7498
707e8a07 7499 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
7500 return ret;
7501}
7502
7503int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7504 struct btrfs_root *root,
7505 u64 root_objectid, u64 owner,
7506 u64 offset, struct btrfs_key *ins)
7507{
7508 int ret;
7509
7510 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7511
66d7e7f0
AJ
7512 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7513 ins->offset, 0,
7514 root_objectid, owner, offset,
7515 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
e6dcd2dc
CM
7516 return ret;
7517}
e02119d5
CM
7518
7519/*
7520 * this is used by the tree logging recovery code. It records that
7521 * an extent has been allocated and makes sure to clear the free
7522 * space cache bits as well
7523 */
5d4f98a2
YZ
7524int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7525 struct btrfs_root *root,
7526 u64 root_objectid, u64 owner, u64 offset,
7527 struct btrfs_key *ins)
e02119d5
CM
7528{
7529 int ret;
7530 struct btrfs_block_group_cache *block_group;
11833d66 7531
8c2a1a30
JB
7532 /*
7533 * Mixed block groups will exclude before processing the log so we only
7534 * need to do the exlude dance if this fs isn't mixed.
7535 */
7536 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7537 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 7538 if (ret)
8c2a1a30 7539 return ret;
11833d66
YZ
7540 }
7541
8c2a1a30
JB
7542 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7543 if (!block_group)
7544 return -EINVAL;
7545
fb25e914 7546 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
e570fd27 7547 RESERVE_ALLOC_NO_ACCOUNT, 0);
79787eaa 7548 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
7549 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7550 0, owner, offset, ins, 1);
b50c6e25 7551 btrfs_put_block_group(block_group);
e02119d5
CM
7552 return ret;
7553}
7554
48a3b636
ES
7555static struct extent_buffer *
7556btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 7557 u64 bytenr, int level)
65b51a00
CM
7558{
7559 struct extent_buffer *buf;
7560
a83fffb7 7561 buf = btrfs_find_create_tree_block(root, bytenr);
65b51a00
CM
7562 if (!buf)
7563 return ERR_PTR(-ENOMEM);
7564 btrfs_set_header_generation(buf, trans->transid);
85d4e461 7565 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 7566 btrfs_tree_lock(buf);
01d58472 7567 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 7568 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
7569
7570 btrfs_set_lock_blocking(buf);
65b51a00 7571 btrfs_set_buffer_uptodate(buf);
b4ce94de 7572
d0c803c4 7573 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 7574 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
7575 /*
7576 * we allow two log transactions at a time, use different
7577 * EXENT bit to differentiate dirty pages.
7578 */
656f30db 7579 if (buf->log_index == 0)
8cef4e16
YZ
7580 set_extent_dirty(&root->dirty_log_pages, buf->start,
7581 buf->start + buf->len - 1, GFP_NOFS);
7582 else
7583 set_extent_new(&root->dirty_log_pages, buf->start,
7584 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7585 } else {
656f30db 7586 buf->log_index = -1;
d0c803c4 7587 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 7588 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7589 }
65b51a00 7590 trans->blocks_used++;
b4ce94de 7591 /* this returns a buffer locked for blocking */
65b51a00
CM
7592 return buf;
7593}
7594
f0486c68
YZ
7595static struct btrfs_block_rsv *
7596use_block_rsv(struct btrfs_trans_handle *trans,
7597 struct btrfs_root *root, u32 blocksize)
7598{
7599 struct btrfs_block_rsv *block_rsv;
68a82277 7600 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 7601 int ret;
d88033db 7602 bool global_updated = false;
f0486c68
YZ
7603
7604 block_rsv = get_block_rsv(trans, root);
7605
b586b323
MX
7606 if (unlikely(block_rsv->size == 0))
7607 goto try_reserve;
d88033db 7608again:
f0486c68
YZ
7609 ret = block_rsv_use_bytes(block_rsv, blocksize);
7610 if (!ret)
7611 return block_rsv;
7612
b586b323
MX
7613 if (block_rsv->failfast)
7614 return ERR_PTR(ret);
7615
d88033db
MX
7616 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7617 global_updated = true;
7618 update_global_block_rsv(root->fs_info);
7619 goto again;
7620 }
7621
b586b323
MX
7622 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7623 static DEFINE_RATELIMIT_STATE(_rs,
7624 DEFAULT_RATELIMIT_INTERVAL * 10,
7625 /*DEFAULT_RATELIMIT_BURST*/ 1);
7626 if (__ratelimit(&_rs))
7627 WARN(1, KERN_DEBUG
efe120a0 7628 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
7629 }
7630try_reserve:
7631 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7632 BTRFS_RESERVE_NO_FLUSH);
7633 if (!ret)
7634 return block_rsv;
7635 /*
7636 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
7637 * the global reserve if its space type is the same as the global
7638 * reservation.
b586b323 7639 */
5881cfc9
MX
7640 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7641 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
7642 ret = block_rsv_use_bytes(global_rsv, blocksize);
7643 if (!ret)
7644 return global_rsv;
7645 }
7646 return ERR_PTR(ret);
f0486c68
YZ
7647}
7648
8c2a3ca2
JB
7649static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7650 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
7651{
7652 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 7653 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
7654}
7655
fec577fb 7656/*
f0486c68 7657 * finds a free extent and does all the dirty work required for allocation
67b7859e 7658 * returns the tree buffer or an ERR_PTR on error.
fec577fb 7659 */
4d75f8a9
DS
7660struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7661 struct btrfs_root *root,
5d4f98a2
YZ
7662 u64 parent, u64 root_objectid,
7663 struct btrfs_disk_key *key, int level,
5581a51a 7664 u64 hint, u64 empty_size)
fec577fb 7665{
e2fa7227 7666 struct btrfs_key ins;
f0486c68 7667 struct btrfs_block_rsv *block_rsv;
5f39d397 7668 struct extent_buffer *buf;
67b7859e 7669 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
7670 u64 flags = 0;
7671 int ret;
4d75f8a9 7672 u32 blocksize = root->nodesize;
3173a18f
JB
7673 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7674 SKINNY_METADATA);
fec577fb 7675
fccb84c9 7676 if (btrfs_test_is_dummy_root(root)) {
faa2dbf0 7677 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 7678 level);
faa2dbf0
JB
7679 if (!IS_ERR(buf))
7680 root->alloc_bytenr += blocksize;
7681 return buf;
7682 }
fccb84c9 7683
f0486c68
YZ
7684 block_rsv = use_block_rsv(trans, root, blocksize);
7685 if (IS_ERR(block_rsv))
7686 return ERR_CAST(block_rsv);
7687
00361589 7688 ret = btrfs_reserve_extent(root, blocksize, blocksize,
e570fd27 7689 empty_size, hint, &ins, 0, 0);
67b7859e
OS
7690 if (ret)
7691 goto out_unuse;
55c69072 7692
fe864576 7693 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
7694 if (IS_ERR(buf)) {
7695 ret = PTR_ERR(buf);
7696 goto out_free_reserved;
7697 }
f0486c68
YZ
7698
7699 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7700 if (parent == 0)
7701 parent = ins.objectid;
7702 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7703 } else
7704 BUG_ON(parent > 0);
7705
7706 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 7707 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
7708 if (!extent_op) {
7709 ret = -ENOMEM;
7710 goto out_free_buf;
7711 }
f0486c68
YZ
7712 if (key)
7713 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7714 else
7715 memset(&extent_op->key, 0, sizeof(extent_op->key));
7716 extent_op->flags_to_set = flags;
3173a18f
JB
7717 if (skinny_metadata)
7718 extent_op->update_key = 0;
7719 else
7720 extent_op->update_key = 1;
f0486c68
YZ
7721 extent_op->update_flags = 1;
7722 extent_op->is_data = 0;
b1c79e09 7723 extent_op->level = level;
f0486c68 7724
66d7e7f0 7725 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
7726 ins.objectid, ins.offset,
7727 parent, root_objectid, level,
7728 BTRFS_ADD_DELAYED_EXTENT,
7729 extent_op, 0);
7730 if (ret)
7731 goto out_free_delayed;
f0486c68 7732 }
fec577fb 7733 return buf;
67b7859e
OS
7734
7735out_free_delayed:
7736 btrfs_free_delayed_extent_op(extent_op);
7737out_free_buf:
7738 free_extent_buffer(buf);
7739out_free_reserved:
7740 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7741out_unuse:
7742 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7743 return ERR_PTR(ret);
fec577fb 7744}
a28ec197 7745
2c47e605
YZ
7746struct walk_control {
7747 u64 refs[BTRFS_MAX_LEVEL];
7748 u64 flags[BTRFS_MAX_LEVEL];
7749 struct btrfs_key update_progress;
7750 int stage;
7751 int level;
7752 int shared_level;
7753 int update_ref;
7754 int keep_locks;
1c4850e2
YZ
7755 int reada_slot;
7756 int reada_count;
66d7e7f0 7757 int for_reloc;
2c47e605
YZ
7758};
7759
7760#define DROP_REFERENCE 1
7761#define UPDATE_BACKREF 2
7762
1c4850e2
YZ
7763static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7764 struct btrfs_root *root,
7765 struct walk_control *wc,
7766 struct btrfs_path *path)
6407bf6d 7767{
1c4850e2
YZ
7768 u64 bytenr;
7769 u64 generation;
7770 u64 refs;
94fcca9f 7771 u64 flags;
5d4f98a2 7772 u32 nritems;
1c4850e2
YZ
7773 u32 blocksize;
7774 struct btrfs_key key;
7775 struct extent_buffer *eb;
6407bf6d 7776 int ret;
1c4850e2
YZ
7777 int slot;
7778 int nread = 0;
6407bf6d 7779
1c4850e2
YZ
7780 if (path->slots[wc->level] < wc->reada_slot) {
7781 wc->reada_count = wc->reada_count * 2 / 3;
7782 wc->reada_count = max(wc->reada_count, 2);
7783 } else {
7784 wc->reada_count = wc->reada_count * 3 / 2;
7785 wc->reada_count = min_t(int, wc->reada_count,
7786 BTRFS_NODEPTRS_PER_BLOCK(root));
7787 }
7bb86316 7788
1c4850e2
YZ
7789 eb = path->nodes[wc->level];
7790 nritems = btrfs_header_nritems(eb);
707e8a07 7791 blocksize = root->nodesize;
bd56b302 7792
1c4850e2
YZ
7793 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7794 if (nread >= wc->reada_count)
7795 break;
bd56b302 7796
2dd3e67b 7797 cond_resched();
1c4850e2
YZ
7798 bytenr = btrfs_node_blockptr(eb, slot);
7799 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 7800
1c4850e2
YZ
7801 if (slot == path->slots[wc->level])
7802 goto reada;
5d4f98a2 7803
1c4850e2
YZ
7804 if (wc->stage == UPDATE_BACKREF &&
7805 generation <= root->root_key.offset)
bd56b302
CM
7806 continue;
7807
94fcca9f 7808 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
7809 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7810 wc->level - 1, 1, &refs,
7811 &flags);
79787eaa
JM
7812 /* We don't care about errors in readahead. */
7813 if (ret < 0)
7814 continue;
94fcca9f
YZ
7815 BUG_ON(refs == 0);
7816
1c4850e2 7817 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
7818 if (refs == 1)
7819 goto reada;
bd56b302 7820
94fcca9f
YZ
7821 if (wc->level == 1 &&
7822 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7823 continue;
1c4850e2
YZ
7824 if (!wc->update_ref ||
7825 generation <= root->root_key.offset)
7826 continue;
7827 btrfs_node_key_to_cpu(eb, &key, slot);
7828 ret = btrfs_comp_cpu_keys(&key,
7829 &wc->update_progress);
7830 if (ret < 0)
7831 continue;
94fcca9f
YZ
7832 } else {
7833 if (wc->level == 1 &&
7834 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7835 continue;
6407bf6d 7836 }
1c4850e2 7837reada:
d3e46fea 7838 readahead_tree_block(root, bytenr);
1c4850e2 7839 nread++;
20524f02 7840 }
1c4850e2 7841 wc->reada_slot = slot;
20524f02 7842}
2c47e605 7843
0ed4792a
QW
7844/*
7845 * TODO: Modify related function to add related node/leaf to dirty_extent_root,
7846 * for later qgroup accounting.
7847 *
7848 * Current, this function does nothing.
7849 */
1152651a
MF
7850static int account_leaf_items(struct btrfs_trans_handle *trans,
7851 struct btrfs_root *root,
7852 struct extent_buffer *eb)
7853{
7854 int nr = btrfs_header_nritems(eb);
0ed4792a 7855 int i, extent_type;
1152651a
MF
7856 struct btrfs_key key;
7857 struct btrfs_file_extent_item *fi;
7858 u64 bytenr, num_bytes;
7859
7860 for (i = 0; i < nr; i++) {
7861 btrfs_item_key_to_cpu(eb, &key, i);
7862
7863 if (key.type != BTRFS_EXTENT_DATA_KEY)
7864 continue;
7865
7866 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7867 /* filter out non qgroup-accountable extents */
7868 extent_type = btrfs_file_extent_type(eb, fi);
7869
7870 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7871 continue;
7872
7873 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7874 if (!bytenr)
7875 continue;
7876
7877 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
1152651a
MF
7878 }
7879 return 0;
7880}
7881
7882/*
7883 * Walk up the tree from the bottom, freeing leaves and any interior
7884 * nodes which have had all slots visited. If a node (leaf or
7885 * interior) is freed, the node above it will have it's slot
7886 * incremented. The root node will never be freed.
7887 *
7888 * At the end of this function, we should have a path which has all
7889 * slots incremented to the next position for a search. If we need to
7890 * read a new node it will be NULL and the node above it will have the
7891 * correct slot selected for a later read.
7892 *
7893 * If we increment the root nodes slot counter past the number of
7894 * elements, 1 is returned to signal completion of the search.
7895 */
7896static int adjust_slots_upwards(struct btrfs_root *root,
7897 struct btrfs_path *path, int root_level)
7898{
7899 int level = 0;
7900 int nr, slot;
7901 struct extent_buffer *eb;
7902
7903 if (root_level == 0)
7904 return 1;
7905
7906 while (level <= root_level) {
7907 eb = path->nodes[level];
7908 nr = btrfs_header_nritems(eb);
7909 path->slots[level]++;
7910 slot = path->slots[level];
7911 if (slot >= nr || level == 0) {
7912 /*
7913 * Don't free the root - we will detect this
7914 * condition after our loop and return a
7915 * positive value for caller to stop walking the tree.
7916 */
7917 if (level != root_level) {
7918 btrfs_tree_unlock_rw(eb, path->locks[level]);
7919 path->locks[level] = 0;
7920
7921 free_extent_buffer(eb);
7922 path->nodes[level] = NULL;
7923 path->slots[level] = 0;
7924 }
7925 } else {
7926 /*
7927 * We have a valid slot to walk back down
7928 * from. Stop here so caller can process these
7929 * new nodes.
7930 */
7931 break;
7932 }
7933
7934 level++;
7935 }
7936
7937 eb = path->nodes[root_level];
7938 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7939 return 1;
7940
7941 return 0;
7942}
7943
7944/*
7945 * root_eb is the subtree root and is locked before this function is called.
0ed4792a
QW
7946 * TODO: Modify this function to mark all (including complete shared node)
7947 * to dirty_extent_root to allow it get accounted in qgroup.
1152651a
MF
7948 */
7949static int account_shared_subtree(struct btrfs_trans_handle *trans,
7950 struct btrfs_root *root,
7951 struct extent_buffer *root_eb,
7952 u64 root_gen,
7953 int root_level)
7954{
7955 int ret = 0;
7956 int level;
7957 struct extent_buffer *eb = root_eb;
7958 struct btrfs_path *path = NULL;
7959
7960 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7961 BUG_ON(root_eb == NULL);
7962
7963 if (!root->fs_info->quota_enabled)
7964 return 0;
7965
7966 if (!extent_buffer_uptodate(root_eb)) {
7967 ret = btrfs_read_buffer(root_eb, root_gen);
7968 if (ret)
7969 goto out;
7970 }
7971
7972 if (root_level == 0) {
7973 ret = account_leaf_items(trans, root, root_eb);
7974 goto out;
7975 }
7976
7977 path = btrfs_alloc_path();
7978 if (!path)
7979 return -ENOMEM;
7980
7981 /*
7982 * Walk down the tree. Missing extent blocks are filled in as
7983 * we go. Metadata is accounted every time we read a new
7984 * extent block.
7985 *
7986 * When we reach a leaf, we account for file extent items in it,
7987 * walk back up the tree (adjusting slot pointers as we go)
7988 * and restart the search process.
7989 */
7990 extent_buffer_get(root_eb); /* For path */
7991 path->nodes[root_level] = root_eb;
7992 path->slots[root_level] = 0;
7993 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7994walk_down:
7995 level = root_level;
7996 while (level >= 0) {
7997 if (path->nodes[level] == NULL) {
1152651a
MF
7998 int parent_slot;
7999 u64 child_gen;
8000 u64 child_bytenr;
8001
8002 /* We need to get child blockptr/gen from
8003 * parent before we can read it. */
8004 eb = path->nodes[level + 1];
8005 parent_slot = path->slots[level + 1];
8006 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8007 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8008
ce86cd59 8009 eb = read_tree_block(root, child_bytenr, child_gen);
64c043de
LB
8010 if (IS_ERR(eb)) {
8011 ret = PTR_ERR(eb);
8012 goto out;
8013 } else if (!extent_buffer_uptodate(eb)) {
8635eda9 8014 free_extent_buffer(eb);
64c043de 8015 ret = -EIO;
1152651a
MF
8016 goto out;
8017 }
8018
8019 path->nodes[level] = eb;
8020 path->slots[level] = 0;
8021
8022 btrfs_tree_read_lock(eb);
8023 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8024 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
1152651a
MF
8025 }
8026
8027 if (level == 0) {
8028 ret = account_leaf_items(trans, root, path->nodes[level]);
8029 if (ret)
8030 goto out;
8031
8032 /* Nonzero return here means we completed our search */
8033 ret = adjust_slots_upwards(root, path, root_level);
8034 if (ret)
8035 break;
8036
8037 /* Restart search with new slots */
8038 goto walk_down;
8039 }
8040
8041 level--;
8042 }
8043
8044 ret = 0;
8045out:
8046 btrfs_free_path(path);
8047
8048 return ret;
8049}
8050
f82d02d9 8051/*
2c016dc2 8052 * helper to process tree block while walking down the tree.
2c47e605 8053 *
2c47e605
YZ
8054 * when wc->stage == UPDATE_BACKREF, this function updates
8055 * back refs for pointers in the block.
8056 *
8057 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8058 */
2c47e605 8059static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8060 struct btrfs_root *root,
2c47e605 8061 struct btrfs_path *path,
94fcca9f 8062 struct walk_control *wc, int lookup_info)
f82d02d9 8063{
2c47e605
YZ
8064 int level = wc->level;
8065 struct extent_buffer *eb = path->nodes[level];
2c47e605 8066 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8067 int ret;
8068
2c47e605
YZ
8069 if (wc->stage == UPDATE_BACKREF &&
8070 btrfs_header_owner(eb) != root->root_key.objectid)
8071 return 1;
f82d02d9 8072
2c47e605
YZ
8073 /*
8074 * when reference count of tree block is 1, it won't increase
8075 * again. once full backref flag is set, we never clear it.
8076 */
94fcca9f
YZ
8077 if (lookup_info &&
8078 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8079 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
8080 BUG_ON(!path->locks[level]);
8081 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8082 eb->start, level, 1,
2c47e605
YZ
8083 &wc->refs[level],
8084 &wc->flags[level]);
79787eaa
JM
8085 BUG_ON(ret == -ENOMEM);
8086 if (ret)
8087 return ret;
2c47e605
YZ
8088 BUG_ON(wc->refs[level] == 0);
8089 }
5d4f98a2 8090
2c47e605
YZ
8091 if (wc->stage == DROP_REFERENCE) {
8092 if (wc->refs[level] > 1)
8093 return 1;
f82d02d9 8094
2c47e605 8095 if (path->locks[level] && !wc->keep_locks) {
bd681513 8096 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8097 path->locks[level] = 0;
8098 }
8099 return 0;
8100 }
f82d02d9 8101
2c47e605
YZ
8102 /* wc->stage == UPDATE_BACKREF */
8103 if (!(wc->flags[level] & flag)) {
8104 BUG_ON(!path->locks[level]);
e339a6b0 8105 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8106 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8107 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8108 BUG_ON(ret); /* -ENOMEM */
2c47e605 8109 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
8110 eb->len, flag,
8111 btrfs_header_level(eb), 0);
79787eaa 8112 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8113 wc->flags[level] |= flag;
8114 }
8115
8116 /*
8117 * the block is shared by multiple trees, so it's not good to
8118 * keep the tree lock
8119 */
8120 if (path->locks[level] && level > 0) {
bd681513 8121 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8122 path->locks[level] = 0;
8123 }
8124 return 0;
8125}
8126
1c4850e2 8127/*
2c016dc2 8128 * helper to process tree block pointer.
1c4850e2
YZ
8129 *
8130 * when wc->stage == DROP_REFERENCE, this function checks
8131 * reference count of the block pointed to. if the block
8132 * is shared and we need update back refs for the subtree
8133 * rooted at the block, this function changes wc->stage to
8134 * UPDATE_BACKREF. if the block is shared and there is no
8135 * need to update back, this function drops the reference
8136 * to the block.
8137 *
8138 * NOTE: return value 1 means we should stop walking down.
8139 */
8140static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8141 struct btrfs_root *root,
8142 struct btrfs_path *path,
94fcca9f 8143 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8144{
8145 u64 bytenr;
8146 u64 generation;
8147 u64 parent;
8148 u32 blocksize;
8149 struct btrfs_key key;
8150 struct extent_buffer *next;
8151 int level = wc->level;
8152 int reada = 0;
8153 int ret = 0;
1152651a 8154 bool need_account = false;
1c4850e2
YZ
8155
8156 generation = btrfs_node_ptr_generation(path->nodes[level],
8157 path->slots[level]);
8158 /*
8159 * if the lower level block was created before the snapshot
8160 * was created, we know there is no need to update back refs
8161 * for the subtree
8162 */
8163 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8164 generation <= root->root_key.offset) {
8165 *lookup_info = 1;
1c4850e2 8166 return 1;
94fcca9f 8167 }
1c4850e2
YZ
8168
8169 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8170 blocksize = root->nodesize;
1c4850e2 8171
01d58472 8172 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8173 if (!next) {
a83fffb7 8174 next = btrfs_find_create_tree_block(root, bytenr);
90d2c51d
MX
8175 if (!next)
8176 return -ENOMEM;
b2aaaa3b
JB
8177 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8178 level - 1);
1c4850e2
YZ
8179 reada = 1;
8180 }
8181 btrfs_tree_lock(next);
8182 btrfs_set_lock_blocking(next);
8183
3173a18f 8184 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8185 &wc->refs[level - 1],
8186 &wc->flags[level - 1]);
79787eaa
JM
8187 if (ret < 0) {
8188 btrfs_tree_unlock(next);
8189 return ret;
8190 }
8191
c2cf52eb
SK
8192 if (unlikely(wc->refs[level - 1] == 0)) {
8193 btrfs_err(root->fs_info, "Missing references.");
8194 BUG();
8195 }
94fcca9f 8196 *lookup_info = 0;
1c4850e2 8197
94fcca9f 8198 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8199 if (wc->refs[level - 1] > 1) {
1152651a 8200 need_account = true;
94fcca9f
YZ
8201 if (level == 1 &&
8202 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8203 goto skip;
8204
1c4850e2
YZ
8205 if (!wc->update_ref ||
8206 generation <= root->root_key.offset)
8207 goto skip;
8208
8209 btrfs_node_key_to_cpu(path->nodes[level], &key,
8210 path->slots[level]);
8211 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8212 if (ret < 0)
8213 goto skip;
8214
8215 wc->stage = UPDATE_BACKREF;
8216 wc->shared_level = level - 1;
8217 }
94fcca9f
YZ
8218 } else {
8219 if (level == 1 &&
8220 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8221 goto skip;
1c4850e2
YZ
8222 }
8223
b9fab919 8224 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8225 btrfs_tree_unlock(next);
8226 free_extent_buffer(next);
8227 next = NULL;
94fcca9f 8228 *lookup_info = 1;
1c4850e2
YZ
8229 }
8230
8231 if (!next) {
8232 if (reada && level == 1)
8233 reada_walk_down(trans, root, wc, path);
ce86cd59 8234 next = read_tree_block(root, bytenr, generation);
64c043de
LB
8235 if (IS_ERR(next)) {
8236 return PTR_ERR(next);
8237 } else if (!extent_buffer_uptodate(next)) {
416bc658 8238 free_extent_buffer(next);
97d9a8a4 8239 return -EIO;
416bc658 8240 }
1c4850e2
YZ
8241 btrfs_tree_lock(next);
8242 btrfs_set_lock_blocking(next);
8243 }
8244
8245 level--;
8246 BUG_ON(level != btrfs_header_level(next));
8247 path->nodes[level] = next;
8248 path->slots[level] = 0;
bd681513 8249 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8250 wc->level = level;
8251 if (wc->level == 1)
8252 wc->reada_slot = 0;
8253 return 0;
8254skip:
8255 wc->refs[level - 1] = 0;
8256 wc->flags[level - 1] = 0;
94fcca9f
YZ
8257 if (wc->stage == DROP_REFERENCE) {
8258 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8259 parent = path->nodes[level]->start;
8260 } else {
8261 BUG_ON(root->root_key.objectid !=
8262 btrfs_header_owner(path->nodes[level]));
8263 parent = 0;
8264 }
1c4850e2 8265
1152651a
MF
8266 if (need_account) {
8267 ret = account_shared_subtree(trans, root, next,
8268 generation, level - 1);
8269 if (ret) {
94647322
DS
8270 btrfs_err_rl(root->fs_info,
8271 "Error "
1152651a 8272 "%d accounting shared subtree. Quota "
94647322
DS
8273 "is out of sync, rescan required.",
8274 ret);
1152651a
MF
8275 }
8276 }
94fcca9f 8277 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
66d7e7f0 8278 root->root_key.objectid, level - 1, 0, 0);
79787eaa 8279 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8280 }
1c4850e2
YZ
8281 btrfs_tree_unlock(next);
8282 free_extent_buffer(next);
94fcca9f 8283 *lookup_info = 1;
1c4850e2
YZ
8284 return 1;
8285}
8286
2c47e605 8287/*
2c016dc2 8288 * helper to process tree block while walking up the tree.
2c47e605
YZ
8289 *
8290 * when wc->stage == DROP_REFERENCE, this function drops
8291 * reference count on the block.
8292 *
8293 * when wc->stage == UPDATE_BACKREF, this function changes
8294 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8295 * to UPDATE_BACKREF previously while processing the block.
8296 *
8297 * NOTE: return value 1 means we should stop walking up.
8298 */
8299static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8300 struct btrfs_root *root,
8301 struct btrfs_path *path,
8302 struct walk_control *wc)
8303{
f0486c68 8304 int ret;
2c47e605
YZ
8305 int level = wc->level;
8306 struct extent_buffer *eb = path->nodes[level];
8307 u64 parent = 0;
8308
8309 if (wc->stage == UPDATE_BACKREF) {
8310 BUG_ON(wc->shared_level < level);
8311 if (level < wc->shared_level)
8312 goto out;
8313
2c47e605
YZ
8314 ret = find_next_key(path, level + 1, &wc->update_progress);
8315 if (ret > 0)
8316 wc->update_ref = 0;
8317
8318 wc->stage = DROP_REFERENCE;
8319 wc->shared_level = -1;
8320 path->slots[level] = 0;
8321
8322 /*
8323 * check reference count again if the block isn't locked.
8324 * we should start walking down the tree again if reference
8325 * count is one.
8326 */
8327 if (!path->locks[level]) {
8328 BUG_ON(level == 0);
8329 btrfs_tree_lock(eb);
8330 btrfs_set_lock_blocking(eb);
bd681513 8331 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8332
8333 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8334 eb->start, level, 1,
2c47e605
YZ
8335 &wc->refs[level],
8336 &wc->flags[level]);
79787eaa
JM
8337 if (ret < 0) {
8338 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8339 path->locks[level] = 0;
79787eaa
JM
8340 return ret;
8341 }
2c47e605
YZ
8342 BUG_ON(wc->refs[level] == 0);
8343 if (wc->refs[level] == 1) {
bd681513 8344 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8345 path->locks[level] = 0;
2c47e605
YZ
8346 return 1;
8347 }
f82d02d9 8348 }
2c47e605 8349 }
f82d02d9 8350
2c47e605
YZ
8351 /* wc->stage == DROP_REFERENCE */
8352 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8353
2c47e605
YZ
8354 if (wc->refs[level] == 1) {
8355 if (level == 0) {
8356 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8357 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8358 else
e339a6b0 8359 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8360 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
8361 ret = account_leaf_items(trans, root, eb);
8362 if (ret) {
94647322
DS
8363 btrfs_err_rl(root->fs_info,
8364 "error "
1152651a 8365 "%d accounting leaf items. Quota "
94647322
DS
8366 "is out of sync, rescan required.",
8367 ret);
1152651a 8368 }
2c47e605
YZ
8369 }
8370 /* make block locked assertion in clean_tree_block happy */
8371 if (!path->locks[level] &&
8372 btrfs_header_generation(eb) == trans->transid) {
8373 btrfs_tree_lock(eb);
8374 btrfs_set_lock_blocking(eb);
bd681513 8375 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8376 }
01d58472 8377 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
8378 }
8379
8380 if (eb == root->node) {
8381 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8382 parent = eb->start;
8383 else
8384 BUG_ON(root->root_key.objectid !=
8385 btrfs_header_owner(eb));
8386 } else {
8387 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8388 parent = path->nodes[level + 1]->start;
8389 else
8390 BUG_ON(root->root_key.objectid !=
8391 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8392 }
f82d02d9 8393
5581a51a 8394 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8395out:
8396 wc->refs[level] = 0;
8397 wc->flags[level] = 0;
f0486c68 8398 return 0;
2c47e605
YZ
8399}
8400
8401static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8402 struct btrfs_root *root,
8403 struct btrfs_path *path,
8404 struct walk_control *wc)
8405{
2c47e605 8406 int level = wc->level;
94fcca9f 8407 int lookup_info = 1;
2c47e605
YZ
8408 int ret;
8409
8410 while (level >= 0) {
94fcca9f 8411 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8412 if (ret > 0)
8413 break;
8414
8415 if (level == 0)
8416 break;
8417
7a7965f8
YZ
8418 if (path->slots[level] >=
8419 btrfs_header_nritems(path->nodes[level]))
8420 break;
8421
94fcca9f 8422 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8423 if (ret > 0) {
8424 path->slots[level]++;
8425 continue;
90d2c51d
MX
8426 } else if (ret < 0)
8427 return ret;
1c4850e2 8428 level = wc->level;
f82d02d9 8429 }
f82d02d9
YZ
8430 return 0;
8431}
8432
d397712b 8433static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8434 struct btrfs_root *root,
f82d02d9 8435 struct btrfs_path *path,
2c47e605 8436 struct walk_control *wc, int max_level)
20524f02 8437{
2c47e605 8438 int level = wc->level;
20524f02 8439 int ret;
9f3a7427 8440
2c47e605
YZ
8441 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8442 while (level < max_level && path->nodes[level]) {
8443 wc->level = level;
8444 if (path->slots[level] + 1 <
8445 btrfs_header_nritems(path->nodes[level])) {
8446 path->slots[level]++;
20524f02
CM
8447 return 0;
8448 } else {
2c47e605
YZ
8449 ret = walk_up_proc(trans, root, path, wc);
8450 if (ret > 0)
8451 return 0;
bd56b302 8452
2c47e605 8453 if (path->locks[level]) {
bd681513
CM
8454 btrfs_tree_unlock_rw(path->nodes[level],
8455 path->locks[level]);
2c47e605 8456 path->locks[level] = 0;
f82d02d9 8457 }
2c47e605
YZ
8458 free_extent_buffer(path->nodes[level]);
8459 path->nodes[level] = NULL;
8460 level++;
20524f02
CM
8461 }
8462 }
8463 return 1;
8464}
8465
9aca1d51 8466/*
2c47e605
YZ
8467 * drop a subvolume tree.
8468 *
8469 * this function traverses the tree freeing any blocks that only
8470 * referenced by the tree.
8471 *
8472 * when a shared tree block is found. this function decreases its
8473 * reference count by one. if update_ref is true, this function
8474 * also make sure backrefs for the shared block and all lower level
8475 * blocks are properly updated.
9d1a2a3a
DS
8476 *
8477 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8478 */
2c536799 8479int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8480 struct btrfs_block_rsv *block_rsv, int update_ref,
8481 int for_reloc)
20524f02 8482{
5caf2a00 8483 struct btrfs_path *path;
2c47e605
YZ
8484 struct btrfs_trans_handle *trans;
8485 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 8486 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8487 struct walk_control *wc;
8488 struct btrfs_key key;
8489 int err = 0;
8490 int ret;
8491 int level;
d29a9f62 8492 bool root_dropped = false;
20524f02 8493
1152651a
MF
8494 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8495
5caf2a00 8496 path = btrfs_alloc_path();
cb1b69f4
TI
8497 if (!path) {
8498 err = -ENOMEM;
8499 goto out;
8500 }
20524f02 8501
2c47e605 8502 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
8503 if (!wc) {
8504 btrfs_free_path(path);
cb1b69f4
TI
8505 err = -ENOMEM;
8506 goto out;
38a1a919 8507 }
2c47e605 8508
a22285a6 8509 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8510 if (IS_ERR(trans)) {
8511 err = PTR_ERR(trans);
8512 goto out_free;
8513 }
98d5dc13 8514
3fd0a558
YZ
8515 if (block_rsv)
8516 trans->block_rsv = block_rsv;
2c47e605 8517
9f3a7427 8518 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 8519 level = btrfs_header_level(root->node);
5d4f98a2
YZ
8520 path->nodes[level] = btrfs_lock_root_node(root);
8521 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 8522 path->slots[level] = 0;
bd681513 8523 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8524 memset(&wc->update_progress, 0,
8525 sizeof(wc->update_progress));
9f3a7427 8526 } else {
9f3a7427 8527 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
8528 memcpy(&wc->update_progress, &key,
8529 sizeof(wc->update_progress));
8530
6702ed49 8531 level = root_item->drop_level;
2c47e605 8532 BUG_ON(level == 0);
6702ed49 8533 path->lowest_level = level;
2c47e605
YZ
8534 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8535 path->lowest_level = 0;
8536 if (ret < 0) {
8537 err = ret;
79787eaa 8538 goto out_end_trans;
9f3a7427 8539 }
1c4850e2 8540 WARN_ON(ret > 0);
2c47e605 8541
7d9eb12c
CM
8542 /*
8543 * unlock our path, this is safe because only this
8544 * function is allowed to delete this snapshot
8545 */
5d4f98a2 8546 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
8547
8548 level = btrfs_header_level(root->node);
8549 while (1) {
8550 btrfs_tree_lock(path->nodes[level]);
8551 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 8552 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8553
8554 ret = btrfs_lookup_extent_info(trans, root,
8555 path->nodes[level]->start,
3173a18f 8556 level, 1, &wc->refs[level],
2c47e605 8557 &wc->flags[level]);
79787eaa
JM
8558 if (ret < 0) {
8559 err = ret;
8560 goto out_end_trans;
8561 }
2c47e605
YZ
8562 BUG_ON(wc->refs[level] == 0);
8563
8564 if (level == root_item->drop_level)
8565 break;
8566
8567 btrfs_tree_unlock(path->nodes[level]);
fec386ac 8568 path->locks[level] = 0;
2c47e605
YZ
8569 WARN_ON(wc->refs[level] != 1);
8570 level--;
8571 }
9f3a7427 8572 }
2c47e605
YZ
8573
8574 wc->level = level;
8575 wc->shared_level = -1;
8576 wc->stage = DROP_REFERENCE;
8577 wc->update_ref = update_ref;
8578 wc->keep_locks = 0;
66d7e7f0 8579 wc->for_reloc = for_reloc;
1c4850e2 8580 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 8581
d397712b 8582 while (1) {
9d1a2a3a 8583
2c47e605
YZ
8584 ret = walk_down_tree(trans, root, path, wc);
8585 if (ret < 0) {
8586 err = ret;
20524f02 8587 break;
2c47e605 8588 }
9aca1d51 8589
2c47e605
YZ
8590 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8591 if (ret < 0) {
8592 err = ret;
20524f02 8593 break;
2c47e605
YZ
8594 }
8595
8596 if (ret > 0) {
8597 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
8598 break;
8599 }
2c47e605
YZ
8600
8601 if (wc->stage == DROP_REFERENCE) {
8602 level = wc->level;
8603 btrfs_node_key(path->nodes[level],
8604 &root_item->drop_progress,
8605 path->slots[level]);
8606 root_item->drop_level = level;
8607 }
8608
8609 BUG_ON(wc->level == 0);
3c8f2422
JB
8610 if (btrfs_should_end_transaction(trans, tree_root) ||
8611 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
8612 ret = btrfs_update_root(trans, tree_root,
8613 &root->root_key,
8614 root_item);
79787eaa
JM
8615 if (ret) {
8616 btrfs_abort_transaction(trans, tree_root, ret);
8617 err = ret;
8618 goto out_end_trans;
8619 }
2c47e605 8620
3fd0a558 8621 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 8622 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 8623 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
8624 err = -EAGAIN;
8625 goto out_free;
8626 }
8627
a22285a6 8628 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8629 if (IS_ERR(trans)) {
8630 err = PTR_ERR(trans);
8631 goto out_free;
8632 }
3fd0a558
YZ
8633 if (block_rsv)
8634 trans->block_rsv = block_rsv;
c3e69d58 8635 }
20524f02 8636 }
b3b4aa74 8637 btrfs_release_path(path);
79787eaa
JM
8638 if (err)
8639 goto out_end_trans;
2c47e605
YZ
8640
8641 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa
JM
8642 if (ret) {
8643 btrfs_abort_transaction(trans, tree_root, ret);
8644 goto out_end_trans;
8645 }
2c47e605 8646
76dda93c 8647 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
8648 ret = btrfs_find_root(tree_root, &root->root_key, path,
8649 NULL, NULL);
79787eaa
JM
8650 if (ret < 0) {
8651 btrfs_abort_transaction(trans, tree_root, ret);
8652 err = ret;
8653 goto out_end_trans;
8654 } else if (ret > 0) {
84cd948c
JB
8655 /* if we fail to delete the orphan item this time
8656 * around, it'll get picked up the next time.
8657 *
8658 * The most common failure here is just -ENOENT.
8659 */
8660 btrfs_del_orphan_item(trans, tree_root,
8661 root->root_key.objectid);
76dda93c
YZ
8662 }
8663 }
8664
27cdeb70 8665 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 8666 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
8667 } else {
8668 free_extent_buffer(root->node);
8669 free_extent_buffer(root->commit_root);
b0feb9d9 8670 btrfs_put_fs_root(root);
76dda93c 8671 }
d29a9f62 8672 root_dropped = true;
79787eaa 8673out_end_trans:
3fd0a558 8674 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 8675out_free:
2c47e605 8676 kfree(wc);
5caf2a00 8677 btrfs_free_path(path);
cb1b69f4 8678out:
d29a9f62
JB
8679 /*
8680 * So if we need to stop dropping the snapshot for whatever reason we
8681 * need to make sure to add it back to the dead root list so that we
8682 * keep trying to do the work later. This also cleans up roots if we
8683 * don't have it in the radix (like when we recover after a power fail
8684 * or unmount) so we don't leak memory.
8685 */
b37b39cd 8686 if (!for_reloc && root_dropped == false)
d29a9f62 8687 btrfs_add_dead_root(root);
90515e7f 8688 if (err && err != -EAGAIN)
a4553fef 8689 btrfs_std_error(root->fs_info, err, NULL);
2c536799 8690 return err;
20524f02 8691}
9078a3e1 8692
2c47e605
YZ
8693/*
8694 * drop subtree rooted at tree block 'node'.
8695 *
8696 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 8697 * only used by relocation code
2c47e605 8698 */
f82d02d9
YZ
8699int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8700 struct btrfs_root *root,
8701 struct extent_buffer *node,
8702 struct extent_buffer *parent)
8703{
8704 struct btrfs_path *path;
2c47e605 8705 struct walk_control *wc;
f82d02d9
YZ
8706 int level;
8707 int parent_level;
8708 int ret = 0;
8709 int wret;
8710
2c47e605
YZ
8711 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8712
f82d02d9 8713 path = btrfs_alloc_path();
db5b493a
TI
8714 if (!path)
8715 return -ENOMEM;
f82d02d9 8716
2c47e605 8717 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
8718 if (!wc) {
8719 btrfs_free_path(path);
8720 return -ENOMEM;
8721 }
2c47e605 8722
b9447ef8 8723 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
8724 parent_level = btrfs_header_level(parent);
8725 extent_buffer_get(parent);
8726 path->nodes[parent_level] = parent;
8727 path->slots[parent_level] = btrfs_header_nritems(parent);
8728
b9447ef8 8729 btrfs_assert_tree_locked(node);
f82d02d9 8730 level = btrfs_header_level(node);
f82d02d9
YZ
8731 path->nodes[level] = node;
8732 path->slots[level] = 0;
bd681513 8733 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8734
8735 wc->refs[parent_level] = 1;
8736 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8737 wc->level = level;
8738 wc->shared_level = -1;
8739 wc->stage = DROP_REFERENCE;
8740 wc->update_ref = 0;
8741 wc->keep_locks = 1;
66d7e7f0 8742 wc->for_reloc = 1;
1c4850e2 8743 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
8744
8745 while (1) {
2c47e605
YZ
8746 wret = walk_down_tree(trans, root, path, wc);
8747 if (wret < 0) {
f82d02d9 8748 ret = wret;
f82d02d9 8749 break;
2c47e605 8750 }
f82d02d9 8751
2c47e605 8752 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
8753 if (wret < 0)
8754 ret = wret;
8755 if (wret != 0)
8756 break;
8757 }
8758
2c47e605 8759 kfree(wc);
f82d02d9
YZ
8760 btrfs_free_path(path);
8761 return ret;
8762}
8763
ec44a35c
CM
8764static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8765{
8766 u64 num_devices;
fc67c450 8767 u64 stripped;
e4d8ec0f 8768
fc67c450
ID
8769 /*
8770 * if restripe for this chunk_type is on pick target profile and
8771 * return, otherwise do the usual balance
8772 */
8773 stripped = get_restripe_target(root->fs_info, flags);
8774 if (stripped)
8775 return extended_to_chunk(stripped);
e4d8ec0f 8776
95669976 8777 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 8778
fc67c450 8779 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 8780 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
8781 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8782
ec44a35c
CM
8783 if (num_devices == 1) {
8784 stripped |= BTRFS_BLOCK_GROUP_DUP;
8785 stripped = flags & ~stripped;
8786
8787 /* turn raid0 into single device chunks */
8788 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8789 return stripped;
8790
8791 /* turn mirroring into duplication */
8792 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8793 BTRFS_BLOCK_GROUP_RAID10))
8794 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
8795 } else {
8796 /* they already had raid on here, just return */
ec44a35c
CM
8797 if (flags & stripped)
8798 return flags;
8799
8800 stripped |= BTRFS_BLOCK_GROUP_DUP;
8801 stripped = flags & ~stripped;
8802
8803 /* switch duplicated blocks with raid1 */
8804 if (flags & BTRFS_BLOCK_GROUP_DUP)
8805 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8806
e3176ca2 8807 /* this is drive concat, leave it alone */
ec44a35c 8808 }
e3176ca2 8809
ec44a35c
CM
8810 return flags;
8811}
8812
868f401a 8813static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 8814{
f0486c68
YZ
8815 struct btrfs_space_info *sinfo = cache->space_info;
8816 u64 num_bytes;
199c36ea 8817 u64 min_allocable_bytes;
f0486c68 8818 int ret = -ENOSPC;
0ef3e66b 8819
199c36ea
MX
8820 /*
8821 * We need some metadata space and system metadata space for
8822 * allocating chunks in some corner cases until we force to set
8823 * it to be readonly.
8824 */
8825 if ((sinfo->flags &
8826 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8827 !force)
8828 min_allocable_bytes = 1 * 1024 * 1024;
8829 else
8830 min_allocable_bytes = 0;
8831
f0486c68
YZ
8832 spin_lock(&sinfo->lock);
8833 spin_lock(&cache->lock);
61cfea9b
W
8834
8835 if (cache->ro) {
868f401a 8836 cache->ro++;
61cfea9b
W
8837 ret = 0;
8838 goto out;
8839 }
8840
f0486c68
YZ
8841 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8842 cache->bytes_super - btrfs_block_group_used(&cache->item);
8843
8844 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
8845 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8846 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 8847 sinfo->bytes_readonly += num_bytes;
868f401a 8848 cache->ro++;
633c0aad 8849 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
8850 ret = 0;
8851 }
61cfea9b 8852out:
f0486c68
YZ
8853 spin_unlock(&cache->lock);
8854 spin_unlock(&sinfo->lock);
8855 return ret;
8856}
7d9eb12c 8857
868f401a 8858int btrfs_inc_block_group_ro(struct btrfs_root *root,
f0486c68 8859 struct btrfs_block_group_cache *cache)
c286ac48 8860
f0486c68
YZ
8861{
8862 struct btrfs_trans_handle *trans;
8863 u64 alloc_flags;
8864 int ret;
7d9eb12c 8865
1bbc621e 8866again:
ff5714cc 8867 trans = btrfs_join_transaction(root);
79787eaa
JM
8868 if (IS_ERR(trans))
8869 return PTR_ERR(trans);
5d4f98a2 8870
1bbc621e
CM
8871 /*
8872 * we're not allowed to set block groups readonly after the dirty
8873 * block groups cache has started writing. If it already started,
8874 * back off and let this transaction commit
8875 */
8876 mutex_lock(&root->fs_info->ro_block_group_mutex);
8877 if (trans->transaction->dirty_bg_run) {
8878 u64 transid = trans->transid;
8879
8880 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8881 btrfs_end_transaction(trans, root);
8882
8883 ret = btrfs_wait_for_commit(root, transid);
8884 if (ret)
8885 return ret;
8886 goto again;
8887 }
8888
153c35b6
CM
8889 /*
8890 * if we are changing raid levels, try to allocate a corresponding
8891 * block group with the new raid level.
8892 */
8893 alloc_flags = update_block_group_flags(root, cache->flags);
8894 if (alloc_flags != cache->flags) {
8895 ret = do_chunk_alloc(trans, root, alloc_flags,
8896 CHUNK_ALLOC_FORCE);
8897 /*
8898 * ENOSPC is allowed here, we may have enough space
8899 * already allocated at the new raid level to
8900 * carry on
8901 */
8902 if (ret == -ENOSPC)
8903 ret = 0;
8904 if (ret < 0)
8905 goto out;
8906 }
1bbc621e 8907
868f401a 8908 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
8909 if (!ret)
8910 goto out;
8911 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 8912 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8913 CHUNK_ALLOC_FORCE);
f0486c68
YZ
8914 if (ret < 0)
8915 goto out;
868f401a 8916 ret = inc_block_group_ro(cache, 0);
f0486c68 8917out:
2f081088
SL
8918 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8919 alloc_flags = update_block_group_flags(root, cache->flags);
a9629596 8920 lock_chunks(root->fs_info->chunk_root);
4617ea3a 8921 check_system_chunk(trans, root, alloc_flags);
a9629596 8922 unlock_chunks(root->fs_info->chunk_root);
2f081088 8923 }
1bbc621e 8924 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 8925
f0486c68
YZ
8926 btrfs_end_transaction(trans, root);
8927 return ret;
8928}
5d4f98a2 8929
c87f08ca
CM
8930int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8931 struct btrfs_root *root, u64 type)
8932{
8933 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 8934 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8935 CHUNK_ALLOC_FORCE);
c87f08ca
CM
8936}
8937
6d07bcec
MX
8938/*
8939 * helper to account the unused space of all the readonly block group in the
633c0aad 8940 * space_info. takes mirrors into account.
6d07bcec 8941 */
633c0aad 8942u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
8943{
8944 struct btrfs_block_group_cache *block_group;
8945 u64 free_bytes = 0;
8946 int factor;
8947
633c0aad
JB
8948 /* It's df, we don't care if it's racey */
8949 if (list_empty(&sinfo->ro_bgs))
8950 return 0;
8951
8952 spin_lock(&sinfo->lock);
8953 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
8954 spin_lock(&block_group->lock);
8955
8956 if (!block_group->ro) {
8957 spin_unlock(&block_group->lock);
8958 continue;
8959 }
8960
8961 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8962 BTRFS_BLOCK_GROUP_RAID10 |
8963 BTRFS_BLOCK_GROUP_DUP))
8964 factor = 2;
8965 else
8966 factor = 1;
8967
8968 free_bytes += (block_group->key.offset -
8969 btrfs_block_group_used(&block_group->item)) *
8970 factor;
8971
8972 spin_unlock(&block_group->lock);
8973 }
6d07bcec
MX
8974 spin_unlock(&sinfo->lock);
8975
8976 return free_bytes;
8977}
8978
868f401a 8979void btrfs_dec_block_group_ro(struct btrfs_root *root,
f0486c68 8980 struct btrfs_block_group_cache *cache)
5d4f98a2 8981{
f0486c68
YZ
8982 struct btrfs_space_info *sinfo = cache->space_info;
8983 u64 num_bytes;
8984
8985 BUG_ON(!cache->ro);
8986
8987 spin_lock(&sinfo->lock);
8988 spin_lock(&cache->lock);
868f401a
Z
8989 if (!--cache->ro) {
8990 num_bytes = cache->key.offset - cache->reserved -
8991 cache->pinned - cache->bytes_super -
8992 btrfs_block_group_used(&cache->item);
8993 sinfo->bytes_readonly -= num_bytes;
8994 list_del_init(&cache->ro_list);
8995 }
f0486c68
YZ
8996 spin_unlock(&cache->lock);
8997 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
8998}
8999
ba1bf481
JB
9000/*
9001 * checks to see if its even possible to relocate this block group.
9002 *
9003 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9004 * ok to go ahead and try.
9005 */
9006int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 9007{
ba1bf481
JB
9008 struct btrfs_block_group_cache *block_group;
9009 struct btrfs_space_info *space_info;
9010 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9011 struct btrfs_device *device;
6df9a95e 9012 struct btrfs_trans_handle *trans;
cdcb725c 9013 u64 min_free;
6719db6a
JB
9014 u64 dev_min = 1;
9015 u64 dev_nr = 0;
4a5e98f5 9016 u64 target;
cdcb725c 9017 int index;
ba1bf481
JB
9018 int full = 0;
9019 int ret = 0;
1a40e23b 9020
ba1bf481 9021 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 9022
ba1bf481
JB
9023 /* odd, couldn't find the block group, leave it alone */
9024 if (!block_group)
9025 return -1;
1a40e23b 9026
cdcb725c 9027 min_free = btrfs_block_group_used(&block_group->item);
9028
ba1bf481 9029 /* no bytes used, we're good */
cdcb725c 9030 if (!min_free)
1a40e23b
ZY
9031 goto out;
9032
ba1bf481
JB
9033 space_info = block_group->space_info;
9034 spin_lock(&space_info->lock);
17d217fe 9035
ba1bf481 9036 full = space_info->full;
17d217fe 9037
ba1bf481
JB
9038 /*
9039 * if this is the last block group we have in this space, we can't
7ce618db
CM
9040 * relocate it unless we're able to allocate a new chunk below.
9041 *
9042 * Otherwise, we need to make sure we have room in the space to handle
9043 * all of the extents from this block group. If we can, we're good
ba1bf481 9044 */
7ce618db 9045 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 9046 (space_info->bytes_used + space_info->bytes_reserved +
9047 space_info->bytes_pinned + space_info->bytes_readonly +
9048 min_free < space_info->total_bytes)) {
ba1bf481
JB
9049 spin_unlock(&space_info->lock);
9050 goto out;
17d217fe 9051 }
ba1bf481 9052 spin_unlock(&space_info->lock);
ea8c2819 9053
ba1bf481
JB
9054 /*
9055 * ok we don't have enough space, but maybe we have free space on our
9056 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9057 * alloc devices and guess if we have enough space. if this block
9058 * group is going to be restriped, run checks against the target
9059 * profile instead of the current one.
ba1bf481
JB
9060 */
9061 ret = -1;
ea8c2819 9062
cdcb725c 9063 /*
9064 * index:
9065 * 0: raid10
9066 * 1: raid1
9067 * 2: dup
9068 * 3: raid0
9069 * 4: single
9070 */
4a5e98f5
ID
9071 target = get_restripe_target(root->fs_info, block_group->flags);
9072 if (target) {
31e50229 9073 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9074 } else {
9075 /*
9076 * this is just a balance, so if we were marked as full
9077 * we know there is no space for a new chunk
9078 */
9079 if (full)
9080 goto out;
9081
9082 index = get_block_group_index(block_group);
9083 }
9084
e6ec716f 9085 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9086 dev_min = 4;
6719db6a
JB
9087 /* Divide by 2 */
9088 min_free >>= 1;
e6ec716f 9089 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9090 dev_min = 2;
e6ec716f 9091 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9092 /* Multiply by 2 */
9093 min_free <<= 1;
e6ec716f 9094 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9095 dev_min = fs_devices->rw_devices;
47c5713f 9096 min_free = div64_u64(min_free, dev_min);
cdcb725c 9097 }
9098
6df9a95e
JB
9099 /* We need to do this so that we can look at pending chunks */
9100 trans = btrfs_join_transaction(root);
9101 if (IS_ERR(trans)) {
9102 ret = PTR_ERR(trans);
9103 goto out;
9104 }
9105
ba1bf481
JB
9106 mutex_lock(&root->fs_info->chunk_mutex);
9107 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9108 u64 dev_offset;
56bec294 9109
ba1bf481
JB
9110 /*
9111 * check to make sure we can actually find a chunk with enough
9112 * space to fit our block group in.
9113 */
63a212ab
SB
9114 if (device->total_bytes > device->bytes_used + min_free &&
9115 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9116 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9117 &dev_offset, NULL);
ba1bf481 9118 if (!ret)
cdcb725c 9119 dev_nr++;
9120
9121 if (dev_nr >= dev_min)
73e48b27 9122 break;
cdcb725c 9123
ba1bf481 9124 ret = -1;
725c8463 9125 }
edbd8d4e 9126 }
ba1bf481 9127 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9128 btrfs_end_transaction(trans, root);
edbd8d4e 9129out:
ba1bf481 9130 btrfs_put_block_group(block_group);
edbd8d4e
CM
9131 return ret;
9132}
9133
b2950863
CH
9134static int find_first_block_group(struct btrfs_root *root,
9135 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9136{
925baedd 9137 int ret = 0;
0b86a832
CM
9138 struct btrfs_key found_key;
9139 struct extent_buffer *leaf;
9140 int slot;
edbd8d4e 9141
0b86a832
CM
9142 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9143 if (ret < 0)
925baedd
CM
9144 goto out;
9145
d397712b 9146 while (1) {
0b86a832 9147 slot = path->slots[0];
edbd8d4e 9148 leaf = path->nodes[0];
0b86a832
CM
9149 if (slot >= btrfs_header_nritems(leaf)) {
9150 ret = btrfs_next_leaf(root, path);
9151 if (ret == 0)
9152 continue;
9153 if (ret < 0)
925baedd 9154 goto out;
0b86a832 9155 break;
edbd8d4e 9156 }
0b86a832 9157 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9158
0b86a832 9159 if (found_key.objectid >= key->objectid &&
925baedd
CM
9160 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9161 ret = 0;
9162 goto out;
9163 }
0b86a832 9164 path->slots[0]++;
edbd8d4e 9165 }
925baedd 9166out:
0b86a832 9167 return ret;
edbd8d4e
CM
9168}
9169
0af3d00b
JB
9170void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9171{
9172 struct btrfs_block_group_cache *block_group;
9173 u64 last = 0;
9174
9175 while (1) {
9176 struct inode *inode;
9177
9178 block_group = btrfs_lookup_first_block_group(info, last);
9179 while (block_group) {
9180 spin_lock(&block_group->lock);
9181 if (block_group->iref)
9182 break;
9183 spin_unlock(&block_group->lock);
9184 block_group = next_block_group(info->tree_root,
9185 block_group);
9186 }
9187 if (!block_group) {
9188 if (last == 0)
9189 break;
9190 last = 0;
9191 continue;
9192 }
9193
9194 inode = block_group->inode;
9195 block_group->iref = 0;
9196 block_group->inode = NULL;
9197 spin_unlock(&block_group->lock);
9198 iput(inode);
9199 last = block_group->key.objectid + block_group->key.offset;
9200 btrfs_put_block_group(block_group);
9201 }
9202}
9203
1a40e23b
ZY
9204int btrfs_free_block_groups(struct btrfs_fs_info *info)
9205{
9206 struct btrfs_block_group_cache *block_group;
4184ea7f 9207 struct btrfs_space_info *space_info;
11833d66 9208 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9209 struct rb_node *n;
9210
9e351cc8 9211 down_write(&info->commit_root_sem);
11833d66
YZ
9212 while (!list_empty(&info->caching_block_groups)) {
9213 caching_ctl = list_entry(info->caching_block_groups.next,
9214 struct btrfs_caching_control, list);
9215 list_del(&caching_ctl->list);
9216 put_caching_control(caching_ctl);
9217 }
9e351cc8 9218 up_write(&info->commit_root_sem);
11833d66 9219
47ab2a6c
JB
9220 spin_lock(&info->unused_bgs_lock);
9221 while (!list_empty(&info->unused_bgs)) {
9222 block_group = list_first_entry(&info->unused_bgs,
9223 struct btrfs_block_group_cache,
9224 bg_list);
9225 list_del_init(&block_group->bg_list);
9226 btrfs_put_block_group(block_group);
9227 }
9228 spin_unlock(&info->unused_bgs_lock);
9229
1a40e23b
ZY
9230 spin_lock(&info->block_group_cache_lock);
9231 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9232 block_group = rb_entry(n, struct btrfs_block_group_cache,
9233 cache_node);
1a40e23b
ZY
9234 rb_erase(&block_group->cache_node,
9235 &info->block_group_cache_tree);
01eacb27 9236 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9237 spin_unlock(&info->block_group_cache_lock);
9238
80eb234a 9239 down_write(&block_group->space_info->groups_sem);
1a40e23b 9240 list_del(&block_group->list);
80eb234a 9241 up_write(&block_group->space_info->groups_sem);
d2fb3437 9242
817d52f8 9243 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9244 wait_block_group_cache_done(block_group);
817d52f8 9245
3c14874a
JB
9246 /*
9247 * We haven't cached this block group, which means we could
9248 * possibly have excluded extents on this block group.
9249 */
36cce922
JB
9250 if (block_group->cached == BTRFS_CACHE_NO ||
9251 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9252 free_excluded_extents(info->extent_root, block_group);
9253
817d52f8 9254 btrfs_remove_free_space_cache(block_group);
11dfe35a 9255 btrfs_put_block_group(block_group);
d899e052
YZ
9256
9257 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9258 }
9259 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9260
9261 /* now that all the block groups are freed, go through and
9262 * free all the space_info structs. This is only called during
9263 * the final stages of unmount, and so we know nobody is
9264 * using them. We call synchronize_rcu() once before we start,
9265 * just to be on the safe side.
9266 */
9267 synchronize_rcu();
9268
8929ecfa
YZ
9269 release_global_block_rsv(info);
9270
67871254 9271 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9272 int i;
9273
4184ea7f
CM
9274 space_info = list_entry(info->space_info.next,
9275 struct btrfs_space_info,
9276 list);
b069e0c3 9277 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
fae7f21c 9278 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9279 space_info->bytes_reserved > 0 ||
fae7f21c 9280 space_info->bytes_may_use > 0)) {
b069e0c3
DS
9281 dump_space_info(space_info, 0, 0);
9282 }
f0486c68 9283 }
4184ea7f 9284 list_del(&space_info->list);
6ab0a202
JM
9285 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9286 struct kobject *kobj;
c1895442
JM
9287 kobj = space_info->block_group_kobjs[i];
9288 space_info->block_group_kobjs[i] = NULL;
9289 if (kobj) {
6ab0a202
JM
9290 kobject_del(kobj);
9291 kobject_put(kobj);
9292 }
9293 }
9294 kobject_del(&space_info->kobj);
9295 kobject_put(&space_info->kobj);
4184ea7f 9296 }
1a40e23b
ZY
9297 return 0;
9298}
9299
b742bb82
YZ
9300static void __link_block_group(struct btrfs_space_info *space_info,
9301 struct btrfs_block_group_cache *cache)
9302{
9303 int index = get_block_group_index(cache);
ed55b6ac 9304 bool first = false;
b742bb82
YZ
9305
9306 down_write(&space_info->groups_sem);
ed55b6ac
JM
9307 if (list_empty(&space_info->block_groups[index]))
9308 first = true;
9309 list_add_tail(&cache->list, &space_info->block_groups[index]);
9310 up_write(&space_info->groups_sem);
9311
9312 if (first) {
c1895442 9313 struct raid_kobject *rkobj;
6ab0a202
JM
9314 int ret;
9315
c1895442
JM
9316 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9317 if (!rkobj)
9318 goto out_err;
9319 rkobj->raid_type = index;
9320 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9321 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9322 "%s", get_raid_name(index));
6ab0a202 9323 if (ret) {
c1895442
JM
9324 kobject_put(&rkobj->kobj);
9325 goto out_err;
6ab0a202 9326 }
c1895442 9327 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9328 }
c1895442
JM
9329
9330 return;
9331out_err:
9332 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
9333}
9334
920e4a58
MX
9335static struct btrfs_block_group_cache *
9336btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9337{
9338 struct btrfs_block_group_cache *cache;
9339
9340 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9341 if (!cache)
9342 return NULL;
9343
9344 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9345 GFP_NOFS);
9346 if (!cache->free_space_ctl) {
9347 kfree(cache);
9348 return NULL;
9349 }
9350
9351 cache->key.objectid = start;
9352 cache->key.offset = size;
9353 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9354
9355 cache->sectorsize = root->sectorsize;
9356 cache->fs_info = root->fs_info;
9357 cache->full_stripe_len = btrfs_full_stripe_len(root,
9358 &root->fs_info->mapping_tree,
9359 start);
9360 atomic_set(&cache->count, 1);
9361 spin_lock_init(&cache->lock);
e570fd27 9362 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9363 INIT_LIST_HEAD(&cache->list);
9364 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9365 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9366 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9367 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9368 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9369 btrfs_init_free_space_ctl(cache);
04216820 9370 atomic_set(&cache->trimming, 0);
920e4a58
MX
9371
9372 return cache;
9373}
9374
9078a3e1
CM
9375int btrfs_read_block_groups(struct btrfs_root *root)
9376{
9377 struct btrfs_path *path;
9378 int ret;
9078a3e1 9379 struct btrfs_block_group_cache *cache;
be744175 9380 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 9381 struct btrfs_space_info *space_info;
9078a3e1
CM
9382 struct btrfs_key key;
9383 struct btrfs_key found_key;
5f39d397 9384 struct extent_buffer *leaf;
0af3d00b
JB
9385 int need_clear = 0;
9386 u64 cache_gen;
96b5179d 9387
be744175 9388 root = info->extent_root;
9078a3e1 9389 key.objectid = 0;
0b86a832 9390 key.offset = 0;
962a298f 9391 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9392 path = btrfs_alloc_path();
9393 if (!path)
9394 return -ENOMEM;
026fd317 9395 path->reada = 1;
9078a3e1 9396
6c41761f 9397 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
73bc1876 9398 if (btrfs_test_opt(root, SPACE_CACHE) &&
6c41761f 9399 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 9400 need_clear = 1;
88c2ba3b
JB
9401 if (btrfs_test_opt(root, CLEAR_CACHE))
9402 need_clear = 1;
0af3d00b 9403
d397712b 9404 while (1) {
0b86a832 9405 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
9406 if (ret > 0)
9407 break;
0b86a832
CM
9408 if (ret != 0)
9409 goto error;
920e4a58 9410
5f39d397
CM
9411 leaf = path->nodes[0];
9412 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
9413
9414 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9415 found_key.offset);
9078a3e1 9416 if (!cache) {
0b86a832 9417 ret = -ENOMEM;
f0486c68 9418 goto error;
9078a3e1 9419 }
96303081 9420
cf7c1ef6
LB
9421 if (need_clear) {
9422 /*
9423 * When we mount with old space cache, we need to
9424 * set BTRFS_DC_CLEAR and set dirty flag.
9425 *
9426 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9427 * truncate the old free space cache inode and
9428 * setup a new one.
9429 * b) Setting 'dirty flag' makes sure that we flush
9430 * the new space cache info onto disk.
9431 */
cf7c1ef6 9432 if (btrfs_test_opt(root, SPACE_CACHE))
ce93ec54 9433 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9434 }
0af3d00b 9435
5f39d397
CM
9436 read_extent_buffer(leaf, &cache->item,
9437 btrfs_item_ptr_offset(leaf, path->slots[0]),
9438 sizeof(cache->item));
920e4a58 9439 cache->flags = btrfs_block_group_flags(&cache->item);
0b86a832 9440
9078a3e1 9441 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 9442 btrfs_release_path(path);
34d52cb6 9443
3c14874a
JB
9444 /*
9445 * We need to exclude the super stripes now so that the space
9446 * info has super bytes accounted for, otherwise we'll think
9447 * we have more space than we actually do.
9448 */
835d974f
JB
9449 ret = exclude_super_stripes(root, cache);
9450 if (ret) {
9451 /*
9452 * We may have excluded something, so call this just in
9453 * case.
9454 */
9455 free_excluded_extents(root, cache);
920e4a58 9456 btrfs_put_block_group(cache);
835d974f
JB
9457 goto error;
9458 }
3c14874a 9459
817d52f8
JB
9460 /*
9461 * check for two cases, either we are full, and therefore
9462 * don't need to bother with the caching work since we won't
9463 * find any space, or we are empty, and we can just add all
9464 * the space in and be done with it. This saves us _alot_ of
9465 * time, particularly in the full case.
9466 */
9467 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 9468 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9469 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 9470 free_excluded_extents(root, cache);
817d52f8 9471 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 9472 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
9473 cache->cached = BTRFS_CACHE_FINISHED;
9474 add_new_free_space(cache, root->fs_info,
9475 found_key.objectid,
9476 found_key.objectid +
9477 found_key.offset);
11833d66 9478 free_excluded_extents(root, cache);
817d52f8 9479 }
96b5179d 9480
8c579fe7
JB
9481 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9482 if (ret) {
9483 btrfs_remove_free_space_cache(cache);
9484 btrfs_put_block_group(cache);
9485 goto error;
9486 }
9487
6324fbf3
CM
9488 ret = update_space_info(info, cache->flags, found_key.offset,
9489 btrfs_block_group_used(&cache->item),
9490 &space_info);
8c579fe7
JB
9491 if (ret) {
9492 btrfs_remove_free_space_cache(cache);
9493 spin_lock(&info->block_group_cache_lock);
9494 rb_erase(&cache->cache_node,
9495 &info->block_group_cache_tree);
01eacb27 9496 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9497 spin_unlock(&info->block_group_cache_lock);
9498 btrfs_put_block_group(cache);
9499 goto error;
9500 }
9501
6324fbf3 9502 cache->space_info = space_info;
1b2da372 9503 spin_lock(&cache->space_info->lock);
f0486c68 9504 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9505 spin_unlock(&cache->space_info->lock);
9506
b742bb82 9507 __link_block_group(space_info, cache);
0f9dd46c 9508
75ccf47d 9509 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 9510 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
868f401a 9511 inc_block_group_ro(cache, 1);
47ab2a6c
JB
9512 } else if (btrfs_block_group_used(&cache->item) == 0) {
9513 spin_lock(&info->unused_bgs_lock);
9514 /* Should always be true but just in case. */
9515 if (list_empty(&cache->bg_list)) {
9516 btrfs_get_block_group(cache);
9517 list_add_tail(&cache->bg_list,
9518 &info->unused_bgs);
9519 }
9520 spin_unlock(&info->unused_bgs_lock);
9521 }
9078a3e1 9522 }
b742bb82
YZ
9523
9524 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9525 if (!(get_alloc_profile(root, space_info->flags) &
9526 (BTRFS_BLOCK_GROUP_RAID10 |
9527 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
9528 BTRFS_BLOCK_GROUP_RAID5 |
9529 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
9530 BTRFS_BLOCK_GROUP_DUP)))
9531 continue;
9532 /*
9533 * avoid allocating from un-mirrored block group if there are
9534 * mirrored block groups.
9535 */
1095cc0d 9536 list_for_each_entry(cache,
9537 &space_info->block_groups[BTRFS_RAID_RAID0],
9538 list)
868f401a 9539 inc_block_group_ro(cache, 1);
1095cc0d 9540 list_for_each_entry(cache,
9541 &space_info->block_groups[BTRFS_RAID_SINGLE],
9542 list)
868f401a 9543 inc_block_group_ro(cache, 1);
9078a3e1 9544 }
f0486c68
YZ
9545
9546 init_global_block_rsv(info);
0b86a832
CM
9547 ret = 0;
9548error:
9078a3e1 9549 btrfs_free_path(path);
0b86a832 9550 return ret;
9078a3e1 9551}
6324fbf3 9552
ea658bad
JB
9553void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9554 struct btrfs_root *root)
9555{
9556 struct btrfs_block_group_cache *block_group, *tmp;
9557 struct btrfs_root *extent_root = root->fs_info->extent_root;
9558 struct btrfs_block_group_item item;
9559 struct btrfs_key key;
9560 int ret = 0;
d9a0540a 9561 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 9562
d9a0540a 9563 trans->can_flush_pending_bgs = false;
47ab2a6c 9564 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 9565 if (ret)
c92f6be3 9566 goto next;
ea658bad
JB
9567
9568 spin_lock(&block_group->lock);
9569 memcpy(&item, &block_group->item, sizeof(item));
9570 memcpy(&key, &block_group->key, sizeof(key));
9571 spin_unlock(&block_group->lock);
9572
9573 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9574 sizeof(item));
9575 if (ret)
9576 btrfs_abort_transaction(trans, extent_root, ret);
6df9a95e
JB
9577 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9578 key.objectid, key.offset);
9579 if (ret)
9580 btrfs_abort_transaction(trans, extent_root, ret);
c92f6be3
FM
9581next:
9582 list_del_init(&block_group->bg_list);
ea658bad 9583 }
d9a0540a 9584 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
9585}
9586
6324fbf3
CM
9587int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9588 struct btrfs_root *root, u64 bytes_used,
e17cade2 9589 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
9590 u64 size)
9591{
9592 int ret;
6324fbf3
CM
9593 struct btrfs_root *extent_root;
9594 struct btrfs_block_group_cache *cache;
6324fbf3
CM
9595
9596 extent_root = root->fs_info->extent_root;
6324fbf3 9597
995946dd 9598 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 9599
920e4a58 9600 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
9601 if (!cache)
9602 return -ENOMEM;
34d52cb6 9603
6324fbf3 9604 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 9605 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
9606 btrfs_set_block_group_flags(&cache->item, type);
9607
920e4a58 9608 cache->flags = type;
11833d66 9609 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9610 cache->cached = BTRFS_CACHE_FINISHED;
835d974f
JB
9611 ret = exclude_super_stripes(root, cache);
9612 if (ret) {
9613 /*
9614 * We may have excluded something, so call this just in
9615 * case.
9616 */
9617 free_excluded_extents(root, cache);
920e4a58 9618 btrfs_put_block_group(cache);
835d974f
JB
9619 return ret;
9620 }
96303081 9621
817d52f8
JB
9622 add_new_free_space(cache, root->fs_info, chunk_offset,
9623 chunk_offset + size);
9624
11833d66
YZ
9625 free_excluded_extents(root, cache);
9626
2e6e5183
FM
9627 /*
9628 * Call to ensure the corresponding space_info object is created and
9629 * assigned to our block group, but don't update its counters just yet.
9630 * We want our bg to be added to the rbtree with its ->space_info set.
9631 */
9632 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9633 &cache->space_info);
9634 if (ret) {
9635 btrfs_remove_free_space_cache(cache);
9636 btrfs_put_block_group(cache);
9637 return ret;
9638 }
9639
8c579fe7
JB
9640 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9641 if (ret) {
9642 btrfs_remove_free_space_cache(cache);
9643 btrfs_put_block_group(cache);
9644 return ret;
9645 }
9646
2e6e5183
FM
9647 /*
9648 * Now that our block group has its ->space_info set and is inserted in
9649 * the rbtree, update the space info's counters.
9650 */
6324fbf3
CM
9651 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9652 &cache->space_info);
8c579fe7
JB
9653 if (ret) {
9654 btrfs_remove_free_space_cache(cache);
9655 spin_lock(&root->fs_info->block_group_cache_lock);
9656 rb_erase(&cache->cache_node,
9657 &root->fs_info->block_group_cache_tree);
01eacb27 9658 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9659 spin_unlock(&root->fs_info->block_group_cache_lock);
9660 btrfs_put_block_group(cache);
9661 return ret;
9662 }
c7c144db 9663 update_global_block_rsv(root->fs_info);
1b2da372
JB
9664
9665 spin_lock(&cache->space_info->lock);
f0486c68 9666 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9667 spin_unlock(&cache->space_info->lock);
9668
b742bb82 9669 __link_block_group(cache->space_info, cache);
6324fbf3 9670
47ab2a6c 9671 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 9672
d18a2c44 9673 set_avail_alloc_bits(extent_root->fs_info, type);
925baedd 9674
6324fbf3
CM
9675 return 0;
9676}
1a40e23b 9677
10ea00f5
ID
9678static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9679{
899c81ea
ID
9680 u64 extra_flags = chunk_to_extended(flags) &
9681 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 9682
de98ced9 9683 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
9684 if (flags & BTRFS_BLOCK_GROUP_DATA)
9685 fs_info->avail_data_alloc_bits &= ~extra_flags;
9686 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9687 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9688 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9689 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 9690 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
9691}
9692
1a40e23b 9693int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
9694 struct btrfs_root *root, u64 group_start,
9695 struct extent_map *em)
1a40e23b
ZY
9696{
9697 struct btrfs_path *path;
9698 struct btrfs_block_group_cache *block_group;
44fb5511 9699 struct btrfs_free_cluster *cluster;
0af3d00b 9700 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 9701 struct btrfs_key key;
0af3d00b 9702 struct inode *inode;
c1895442 9703 struct kobject *kobj = NULL;
1a40e23b 9704 int ret;
10ea00f5 9705 int index;
89a55897 9706 int factor;
4f69cb98 9707 struct btrfs_caching_control *caching_ctl = NULL;
04216820 9708 bool remove_em;
1a40e23b 9709
1a40e23b
ZY
9710 root = root->fs_info->extent_root;
9711
9712 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9713 BUG_ON(!block_group);
c146afad 9714 BUG_ON(!block_group->ro);
1a40e23b 9715
9f7c43c9 9716 /*
9717 * Free the reserved super bytes from this block group before
9718 * remove it.
9719 */
9720 free_excluded_extents(root, block_group);
9721
1a40e23b 9722 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 9723 index = get_block_group_index(block_group);
89a55897
JB
9724 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9725 BTRFS_BLOCK_GROUP_RAID1 |
9726 BTRFS_BLOCK_GROUP_RAID10))
9727 factor = 2;
9728 else
9729 factor = 1;
1a40e23b 9730
44fb5511
CM
9731 /* make sure this block group isn't part of an allocation cluster */
9732 cluster = &root->fs_info->data_alloc_cluster;
9733 spin_lock(&cluster->refill_lock);
9734 btrfs_return_cluster_to_free_space(block_group, cluster);
9735 spin_unlock(&cluster->refill_lock);
9736
9737 /*
9738 * make sure this block group isn't part of a metadata
9739 * allocation cluster
9740 */
9741 cluster = &root->fs_info->meta_alloc_cluster;
9742 spin_lock(&cluster->refill_lock);
9743 btrfs_return_cluster_to_free_space(block_group, cluster);
9744 spin_unlock(&cluster->refill_lock);
9745
1a40e23b 9746 path = btrfs_alloc_path();
d8926bb3
MF
9747 if (!path) {
9748 ret = -ENOMEM;
9749 goto out;
9750 }
1a40e23b 9751
1bbc621e
CM
9752 /*
9753 * get the inode first so any iput calls done for the io_list
9754 * aren't the final iput (no unlinks allowed now)
9755 */
10b2f34d 9756 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
9757
9758 mutex_lock(&trans->transaction->cache_write_mutex);
9759 /*
9760 * make sure our free spache cache IO is done before remove the
9761 * free space inode
9762 */
9763 spin_lock(&trans->transaction->dirty_bgs_lock);
9764 if (!list_empty(&block_group->io_list)) {
9765 list_del_init(&block_group->io_list);
9766
9767 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9768
9769 spin_unlock(&trans->transaction->dirty_bgs_lock);
9770 btrfs_wait_cache_io(root, trans, block_group,
9771 &block_group->io_ctl, path,
9772 block_group->key.objectid);
9773 btrfs_put_block_group(block_group);
9774 spin_lock(&trans->transaction->dirty_bgs_lock);
9775 }
9776
9777 if (!list_empty(&block_group->dirty_list)) {
9778 list_del_init(&block_group->dirty_list);
9779 btrfs_put_block_group(block_group);
9780 }
9781 spin_unlock(&trans->transaction->dirty_bgs_lock);
9782 mutex_unlock(&trans->transaction->cache_write_mutex);
9783
0af3d00b 9784 if (!IS_ERR(inode)) {
b532402e 9785 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
9786 if (ret) {
9787 btrfs_add_delayed_iput(inode);
9788 goto out;
9789 }
0af3d00b
JB
9790 clear_nlink(inode);
9791 /* One for the block groups ref */
9792 spin_lock(&block_group->lock);
9793 if (block_group->iref) {
9794 block_group->iref = 0;
9795 block_group->inode = NULL;
9796 spin_unlock(&block_group->lock);
9797 iput(inode);
9798 } else {
9799 spin_unlock(&block_group->lock);
9800 }
9801 /* One for our lookup ref */
455757c3 9802 btrfs_add_delayed_iput(inode);
0af3d00b
JB
9803 }
9804
9805 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9806 key.offset = block_group->key.objectid;
9807 key.type = 0;
9808
9809 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9810 if (ret < 0)
9811 goto out;
9812 if (ret > 0)
b3b4aa74 9813 btrfs_release_path(path);
0af3d00b
JB
9814 if (ret == 0) {
9815 ret = btrfs_del_item(trans, tree_root, path);
9816 if (ret)
9817 goto out;
b3b4aa74 9818 btrfs_release_path(path);
0af3d00b
JB
9819 }
9820
3dfdb934 9821 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
9822 rb_erase(&block_group->cache_node,
9823 &root->fs_info->block_group_cache_tree);
292cbd51 9824 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
9825
9826 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9827 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 9828 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 9829
80eb234a 9830 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
9831 /*
9832 * we must use list_del_init so people can check to see if they
9833 * are still on the list after taking the semaphore
9834 */
9835 list_del_init(&block_group->list);
6ab0a202 9836 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
9837 kobj = block_group->space_info->block_group_kobjs[index];
9838 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 9839 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 9840 }
80eb234a 9841 up_write(&block_group->space_info->groups_sem);
c1895442
JM
9842 if (kobj) {
9843 kobject_del(kobj);
9844 kobject_put(kobj);
9845 }
1a40e23b 9846
4f69cb98
FM
9847 if (block_group->has_caching_ctl)
9848 caching_ctl = get_caching_control(block_group);
817d52f8 9849 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9850 wait_block_group_cache_done(block_group);
4f69cb98
FM
9851 if (block_group->has_caching_ctl) {
9852 down_write(&root->fs_info->commit_root_sem);
9853 if (!caching_ctl) {
9854 struct btrfs_caching_control *ctl;
9855
9856 list_for_each_entry(ctl,
9857 &root->fs_info->caching_block_groups, list)
9858 if (ctl->block_group == block_group) {
9859 caching_ctl = ctl;
9860 atomic_inc(&caching_ctl->count);
9861 break;
9862 }
9863 }
9864 if (caching_ctl)
9865 list_del_init(&caching_ctl->list);
9866 up_write(&root->fs_info->commit_root_sem);
9867 if (caching_ctl) {
9868 /* Once for the caching bgs list and once for us. */
9869 put_caching_control(caching_ctl);
9870 put_caching_control(caching_ctl);
9871 }
9872 }
817d52f8 9873
ce93ec54
JB
9874 spin_lock(&trans->transaction->dirty_bgs_lock);
9875 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
9876 WARN_ON(1);
9877 }
9878 if (!list_empty(&block_group->io_list)) {
9879 WARN_ON(1);
ce93ec54
JB
9880 }
9881 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
9882 btrfs_remove_free_space_cache(block_group);
9883
c146afad 9884 spin_lock(&block_group->space_info->lock);
75c68e9f 9885 list_del_init(&block_group->ro_list);
18d018ad
ZL
9886
9887 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9888 WARN_ON(block_group->space_info->total_bytes
9889 < block_group->key.offset);
9890 WARN_ON(block_group->space_info->bytes_readonly
9891 < block_group->key.offset);
9892 WARN_ON(block_group->space_info->disk_total
9893 < block_group->key.offset * factor);
9894 }
c146afad
YZ
9895 block_group->space_info->total_bytes -= block_group->key.offset;
9896 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 9897 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 9898
c146afad 9899 spin_unlock(&block_group->space_info->lock);
283bb197 9900
0af3d00b
JB
9901 memcpy(&key, &block_group->key, sizeof(key));
9902
04216820 9903 lock_chunks(root);
495e64f4
FM
9904 if (!list_empty(&em->list)) {
9905 /* We're in the transaction->pending_chunks list. */
9906 free_extent_map(em);
9907 }
04216820
FM
9908 spin_lock(&block_group->lock);
9909 block_group->removed = 1;
9910 /*
9911 * At this point trimming can't start on this block group, because we
9912 * removed the block group from the tree fs_info->block_group_cache_tree
9913 * so no one can't find it anymore and even if someone already got this
9914 * block group before we removed it from the rbtree, they have already
9915 * incremented block_group->trimming - if they didn't, they won't find
9916 * any free space entries because we already removed them all when we
9917 * called btrfs_remove_free_space_cache().
9918 *
9919 * And we must not remove the extent map from the fs_info->mapping_tree
9920 * to prevent the same logical address range and physical device space
9921 * ranges from being reused for a new block group. This is because our
9922 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9923 * completely transactionless, so while it is trimming a range the
9924 * currently running transaction might finish and a new one start,
9925 * allowing for new block groups to be created that can reuse the same
9926 * physical device locations unless we take this special care.
e33e17ee
JM
9927 *
9928 * There may also be an implicit trim operation if the file system
9929 * is mounted with -odiscard. The same protections must remain
9930 * in place until the extents have been discarded completely when
9931 * the transaction commit has completed.
04216820
FM
9932 */
9933 remove_em = (atomic_read(&block_group->trimming) == 0);
9934 /*
9935 * Make sure a trimmer task always sees the em in the pinned_chunks list
9936 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9937 * before checking block_group->removed).
9938 */
9939 if (!remove_em) {
9940 /*
9941 * Our em might be in trans->transaction->pending_chunks which
9942 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9943 * and so is the fs_info->pinned_chunks list.
9944 *
9945 * So at this point we must be holding the chunk_mutex to avoid
9946 * any races with chunk allocation (more specifically at
9947 * volumes.c:contains_pending_extent()), to ensure it always
9948 * sees the em, either in the pending_chunks list or in the
9949 * pinned_chunks list.
9950 */
9951 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9952 }
9953 spin_unlock(&block_group->lock);
04216820
FM
9954
9955 if (remove_em) {
9956 struct extent_map_tree *em_tree;
9957
9958 em_tree = &root->fs_info->mapping_tree.map_tree;
9959 write_lock(&em_tree->lock);
8dbcd10f
FM
9960 /*
9961 * The em might be in the pending_chunks list, so make sure the
9962 * chunk mutex is locked, since remove_extent_mapping() will
9963 * delete us from that list.
9964 */
04216820
FM
9965 remove_extent_mapping(em_tree, em);
9966 write_unlock(&em_tree->lock);
9967 /* once for the tree */
9968 free_extent_map(em);
9969 }
9970
8dbcd10f
FM
9971 unlock_chunks(root);
9972
fa9c0d79
CM
9973 btrfs_put_block_group(block_group);
9974 btrfs_put_block_group(block_group);
1a40e23b
ZY
9975
9976 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9977 if (ret > 0)
9978 ret = -EIO;
9979 if (ret < 0)
9980 goto out;
9981
9982 ret = btrfs_del_item(trans, root, path);
9983out:
9984 btrfs_free_path(path);
9985 return ret;
9986}
acce952b 9987
47ab2a6c
JB
9988/*
9989 * Process the unused_bgs list and remove any that don't have any allocated
9990 * space inside of them.
9991 */
9992void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9993{
9994 struct btrfs_block_group_cache *block_group;
9995 struct btrfs_space_info *space_info;
9996 struct btrfs_root *root = fs_info->extent_root;
9997 struct btrfs_trans_handle *trans;
9998 int ret = 0;
9999
10000 if (!fs_info->open)
10001 return;
10002
10003 spin_lock(&fs_info->unused_bgs_lock);
10004 while (!list_empty(&fs_info->unused_bgs)) {
10005 u64 start, end;
e33e17ee 10006 int trimming;
47ab2a6c
JB
10007
10008 block_group = list_first_entry(&fs_info->unused_bgs,
10009 struct btrfs_block_group_cache,
10010 bg_list);
10011 space_info = block_group->space_info;
10012 list_del_init(&block_group->bg_list);
10013 if (ret || btrfs_mixed_space_info(space_info)) {
10014 btrfs_put_block_group(block_group);
10015 continue;
10016 }
10017 spin_unlock(&fs_info->unused_bgs_lock);
10018
67c5e7d4
FM
10019 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
10020
47ab2a6c
JB
10021 /* Don't want to race with allocators so take the groups_sem */
10022 down_write(&space_info->groups_sem);
10023 spin_lock(&block_group->lock);
10024 if (block_group->reserved ||
10025 btrfs_block_group_used(&block_group->item) ||
10026 block_group->ro) {
10027 /*
10028 * We want to bail if we made new allocations or have
10029 * outstanding allocations in this block group. We do
10030 * the ro check in case balance is currently acting on
10031 * this block group.
10032 */
10033 spin_unlock(&block_group->lock);
10034 up_write(&space_info->groups_sem);
10035 goto next;
10036 }
10037 spin_unlock(&block_group->lock);
10038
10039 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10040 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10041 up_write(&space_info->groups_sem);
10042 if (ret < 0) {
10043 ret = 0;
10044 goto next;
10045 }
10046
10047 /*
10048 * Want to do this before we do anything else so we can recover
10049 * properly if we fail to join the transaction.
10050 */
3d84be79
FL
10051 /* 1 for btrfs_orphan_reserve_metadata() */
10052 trans = btrfs_start_transaction(root, 1);
47ab2a6c 10053 if (IS_ERR(trans)) {
868f401a 10054 btrfs_dec_block_group_ro(root, block_group);
47ab2a6c
JB
10055 ret = PTR_ERR(trans);
10056 goto next;
10057 }
10058
10059 /*
10060 * We could have pending pinned extents for this block group,
10061 * just delete them, we don't care about them anymore.
10062 */
10063 start = block_group->key.objectid;
10064 end = start + block_group->key.offset - 1;
d4b450cd
FM
10065 /*
10066 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10067 * btrfs_finish_extent_commit(). If we are at transaction N,
10068 * another task might be running finish_extent_commit() for the
10069 * previous transaction N - 1, and have seen a range belonging
10070 * to the block group in freed_extents[] before we were able to
10071 * clear the whole block group range from freed_extents[]. This
10072 * means that task can lookup for the block group after we
10073 * unpinned it from freed_extents[] and removed it, leading to
10074 * a BUG_ON() at btrfs_unpin_extent_range().
10075 */
10076 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10077 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
47ab2a6c 10078 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10079 if (ret) {
d4b450cd 10080 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10081 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10082 goto end_trans;
10083 }
10084 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
47ab2a6c 10085 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10086 if (ret) {
d4b450cd 10087 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10088 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10089 goto end_trans;
10090 }
d4b450cd 10091 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10092
10093 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10094 spin_lock(&space_info->lock);
10095 spin_lock(&block_group->lock);
10096
10097 space_info->bytes_pinned -= block_group->pinned;
10098 space_info->bytes_readonly += block_group->pinned;
10099 percpu_counter_add(&space_info->total_bytes_pinned,
10100 -block_group->pinned);
47ab2a6c
JB
10101 block_group->pinned = 0;
10102
c30666d4
ZL
10103 spin_unlock(&block_group->lock);
10104 spin_unlock(&space_info->lock);
10105
e33e17ee
JM
10106 /* DISCARD can flip during remount */
10107 trimming = btrfs_test_opt(root, DISCARD);
10108
10109 /* Implicit trim during transaction commit. */
10110 if (trimming)
10111 btrfs_get_block_group_trimming(block_group);
10112
47ab2a6c
JB
10113 /*
10114 * Btrfs_remove_chunk will abort the transaction if things go
10115 * horribly wrong.
10116 */
10117 ret = btrfs_remove_chunk(trans, root,
10118 block_group->key.objectid);
e33e17ee
JM
10119
10120 if (ret) {
10121 if (trimming)
10122 btrfs_put_block_group_trimming(block_group);
10123 goto end_trans;
10124 }
10125
10126 /*
10127 * If we're not mounted with -odiscard, we can just forget
10128 * about this block group. Otherwise we'll need to wait
10129 * until transaction commit to do the actual discard.
10130 */
10131 if (trimming) {
10132 WARN_ON(!list_empty(&block_group->bg_list));
10133 spin_lock(&trans->transaction->deleted_bgs_lock);
10134 list_move(&block_group->bg_list,
10135 &trans->transaction->deleted_bgs);
10136 spin_unlock(&trans->transaction->deleted_bgs_lock);
10137 btrfs_get_block_group(block_group);
10138 }
758eb51e 10139end_trans:
47ab2a6c
JB
10140 btrfs_end_transaction(trans, root);
10141next:
67c5e7d4 10142 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10143 btrfs_put_block_group(block_group);
10144 spin_lock(&fs_info->unused_bgs_lock);
10145 }
10146 spin_unlock(&fs_info->unused_bgs_lock);
10147}
10148
c59021f8 10149int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10150{
10151 struct btrfs_space_info *space_info;
1aba86d6 10152 struct btrfs_super_block *disk_super;
10153 u64 features;
10154 u64 flags;
10155 int mixed = 0;
c59021f8 10156 int ret;
10157
6c41761f 10158 disk_super = fs_info->super_copy;
1aba86d6 10159 if (!btrfs_super_root(disk_super))
10160 return 1;
c59021f8 10161
1aba86d6 10162 features = btrfs_super_incompat_flags(disk_super);
10163 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10164 mixed = 1;
c59021f8 10165
1aba86d6 10166 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10167 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
c59021f8 10168 if (ret)
1aba86d6 10169 goto out;
c59021f8 10170
1aba86d6 10171 if (mixed) {
10172 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10173 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10174 } else {
10175 flags = BTRFS_BLOCK_GROUP_METADATA;
10176 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10177 if (ret)
10178 goto out;
10179
10180 flags = BTRFS_BLOCK_GROUP_DATA;
10181 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10182 }
10183out:
c59021f8 10184 return ret;
10185}
10186
acce952b 10187int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10188{
678886bd 10189 return unpin_extent_range(root, start, end, false);
acce952b 10190}
10191
499f377f
JM
10192/*
10193 * It used to be that old block groups would be left around forever.
10194 * Iterating over them would be enough to trim unused space. Since we
10195 * now automatically remove them, we also need to iterate over unallocated
10196 * space.
10197 *
10198 * We don't want a transaction for this since the discard may take a
10199 * substantial amount of time. We don't require that a transaction be
10200 * running, but we do need to take a running transaction into account
10201 * to ensure that we're not discarding chunks that were released in
10202 * the current transaction.
10203 *
10204 * Holding the chunks lock will prevent other threads from allocating
10205 * or releasing chunks, but it won't prevent a running transaction
10206 * from committing and releasing the memory that the pending chunks
10207 * list head uses. For that, we need to take a reference to the
10208 * transaction.
10209 */
10210static int btrfs_trim_free_extents(struct btrfs_device *device,
10211 u64 minlen, u64 *trimmed)
10212{
10213 u64 start = 0, len = 0;
10214 int ret;
10215
10216 *trimmed = 0;
10217
10218 /* Not writeable = nothing to do. */
10219 if (!device->writeable)
10220 return 0;
10221
10222 /* No free space = nothing to do. */
10223 if (device->total_bytes <= device->bytes_used)
10224 return 0;
10225
10226 ret = 0;
10227
10228 while (1) {
10229 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10230 struct btrfs_transaction *trans;
10231 u64 bytes;
10232
10233 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10234 if (ret)
10235 return ret;
10236
10237 down_read(&fs_info->commit_root_sem);
10238
10239 spin_lock(&fs_info->trans_lock);
10240 trans = fs_info->running_transaction;
10241 if (trans)
10242 atomic_inc(&trans->use_count);
10243 spin_unlock(&fs_info->trans_lock);
10244
10245 ret = find_free_dev_extent_start(trans, device, minlen, start,
10246 &start, &len);
10247 if (trans)
10248 btrfs_put_transaction(trans);
10249
10250 if (ret) {
10251 up_read(&fs_info->commit_root_sem);
10252 mutex_unlock(&fs_info->chunk_mutex);
10253 if (ret == -ENOSPC)
10254 ret = 0;
10255 break;
10256 }
10257
10258 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10259 up_read(&fs_info->commit_root_sem);
10260 mutex_unlock(&fs_info->chunk_mutex);
10261
10262 if (ret)
10263 break;
10264
10265 start += len;
10266 *trimmed += bytes;
10267
10268 if (fatal_signal_pending(current)) {
10269 ret = -ERESTARTSYS;
10270 break;
10271 }
10272
10273 cond_resched();
10274 }
10275
10276 return ret;
10277}
10278
f7039b1d
LD
10279int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10280{
10281 struct btrfs_fs_info *fs_info = root->fs_info;
10282 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10283 struct btrfs_device *device;
10284 struct list_head *devices;
f7039b1d
LD
10285 u64 group_trimmed;
10286 u64 start;
10287 u64 end;
10288 u64 trimmed = 0;
2cac13e4 10289 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10290 int ret = 0;
10291
2cac13e4
LB
10292 /*
10293 * try to trim all FS space, our block group may start from non-zero.
10294 */
10295 if (range->len == total_bytes)
10296 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10297 else
10298 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10299
10300 while (cache) {
10301 if (cache->key.objectid >= (range->start + range->len)) {
10302 btrfs_put_block_group(cache);
10303 break;
10304 }
10305
10306 start = max(range->start, cache->key.objectid);
10307 end = min(range->start + range->len,
10308 cache->key.objectid + cache->key.offset);
10309
10310 if (end - start >= range->minlen) {
10311 if (!block_group_cache_done(cache)) {
f6373bf3 10312 ret = cache_block_group(cache, 0);
1be41b78
JB
10313 if (ret) {
10314 btrfs_put_block_group(cache);
10315 break;
10316 }
10317 ret = wait_block_group_cache_done(cache);
10318 if (ret) {
10319 btrfs_put_block_group(cache);
10320 break;
10321 }
f7039b1d
LD
10322 }
10323 ret = btrfs_trim_block_group(cache,
10324 &group_trimmed,
10325 start,
10326 end,
10327 range->minlen);
10328
10329 trimmed += group_trimmed;
10330 if (ret) {
10331 btrfs_put_block_group(cache);
10332 break;
10333 }
10334 }
10335
10336 cache = next_block_group(fs_info->tree_root, cache);
10337 }
10338
499f377f
JM
10339 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10340 devices = &root->fs_info->fs_devices->alloc_list;
10341 list_for_each_entry(device, devices, dev_alloc_list) {
10342 ret = btrfs_trim_free_extents(device, range->minlen,
10343 &group_trimmed);
10344 if (ret)
10345 break;
10346
10347 trimmed += group_trimmed;
10348 }
10349 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10350
f7039b1d
LD
10351 range->len = trimmed;
10352 return ret;
10353}
8257b2dc
MX
10354
10355/*
9ea24bbe
FM
10356 * btrfs_{start,end}_write_no_snapshoting() are similar to
10357 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10358 * data into the page cache through nocow before the subvolume is snapshoted,
10359 * but flush the data into disk after the snapshot creation, or to prevent
10360 * operations while snapshoting is ongoing and that cause the snapshot to be
10361 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10362 */
9ea24bbe 10363void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10364{
10365 percpu_counter_dec(&root->subv_writers->counter);
10366 /*
a83342aa 10367 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
10368 */
10369 smp_mb();
10370 if (waitqueue_active(&root->subv_writers->wait))
10371 wake_up(&root->subv_writers->wait);
10372}
10373
9ea24bbe 10374int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10375{
ee39b432 10376 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10377 return 0;
10378
10379 percpu_counter_inc(&root->subv_writers->counter);
10380 /*
10381 * Make sure counter is updated before we check for snapshot creation.
10382 */
10383 smp_mb();
ee39b432 10384 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 10385 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
10386 return 0;
10387 }
10388 return 1;
10389}