]> git.ipfire.org Git - people/arne_f/kernel.git/blame - fs/namespace.c
MIPS: AR7: Ensure that serial ports are properly set up
[people/arne_f/kernel.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
5b825c3a 18#include <linux/cred.h>
73cd49ec 19#include <linux/idr.h>
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
0bb80f24 24#include <linux/proc_ns.h>
20b4fb48 25#include <linux/magic.h>
0818bf27 26#include <linux/bootmem.h>
9ea459e1 27#include <linux/task_work.h>
9164bb4a
IM
28#include <linux/sched/task.h>
29
07b20889 30#include "pnode.h"
948730b0 31#include "internal.h"
1da177e4 32
d2921684
EB
33/* Maximum number of mounts in a mount namespace */
34unsigned int sysctl_mount_max __read_mostly = 100000;
35
0818bf27
AV
36static unsigned int m_hash_mask __read_mostly;
37static unsigned int m_hash_shift __read_mostly;
38static unsigned int mp_hash_mask __read_mostly;
39static unsigned int mp_hash_shift __read_mostly;
40
41static __initdata unsigned long mhash_entries;
42static int __init set_mhash_entries(char *str)
43{
44 if (!str)
45 return 0;
46 mhash_entries = simple_strtoul(str, &str, 0);
47 return 1;
48}
49__setup("mhash_entries=", set_mhash_entries);
50
51static __initdata unsigned long mphash_entries;
52static int __init set_mphash_entries(char *str)
53{
54 if (!str)
55 return 0;
56 mphash_entries = simple_strtoul(str, &str, 0);
57 return 1;
58}
59__setup("mphash_entries=", set_mphash_entries);
13f14b4d 60
c7999c36 61static u64 event;
73cd49ec 62static DEFINE_IDA(mnt_id_ida);
719f5d7f 63static DEFINE_IDA(mnt_group_ida);
99b7db7b 64static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
65static int mnt_id_start = 0;
66static int mnt_group_start = 1;
1da177e4 67
38129a13 68static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 69static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 70static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 71static DECLARE_RWSEM(namespace_sem);
1da177e4 72
f87fd4c2 73/* /sys/fs */
00d26666
GKH
74struct kobject *fs_kobj;
75EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 76
99b7db7b
NP
77/*
78 * vfsmount lock may be taken for read to prevent changes to the
79 * vfsmount hash, ie. during mountpoint lookups or walking back
80 * up the tree.
81 *
82 * It should be taken for write in all cases where the vfsmount
83 * tree or hash is modified or when a vfsmount structure is modified.
84 */
48a066e7 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 86
38129a13 87static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 88{
b58fed8b
RP
89 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
90 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
91 tmp = tmp + (tmp >> m_hash_shift);
92 return &mount_hashtable[tmp & m_hash_mask];
93}
94
95static inline struct hlist_head *mp_hash(struct dentry *dentry)
96{
97 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
98 tmp = tmp + (tmp >> mp_hash_shift);
99 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
100}
101
b105e270 102static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
103{
104 int res;
105
106retry:
107 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 108 spin_lock(&mnt_id_lock);
15169fe7 109 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 110 if (!res)
15169fe7 111 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 112 spin_unlock(&mnt_id_lock);
73cd49ec
MS
113 if (res == -EAGAIN)
114 goto retry;
115
116 return res;
117}
118
b105e270 119static void mnt_free_id(struct mount *mnt)
73cd49ec 120{
15169fe7 121 int id = mnt->mnt_id;
99b7db7b 122 spin_lock(&mnt_id_lock);
f21f6220
AV
123 ida_remove(&mnt_id_ida, id);
124 if (mnt_id_start > id)
125 mnt_id_start = id;
99b7db7b 126 spin_unlock(&mnt_id_lock);
73cd49ec
MS
127}
128
719f5d7f
MS
129/*
130 * Allocate a new peer group ID
131 *
132 * mnt_group_ida is protected by namespace_sem
133 */
4b8b21f4 134static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 135{
f21f6220
AV
136 int res;
137
719f5d7f
MS
138 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
139 return -ENOMEM;
140
f21f6220
AV
141 res = ida_get_new_above(&mnt_group_ida,
142 mnt_group_start,
15169fe7 143 &mnt->mnt_group_id);
f21f6220 144 if (!res)
15169fe7 145 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
146
147 return res;
719f5d7f
MS
148}
149
150/*
151 * Release a peer group ID
152 */
4b8b21f4 153void mnt_release_group_id(struct mount *mnt)
719f5d7f 154{
15169fe7 155 int id = mnt->mnt_group_id;
f21f6220
AV
156 ida_remove(&mnt_group_ida, id);
157 if (mnt_group_start > id)
158 mnt_group_start = id;
15169fe7 159 mnt->mnt_group_id = 0;
719f5d7f
MS
160}
161
b3e19d92
NP
162/*
163 * vfsmount lock must be held for read
164 */
83adc753 165static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
166{
167#ifdef CONFIG_SMP
68e8a9fe 168 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
169#else
170 preempt_disable();
68e8a9fe 171 mnt->mnt_count += n;
b3e19d92
NP
172 preempt_enable();
173#endif
174}
175
b3e19d92
NP
176/*
177 * vfsmount lock must be held for write
178 */
83adc753 179unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
180{
181#ifdef CONFIG_SMP
f03c6599 182 unsigned int count = 0;
b3e19d92
NP
183 int cpu;
184
185 for_each_possible_cpu(cpu) {
68e8a9fe 186 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
187 }
188
189 return count;
190#else
68e8a9fe 191 return mnt->mnt_count;
b3e19d92
NP
192#endif
193}
194
87b95ce0
AV
195static void drop_mountpoint(struct fs_pin *p)
196{
197 struct mount *m = container_of(p, struct mount, mnt_umount);
198 dput(m->mnt_ex_mountpoint);
199 pin_remove(p);
200 mntput(&m->mnt);
201}
202
b105e270 203static struct mount *alloc_vfsmnt(const char *name)
1da177e4 204{
c63181e6
AV
205 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
206 if (mnt) {
73cd49ec
MS
207 int err;
208
c63181e6 209 err = mnt_alloc_id(mnt);
88b38782
LZ
210 if (err)
211 goto out_free_cache;
212
213 if (name) {
fcc139ae 214 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 215 if (!mnt->mnt_devname)
88b38782 216 goto out_free_id;
73cd49ec
MS
217 }
218
b3e19d92 219#ifdef CONFIG_SMP
c63181e6
AV
220 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
221 if (!mnt->mnt_pcp)
b3e19d92
NP
222 goto out_free_devname;
223
c63181e6 224 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 225#else
c63181e6
AV
226 mnt->mnt_count = 1;
227 mnt->mnt_writers = 0;
b3e19d92
NP
228#endif
229
38129a13 230 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
231 INIT_LIST_HEAD(&mnt->mnt_child);
232 INIT_LIST_HEAD(&mnt->mnt_mounts);
233 INIT_LIST_HEAD(&mnt->mnt_list);
234 INIT_LIST_HEAD(&mnt->mnt_expire);
235 INIT_LIST_HEAD(&mnt->mnt_share);
236 INIT_LIST_HEAD(&mnt->mnt_slave_list);
237 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 238 INIT_HLIST_NODE(&mnt->mnt_mp_list);
99b19d16 239 INIT_LIST_HEAD(&mnt->mnt_umounting);
87b95ce0 240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
1da177e4 241 }
c63181e6 242 return mnt;
88b38782 243
d3ef3d73 244#ifdef CONFIG_SMP
245out_free_devname:
fcc139ae 246 kfree_const(mnt->mnt_devname);
d3ef3d73 247#endif
88b38782 248out_free_id:
c63181e6 249 mnt_free_id(mnt);
88b38782 250out_free_cache:
c63181e6 251 kmem_cache_free(mnt_cache, mnt);
88b38782 252 return NULL;
1da177e4
LT
253}
254
3d733633
DH
255/*
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
262 */
263/*
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
266 *
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
273 */
274int __mnt_is_readonly(struct vfsmount *mnt)
275{
2e4b7fcd
DH
276 if (mnt->mnt_flags & MNT_READONLY)
277 return 1;
bc98a42c 278 if (sb_rdonly(mnt->mnt_sb))
2e4b7fcd
DH
279 return 1;
280 return 0;
3d733633
DH
281}
282EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283
83adc753 284static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 285{
286#ifdef CONFIG_SMP
68e8a9fe 287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 288#else
68e8a9fe 289 mnt->mnt_writers++;
d3ef3d73 290#endif
291}
3d733633 292
83adc753 293static inline void mnt_dec_writers(struct mount *mnt)
3d733633 294{
d3ef3d73 295#ifdef CONFIG_SMP
68e8a9fe 296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 297#else
68e8a9fe 298 mnt->mnt_writers--;
d3ef3d73 299#endif
3d733633 300}
3d733633 301
83adc753 302static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 303{
d3ef3d73 304#ifdef CONFIG_SMP
305 unsigned int count = 0;
3d733633 306 int cpu;
3d733633
DH
307
308 for_each_possible_cpu(cpu) {
68e8a9fe 309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 310 }
3d733633 311
d3ef3d73 312 return count;
313#else
314 return mnt->mnt_writers;
315#endif
3d733633
DH
316}
317
4ed5e82f
MS
318static int mnt_is_readonly(struct vfsmount *mnt)
319{
320 if (mnt->mnt_sb->s_readonly_remount)
321 return 1;
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 smp_rmb();
324 return __mnt_is_readonly(mnt);
325}
326
8366025e 327/*
eb04c282
JK
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
8366025e
DH
332 */
333/**
eb04c282 334 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 335 * @m: the mount on which to take a write
8366025e 336 *
eb04c282
JK
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
8366025e 342 */
eb04c282 343int __mnt_want_write(struct vfsmount *m)
8366025e 344{
83adc753 345 struct mount *mnt = real_mount(m);
3d733633 346 int ret = 0;
3d733633 347
d3ef3d73 348 preempt_disable();
c6653a83 349 mnt_inc_writers(mnt);
d3ef3d73 350 /*
c6653a83 351 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
354 */
355 smp_mb();
1e75529e 356 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 357 cpu_relax();
358 /*
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
362 */
363 smp_rmb();
4ed5e82f 364 if (mnt_is_readonly(m)) {
c6653a83 365 mnt_dec_writers(mnt);
3d733633 366 ret = -EROFS;
3d733633 367 }
d3ef3d73 368 preempt_enable();
eb04c282
JK
369
370 return ret;
371}
372
373/**
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
376 *
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
381 */
382int mnt_want_write(struct vfsmount *m)
383{
384 int ret;
385
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
388 if (ret)
389 sb_end_write(m->mnt_sb);
3d733633 390 return ret;
8366025e
DH
391}
392EXPORT_SYMBOL_GPL(mnt_want_write);
393
96029c4e 394/**
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
397 *
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
402 *
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
405 */
406int mnt_clone_write(struct vfsmount *mnt)
407{
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
410 return -EROFS;
411 preempt_disable();
83adc753 412 mnt_inc_writers(real_mount(mnt));
96029c4e 413 preempt_enable();
414 return 0;
415}
416EXPORT_SYMBOL_GPL(mnt_clone_write);
417
418/**
eb04c282 419 * __mnt_want_write_file - get write access to a file's mount
96029c4e 420 * @file: the file who's mount on which to take a write
421 *
eb04c282 422 * This is like __mnt_want_write, but it takes a file and can
96029c4e 423 * do some optimisations if the file is open for write already
424 */
eb04c282 425int __mnt_want_write_file(struct file *file)
96029c4e 426{
83f936c7 427 if (!(file->f_mode & FMODE_WRITER))
eb04c282 428 return __mnt_want_write(file->f_path.mnt);
96029c4e 429 else
430 return mnt_clone_write(file->f_path.mnt);
431}
eb04c282
JK
432
433/**
7c6893e3 434 * mnt_want_write_file_path - get write access to a file's mount
eb04c282
JK
435 * @file: the file who's mount on which to take a write
436 *
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
7c6893e3
MS
439 *
440 * Called by the vfs for cases when we have an open file at hand, but will do an
441 * inode operation on it (important distinction for files opened on overlayfs,
442 * since the file operations will come from the real underlying file, while
443 * inode operations come from the overlay).
eb04c282 444 */
7c6893e3 445int mnt_want_write_file_path(struct file *file)
eb04c282
JK
446{
447 int ret;
448
449 sb_start_write(file->f_path.mnt->mnt_sb);
450 ret = __mnt_want_write_file(file);
451 if (ret)
452 sb_end_write(file->f_path.mnt->mnt_sb);
453 return ret;
454}
7c6893e3
MS
455
456static inline int may_write_real(struct file *file)
457{
458 struct dentry *dentry = file->f_path.dentry;
459 struct dentry *upperdentry;
460
461 /* Writable file? */
462 if (file->f_mode & FMODE_WRITER)
463 return 0;
464
465 /* Not overlayfs? */
466 if (likely(!(dentry->d_flags & DCACHE_OP_REAL)))
467 return 0;
468
469 /* File refers to upper, writable layer? */
470 upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
954c736f
AG
471 if (upperdentry &&
472 (file_inode(file) == d_inode(upperdentry) ||
473 file_inode(file) == d_inode(dentry)))
7c6893e3
MS
474 return 0;
475
476 /* Lower layer: can't write to real file, sorry... */
477 return -EPERM;
478}
479
480/**
481 * mnt_want_write_file - get write access to a file's mount
482 * @file: the file who's mount on which to take a write
483 *
484 * This is like mnt_want_write, but it takes a file and can
485 * do some optimisations if the file is open for write already
486 *
487 * Mostly called by filesystems from their ioctl operation before performing
488 * modification. On overlayfs this needs to check if the file is on a read-only
489 * lower layer and deny access in that case.
490 */
491int mnt_want_write_file(struct file *file)
492{
493 int ret;
494
495 ret = may_write_real(file);
496 if (!ret) {
497 sb_start_write(file_inode(file)->i_sb);
498 ret = __mnt_want_write_file(file);
499 if (ret)
500 sb_end_write(file_inode(file)->i_sb);
501 }
502 return ret;
503}
96029c4e 504EXPORT_SYMBOL_GPL(mnt_want_write_file);
505
8366025e 506/**
eb04c282 507 * __mnt_drop_write - give up write access to a mount
8366025e
DH
508 * @mnt: the mount on which to give up write access
509 *
510 * Tells the low-level filesystem that we are done
511 * performing writes to it. Must be matched with
eb04c282 512 * __mnt_want_write() call above.
8366025e 513 */
eb04c282 514void __mnt_drop_write(struct vfsmount *mnt)
8366025e 515{
d3ef3d73 516 preempt_disable();
83adc753 517 mnt_dec_writers(real_mount(mnt));
d3ef3d73 518 preempt_enable();
8366025e 519}
eb04c282
JK
520
521/**
522 * mnt_drop_write - give up write access to a mount
523 * @mnt: the mount on which to give up write access
524 *
525 * Tells the low-level filesystem that we are done performing writes to it and
526 * also allows filesystem to be frozen again. Must be matched with
527 * mnt_want_write() call above.
528 */
529void mnt_drop_write(struct vfsmount *mnt)
530{
531 __mnt_drop_write(mnt);
532 sb_end_write(mnt->mnt_sb);
533}
8366025e
DH
534EXPORT_SYMBOL_GPL(mnt_drop_write);
535
eb04c282
JK
536void __mnt_drop_write_file(struct file *file)
537{
538 __mnt_drop_write(file->f_path.mnt);
539}
540
7c6893e3 541void mnt_drop_write_file_path(struct file *file)
2a79f17e
AV
542{
543 mnt_drop_write(file->f_path.mnt);
544}
7c6893e3
MS
545
546void mnt_drop_write_file(struct file *file)
547{
548 __mnt_drop_write(file->f_path.mnt);
549 sb_end_write(file_inode(file)->i_sb);
550}
2a79f17e
AV
551EXPORT_SYMBOL(mnt_drop_write_file);
552
83adc753 553static int mnt_make_readonly(struct mount *mnt)
8366025e 554{
3d733633
DH
555 int ret = 0;
556
719ea2fb 557 lock_mount_hash();
83adc753 558 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 559 /*
d3ef3d73 560 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
561 * should be visible before we do.
3d733633 562 */
d3ef3d73 563 smp_mb();
564
3d733633 565 /*
d3ef3d73 566 * With writers on hold, if this value is zero, then there are
567 * definitely no active writers (although held writers may subsequently
568 * increment the count, they'll have to wait, and decrement it after
569 * seeing MNT_READONLY).
570 *
571 * It is OK to have counter incremented on one CPU and decremented on
572 * another: the sum will add up correctly. The danger would be when we
573 * sum up each counter, if we read a counter before it is incremented,
574 * but then read another CPU's count which it has been subsequently
575 * decremented from -- we would see more decrements than we should.
576 * MNT_WRITE_HOLD protects against this scenario, because
577 * mnt_want_write first increments count, then smp_mb, then spins on
578 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
579 * we're counting up here.
3d733633 580 */
c6653a83 581 if (mnt_get_writers(mnt) > 0)
d3ef3d73 582 ret = -EBUSY;
583 else
83adc753 584 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 585 /*
586 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
587 * that become unheld will see MNT_READONLY.
588 */
589 smp_wmb();
83adc753 590 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 591 unlock_mount_hash();
3d733633 592 return ret;
8366025e 593}
8366025e 594
83adc753 595static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 596{
719ea2fb 597 lock_mount_hash();
83adc753 598 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 599 unlock_mount_hash();
2e4b7fcd
DH
600}
601
4ed5e82f
MS
602int sb_prepare_remount_readonly(struct super_block *sb)
603{
604 struct mount *mnt;
605 int err = 0;
606
8e8b8796
MS
607 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
608 if (atomic_long_read(&sb->s_remove_count))
609 return -EBUSY;
610
719ea2fb 611 lock_mount_hash();
4ed5e82f
MS
612 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
613 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
614 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
615 smp_mb();
616 if (mnt_get_writers(mnt) > 0) {
617 err = -EBUSY;
618 break;
619 }
620 }
621 }
8e8b8796
MS
622 if (!err && atomic_long_read(&sb->s_remove_count))
623 err = -EBUSY;
624
4ed5e82f
MS
625 if (!err) {
626 sb->s_readonly_remount = 1;
627 smp_wmb();
628 }
629 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
630 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
631 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
632 }
719ea2fb 633 unlock_mount_hash();
4ed5e82f
MS
634
635 return err;
636}
637
b105e270 638static void free_vfsmnt(struct mount *mnt)
1da177e4 639{
fcc139ae 640 kfree_const(mnt->mnt_devname);
d3ef3d73 641#ifdef CONFIG_SMP
68e8a9fe 642 free_percpu(mnt->mnt_pcp);
d3ef3d73 643#endif
b105e270 644 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
645}
646
8ffcb32e
DH
647static void delayed_free_vfsmnt(struct rcu_head *head)
648{
649 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
650}
651
48a066e7 652/* call under rcu_read_lock */
294d71ff 653int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
654{
655 struct mount *mnt;
656 if (read_seqretry(&mount_lock, seq))
294d71ff 657 return 1;
48a066e7 658 if (bastard == NULL)
294d71ff 659 return 0;
48a066e7
AV
660 mnt = real_mount(bastard);
661 mnt_add_count(mnt, 1);
662 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 663 return 0;
48a066e7
AV
664 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
665 mnt_add_count(mnt, -1);
294d71ff
AV
666 return 1;
667 }
668 return -1;
669}
670
671/* call under rcu_read_lock */
672bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
673{
674 int res = __legitimize_mnt(bastard, seq);
675 if (likely(!res))
676 return true;
677 if (unlikely(res < 0)) {
678 rcu_read_unlock();
679 mntput(bastard);
680 rcu_read_lock();
48a066e7 681 }
48a066e7
AV
682 return false;
683}
684
1da177e4 685/*
474279dc 686 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 687 * call under rcu_read_lock()
1da177e4 688 */
474279dc 689struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 690{
38129a13 691 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
692 struct mount *p;
693
38129a13 694 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
695 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
696 return p;
697 return NULL;
698}
699
a05964f3 700/*
f015f126
DH
701 * lookup_mnt - Return the first child mount mounted at path
702 *
703 * "First" means first mounted chronologically. If you create the
704 * following mounts:
705 *
706 * mount /dev/sda1 /mnt
707 * mount /dev/sda2 /mnt
708 * mount /dev/sda3 /mnt
709 *
710 * Then lookup_mnt() on the base /mnt dentry in the root mount will
711 * return successively the root dentry and vfsmount of /dev/sda1, then
712 * /dev/sda2, then /dev/sda3, then NULL.
713 *
714 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 715 */
ca71cf71 716struct vfsmount *lookup_mnt(const struct path *path)
a05964f3 717{
c7105365 718 struct mount *child_mnt;
48a066e7
AV
719 struct vfsmount *m;
720 unsigned seq;
99b7db7b 721
48a066e7
AV
722 rcu_read_lock();
723 do {
724 seq = read_seqbegin(&mount_lock);
725 child_mnt = __lookup_mnt(path->mnt, path->dentry);
726 m = child_mnt ? &child_mnt->mnt : NULL;
727 } while (!legitimize_mnt(m, seq));
728 rcu_read_unlock();
729 return m;
a05964f3
RP
730}
731
7af1364f
EB
732/*
733 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
734 * current mount namespace.
735 *
736 * The common case is dentries are not mountpoints at all and that
737 * test is handled inline. For the slow case when we are actually
738 * dealing with a mountpoint of some kind, walk through all of the
739 * mounts in the current mount namespace and test to see if the dentry
740 * is a mountpoint.
741 *
742 * The mount_hashtable is not usable in the context because we
743 * need to identify all mounts that may be in the current mount
744 * namespace not just a mount that happens to have some specified
745 * parent mount.
746 */
747bool __is_local_mountpoint(struct dentry *dentry)
748{
749 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
750 struct mount *mnt;
751 bool is_covered = false;
752
753 if (!d_mountpoint(dentry))
754 goto out;
755
756 down_read(&namespace_sem);
757 list_for_each_entry(mnt, &ns->list, mnt_list) {
758 is_covered = (mnt->mnt_mountpoint == dentry);
759 if (is_covered)
760 break;
761 }
762 up_read(&namespace_sem);
763out:
764 return is_covered;
765}
766
e2dfa935 767static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 768{
0818bf27 769 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
770 struct mountpoint *mp;
771
0818bf27 772 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
773 if (mp->m_dentry == dentry) {
774 /* might be worth a WARN_ON() */
775 if (d_unlinked(dentry))
776 return ERR_PTR(-ENOENT);
777 mp->m_count++;
778 return mp;
779 }
780 }
e2dfa935
EB
781 return NULL;
782}
783
3895dbf8 784static struct mountpoint *get_mountpoint(struct dentry *dentry)
e2dfa935 785{
3895dbf8 786 struct mountpoint *mp, *new = NULL;
e2dfa935 787 int ret;
84d17192 788
3895dbf8
EB
789 if (d_mountpoint(dentry)) {
790mountpoint:
791 read_seqlock_excl(&mount_lock);
792 mp = lookup_mountpoint(dentry);
793 read_sequnlock_excl(&mount_lock);
794 if (mp)
795 goto done;
796 }
797
798 if (!new)
799 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
800 if (!new)
84d17192
AV
801 return ERR_PTR(-ENOMEM);
802
3895dbf8
EB
803
804 /* Exactly one processes may set d_mounted */
eed81007 805 ret = d_set_mounted(dentry);
eed81007 806
3895dbf8
EB
807 /* Someone else set d_mounted? */
808 if (ret == -EBUSY)
809 goto mountpoint;
810
811 /* The dentry is not available as a mountpoint? */
812 mp = ERR_PTR(ret);
813 if (ret)
814 goto done;
815
816 /* Add the new mountpoint to the hash table */
817 read_seqlock_excl(&mount_lock);
818 new->m_dentry = dentry;
819 new->m_count = 1;
820 hlist_add_head(&new->m_hash, mp_hash(dentry));
821 INIT_HLIST_HEAD(&new->m_list);
822 read_sequnlock_excl(&mount_lock);
823
824 mp = new;
825 new = NULL;
826done:
827 kfree(new);
84d17192
AV
828 return mp;
829}
830
831static void put_mountpoint(struct mountpoint *mp)
832{
833 if (!--mp->m_count) {
834 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 835 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
836 spin_lock(&dentry->d_lock);
837 dentry->d_flags &= ~DCACHE_MOUNTED;
838 spin_unlock(&dentry->d_lock);
0818bf27 839 hlist_del(&mp->m_hash);
84d17192
AV
840 kfree(mp);
841 }
842}
843
143c8c91 844static inline int check_mnt(struct mount *mnt)
1da177e4 845{
6b3286ed 846 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
847}
848
99b7db7b
NP
849/*
850 * vfsmount lock must be held for write
851 */
6b3286ed 852static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
853{
854 if (ns) {
855 ns->event = ++event;
856 wake_up_interruptible(&ns->poll);
857 }
858}
859
99b7db7b
NP
860/*
861 * vfsmount lock must be held for write
862 */
6b3286ed 863static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
864{
865 if (ns && ns->event != event) {
866 ns->event = event;
867 wake_up_interruptible(&ns->poll);
868 }
869}
870
99b7db7b
NP
871/*
872 * vfsmount lock must be held for write
873 */
7bdb11de 874static void unhash_mnt(struct mount *mnt)
419148da 875{
0714a533 876 mnt->mnt_parent = mnt;
a73324da 877 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 878 list_del_init(&mnt->mnt_child);
38129a13 879 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 880 hlist_del_init(&mnt->mnt_mp_list);
84d17192
AV
881 put_mountpoint(mnt->mnt_mp);
882 mnt->mnt_mp = NULL;
1da177e4
LT
883}
884
7bdb11de
EB
885/*
886 * vfsmount lock must be held for write
887 */
888static void detach_mnt(struct mount *mnt, struct path *old_path)
889{
890 old_path->dentry = mnt->mnt_mountpoint;
891 old_path->mnt = &mnt->mnt_parent->mnt;
892 unhash_mnt(mnt);
893}
894
6a46c573
EB
895/*
896 * vfsmount lock must be held for write
897 */
898static void umount_mnt(struct mount *mnt)
899{
900 /* old mountpoint will be dropped when we can do that */
901 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
902 unhash_mnt(mnt);
903}
904
99b7db7b
NP
905/*
906 * vfsmount lock must be held for write
907 */
84d17192
AV
908void mnt_set_mountpoint(struct mount *mnt,
909 struct mountpoint *mp,
44d964d6 910 struct mount *child_mnt)
b90fa9ae 911{
84d17192 912 mp->m_count++;
3a2393d7 913 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 914 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 915 child_mnt->mnt_parent = mnt;
84d17192 916 child_mnt->mnt_mp = mp;
0a5eb7c8 917 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
918}
919
1064f874
EB
920static void __attach_mnt(struct mount *mnt, struct mount *parent)
921{
922 hlist_add_head_rcu(&mnt->mnt_hash,
923 m_hash(&parent->mnt, mnt->mnt_mountpoint));
924 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
925}
926
99b7db7b
NP
927/*
928 * vfsmount lock must be held for write
929 */
84d17192
AV
930static void attach_mnt(struct mount *mnt,
931 struct mount *parent,
932 struct mountpoint *mp)
1da177e4 933{
84d17192 934 mnt_set_mountpoint(parent, mp, mnt);
1064f874 935 __attach_mnt(mnt, parent);
b90fa9ae
RP
936}
937
1064f874 938void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
12a5b529 939{
1064f874
EB
940 struct mountpoint *old_mp = mnt->mnt_mp;
941 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
942 struct mount *old_parent = mnt->mnt_parent;
943
944 list_del_init(&mnt->mnt_child);
945 hlist_del_init(&mnt->mnt_mp_list);
946 hlist_del_init_rcu(&mnt->mnt_hash);
947
948 attach_mnt(mnt, parent, mp);
949
950 put_mountpoint(old_mp);
951
952 /*
953 * Safely avoid even the suggestion this code might sleep or
954 * lock the mount hash by taking advantage of the knowledge that
955 * mnt_change_mountpoint will not release the final reference
956 * to a mountpoint.
957 *
958 * During mounting, the mount passed in as the parent mount will
959 * continue to use the old mountpoint and during unmounting, the
960 * old mountpoint will continue to exist until namespace_unlock,
961 * which happens well after mnt_change_mountpoint.
962 */
963 spin_lock(&old_mountpoint->d_lock);
964 old_mountpoint->d_lockref.count--;
965 spin_unlock(&old_mountpoint->d_lock);
966
967 mnt_add_count(old_parent, -1);
12a5b529
AV
968}
969
b90fa9ae 970/*
99b7db7b 971 * vfsmount lock must be held for write
b90fa9ae 972 */
1064f874 973static void commit_tree(struct mount *mnt)
b90fa9ae 974{
0714a533 975 struct mount *parent = mnt->mnt_parent;
83adc753 976 struct mount *m;
b90fa9ae 977 LIST_HEAD(head);
143c8c91 978 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 979
0714a533 980 BUG_ON(parent == mnt);
b90fa9ae 981
1a4eeaf2 982 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 983 list_for_each_entry(m, &head, mnt_list)
143c8c91 984 m->mnt_ns = n;
f03c6599 985
b90fa9ae
RP
986 list_splice(&head, n->list.prev);
987
d2921684
EB
988 n->mounts += n->pending_mounts;
989 n->pending_mounts = 0;
990
1064f874 991 __attach_mnt(mnt, parent);
6b3286ed 992 touch_mnt_namespace(n);
1da177e4
LT
993}
994
909b0a88 995static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 996{
6b41d536
AV
997 struct list_head *next = p->mnt_mounts.next;
998 if (next == &p->mnt_mounts) {
1da177e4 999 while (1) {
909b0a88 1000 if (p == root)
1da177e4 1001 return NULL;
6b41d536
AV
1002 next = p->mnt_child.next;
1003 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 1004 break;
0714a533 1005 p = p->mnt_parent;
1da177e4
LT
1006 }
1007 }
6b41d536 1008 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
1009}
1010
315fc83e 1011static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 1012{
6b41d536
AV
1013 struct list_head *prev = p->mnt_mounts.prev;
1014 while (prev != &p->mnt_mounts) {
1015 p = list_entry(prev, struct mount, mnt_child);
1016 prev = p->mnt_mounts.prev;
9676f0c6
RP
1017 }
1018 return p;
1019}
1020
9d412a43
AV
1021struct vfsmount *
1022vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
1023{
b105e270 1024 struct mount *mnt;
9d412a43
AV
1025 struct dentry *root;
1026
1027 if (!type)
1028 return ERR_PTR(-ENODEV);
1029
1030 mnt = alloc_vfsmnt(name);
1031 if (!mnt)
1032 return ERR_PTR(-ENOMEM);
1033
e462ec50 1034 if (flags & SB_KERNMOUNT)
b105e270 1035 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
1036
1037 root = mount_fs(type, flags, name, data);
1038 if (IS_ERR(root)) {
8ffcb32e 1039 mnt_free_id(mnt);
9d412a43
AV
1040 free_vfsmnt(mnt);
1041 return ERR_CAST(root);
1042 }
1043
b105e270
AV
1044 mnt->mnt.mnt_root = root;
1045 mnt->mnt.mnt_sb = root->d_sb;
a73324da 1046 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1047 mnt->mnt_parent = mnt;
719ea2fb 1048 lock_mount_hash();
39f7c4db 1049 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 1050 unlock_mount_hash();
b105e270 1051 return &mnt->mnt;
9d412a43
AV
1052}
1053EXPORT_SYMBOL_GPL(vfs_kern_mount);
1054
93faccbb
EB
1055struct vfsmount *
1056vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1057 const char *name, void *data)
1058{
1059 /* Until it is worked out how to pass the user namespace
1060 * through from the parent mount to the submount don't support
1061 * unprivileged mounts with submounts.
1062 */
1063 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1064 return ERR_PTR(-EPERM);
1065
e462ec50 1066 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
93faccbb
EB
1067}
1068EXPORT_SYMBOL_GPL(vfs_submount);
1069
87129cc0 1070static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 1071 int flag)
1da177e4 1072{
87129cc0 1073 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
1074 struct mount *mnt;
1075 int err;
1da177e4 1076
be34d1a3
DH
1077 mnt = alloc_vfsmnt(old->mnt_devname);
1078 if (!mnt)
1079 return ERR_PTR(-ENOMEM);
719f5d7f 1080
7a472ef4 1081 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
1082 mnt->mnt_group_id = 0; /* not a peer of original */
1083 else
1084 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 1085
be34d1a3
DH
1086 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1087 err = mnt_alloc_group_id(mnt);
1088 if (err)
1089 goto out_free;
1da177e4 1090 }
be34d1a3 1091
f2ebb3a9 1092 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
132c94e3 1093 /* Don't allow unprivileged users to change mount flags */
9566d674
EB
1094 if (flag & CL_UNPRIVILEGED) {
1095 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1096
1097 if (mnt->mnt.mnt_flags & MNT_READONLY)
1098 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1099
1100 if (mnt->mnt.mnt_flags & MNT_NODEV)
1101 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1102
1103 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1104 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1105
1106 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1107 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1108 }
132c94e3 1109
5ff9d8a6 1110 /* Don't allow unprivileged users to reveal what is under a mount */
381cacb1
EB
1111 if ((flag & CL_UNPRIVILEGED) &&
1112 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
5ff9d8a6
EB
1113 mnt->mnt.mnt_flags |= MNT_LOCKED;
1114
be34d1a3
DH
1115 atomic_inc(&sb->s_active);
1116 mnt->mnt.mnt_sb = sb;
1117 mnt->mnt.mnt_root = dget(root);
1118 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1119 mnt->mnt_parent = mnt;
719ea2fb 1120 lock_mount_hash();
be34d1a3 1121 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1122 unlock_mount_hash();
be34d1a3 1123
7a472ef4
EB
1124 if ((flag & CL_SLAVE) ||
1125 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1126 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1127 mnt->mnt_master = old;
1128 CLEAR_MNT_SHARED(mnt);
1129 } else if (!(flag & CL_PRIVATE)) {
1130 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1131 list_add(&mnt->mnt_share, &old->mnt_share);
1132 if (IS_MNT_SLAVE(old))
1133 list_add(&mnt->mnt_slave, &old->mnt_slave);
1134 mnt->mnt_master = old->mnt_master;
5235d448
AV
1135 } else {
1136 CLEAR_MNT_SHARED(mnt);
be34d1a3
DH
1137 }
1138 if (flag & CL_MAKE_SHARED)
1139 set_mnt_shared(mnt);
1140
1141 /* stick the duplicate mount on the same expiry list
1142 * as the original if that was on one */
1143 if (flag & CL_EXPIRE) {
1144 if (!list_empty(&old->mnt_expire))
1145 list_add(&mnt->mnt_expire, &old->mnt_expire);
1146 }
1147
cb338d06 1148 return mnt;
719f5d7f
MS
1149
1150 out_free:
8ffcb32e 1151 mnt_free_id(mnt);
719f5d7f 1152 free_vfsmnt(mnt);
be34d1a3 1153 return ERR_PTR(err);
1da177e4
LT
1154}
1155
9ea459e1
AV
1156static void cleanup_mnt(struct mount *mnt)
1157{
1158 /*
1159 * This probably indicates that somebody messed
1160 * up a mnt_want/drop_write() pair. If this
1161 * happens, the filesystem was probably unable
1162 * to make r/w->r/o transitions.
1163 */
1164 /*
1165 * The locking used to deal with mnt_count decrement provides barriers,
1166 * so mnt_get_writers() below is safe.
1167 */
1168 WARN_ON(mnt_get_writers(mnt));
1169 if (unlikely(mnt->mnt_pins.first))
1170 mnt_pin_kill(mnt);
1171 fsnotify_vfsmount_delete(&mnt->mnt);
1172 dput(mnt->mnt.mnt_root);
1173 deactivate_super(mnt->mnt.mnt_sb);
1174 mnt_free_id(mnt);
1175 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1176}
1177
1178static void __cleanup_mnt(struct rcu_head *head)
1179{
1180 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1181}
1182
1183static LLIST_HEAD(delayed_mntput_list);
1184static void delayed_mntput(struct work_struct *unused)
1185{
1186 struct llist_node *node = llist_del_all(&delayed_mntput_list);
29785735 1187 struct mount *m, *t;
9ea459e1 1188
29785735
BP
1189 llist_for_each_entry_safe(m, t, node, mnt_llist)
1190 cleanup_mnt(m);
9ea459e1
AV
1191}
1192static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1193
900148dc 1194static void mntput_no_expire(struct mount *mnt)
b3e19d92 1195{
48a066e7
AV
1196 rcu_read_lock();
1197 mnt_add_count(mnt, -1);
1198 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1199 rcu_read_unlock();
f03c6599 1200 return;
b3e19d92 1201 }
719ea2fb 1202 lock_mount_hash();
b3e19d92 1203 if (mnt_get_count(mnt)) {
48a066e7 1204 rcu_read_unlock();
719ea2fb 1205 unlock_mount_hash();
99b7db7b
NP
1206 return;
1207 }
48a066e7
AV
1208 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1209 rcu_read_unlock();
1210 unlock_mount_hash();
1211 return;
1212 }
1213 mnt->mnt.mnt_flags |= MNT_DOOMED;
1214 rcu_read_unlock();
962830df 1215
39f7c4db 1216 list_del(&mnt->mnt_instance);
ce07d891
EB
1217
1218 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1219 struct mount *p, *tmp;
1220 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1221 umount_mnt(p);
1222 }
1223 }
719ea2fb 1224 unlock_mount_hash();
649a795a 1225
9ea459e1
AV
1226 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1227 struct task_struct *task = current;
1228 if (likely(!(task->flags & PF_KTHREAD))) {
1229 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1230 if (!task_work_add(task, &mnt->mnt_rcu, true))
1231 return;
1232 }
1233 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1234 schedule_delayed_work(&delayed_mntput_work, 1);
1235 return;
1236 }
1237 cleanup_mnt(mnt);
b3e19d92 1238}
b3e19d92
NP
1239
1240void mntput(struct vfsmount *mnt)
1241{
1242 if (mnt) {
863d684f 1243 struct mount *m = real_mount(mnt);
b3e19d92 1244 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1245 if (unlikely(m->mnt_expiry_mark))
1246 m->mnt_expiry_mark = 0;
1247 mntput_no_expire(m);
b3e19d92
NP
1248 }
1249}
1250EXPORT_SYMBOL(mntput);
1251
1252struct vfsmount *mntget(struct vfsmount *mnt)
1253{
1254 if (mnt)
83adc753 1255 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1256 return mnt;
1257}
1258EXPORT_SYMBOL(mntget);
1259
c6609c0a
IK
1260/* path_is_mountpoint() - Check if path is a mount in the current
1261 * namespace.
1262 *
1263 * d_mountpoint() can only be used reliably to establish if a dentry is
1264 * not mounted in any namespace and that common case is handled inline.
1265 * d_mountpoint() isn't aware of the possibility there may be multiple
1266 * mounts using a given dentry in a different namespace. This function
1267 * checks if the passed in path is a mountpoint rather than the dentry
1268 * alone.
1269 */
1270bool path_is_mountpoint(const struct path *path)
1271{
1272 unsigned seq;
1273 bool res;
1274
1275 if (!d_mountpoint(path->dentry))
1276 return false;
1277
1278 rcu_read_lock();
1279 do {
1280 seq = read_seqbegin(&mount_lock);
1281 res = __path_is_mountpoint(path);
1282 } while (read_seqretry(&mount_lock, seq));
1283 rcu_read_unlock();
1284
1285 return res;
1286}
1287EXPORT_SYMBOL(path_is_mountpoint);
1288
ca71cf71 1289struct vfsmount *mnt_clone_internal(const struct path *path)
7b7b1ace 1290{
3064c356
AV
1291 struct mount *p;
1292 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1293 if (IS_ERR(p))
1294 return ERR_CAST(p);
1295 p->mnt.mnt_flags |= MNT_INTERNAL;
1296 return &p->mnt;
7b7b1ace 1297}
1da177e4 1298
a1a2c409 1299#ifdef CONFIG_PROC_FS
0226f492 1300/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1301static void *m_start(struct seq_file *m, loff_t *pos)
1302{
ede1bf0d 1303 struct proc_mounts *p = m->private;
1da177e4 1304
390c6843 1305 down_read(&namespace_sem);
c7999c36
AV
1306 if (p->cached_event == p->ns->event) {
1307 void *v = p->cached_mount;
1308 if (*pos == p->cached_index)
1309 return v;
1310 if (*pos == p->cached_index + 1) {
1311 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1312 return p->cached_mount = v;
1313 }
1314 }
1315
1316 p->cached_event = p->ns->event;
1317 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1318 p->cached_index = *pos;
1319 return p->cached_mount;
1da177e4
LT
1320}
1321
1322static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1323{
ede1bf0d 1324 struct proc_mounts *p = m->private;
b0765fb8 1325
c7999c36
AV
1326 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1327 p->cached_index = *pos;
1328 return p->cached_mount;
1da177e4
LT
1329}
1330
1331static void m_stop(struct seq_file *m, void *v)
1332{
390c6843 1333 up_read(&namespace_sem);
1da177e4
LT
1334}
1335
0226f492 1336static int m_show(struct seq_file *m, void *v)
2d4d4864 1337{
ede1bf0d 1338 struct proc_mounts *p = m->private;
1a4eeaf2 1339 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1340 return p->show(m, &r->mnt);
1da177e4
LT
1341}
1342
a1a2c409 1343const struct seq_operations mounts_op = {
1da177e4
LT
1344 .start = m_start,
1345 .next = m_next,
1346 .stop = m_stop,
0226f492 1347 .show = m_show,
b4629fe2 1348};
a1a2c409 1349#endif /* CONFIG_PROC_FS */
b4629fe2 1350
1da177e4
LT
1351/**
1352 * may_umount_tree - check if a mount tree is busy
1353 * @mnt: root of mount tree
1354 *
1355 * This is called to check if a tree of mounts has any
1356 * open files, pwds, chroots or sub mounts that are
1357 * busy.
1358 */
909b0a88 1359int may_umount_tree(struct vfsmount *m)
1da177e4 1360{
909b0a88 1361 struct mount *mnt = real_mount(m);
36341f64
RP
1362 int actual_refs = 0;
1363 int minimum_refs = 0;
315fc83e 1364 struct mount *p;
909b0a88 1365 BUG_ON(!m);
1da177e4 1366
b3e19d92 1367 /* write lock needed for mnt_get_count */
719ea2fb 1368 lock_mount_hash();
909b0a88 1369 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1370 actual_refs += mnt_get_count(p);
1da177e4 1371 minimum_refs += 2;
1da177e4 1372 }
719ea2fb 1373 unlock_mount_hash();
1da177e4
LT
1374
1375 if (actual_refs > minimum_refs)
e3474a8e 1376 return 0;
1da177e4 1377
e3474a8e 1378 return 1;
1da177e4
LT
1379}
1380
1381EXPORT_SYMBOL(may_umount_tree);
1382
1383/**
1384 * may_umount - check if a mount point is busy
1385 * @mnt: root of mount
1386 *
1387 * This is called to check if a mount point has any
1388 * open files, pwds, chroots or sub mounts. If the
1389 * mount has sub mounts this will return busy
1390 * regardless of whether the sub mounts are busy.
1391 *
1392 * Doesn't take quota and stuff into account. IOW, in some cases it will
1393 * give false negatives. The main reason why it's here is that we need
1394 * a non-destructive way to look for easily umountable filesystems.
1395 */
1396int may_umount(struct vfsmount *mnt)
1397{
e3474a8e 1398 int ret = 1;
8ad08d8a 1399 down_read(&namespace_sem);
719ea2fb 1400 lock_mount_hash();
1ab59738 1401 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1402 ret = 0;
719ea2fb 1403 unlock_mount_hash();
8ad08d8a 1404 up_read(&namespace_sem);
a05964f3 1405 return ret;
1da177e4
LT
1406}
1407
1408EXPORT_SYMBOL(may_umount);
1409
38129a13 1410static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1411
97216be0 1412static void namespace_unlock(void)
70fbcdf4 1413{
a3b3c562 1414 struct hlist_head head;
97216be0 1415
a3b3c562 1416 hlist_move_list(&unmounted, &head);
97216be0 1417
97216be0
AV
1418 up_write(&namespace_sem);
1419
a3b3c562
EB
1420 if (likely(hlist_empty(&head)))
1421 return;
1422
48a066e7
AV
1423 synchronize_rcu();
1424
87b95ce0 1425 group_pin_kill(&head);
70fbcdf4
RP
1426}
1427
97216be0 1428static inline void namespace_lock(void)
e3197d83 1429{
97216be0 1430 down_write(&namespace_sem);
e3197d83
AV
1431}
1432
e819f152
EB
1433enum umount_tree_flags {
1434 UMOUNT_SYNC = 1,
1435 UMOUNT_PROPAGATE = 2,
e0c9c0af 1436 UMOUNT_CONNECTED = 4,
e819f152 1437};
f2d0a123
EB
1438
1439static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1440{
1441 /* Leaving mounts connected is only valid for lazy umounts */
1442 if (how & UMOUNT_SYNC)
1443 return true;
1444
1445 /* A mount without a parent has nothing to be connected to */
1446 if (!mnt_has_parent(mnt))
1447 return true;
1448
1449 /* Because the reference counting rules change when mounts are
1450 * unmounted and connected, umounted mounts may not be
1451 * connected to mounted mounts.
1452 */
1453 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1454 return true;
1455
1456 /* Has it been requested that the mount remain connected? */
1457 if (how & UMOUNT_CONNECTED)
1458 return false;
1459
1460 /* Is the mount locked such that it needs to remain connected? */
1461 if (IS_MNT_LOCKED(mnt))
1462 return false;
1463
1464 /* By default disconnect the mount */
1465 return true;
1466}
1467
99b7db7b 1468/*
48a066e7 1469 * mount_lock must be held
99b7db7b
NP
1470 * namespace_sem must be held for write
1471 */
e819f152 1472static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1473{
c003b26f 1474 LIST_HEAD(tmp_list);
315fc83e 1475 struct mount *p;
1da177e4 1476
5d88457e
EB
1477 if (how & UMOUNT_PROPAGATE)
1478 propagate_mount_unlock(mnt);
1479
c003b26f 1480 /* Gather the mounts to umount */
590ce4bc
EB
1481 for (p = mnt; p; p = next_mnt(p, mnt)) {
1482 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1483 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1484 }
1da177e4 1485
411a938b 1486 /* Hide the mounts from mnt_mounts */
c003b26f 1487 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1488 list_del_init(&p->mnt_child);
c003b26f 1489 }
88b368f2 1490
c003b26f 1491 /* Add propogated mounts to the tmp_list */
e819f152 1492 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1493 propagate_umount(&tmp_list);
a05964f3 1494
c003b26f 1495 while (!list_empty(&tmp_list)) {
d2921684 1496 struct mnt_namespace *ns;
ce07d891 1497 bool disconnect;
c003b26f 1498 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1499 list_del_init(&p->mnt_expire);
1a4eeaf2 1500 list_del_init(&p->mnt_list);
d2921684
EB
1501 ns = p->mnt_ns;
1502 if (ns) {
1503 ns->mounts--;
1504 __touch_mnt_namespace(ns);
1505 }
143c8c91 1506 p->mnt_ns = NULL;
e819f152 1507 if (how & UMOUNT_SYNC)
48a066e7 1508 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1509
f2d0a123 1510 disconnect = disconnect_mount(p, how);
ce07d891
EB
1511
1512 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1513 disconnect ? &unmounted : NULL);
676da58d 1514 if (mnt_has_parent(p)) {
81b6b061 1515 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1516 if (!disconnect) {
1517 /* Don't forget about p */
1518 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1519 } else {
1520 umount_mnt(p);
1521 }
7c4b93d8 1522 }
0f0afb1d 1523 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1524 }
1525}
1526
b54b9be7 1527static void shrink_submounts(struct mount *mnt);
c35038be 1528
1ab59738 1529static int do_umount(struct mount *mnt, int flags)
1da177e4 1530{
1ab59738 1531 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1532 int retval;
1533
1ab59738 1534 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1535 if (retval)
1536 return retval;
1537
1538 /*
1539 * Allow userspace to request a mountpoint be expired rather than
1540 * unmounting unconditionally. Unmount only happens if:
1541 * (1) the mark is already set (the mark is cleared by mntput())
1542 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1543 */
1544 if (flags & MNT_EXPIRE) {
1ab59738 1545 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1546 flags & (MNT_FORCE | MNT_DETACH))
1547 return -EINVAL;
1548
b3e19d92
NP
1549 /*
1550 * probably don't strictly need the lock here if we examined
1551 * all race cases, but it's a slowpath.
1552 */
719ea2fb 1553 lock_mount_hash();
83adc753 1554 if (mnt_get_count(mnt) != 2) {
719ea2fb 1555 unlock_mount_hash();
1da177e4 1556 return -EBUSY;
b3e19d92 1557 }
719ea2fb 1558 unlock_mount_hash();
1da177e4 1559
863d684f 1560 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1561 return -EAGAIN;
1562 }
1563
1564 /*
1565 * If we may have to abort operations to get out of this
1566 * mount, and they will themselves hold resources we must
1567 * allow the fs to do things. In the Unix tradition of
1568 * 'Gee thats tricky lets do it in userspace' the umount_begin
1569 * might fail to complete on the first run through as other tasks
1570 * must return, and the like. Thats for the mount program to worry
1571 * about for the moment.
1572 */
1573
42faad99 1574 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1575 sb->s_op->umount_begin(sb);
42faad99 1576 }
1da177e4
LT
1577
1578 /*
1579 * No sense to grab the lock for this test, but test itself looks
1580 * somewhat bogus. Suggestions for better replacement?
1581 * Ho-hum... In principle, we might treat that as umount + switch
1582 * to rootfs. GC would eventually take care of the old vfsmount.
1583 * Actually it makes sense, especially if rootfs would contain a
1584 * /reboot - static binary that would close all descriptors and
1585 * call reboot(9). Then init(8) could umount root and exec /reboot.
1586 */
1ab59738 1587 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1588 /*
1589 * Special case for "unmounting" root ...
1590 * we just try to remount it readonly.
1591 */
a1480dcc
AL
1592 if (!capable(CAP_SYS_ADMIN))
1593 return -EPERM;
1da177e4 1594 down_write(&sb->s_umount);
bc98a42c 1595 if (!sb_rdonly(sb))
e462ec50 1596 retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1da177e4
LT
1597 up_write(&sb->s_umount);
1598 return retval;
1599 }
1600
97216be0 1601 namespace_lock();
719ea2fb 1602 lock_mount_hash();
5addc5dd 1603 event++;
1da177e4 1604
48a066e7 1605 if (flags & MNT_DETACH) {
1a4eeaf2 1606 if (!list_empty(&mnt->mnt_list))
e819f152 1607 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1608 retval = 0;
48a066e7
AV
1609 } else {
1610 shrink_submounts(mnt);
1611 retval = -EBUSY;
1612 if (!propagate_mount_busy(mnt, 2)) {
1613 if (!list_empty(&mnt->mnt_list))
e819f152 1614 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1615 retval = 0;
1616 }
1da177e4 1617 }
719ea2fb 1618 unlock_mount_hash();
e3197d83 1619 namespace_unlock();
1da177e4
LT
1620 return retval;
1621}
1622
80b5dce8
EB
1623/*
1624 * __detach_mounts - lazily unmount all mounts on the specified dentry
1625 *
1626 * During unlink, rmdir, and d_drop it is possible to loose the path
1627 * to an existing mountpoint, and wind up leaking the mount.
1628 * detach_mounts allows lazily unmounting those mounts instead of
1629 * leaking them.
1630 *
1631 * The caller may hold dentry->d_inode->i_mutex.
1632 */
1633void __detach_mounts(struct dentry *dentry)
1634{
1635 struct mountpoint *mp;
1636 struct mount *mnt;
1637
1638 namespace_lock();
3895dbf8 1639 lock_mount_hash();
80b5dce8 1640 mp = lookup_mountpoint(dentry);
f53e5797 1641 if (IS_ERR_OR_NULL(mp))
80b5dce8
EB
1642 goto out_unlock;
1643
e06b933e 1644 event++;
80b5dce8
EB
1645 while (!hlist_empty(&mp->m_list)) {
1646 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1647 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8
EB
1648 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1649 umount_mnt(mnt);
ce07d891 1650 }
e0c9c0af 1651 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8 1652 }
80b5dce8
EB
1653 put_mountpoint(mp);
1654out_unlock:
3895dbf8 1655 unlock_mount_hash();
80b5dce8
EB
1656 namespace_unlock();
1657}
1658
dd111b31 1659/*
9b40bc90
AV
1660 * Is the caller allowed to modify his namespace?
1661 */
1662static inline bool may_mount(void)
1663{
1664 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1665}
1666
9e8925b6
JL
1667static inline bool may_mandlock(void)
1668{
1669#ifndef CONFIG_MANDATORY_FILE_LOCKING
1670 return false;
1671#endif
95ace754 1672 return capable(CAP_SYS_ADMIN);
9e8925b6
JL
1673}
1674
1da177e4
LT
1675/*
1676 * Now umount can handle mount points as well as block devices.
1677 * This is important for filesystems which use unnamed block devices.
1678 *
1679 * We now support a flag for forced unmount like the other 'big iron'
1680 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1681 */
1682
bdc480e3 1683SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1684{
2d8f3038 1685 struct path path;
900148dc 1686 struct mount *mnt;
1da177e4 1687 int retval;
db1f05bb 1688 int lookup_flags = 0;
1da177e4 1689
db1f05bb
MS
1690 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1691 return -EINVAL;
1692
9b40bc90
AV
1693 if (!may_mount())
1694 return -EPERM;
1695
db1f05bb
MS
1696 if (!(flags & UMOUNT_NOFOLLOW))
1697 lookup_flags |= LOOKUP_FOLLOW;
1698
197df04c 1699 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1700 if (retval)
1701 goto out;
900148dc 1702 mnt = real_mount(path.mnt);
1da177e4 1703 retval = -EINVAL;
2d8f3038 1704 if (path.dentry != path.mnt->mnt_root)
1da177e4 1705 goto dput_and_out;
143c8c91 1706 if (!check_mnt(mnt))
1da177e4 1707 goto dput_and_out;
5ff9d8a6
EB
1708 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1709 goto dput_and_out;
b2f5d4dc
EB
1710 retval = -EPERM;
1711 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1712 goto dput_and_out;
1da177e4 1713
900148dc 1714 retval = do_umount(mnt, flags);
1da177e4 1715dput_and_out:
429731b1 1716 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1717 dput(path.dentry);
900148dc 1718 mntput_no_expire(mnt);
1da177e4
LT
1719out:
1720 return retval;
1721}
1722
1723#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1724
1725/*
b58fed8b 1726 * The 2.0 compatible umount. No flags.
1da177e4 1727 */
bdc480e3 1728SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1729{
b58fed8b 1730 return sys_umount(name, 0);
1da177e4
LT
1731}
1732
1733#endif
1734
4ce5d2b1 1735static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1736{
4ce5d2b1 1737 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1738 return dentry->d_op == &ns_dentry_operations &&
1739 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1740}
1741
58be2825
AV
1742struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1743{
1744 return container_of(ns, struct mnt_namespace, ns);
1745}
1746
4ce5d2b1
EB
1747static bool mnt_ns_loop(struct dentry *dentry)
1748{
1749 /* Could bind mounting the mount namespace inode cause a
1750 * mount namespace loop?
1751 */
1752 struct mnt_namespace *mnt_ns;
1753 if (!is_mnt_ns_file(dentry))
1754 return false;
1755
f77c8014 1756 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1757 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1758}
1759
87129cc0 1760struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1761 int flag)
1da177e4 1762{
84d17192 1763 struct mount *res, *p, *q, *r, *parent;
1da177e4 1764
4ce5d2b1
EB
1765 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1766 return ERR_PTR(-EINVAL);
1767
1768 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1769 return ERR_PTR(-EINVAL);
9676f0c6 1770
36341f64 1771 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1772 if (IS_ERR(q))
1773 return q;
1774
a73324da 1775 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1776
1777 p = mnt;
6b41d536 1778 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1779 struct mount *s;
7ec02ef1 1780 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1781 continue;
1782
909b0a88 1783 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1784 if (!(flag & CL_COPY_UNBINDABLE) &&
1785 IS_MNT_UNBINDABLE(s)) {
1786 s = skip_mnt_tree(s);
1787 continue;
1788 }
1789 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1790 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1791 s = skip_mnt_tree(s);
1792 continue;
1793 }
0714a533
AV
1794 while (p != s->mnt_parent) {
1795 p = p->mnt_parent;
1796 q = q->mnt_parent;
1da177e4 1797 }
87129cc0 1798 p = s;
84d17192 1799 parent = q;
87129cc0 1800 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1801 if (IS_ERR(q))
1802 goto out;
719ea2fb 1803 lock_mount_hash();
1a4eeaf2 1804 list_add_tail(&q->mnt_list, &res->mnt_list);
1064f874 1805 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1806 unlock_mount_hash();
1da177e4
LT
1807 }
1808 }
1809 return res;
be34d1a3 1810out:
1da177e4 1811 if (res) {
719ea2fb 1812 lock_mount_hash();
e819f152 1813 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1814 unlock_mount_hash();
1da177e4 1815 }
be34d1a3 1816 return q;
1da177e4
LT
1817}
1818
be34d1a3
DH
1819/* Caller should check returned pointer for errors */
1820
ca71cf71 1821struct vfsmount *collect_mounts(const struct path *path)
8aec0809 1822{
cb338d06 1823 struct mount *tree;
97216be0 1824 namespace_lock();
cd4a4017
EB
1825 if (!check_mnt(real_mount(path->mnt)))
1826 tree = ERR_PTR(-EINVAL);
1827 else
1828 tree = copy_tree(real_mount(path->mnt), path->dentry,
1829 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1830 namespace_unlock();
be34d1a3 1831 if (IS_ERR(tree))
52e220d3 1832 return ERR_CAST(tree);
be34d1a3 1833 return &tree->mnt;
8aec0809
AV
1834}
1835
1836void drop_collected_mounts(struct vfsmount *mnt)
1837{
97216be0 1838 namespace_lock();
719ea2fb 1839 lock_mount_hash();
e819f152 1840 umount_tree(real_mount(mnt), UMOUNT_SYNC);
719ea2fb 1841 unlock_mount_hash();
3ab6abee 1842 namespace_unlock();
8aec0809
AV
1843}
1844
c771d683
MS
1845/**
1846 * clone_private_mount - create a private clone of a path
1847 *
1848 * This creates a new vfsmount, which will be the clone of @path. The new will
1849 * not be attached anywhere in the namespace and will be private (i.e. changes
1850 * to the originating mount won't be propagated into this).
1851 *
1852 * Release with mntput().
1853 */
ca71cf71 1854struct vfsmount *clone_private_mount(const struct path *path)
c771d683
MS
1855{
1856 struct mount *old_mnt = real_mount(path->mnt);
1857 struct mount *new_mnt;
1858
1859 if (IS_MNT_UNBINDABLE(old_mnt))
1860 return ERR_PTR(-EINVAL);
1861
c771d683 1862 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
c771d683
MS
1863 if (IS_ERR(new_mnt))
1864 return ERR_CAST(new_mnt);
1865
1866 return &new_mnt->mnt;
1867}
1868EXPORT_SYMBOL_GPL(clone_private_mount);
1869
1f707137
AV
1870int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1871 struct vfsmount *root)
1872{
1a4eeaf2 1873 struct mount *mnt;
1f707137
AV
1874 int res = f(root, arg);
1875 if (res)
1876 return res;
1a4eeaf2
AV
1877 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1878 res = f(&mnt->mnt, arg);
1f707137
AV
1879 if (res)
1880 return res;
1881 }
1882 return 0;
1883}
1884
4b8b21f4 1885static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1886{
315fc83e 1887 struct mount *p;
719f5d7f 1888
909b0a88 1889 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1890 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1891 mnt_release_group_id(p);
719f5d7f
MS
1892 }
1893}
1894
4b8b21f4 1895static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1896{
315fc83e 1897 struct mount *p;
719f5d7f 1898
909b0a88 1899 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1900 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1901 int err = mnt_alloc_group_id(p);
719f5d7f 1902 if (err) {
4b8b21f4 1903 cleanup_group_ids(mnt, p);
719f5d7f
MS
1904 return err;
1905 }
1906 }
1907 }
1908
1909 return 0;
1910}
1911
d2921684
EB
1912int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1913{
1914 unsigned int max = READ_ONCE(sysctl_mount_max);
1915 unsigned int mounts = 0, old, pending, sum;
1916 struct mount *p;
1917
1918 for (p = mnt; p; p = next_mnt(p, mnt))
1919 mounts++;
1920
1921 old = ns->mounts;
1922 pending = ns->pending_mounts;
1923 sum = old + pending;
1924 if ((old > sum) ||
1925 (pending > sum) ||
1926 (max < sum) ||
1927 (mounts > (max - sum)))
1928 return -ENOSPC;
1929
1930 ns->pending_mounts = pending + mounts;
1931 return 0;
1932}
1933
b90fa9ae
RP
1934/*
1935 * @source_mnt : mount tree to be attached
21444403
RP
1936 * @nd : place the mount tree @source_mnt is attached
1937 * @parent_nd : if non-null, detach the source_mnt from its parent and
1938 * store the parent mount and mountpoint dentry.
1939 * (done when source_mnt is moved)
b90fa9ae
RP
1940 *
1941 * NOTE: in the table below explains the semantics when a source mount
1942 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1943 * ---------------------------------------------------------------------------
1944 * | BIND MOUNT OPERATION |
1945 * |**************************************************************************
1946 * | source-->| shared | private | slave | unbindable |
1947 * | dest | | | | |
1948 * | | | | | | |
1949 * | v | | | | |
1950 * |**************************************************************************
1951 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1952 * | | | | | |
1953 * |non-shared| shared (+) | private | slave (*) | invalid |
1954 * ***************************************************************************
b90fa9ae
RP
1955 * A bind operation clones the source mount and mounts the clone on the
1956 * destination mount.
1957 *
1958 * (++) the cloned mount is propagated to all the mounts in the propagation
1959 * tree of the destination mount and the cloned mount is added to
1960 * the peer group of the source mount.
1961 * (+) the cloned mount is created under the destination mount and is marked
1962 * as shared. The cloned mount is added to the peer group of the source
1963 * mount.
5afe0022
RP
1964 * (+++) the mount is propagated to all the mounts in the propagation tree
1965 * of the destination mount and the cloned mount is made slave
1966 * of the same master as that of the source mount. The cloned mount
1967 * is marked as 'shared and slave'.
1968 * (*) the cloned mount is made a slave of the same master as that of the
1969 * source mount.
1970 *
9676f0c6
RP
1971 * ---------------------------------------------------------------------------
1972 * | MOVE MOUNT OPERATION |
1973 * |**************************************************************************
1974 * | source-->| shared | private | slave | unbindable |
1975 * | dest | | | | |
1976 * | | | | | | |
1977 * | v | | | | |
1978 * |**************************************************************************
1979 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1980 * | | | | | |
1981 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1982 * ***************************************************************************
5afe0022
RP
1983 *
1984 * (+) the mount is moved to the destination. And is then propagated to
1985 * all the mounts in the propagation tree of the destination mount.
21444403 1986 * (+*) the mount is moved to the destination.
5afe0022
RP
1987 * (+++) the mount is moved to the destination and is then propagated to
1988 * all the mounts belonging to the destination mount's propagation tree.
1989 * the mount is marked as 'shared and slave'.
1990 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1991 *
1992 * if the source mount is a tree, the operations explained above is
1993 * applied to each mount in the tree.
1994 * Must be called without spinlocks held, since this function can sleep
1995 * in allocations.
1996 */
0fb54e50 1997static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1998 struct mount *dest_mnt,
1999 struct mountpoint *dest_mp,
2000 struct path *parent_path)
b90fa9ae 2001{
38129a13 2002 HLIST_HEAD(tree_list);
d2921684 2003 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1064f874 2004 struct mountpoint *smp;
315fc83e 2005 struct mount *child, *p;
38129a13 2006 struct hlist_node *n;
719f5d7f 2007 int err;
b90fa9ae 2008
1064f874
EB
2009 /* Preallocate a mountpoint in case the new mounts need
2010 * to be tucked under other mounts.
2011 */
2012 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2013 if (IS_ERR(smp))
2014 return PTR_ERR(smp);
2015
d2921684
EB
2016 /* Is there space to add these mounts to the mount namespace? */
2017 if (!parent_path) {
2018 err = count_mounts(ns, source_mnt);
2019 if (err)
2020 goto out;
2021 }
2022
fc7be130 2023 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 2024 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
2025 if (err)
2026 goto out;
0b1b901b 2027 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 2028 lock_mount_hash();
0b1b901b
AV
2029 if (err)
2030 goto out_cleanup_ids;
909b0a88 2031 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 2032 set_mnt_shared(p);
0b1b901b
AV
2033 } else {
2034 lock_mount_hash();
b90fa9ae 2035 }
1a390689 2036 if (parent_path) {
0fb54e50 2037 detach_mnt(source_mnt, parent_path);
84d17192 2038 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 2039 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 2040 } else {
84d17192 2041 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1064f874 2042 commit_tree(source_mnt);
21444403 2043 }
b90fa9ae 2044
38129a13 2045 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 2046 struct mount *q;
38129a13 2047 hlist_del_init(&child->mnt_hash);
1064f874
EB
2048 q = __lookup_mnt(&child->mnt_parent->mnt,
2049 child->mnt_mountpoint);
2050 if (q)
2051 mnt_change_mountpoint(child, smp, q);
2052 commit_tree(child);
b90fa9ae 2053 }
1064f874 2054 put_mountpoint(smp);
719ea2fb 2055 unlock_mount_hash();
99b7db7b 2056
b90fa9ae 2057 return 0;
719f5d7f
MS
2058
2059 out_cleanup_ids:
f2ebb3a9
AV
2060 while (!hlist_empty(&tree_list)) {
2061 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
d2921684 2062 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 2063 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
2064 }
2065 unlock_mount_hash();
0b1b901b 2066 cleanup_group_ids(source_mnt, NULL);
719f5d7f 2067 out:
d2921684 2068 ns->pending_mounts = 0;
1064f874
EB
2069
2070 read_seqlock_excl(&mount_lock);
2071 put_mountpoint(smp);
2072 read_sequnlock_excl(&mount_lock);
2073
719f5d7f 2074 return err;
b90fa9ae
RP
2075}
2076
84d17192 2077static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
2078{
2079 struct vfsmount *mnt;
84d17192 2080 struct dentry *dentry = path->dentry;
b12cea91 2081retry:
5955102c 2082 inode_lock(dentry->d_inode);
84d17192 2083 if (unlikely(cant_mount(dentry))) {
5955102c 2084 inode_unlock(dentry->d_inode);
84d17192 2085 return ERR_PTR(-ENOENT);
b12cea91 2086 }
97216be0 2087 namespace_lock();
b12cea91 2088 mnt = lookup_mnt(path);
84d17192 2089 if (likely(!mnt)) {
3895dbf8 2090 struct mountpoint *mp = get_mountpoint(dentry);
84d17192 2091 if (IS_ERR(mp)) {
97216be0 2092 namespace_unlock();
5955102c 2093 inode_unlock(dentry->d_inode);
84d17192
AV
2094 return mp;
2095 }
2096 return mp;
2097 }
97216be0 2098 namespace_unlock();
5955102c 2099 inode_unlock(path->dentry->d_inode);
b12cea91
AV
2100 path_put(path);
2101 path->mnt = mnt;
84d17192 2102 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2103 goto retry;
2104}
2105
84d17192 2106static void unlock_mount(struct mountpoint *where)
b12cea91 2107{
84d17192 2108 struct dentry *dentry = where->m_dentry;
3895dbf8
EB
2109
2110 read_seqlock_excl(&mount_lock);
84d17192 2111 put_mountpoint(where);
3895dbf8
EB
2112 read_sequnlock_excl(&mount_lock);
2113
328e6d90 2114 namespace_unlock();
5955102c 2115 inode_unlock(dentry->d_inode);
b12cea91
AV
2116}
2117
84d17192 2118static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2119{
e462ec50 2120 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
1da177e4
LT
2121 return -EINVAL;
2122
e36cb0b8
DH
2123 if (d_is_dir(mp->m_dentry) !=
2124 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2125 return -ENOTDIR;
2126
84d17192 2127 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
2128}
2129
7a2e8a8f
VA
2130/*
2131 * Sanity check the flags to change_mnt_propagation.
2132 */
2133
e462ec50 2134static int flags_to_propagation_type(int ms_flags)
7a2e8a8f 2135{
e462ec50 2136 int type = ms_flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2137
2138 /* Fail if any non-propagation flags are set */
2139 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2140 return 0;
2141 /* Only one propagation flag should be set */
2142 if (!is_power_of_2(type))
2143 return 0;
2144 return type;
2145}
2146
07b20889
RP
2147/*
2148 * recursively change the type of the mountpoint.
2149 */
e462ec50 2150static int do_change_type(struct path *path, int ms_flags)
07b20889 2151{
315fc83e 2152 struct mount *m;
4b8b21f4 2153 struct mount *mnt = real_mount(path->mnt);
e462ec50 2154 int recurse = ms_flags & MS_REC;
7a2e8a8f 2155 int type;
719f5d7f 2156 int err = 0;
07b20889 2157
2d92ab3c 2158 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2159 return -EINVAL;
2160
e462ec50 2161 type = flags_to_propagation_type(ms_flags);
7a2e8a8f
VA
2162 if (!type)
2163 return -EINVAL;
2164
97216be0 2165 namespace_lock();
719f5d7f
MS
2166 if (type == MS_SHARED) {
2167 err = invent_group_ids(mnt, recurse);
2168 if (err)
2169 goto out_unlock;
2170 }
2171
719ea2fb 2172 lock_mount_hash();
909b0a88 2173 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2174 change_mnt_propagation(m, type);
719ea2fb 2175 unlock_mount_hash();
719f5d7f
MS
2176
2177 out_unlock:
97216be0 2178 namespace_unlock();
719f5d7f 2179 return err;
07b20889
RP
2180}
2181
5ff9d8a6
EB
2182static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2183{
2184 struct mount *child;
2185 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2186 if (!is_subdir(child->mnt_mountpoint, dentry))
2187 continue;
2188
2189 if (child->mnt.mnt_flags & MNT_LOCKED)
2190 return true;
2191 }
2192 return false;
2193}
2194
1da177e4
LT
2195/*
2196 * do loopback mount.
2197 */
808d4e3c 2198static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2199 int recurse)
1da177e4 2200{
2d92ab3c 2201 struct path old_path;
84d17192
AV
2202 struct mount *mnt = NULL, *old, *parent;
2203 struct mountpoint *mp;
57eccb83 2204 int err;
1da177e4
LT
2205 if (!old_name || !*old_name)
2206 return -EINVAL;
815d405c 2207 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2208 if (err)
2209 return err;
2210
8823c079 2211 err = -EINVAL;
4ce5d2b1 2212 if (mnt_ns_loop(old_path.dentry))
dd111b31 2213 goto out;
8823c079 2214
84d17192
AV
2215 mp = lock_mount(path);
2216 err = PTR_ERR(mp);
2217 if (IS_ERR(mp))
b12cea91
AV
2218 goto out;
2219
87129cc0 2220 old = real_mount(old_path.mnt);
84d17192 2221 parent = real_mount(path->mnt);
87129cc0 2222
1da177e4 2223 err = -EINVAL;
fc7be130 2224 if (IS_MNT_UNBINDABLE(old))
b12cea91 2225 goto out2;
9676f0c6 2226
e149ed2b
AV
2227 if (!check_mnt(parent))
2228 goto out2;
2229
2230 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
b12cea91 2231 goto out2;
1da177e4 2232
5ff9d8a6
EB
2233 if (!recurse && has_locked_children(old, old_path.dentry))
2234 goto out2;
2235
ccd48bc7 2236 if (recurse)
4ce5d2b1 2237 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 2238 else
87129cc0 2239 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 2240
be34d1a3
DH
2241 if (IS_ERR(mnt)) {
2242 err = PTR_ERR(mnt);
e9c5d8a5 2243 goto out2;
be34d1a3 2244 }
ccd48bc7 2245
5ff9d8a6
EB
2246 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2247
84d17192 2248 err = graft_tree(mnt, parent, mp);
ccd48bc7 2249 if (err) {
719ea2fb 2250 lock_mount_hash();
e819f152 2251 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2252 unlock_mount_hash();
5b83d2c5 2253 }
b12cea91 2254out2:
84d17192 2255 unlock_mount(mp);
ccd48bc7 2256out:
2d92ab3c 2257 path_put(&old_path);
1da177e4
LT
2258 return err;
2259}
2260
2e4b7fcd
DH
2261static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2262{
2263 int error = 0;
2264 int readonly_request = 0;
2265
2266 if (ms_flags & MS_RDONLY)
2267 readonly_request = 1;
2268 if (readonly_request == __mnt_is_readonly(mnt))
2269 return 0;
2270
2271 if (readonly_request)
83adc753 2272 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 2273 else
83adc753 2274 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
2275 return error;
2276}
2277
1da177e4
LT
2278/*
2279 * change filesystem flags. dir should be a physical root of filesystem.
2280 * If you've mounted a non-root directory somewhere and want to do remount
2281 * on it - tough luck.
2282 */
e462ec50
DH
2283static int do_remount(struct path *path, int ms_flags, int sb_flags,
2284 int mnt_flags, void *data)
1da177e4
LT
2285{
2286 int err;
2d92ab3c 2287 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2288 struct mount *mnt = real_mount(path->mnt);
1da177e4 2289
143c8c91 2290 if (!check_mnt(mnt))
1da177e4
LT
2291 return -EINVAL;
2292
2d92ab3c 2293 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2294 return -EINVAL;
2295
07b64558
EB
2296 /* Don't allow changing of locked mnt flags.
2297 *
2298 * No locks need to be held here while testing the various
2299 * MNT_LOCK flags because those flags can never be cleared
2300 * once they are set.
2301 */
2302 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2303 !(mnt_flags & MNT_READONLY)) {
2304 return -EPERM;
2305 }
9566d674
EB
2306 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2307 !(mnt_flags & MNT_NODEV)) {
67690f93 2308 return -EPERM;
9566d674
EB
2309 }
2310 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2311 !(mnt_flags & MNT_NOSUID)) {
2312 return -EPERM;
2313 }
2314 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2315 !(mnt_flags & MNT_NOEXEC)) {
2316 return -EPERM;
2317 }
2318 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2319 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2320 return -EPERM;
2321 }
2322
ff36fe2c
EP
2323 err = security_sb_remount(sb, data);
2324 if (err)
2325 return err;
2326
1da177e4 2327 down_write(&sb->s_umount);
e462ec50
DH
2328 if (ms_flags & MS_BIND)
2329 err = change_mount_flags(path->mnt, ms_flags);
57eccb83
AV
2330 else if (!capable(CAP_SYS_ADMIN))
2331 err = -EPERM;
4aa98cf7 2332 else
e462ec50 2333 err = do_remount_sb(sb, sb_flags, data, 0);
7b43a79f 2334 if (!err) {
719ea2fb 2335 lock_mount_hash();
a6138db8 2336 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
143c8c91 2337 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 2338 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 2339 unlock_mount_hash();
0e55a7cc 2340 }
6339dab8 2341 up_write(&sb->s_umount);
1da177e4
LT
2342 return err;
2343}
2344
cbbe362c 2345static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2346{
315fc83e 2347 struct mount *p;
909b0a88 2348 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2349 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2350 return 1;
2351 }
2352 return 0;
2353}
2354
808d4e3c 2355static int do_move_mount(struct path *path, const char *old_name)
1da177e4 2356{
2d92ab3c 2357 struct path old_path, parent_path;
676da58d 2358 struct mount *p;
0fb54e50 2359 struct mount *old;
84d17192 2360 struct mountpoint *mp;
57eccb83 2361 int err;
1da177e4
LT
2362 if (!old_name || !*old_name)
2363 return -EINVAL;
2d92ab3c 2364 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2365 if (err)
2366 return err;
2367
84d17192
AV
2368 mp = lock_mount(path);
2369 err = PTR_ERR(mp);
2370 if (IS_ERR(mp))
cc53ce53
DH
2371 goto out;
2372
143c8c91 2373 old = real_mount(old_path.mnt);
fc7be130 2374 p = real_mount(path->mnt);
143c8c91 2375
1da177e4 2376 err = -EINVAL;
fc7be130 2377 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2378 goto out1;
2379
5ff9d8a6
EB
2380 if (old->mnt.mnt_flags & MNT_LOCKED)
2381 goto out1;
2382
1da177e4 2383 err = -EINVAL;
2d92ab3c 2384 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2385 goto out1;
1da177e4 2386
676da58d 2387 if (!mnt_has_parent(old))
21444403 2388 goto out1;
1da177e4 2389
e36cb0b8
DH
2390 if (d_is_dir(path->dentry) !=
2391 d_is_dir(old_path.dentry))
21444403
RP
2392 goto out1;
2393 /*
2394 * Don't move a mount residing in a shared parent.
2395 */
fc7be130 2396 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2397 goto out1;
9676f0c6
RP
2398 /*
2399 * Don't move a mount tree containing unbindable mounts to a destination
2400 * mount which is shared.
2401 */
fc7be130 2402 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2403 goto out1;
1da177e4 2404 err = -ELOOP;
fc7be130 2405 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2406 if (p == old)
21444403 2407 goto out1;
1da177e4 2408
84d17192 2409 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2410 if (err)
21444403 2411 goto out1;
1da177e4
LT
2412
2413 /* if the mount is moved, it should no longer be expire
2414 * automatically */
6776db3d 2415 list_del_init(&old->mnt_expire);
1da177e4 2416out1:
84d17192 2417 unlock_mount(mp);
1da177e4 2418out:
1da177e4 2419 if (!err)
1a390689 2420 path_put(&parent_path);
2d92ab3c 2421 path_put(&old_path);
1da177e4
LT
2422 return err;
2423}
2424
9d412a43
AV
2425static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2426{
2427 int err;
2428 const char *subtype = strchr(fstype, '.');
2429 if (subtype) {
2430 subtype++;
2431 err = -EINVAL;
2432 if (!subtype[0])
2433 goto err;
2434 } else
2435 subtype = "";
2436
2437 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2438 err = -ENOMEM;
2439 if (!mnt->mnt_sb->s_subtype)
2440 goto err;
2441 return mnt;
2442
2443 err:
2444 mntput(mnt);
2445 return ERR_PTR(err);
2446}
2447
9d412a43
AV
2448/*
2449 * add a mount into a namespace's mount tree
2450 */
95bc5f25 2451static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2452{
84d17192
AV
2453 struct mountpoint *mp;
2454 struct mount *parent;
9d412a43
AV
2455 int err;
2456
f2ebb3a9 2457 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2458
84d17192
AV
2459 mp = lock_mount(path);
2460 if (IS_ERR(mp))
2461 return PTR_ERR(mp);
9d412a43 2462
84d17192 2463 parent = real_mount(path->mnt);
9d412a43 2464 err = -EINVAL;
84d17192 2465 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2466 /* that's acceptable only for automounts done in private ns */
2467 if (!(mnt_flags & MNT_SHRINKABLE))
2468 goto unlock;
2469 /* ... and for those we'd better have mountpoint still alive */
84d17192 2470 if (!parent->mnt_ns)
156cacb1
AV
2471 goto unlock;
2472 }
9d412a43
AV
2473
2474 /* Refuse the same filesystem on the same mount point */
2475 err = -EBUSY;
95bc5f25 2476 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2477 path->mnt->mnt_root == path->dentry)
2478 goto unlock;
2479
2480 err = -EINVAL;
e36cb0b8 2481 if (d_is_symlink(newmnt->mnt.mnt_root))
9d412a43
AV
2482 goto unlock;
2483
95bc5f25 2484 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2485 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2486
2487unlock:
84d17192 2488 unlock_mount(mp);
9d412a43
AV
2489 return err;
2490}
b1e75df4 2491
8654df4e 2492static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
1b852bce 2493
1da177e4
LT
2494/*
2495 * create a new mount for userspace and request it to be added into the
2496 * namespace's tree
2497 */
e462ec50 2498static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
808d4e3c 2499 int mnt_flags, const char *name, void *data)
1da177e4 2500{
0c55cfc4 2501 struct file_system_type *type;
1da177e4 2502 struct vfsmount *mnt;
15f9a3f3 2503 int err;
1da177e4 2504
0c55cfc4 2505 if (!fstype)
1da177e4
LT
2506 return -EINVAL;
2507
0c55cfc4
EB
2508 type = get_fs_type(fstype);
2509 if (!type)
2510 return -ENODEV;
2511
e462ec50 2512 mnt = vfs_kern_mount(type, sb_flags, name, data);
0c55cfc4
EB
2513 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2514 !mnt->mnt_sb->s_subtype)
2515 mnt = fs_set_subtype(mnt, fstype);
2516
2517 put_filesystem(type);
1da177e4
LT
2518 if (IS_ERR(mnt))
2519 return PTR_ERR(mnt);
2520
8654df4e
EB
2521 if (mount_too_revealing(mnt, &mnt_flags)) {
2522 mntput(mnt);
2523 return -EPERM;
2524 }
2525
95bc5f25 2526 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2527 if (err)
2528 mntput(mnt);
2529 return err;
1da177e4
LT
2530}
2531
19a167af
AV
2532int finish_automount(struct vfsmount *m, struct path *path)
2533{
6776db3d 2534 struct mount *mnt = real_mount(m);
19a167af
AV
2535 int err;
2536 /* The new mount record should have at least 2 refs to prevent it being
2537 * expired before we get a chance to add it
2538 */
6776db3d 2539 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2540
2541 if (m->mnt_sb == path->mnt->mnt_sb &&
2542 m->mnt_root == path->dentry) {
b1e75df4
AV
2543 err = -ELOOP;
2544 goto fail;
19a167af
AV
2545 }
2546
95bc5f25 2547 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2548 if (!err)
2549 return 0;
2550fail:
2551 /* remove m from any expiration list it may be on */
6776db3d 2552 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2553 namespace_lock();
6776db3d 2554 list_del_init(&mnt->mnt_expire);
97216be0 2555 namespace_unlock();
19a167af 2556 }
b1e75df4
AV
2557 mntput(m);
2558 mntput(m);
19a167af
AV
2559 return err;
2560}
2561
ea5b778a
DH
2562/**
2563 * mnt_set_expiry - Put a mount on an expiration list
2564 * @mnt: The mount to list.
2565 * @expiry_list: The list to add the mount to.
2566 */
2567void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2568{
97216be0 2569 namespace_lock();
ea5b778a 2570
6776db3d 2571 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2572
97216be0 2573 namespace_unlock();
ea5b778a
DH
2574}
2575EXPORT_SYMBOL(mnt_set_expiry);
2576
1da177e4
LT
2577/*
2578 * process a list of expirable mountpoints with the intent of discarding any
2579 * mountpoints that aren't in use and haven't been touched since last we came
2580 * here
2581 */
2582void mark_mounts_for_expiry(struct list_head *mounts)
2583{
761d5c38 2584 struct mount *mnt, *next;
1da177e4
LT
2585 LIST_HEAD(graveyard);
2586
2587 if (list_empty(mounts))
2588 return;
2589
97216be0 2590 namespace_lock();
719ea2fb 2591 lock_mount_hash();
1da177e4
LT
2592
2593 /* extract from the expiration list every vfsmount that matches the
2594 * following criteria:
2595 * - only referenced by its parent vfsmount
2596 * - still marked for expiry (marked on the last call here; marks are
2597 * cleared by mntput())
2598 */
6776db3d 2599 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2600 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2601 propagate_mount_busy(mnt, 1))
1da177e4 2602 continue;
6776db3d 2603 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2604 }
bcc5c7d2 2605 while (!list_empty(&graveyard)) {
6776db3d 2606 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2607 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2608 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2609 }
719ea2fb 2610 unlock_mount_hash();
3ab6abee 2611 namespace_unlock();
5528f911
TM
2612}
2613
2614EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2615
2616/*
2617 * Ripoff of 'select_parent()'
2618 *
2619 * search the list of submounts for a given mountpoint, and move any
2620 * shrinkable submounts to the 'graveyard' list.
2621 */
692afc31 2622static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2623{
692afc31 2624 struct mount *this_parent = parent;
5528f911
TM
2625 struct list_head *next;
2626 int found = 0;
2627
2628repeat:
6b41d536 2629 next = this_parent->mnt_mounts.next;
5528f911 2630resume:
6b41d536 2631 while (next != &this_parent->mnt_mounts) {
5528f911 2632 struct list_head *tmp = next;
6b41d536 2633 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2634
2635 next = tmp->next;
692afc31 2636 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2637 continue;
5528f911
TM
2638 /*
2639 * Descend a level if the d_mounts list is non-empty.
2640 */
6b41d536 2641 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2642 this_parent = mnt;
2643 goto repeat;
2644 }
1da177e4 2645
1ab59738 2646 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2647 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2648 found++;
2649 }
1da177e4 2650 }
5528f911
TM
2651 /*
2652 * All done at this level ... ascend and resume the search
2653 */
2654 if (this_parent != parent) {
6b41d536 2655 next = this_parent->mnt_child.next;
0714a533 2656 this_parent = this_parent->mnt_parent;
5528f911
TM
2657 goto resume;
2658 }
2659 return found;
2660}
2661
2662/*
2663 * process a list of expirable mountpoints with the intent of discarding any
2664 * submounts of a specific parent mountpoint
99b7db7b 2665 *
48a066e7 2666 * mount_lock must be held for write
5528f911 2667 */
b54b9be7 2668static void shrink_submounts(struct mount *mnt)
5528f911
TM
2669{
2670 LIST_HEAD(graveyard);
761d5c38 2671 struct mount *m;
5528f911 2672
5528f911 2673 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2674 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2675 while (!list_empty(&graveyard)) {
761d5c38 2676 m = list_first_entry(&graveyard, struct mount,
6776db3d 2677 mnt_expire);
143c8c91 2678 touch_mnt_namespace(m->mnt_ns);
e819f152 2679 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
2680 }
2681 }
1da177e4
LT
2682}
2683
1da177e4
LT
2684/*
2685 * Some copy_from_user() implementations do not return the exact number of
2686 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2687 * Note that this function differs from copy_from_user() in that it will oops
2688 * on bad values of `to', rather than returning a short copy.
2689 */
b58fed8b
RP
2690static long exact_copy_from_user(void *to, const void __user * from,
2691 unsigned long n)
1da177e4
LT
2692{
2693 char *t = to;
2694 const char __user *f = from;
2695 char c;
2696
2697 if (!access_ok(VERIFY_READ, from, n))
2698 return n;
2699
2700 while (n) {
2701 if (__get_user(c, f)) {
2702 memset(t, 0, n);
2703 break;
2704 }
2705 *t++ = c;
2706 f++;
2707 n--;
2708 }
2709 return n;
2710}
2711
b40ef869 2712void *copy_mount_options(const void __user * data)
1da177e4
LT
2713{
2714 int i;
1da177e4 2715 unsigned long size;
b40ef869 2716 char *copy;
b58fed8b 2717
1da177e4 2718 if (!data)
b40ef869 2719 return NULL;
1da177e4 2720
b40ef869
AV
2721 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2722 if (!copy)
2723 return ERR_PTR(-ENOMEM);
1da177e4
LT
2724
2725 /* We only care that *some* data at the address the user
2726 * gave us is valid. Just in case, we'll zero
2727 * the remainder of the page.
2728 */
2729 /* copy_from_user cannot cross TASK_SIZE ! */
2730 size = TASK_SIZE - (unsigned long)data;
2731 if (size > PAGE_SIZE)
2732 size = PAGE_SIZE;
2733
b40ef869 2734 i = size - exact_copy_from_user(copy, data, size);
1da177e4 2735 if (!i) {
b40ef869
AV
2736 kfree(copy);
2737 return ERR_PTR(-EFAULT);
1da177e4
LT
2738 }
2739 if (i != PAGE_SIZE)
b40ef869
AV
2740 memset(copy + i, 0, PAGE_SIZE - i);
2741 return copy;
1da177e4
LT
2742}
2743
b8850d1f 2744char *copy_mount_string(const void __user *data)
eca6f534 2745{
b8850d1f 2746 return data ? strndup_user(data, PAGE_SIZE) : NULL;
eca6f534
VN
2747}
2748
1da177e4
LT
2749/*
2750 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2751 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2752 *
2753 * data is a (void *) that can point to any structure up to
2754 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2755 * information (or be NULL).
2756 *
2757 * Pre-0.97 versions of mount() didn't have a flags word.
2758 * When the flags word was introduced its top half was required
2759 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2760 * Therefore, if this magic number is present, it carries no information
2761 * and must be discarded.
2762 */
5e6123f3 2763long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 2764 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2765{
2d92ab3c 2766 struct path path;
e462ec50 2767 unsigned int mnt_flags = 0, sb_flags;
1da177e4 2768 int retval = 0;
1da177e4
LT
2769
2770 /* Discard magic */
2771 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2772 flags &= ~MS_MGC_MSK;
2773
2774 /* Basic sanity checks */
1da177e4
LT
2775 if (data_page)
2776 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2777
e462ec50
DH
2778 if (flags & MS_NOUSER)
2779 return -EINVAL;
2780
a27ab9f2 2781 /* ... and get the mountpoint */
5e6123f3 2782 retval = user_path(dir_name, &path);
a27ab9f2
TH
2783 if (retval)
2784 return retval;
2785
2786 retval = security_sb_mount(dev_name, &path,
2787 type_page, flags, data_page);
0d5cadb8
AV
2788 if (!retval && !may_mount())
2789 retval = -EPERM;
e462ec50 2790 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
9e8925b6 2791 retval = -EPERM;
a27ab9f2
TH
2792 if (retval)
2793 goto dput_out;
2794
613cbe3d
AK
2795 /* Default to relatime unless overriden */
2796 if (!(flags & MS_NOATIME))
2797 mnt_flags |= MNT_RELATIME;
0a1c01c9 2798
1da177e4
LT
2799 /* Separate the per-mountpoint flags */
2800 if (flags & MS_NOSUID)
2801 mnt_flags |= MNT_NOSUID;
2802 if (flags & MS_NODEV)
2803 mnt_flags |= MNT_NODEV;
2804 if (flags & MS_NOEXEC)
2805 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2806 if (flags & MS_NOATIME)
2807 mnt_flags |= MNT_NOATIME;
2808 if (flags & MS_NODIRATIME)
2809 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2810 if (flags & MS_STRICTATIME)
2811 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
e462ec50 2812 if (flags & SB_RDONLY)
2e4b7fcd 2813 mnt_flags |= MNT_READONLY;
fc33a7bb 2814
ffbc6f0e
EB
2815 /* The default atime for remount is preservation */
2816 if ((flags & MS_REMOUNT) &&
2817 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2818 MS_STRICTATIME)) == 0)) {
2819 mnt_flags &= ~MNT_ATIME_MASK;
2820 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2821 }
2822
e462ec50
DH
2823 sb_flags = flags & (SB_RDONLY |
2824 SB_SYNCHRONOUS |
2825 SB_MANDLOCK |
2826 SB_DIRSYNC |
2827 SB_SILENT |
917086ff
MZ
2828 SB_POSIXACL |
2829 SB_I_VERSION);
1da177e4 2830
1da177e4 2831 if (flags & MS_REMOUNT)
e462ec50 2832 retval = do_remount(&path, flags, sb_flags, mnt_flags,
1da177e4
LT
2833 data_page);
2834 else if (flags & MS_BIND)
2d92ab3c 2835 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2836 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2837 retval = do_change_type(&path, flags);
1da177e4 2838 else if (flags & MS_MOVE)
2d92ab3c 2839 retval = do_move_mount(&path, dev_name);
1da177e4 2840 else
e462ec50 2841 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
1da177e4
LT
2842 dev_name, data_page);
2843dput_out:
2d92ab3c 2844 path_put(&path);
1da177e4
LT
2845 return retval;
2846}
2847
537f7ccb
EB
2848static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2849{
2850 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2851}
2852
2853static void dec_mnt_namespaces(struct ucounts *ucounts)
2854{
2855 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2856}
2857
771b1371
EB
2858static void free_mnt_ns(struct mnt_namespace *ns)
2859{
6344c433 2860 ns_free_inum(&ns->ns);
537f7ccb 2861 dec_mnt_namespaces(ns->ucounts);
771b1371
EB
2862 put_user_ns(ns->user_ns);
2863 kfree(ns);
2864}
2865
8823c079
EB
2866/*
2867 * Assign a sequence number so we can detect when we attempt to bind
2868 * mount a reference to an older mount namespace into the current
2869 * mount namespace, preventing reference counting loops. A 64bit
2870 * number incrementing at 10Ghz will take 12,427 years to wrap which
2871 * is effectively never, so we can ignore the possibility.
2872 */
2873static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2874
771b1371 2875static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2876{
2877 struct mnt_namespace *new_ns;
537f7ccb 2878 struct ucounts *ucounts;
98f842e6 2879 int ret;
cf8d2c11 2880
537f7ccb
EB
2881 ucounts = inc_mnt_namespaces(user_ns);
2882 if (!ucounts)
df75e774 2883 return ERR_PTR(-ENOSPC);
537f7ccb 2884
cf8d2c11 2885 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
537f7ccb
EB
2886 if (!new_ns) {
2887 dec_mnt_namespaces(ucounts);
cf8d2c11 2888 return ERR_PTR(-ENOMEM);
537f7ccb 2889 }
6344c433 2890 ret = ns_alloc_inum(&new_ns->ns);
98f842e6
EB
2891 if (ret) {
2892 kfree(new_ns);
537f7ccb 2893 dec_mnt_namespaces(ucounts);
98f842e6
EB
2894 return ERR_PTR(ret);
2895 }
33c42940 2896 new_ns->ns.ops = &mntns_operations;
8823c079 2897 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2898 atomic_set(&new_ns->count, 1);
2899 new_ns->root = NULL;
2900 INIT_LIST_HEAD(&new_ns->list);
2901 init_waitqueue_head(&new_ns->poll);
2902 new_ns->event = 0;
771b1371 2903 new_ns->user_ns = get_user_ns(user_ns);
537f7ccb 2904 new_ns->ucounts = ucounts;
d2921684
EB
2905 new_ns->mounts = 0;
2906 new_ns->pending_mounts = 0;
cf8d2c11
TM
2907 return new_ns;
2908}
2909
0766f788 2910__latent_entropy
9559f689
AV
2911struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2912 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2913{
6b3286ed 2914 struct mnt_namespace *new_ns;
7f2da1e7 2915 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2916 struct mount *p, *q;
9559f689 2917 struct mount *old;
cb338d06 2918 struct mount *new;
7a472ef4 2919 int copy_flags;
1da177e4 2920
9559f689
AV
2921 BUG_ON(!ns);
2922
2923 if (likely(!(flags & CLONE_NEWNS))) {
2924 get_mnt_ns(ns);
2925 return ns;
2926 }
2927
2928 old = ns->root;
2929
771b1371 2930 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2931 if (IS_ERR(new_ns))
2932 return new_ns;
1da177e4 2933
97216be0 2934 namespace_lock();
1da177e4 2935 /* First pass: copy the tree topology */
4ce5d2b1 2936 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2937 if (user_ns != ns->user_ns)
132c94e3 2938 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2939 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2940 if (IS_ERR(new)) {
328e6d90 2941 namespace_unlock();
771b1371 2942 free_mnt_ns(new_ns);
be34d1a3 2943 return ERR_CAST(new);
1da177e4 2944 }
be08d6d2 2945 new_ns->root = new;
1a4eeaf2 2946 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2947
2948 /*
2949 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2950 * as belonging to new namespace. We have already acquired a private
2951 * fs_struct, so tsk->fs->lock is not needed.
2952 */
909b0a88 2953 p = old;
cb338d06 2954 q = new;
1da177e4 2955 while (p) {
143c8c91 2956 q->mnt_ns = new_ns;
d2921684 2957 new_ns->mounts++;
9559f689
AV
2958 if (new_fs) {
2959 if (&p->mnt == new_fs->root.mnt) {
2960 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2961 rootmnt = &p->mnt;
1da177e4 2962 }
9559f689
AV
2963 if (&p->mnt == new_fs->pwd.mnt) {
2964 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2965 pwdmnt = &p->mnt;
1da177e4 2966 }
1da177e4 2967 }
909b0a88
AV
2968 p = next_mnt(p, old);
2969 q = next_mnt(q, new);
4ce5d2b1
EB
2970 if (!q)
2971 break;
2972 while (p->mnt.mnt_root != q->mnt.mnt_root)
2973 p = next_mnt(p, old);
1da177e4 2974 }
328e6d90 2975 namespace_unlock();
1da177e4 2976
1da177e4 2977 if (rootmnt)
f03c6599 2978 mntput(rootmnt);
1da177e4 2979 if (pwdmnt)
f03c6599 2980 mntput(pwdmnt);
1da177e4 2981
741a2951 2982 return new_ns;
1da177e4
LT
2983}
2984
cf8d2c11
TM
2985/**
2986 * create_mnt_ns - creates a private namespace and adds a root filesystem
2987 * @mnt: pointer to the new root filesystem mountpoint
2988 */
1a4eeaf2 2989static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2990{
771b1371 2991 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2992 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2993 struct mount *mnt = real_mount(m);
2994 mnt->mnt_ns = new_ns;
be08d6d2 2995 new_ns->root = mnt;
d2921684 2996 new_ns->mounts++;
b1983cd8 2997 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2998 } else {
1a4eeaf2 2999 mntput(m);
cf8d2c11
TM
3000 }
3001 return new_ns;
3002}
cf8d2c11 3003
ea441d11
AV
3004struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3005{
3006 struct mnt_namespace *ns;
d31da0f0 3007 struct super_block *s;
ea441d11
AV
3008 struct path path;
3009 int err;
3010
3011 ns = create_mnt_ns(mnt);
3012 if (IS_ERR(ns))
3013 return ERR_CAST(ns);
3014
3015 err = vfs_path_lookup(mnt->mnt_root, mnt,
3016 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3017
3018 put_mnt_ns(ns);
3019
3020 if (err)
3021 return ERR_PTR(err);
3022
3023 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
3024 s = path.mnt->mnt_sb;
3025 atomic_inc(&s->s_active);
ea441d11
AV
3026 mntput(path.mnt);
3027 /* lock the sucker */
d31da0f0 3028 down_write(&s->s_umount);
ea441d11
AV
3029 /* ... and return the root of (sub)tree on it */
3030 return path.dentry;
3031}
3032EXPORT_SYMBOL(mount_subtree);
3033
bdc480e3
HC
3034SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3035 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 3036{
eca6f534
VN
3037 int ret;
3038 char *kernel_type;
eca6f534 3039 char *kernel_dev;
b40ef869 3040 void *options;
1da177e4 3041
b8850d1f
TG
3042 kernel_type = copy_mount_string(type);
3043 ret = PTR_ERR(kernel_type);
3044 if (IS_ERR(kernel_type))
eca6f534 3045 goto out_type;
1da177e4 3046
b8850d1f
TG
3047 kernel_dev = copy_mount_string(dev_name);
3048 ret = PTR_ERR(kernel_dev);
3049 if (IS_ERR(kernel_dev))
eca6f534 3050 goto out_dev;
1da177e4 3051
b40ef869
AV
3052 options = copy_mount_options(data);
3053 ret = PTR_ERR(options);
3054 if (IS_ERR(options))
eca6f534 3055 goto out_data;
1da177e4 3056
b40ef869 3057 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 3058
b40ef869 3059 kfree(options);
eca6f534
VN
3060out_data:
3061 kfree(kernel_dev);
3062out_dev:
eca6f534
VN
3063 kfree(kernel_type);
3064out_type:
3065 return ret;
1da177e4
LT
3066}
3067
afac7cba
AV
3068/*
3069 * Return true if path is reachable from root
3070 *
48a066e7 3071 * namespace_sem or mount_lock is held
afac7cba 3072 */
643822b4 3073bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
3074 const struct path *root)
3075{
643822b4 3076 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 3077 dentry = mnt->mnt_mountpoint;
0714a533 3078 mnt = mnt->mnt_parent;
afac7cba 3079 }
643822b4 3080 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
3081}
3082
640eb7e7 3083bool path_is_under(const struct path *path1, const struct path *path2)
afac7cba 3084{
25ab4c9b 3085 bool res;
48a066e7 3086 read_seqlock_excl(&mount_lock);
643822b4 3087 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 3088 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3089 return res;
3090}
3091EXPORT_SYMBOL(path_is_under);
3092
1da177e4
LT
3093/*
3094 * pivot_root Semantics:
3095 * Moves the root file system of the current process to the directory put_old,
3096 * makes new_root as the new root file system of the current process, and sets
3097 * root/cwd of all processes which had them on the current root to new_root.
3098 *
3099 * Restrictions:
3100 * The new_root and put_old must be directories, and must not be on the
3101 * same file system as the current process root. The put_old must be
3102 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3103 * pointed to by put_old must yield the same directory as new_root. No other
3104 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3105 *
4a0d11fa
NB
3106 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3107 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3108 * in this situation.
3109 *
1da177e4
LT
3110 * Notes:
3111 * - we don't move root/cwd if they are not at the root (reason: if something
3112 * cared enough to change them, it's probably wrong to force them elsewhere)
3113 * - it's okay to pick a root that isn't the root of a file system, e.g.
3114 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3115 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3116 * first.
3117 */
3480b257
HC
3118SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3119 const char __user *, put_old)
1da177e4 3120{
2d8f3038 3121 struct path new, old, parent_path, root_parent, root;
84d17192
AV
3122 struct mount *new_mnt, *root_mnt, *old_mnt;
3123 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3124 int error;
3125
9b40bc90 3126 if (!may_mount())
1da177e4
LT
3127 return -EPERM;
3128
2d8f3038 3129 error = user_path_dir(new_root, &new);
1da177e4
LT
3130 if (error)
3131 goto out0;
1da177e4 3132
2d8f3038 3133 error = user_path_dir(put_old, &old);
1da177e4
LT
3134 if (error)
3135 goto out1;
3136
2d8f3038 3137 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3138 if (error)
3139 goto out2;
1da177e4 3140
f7ad3c6b 3141 get_fs_root(current->fs, &root);
84d17192
AV
3142 old_mp = lock_mount(&old);
3143 error = PTR_ERR(old_mp);
3144 if (IS_ERR(old_mp))
b12cea91
AV
3145 goto out3;
3146
1da177e4 3147 error = -EINVAL;
419148da
AV
3148 new_mnt = real_mount(new.mnt);
3149 root_mnt = real_mount(root.mnt);
84d17192
AV
3150 old_mnt = real_mount(old.mnt);
3151 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
3152 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3153 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 3154 goto out4;
143c8c91 3155 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3156 goto out4;
5ff9d8a6
EB
3157 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3158 goto out4;
1da177e4 3159 error = -ENOENT;
f3da392e 3160 if (d_unlinked(new.dentry))
b12cea91 3161 goto out4;
1da177e4 3162 error = -EBUSY;
84d17192 3163 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3164 goto out4; /* loop, on the same file system */
1da177e4 3165 error = -EINVAL;
8c3ee42e 3166 if (root.mnt->mnt_root != root.dentry)
b12cea91 3167 goto out4; /* not a mountpoint */
676da58d 3168 if (!mnt_has_parent(root_mnt))
b12cea91 3169 goto out4; /* not attached */
84d17192 3170 root_mp = root_mnt->mnt_mp;
2d8f3038 3171 if (new.mnt->mnt_root != new.dentry)
b12cea91 3172 goto out4; /* not a mountpoint */
676da58d 3173 if (!mnt_has_parent(new_mnt))
b12cea91 3174 goto out4; /* not attached */
4ac91378 3175 /* make sure we can reach put_old from new_root */
84d17192 3176 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3177 goto out4;
0d082601
EB
3178 /* make certain new is below the root */
3179 if (!is_path_reachable(new_mnt, new.dentry, &root))
3180 goto out4;
84d17192 3181 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 3182 lock_mount_hash();
419148da
AV
3183 detach_mnt(new_mnt, &parent_path);
3184 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
3185 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3186 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3187 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3188 }
4ac91378 3189 /* mount old root on put_old */
84d17192 3190 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3191 /* mount new_root on / */
84d17192 3192 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 3193 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3194 /* A moved mount should not expire automatically */
3195 list_del_init(&new_mnt->mnt_expire);
3895dbf8 3196 put_mountpoint(root_mp);
719ea2fb 3197 unlock_mount_hash();
2d8f3038 3198 chroot_fs_refs(&root, &new);
1da177e4 3199 error = 0;
b12cea91 3200out4:
84d17192 3201 unlock_mount(old_mp);
b12cea91
AV
3202 if (!error) {
3203 path_put(&root_parent);
3204 path_put(&parent_path);
3205 }
3206out3:
8c3ee42e 3207 path_put(&root);
b12cea91 3208out2:
2d8f3038 3209 path_put(&old);
1da177e4 3210out1:
2d8f3038 3211 path_put(&new);
1da177e4 3212out0:
1da177e4 3213 return error;
1da177e4
LT
3214}
3215
3216static void __init init_mount_tree(void)
3217{
3218 struct vfsmount *mnt;
6b3286ed 3219 struct mnt_namespace *ns;
ac748a09 3220 struct path root;
0c55cfc4 3221 struct file_system_type *type;
1da177e4 3222
0c55cfc4
EB
3223 type = get_fs_type("rootfs");
3224 if (!type)
3225 panic("Can't find rootfs type");
3226 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3227 put_filesystem(type);
1da177e4
LT
3228 if (IS_ERR(mnt))
3229 panic("Can't create rootfs");
b3e19d92 3230
3b22edc5
TM
3231 ns = create_mnt_ns(mnt);
3232 if (IS_ERR(ns))
1da177e4 3233 panic("Can't allocate initial namespace");
6b3286ed
KK
3234
3235 init_task.nsproxy->mnt_ns = ns;
3236 get_mnt_ns(ns);
3237
be08d6d2
AV
3238 root.mnt = mnt;
3239 root.dentry = mnt->mnt_root;
da362b09 3240 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3241
3242 set_fs_pwd(current->fs, &root);
3243 set_fs_root(current->fs, &root);
1da177e4
LT
3244}
3245
74bf17cf 3246void __init mnt_init(void)
1da177e4 3247{
15a67dd8 3248 int err;
1da177e4 3249
7d6fec45 3250 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3251 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3252
0818bf27 3253 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3254 sizeof(struct hlist_head),
0818bf27 3255 mhash_entries, 19,
3d375d78 3256 HASH_ZERO,
0818bf27
AV
3257 &m_hash_shift, &m_hash_mask, 0, 0);
3258 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3259 sizeof(struct hlist_head),
3260 mphash_entries, 19,
3d375d78 3261 HASH_ZERO,
0818bf27 3262 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3263
84d17192 3264 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3265 panic("Failed to allocate mount hash table\n");
3266
4b93dc9b
TH
3267 kernfs_init();
3268
15a67dd8
RD
3269 err = sysfs_init();
3270 if (err)
3271 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3272 __func__, err);
00d26666
GKH
3273 fs_kobj = kobject_create_and_add("fs", NULL);
3274 if (!fs_kobj)
8e24eea7 3275 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3276 init_rootfs();
3277 init_mount_tree();
3278}
3279
616511d0 3280void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3281{
d498b25a 3282 if (!atomic_dec_and_test(&ns->count))
616511d0 3283 return;
7b00ed6f 3284 drop_collected_mounts(&ns->root->mnt);
771b1371 3285 free_mnt_ns(ns);
1da177e4 3286}
9d412a43
AV
3287
3288struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3289{
423e0ab0 3290 struct vfsmount *mnt;
e462ec50 3291 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
423e0ab0
TC
3292 if (!IS_ERR(mnt)) {
3293 /*
3294 * it is a longterm mount, don't release mnt until
3295 * we unmount before file sys is unregistered
3296 */
f7a99c5b 3297 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3298 }
3299 return mnt;
9d412a43
AV
3300}
3301EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
3302
3303void kern_unmount(struct vfsmount *mnt)
3304{
3305 /* release long term mount so mount point can be released */
3306 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3307 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3308 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3309 mntput(mnt);
3310 }
3311}
3312EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3313
3314bool our_mnt(struct vfsmount *mnt)
3315{
143c8c91 3316 return check_mnt(real_mount(mnt));
02125a82 3317}
8823c079 3318
3151527e
EB
3319bool current_chrooted(void)
3320{
3321 /* Does the current process have a non-standard root */
3322 struct path ns_root;
3323 struct path fs_root;
3324 bool chrooted;
3325
3326 /* Find the namespace root */
3327 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3328 ns_root.dentry = ns_root.mnt->mnt_root;
3329 path_get(&ns_root);
3330 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3331 ;
3332
3333 get_fs_root(current->fs, &fs_root);
3334
3335 chrooted = !path_equal(&fs_root, &ns_root);
3336
3337 path_put(&fs_root);
3338 path_put(&ns_root);
3339
3340 return chrooted;
3341}
3342
8654df4e
EB
3343static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3344 int *new_mnt_flags)
87a8ebd6 3345{
8c6cf9cc 3346 int new_flags = *new_mnt_flags;
87a8ebd6 3347 struct mount *mnt;
e51db735 3348 bool visible = false;
87a8ebd6 3349
44bb4385 3350 down_read(&namespace_sem);
87a8ebd6 3351 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 3352 struct mount *child;
77b1a97d
EB
3353 int mnt_flags;
3354
8654df4e 3355 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
e51db735
EB
3356 continue;
3357
7e96c1b0
EB
3358 /* This mount is not fully visible if it's root directory
3359 * is not the root directory of the filesystem.
3360 */
3361 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3362 continue;
3363
a1935c17 3364 /* A local view of the mount flags */
77b1a97d 3365 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 3366
695e9df0 3367 /* Don't miss readonly hidden in the superblock flags */
bc98a42c 3368 if (sb_rdonly(mnt->mnt.mnt_sb))
695e9df0
EB
3369 mnt_flags |= MNT_LOCK_READONLY;
3370
8c6cf9cc
EB
3371 /* Verify the mount flags are equal to or more permissive
3372 * than the proposed new mount.
3373 */
77b1a97d 3374 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
3375 !(new_flags & MNT_READONLY))
3376 continue;
77b1a97d
EB
3377 if ((mnt_flags & MNT_LOCK_ATIME) &&
3378 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
3379 continue;
3380
ceeb0e5d
EB
3381 /* This mount is not fully visible if there are any
3382 * locked child mounts that cover anything except for
3383 * empty directories.
e51db735
EB
3384 */
3385 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3386 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 3387 /* Only worry about locked mounts */
d71ed6c9 3388 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 3389 continue;
7236c85e
EB
3390 /* Is the directory permanetly empty? */
3391 if (!is_empty_dir_inode(inode))
e51db735 3392 goto next;
87a8ebd6 3393 }
8c6cf9cc 3394 /* Preserve the locked attributes */
77b1a97d 3395 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 3396 MNT_LOCK_ATIME);
e51db735
EB
3397 visible = true;
3398 goto found;
3399 next: ;
87a8ebd6 3400 }
e51db735 3401found:
44bb4385 3402 up_read(&namespace_sem);
e51db735 3403 return visible;
87a8ebd6
EB
3404}
3405
8654df4e
EB
3406static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3407{
a1935c17 3408 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
3409 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3410 unsigned long s_iflags;
3411
3412 if (ns->user_ns == &init_user_ns)
3413 return false;
3414
3415 /* Can this filesystem be too revealing? */
3416 s_iflags = mnt->mnt_sb->s_iflags;
3417 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3418 return false;
3419
a1935c17
EB
3420 if ((s_iflags & required_iflags) != required_iflags) {
3421 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3422 required_iflags);
3423 return true;
3424 }
3425
8654df4e
EB
3426 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3427}
3428
380cf5ba
AL
3429bool mnt_may_suid(struct vfsmount *mnt)
3430{
3431 /*
3432 * Foreign mounts (accessed via fchdir or through /proc
3433 * symlinks) are always treated as if they are nosuid. This
3434 * prevents namespaces from trusting potentially unsafe
3435 * suid/sgid bits, file caps, or security labels that originate
3436 * in other namespaces.
3437 */
3438 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3439 current_in_userns(mnt->mnt_sb->s_user_ns);
3440}
3441
64964528 3442static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3443{
58be2825 3444 struct ns_common *ns = NULL;
8823c079
EB
3445 struct nsproxy *nsproxy;
3446
728dba3a
EB
3447 task_lock(task);
3448 nsproxy = task->nsproxy;
8823c079 3449 if (nsproxy) {
58be2825
AV
3450 ns = &nsproxy->mnt_ns->ns;
3451 get_mnt_ns(to_mnt_ns(ns));
8823c079 3452 }
728dba3a 3453 task_unlock(task);
8823c079
EB
3454
3455 return ns;
3456}
3457
64964528 3458static void mntns_put(struct ns_common *ns)
8823c079 3459{
58be2825 3460 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3461}
3462
64964528 3463static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3464{
3465 struct fs_struct *fs = current->fs;
4f757f3c 3466 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
8823c079 3467 struct path root;
4f757f3c 3468 int err;
8823c079 3469
0c55cfc4 3470 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3471 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3472 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3473 return -EPERM;
8823c079
EB
3474
3475 if (fs->users != 1)
3476 return -EINVAL;
3477
3478 get_mnt_ns(mnt_ns);
4f757f3c 3479 old_mnt_ns = nsproxy->mnt_ns;
8823c079
EB
3480 nsproxy->mnt_ns = mnt_ns;
3481
3482 /* Find the root */
4f757f3c
AV
3483 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3484 "/", LOOKUP_DOWN, &root);
3485 if (err) {
3486 /* revert to old namespace */
3487 nsproxy->mnt_ns = old_mnt_ns;
3488 put_mnt_ns(mnt_ns);
3489 return err;
3490 }
8823c079 3491
4068367c
AV
3492 put_mnt_ns(old_mnt_ns);
3493
8823c079
EB
3494 /* Update the pwd and root */
3495 set_fs_pwd(fs, &root);
3496 set_fs_root(fs, &root);
3497
3498 path_put(&root);
3499 return 0;
3500}
3501
bcac25a5
AV
3502static struct user_namespace *mntns_owner(struct ns_common *ns)
3503{
3504 return to_mnt_ns(ns)->user_ns;
3505}
3506
8823c079
EB
3507const struct proc_ns_operations mntns_operations = {
3508 .name = "mnt",
3509 .type = CLONE_NEWNS,
3510 .get = mntns_get,
3511 .put = mntns_put,
3512 .install = mntns_install,
bcac25a5 3513 .owner = mntns_owner,
8823c079 3514};