]> git.ipfire.org Git - people/arne_f/kernel.git/blame - kernel/events/core.c
Revert "perf/core: Drop kernel samples even though :u is specified"
[people/arne_f/kernel.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
0793a61d 53
76369139
FW
54#include "internal.h"
55
4e193bd4
TB
56#include <asm/irq_regs.h>
57
272325c4
PZ
58typedef int (*remote_function_f)(void *);
59
fe4b04fa 60struct remote_function_call {
e7e7ee2e 61 struct task_struct *p;
272325c4 62 remote_function_f func;
e7e7ee2e
IM
63 void *info;
64 int ret;
fe4b04fa
PZ
65};
66
67static void remote_function(void *data)
68{
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
0da4cf3e
PZ
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
fe4b04fa
PZ
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88}
89
90/**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103static int
272325c4 104task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
105{
106 struct remote_function_call data = {
e7e7ee2e
IM
107 .p = p,
108 .func = func,
109 .info = info,
0da4cf3e 110 .ret = -EAGAIN,
fe4b04fa 111 };
0da4cf3e 112 int ret;
fe4b04fa 113
0da4cf3e
PZ
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
fe4b04fa 119
0da4cf3e 120 return ret;
fe4b04fa
PZ
121}
122
123/**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
272325c4 132static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
133{
134 struct remote_function_call data = {
e7e7ee2e
IM
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144}
145
fae3fde6
PZ
146static inline struct perf_cpu_context *
147__get_cpu_context(struct perf_event_context *ctx)
148{
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150}
151
152static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
0017960f 154{
fae3fde6
PZ
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158}
159
160static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162{
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166}
167
63b6da39
PZ
168#define TASK_TOMBSTONE ((void *)-1L)
169
170static bool is_kernel_event(struct perf_event *event)
171{
f47c02c0 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
173}
174
39a43640
PZ
175/*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
39a43640
PZ
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
fae3fde6
PZ
194typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201};
202
203static int event_function(void *info)
204{
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
0017960f 207 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 210 int ret = 0;
fae3fde6
PZ
211
212 WARN_ON_ONCE(!irqs_disabled());
213
63b6da39 214 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
218 */
219 if (ctx->task) {
63b6da39 220 if (ctx->task != current) {
0da4cf3e 221 ret = -ESRCH;
63b6da39
PZ
222 goto unlock;
223 }
fae3fde6 224
fae3fde6
PZ
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
63b6da39
PZ
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 240 }
63b6da39 241
fae3fde6 242 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 243unlock:
fae3fde6
PZ
244 perf_ctx_unlock(cpuctx, task_ctx);
245
63b6da39 246 return ret;
fae3fde6
PZ
247}
248
fae3fde6 249static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
250{
251 struct perf_event_context *ctx = event->ctx;
63b6da39 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
0017960f 258
c97f4736
PZ
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
0017960f
PZ
267
268 if (!task) {
fae3fde6 269 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
270 return;
271 }
272
63b6da39
PZ
273 if (task == TASK_TOMBSTONE)
274 return;
275
a096309b 276again:
fae3fde6 277 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
a096309b
PZ
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
0017960f 289 }
a096309b
PZ
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
0017960f
PZ
295 raw_spin_unlock_irq(&ctx->lock);
296}
297
cca20946
PZ
298/*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302static void event_function_local(struct perf_event *event, event_f func, void *data)
303{
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
309 WARN_ON_ONCE(!irqs_disabled());
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344}
345
e5d1367f
SE
346#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
e5d1367f 350
bce38cd5
SE
351/*
352 * branch priv levels that need permission checks
353 */
354#define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
0b3fcf17
SE
358enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
3cbaa590 361 EVENT_TIME = 0x4,
487f05e1
AS
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
0b3fcf17
SE
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365};
366
e5d1367f
SE
367/*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
9107c89e
PZ
371
372static void perf_sched_delayed(struct work_struct *work);
373DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375static DEFINE_MUTEX(perf_sched_mutex);
376static atomic_t perf_sched_count;
377
e5d1367f 378static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 379static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 380static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 381
cdd6c482
IM
382static atomic_t nr_mmap_events __read_mostly;
383static atomic_t nr_comm_events __read_mostly;
e4222673 384static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 385static atomic_t nr_task_events __read_mostly;
948b26b6 386static atomic_t nr_freq_events __read_mostly;
45ac1403 387static atomic_t nr_switch_events __read_mostly;
9ee318a7 388
108b02cf
PZ
389static LIST_HEAD(pmus);
390static DEFINE_MUTEX(pmus_lock);
391static struct srcu_struct pmus_srcu;
a63fbed7 392static cpumask_var_t perf_online_mask;
108b02cf 393
0764771d 394/*
cdd6c482 395 * perf event paranoia level:
0fbdea19
IM
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 398 * 1 - disallow cpu events for unpriv
0fbdea19 399 * 2 - disallow kernel profiling for unpriv
0764771d 400 */
0161028b 401int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 402
20443384
FW
403/* Minimum for 512 kiB + 1 user control page */
404int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
405
406/*
cdd6c482 407 * max perf event sample rate
df58ab24 408 */
14c63f17
DH
409#define DEFAULT_MAX_SAMPLE_RATE 100000
410#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411#define DEFAULT_CPU_TIME_MAX_PERCENT 25
412
413int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
417
d9494cb4
PZ
418static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 420
18ab2cd3 421static void update_perf_cpu_limits(void)
14c63f17
DH
422{
423 u64 tmp = perf_sample_period_ns;
424
425 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
429
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 431}
163ec435 432
9e630205
SE
433static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
163ec435
PZ
435int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
438{
723478c8 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
440
441 if (ret || !write)
442 return ret;
443
ab7fdefb
KL
444 /*
445 * If throttling is disabled don't allow the write:
446 */
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
449 return -EINVAL;
450
163ec435 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
454
455 return 0;
456}
457
458int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
463{
1572e45a 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
465
466 if (ret || !write)
467 return ret;
468
b303e7c1
PZ
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
476 }
163ec435
PZ
477
478 return 0;
479}
1ccd1549 480
14c63f17
DH
481/*
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
486 */
487#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 488static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 489
91a612ee
PZ
490static u64 __report_avg;
491static u64 __report_allowed;
492
6a02ad66 493static void perf_duration_warn(struct irq_work *w)
14c63f17 494{
0d87d7ec 495 printk_ratelimited(KERN_INFO
91a612ee
PZ
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
6a02ad66
PZ
500}
501
502static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504void perf_sample_event_took(u64 sample_len_ns)
505{
91a612ee
PZ
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
14c63f17 510
91a612ee 511 if (max_len == 0)
14c63f17
DH
512 return;
513
91a612ee
PZ
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
519
520 /*
91a612ee
PZ
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
523 * from having to maintain a count.
524 */
91a612ee
PZ
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
14c63f17
DH
527 return;
528
91a612ee
PZ
529 __report_avg = avg_len;
530 __report_allowed = max_len;
14c63f17 531
91a612ee
PZ
532 /*
533 * Compute a throttle threshold 25% below the current duration.
534 */
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
14c63f17 541
91a612ee
PZ
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
544
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 547
cd578abb 548 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 550 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 551 __report_avg, __report_allowed,
cd578abb
PZ
552 sysctl_perf_event_sample_rate);
553 }
14c63f17
DH
554}
555
cdd6c482 556static atomic64_t perf_event_id;
a96bbc16 557
0b3fcf17
SE
558static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
560
561static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
562 enum event_type_t event_type,
563 struct task_struct *task);
564
565static void update_context_time(struct perf_event_context *ctx);
566static u64 perf_event_time(struct perf_event *event);
0b3fcf17 567
cdd6c482 568void __weak perf_event_print_debug(void) { }
0793a61d 569
84c79910 570extern __weak const char *perf_pmu_name(void)
0793a61d 571{
84c79910 572 return "pmu";
0793a61d
TG
573}
574
0b3fcf17
SE
575static inline u64 perf_clock(void)
576{
577 return local_clock();
578}
579
34f43927
PZ
580static inline u64 perf_event_clock(struct perf_event *event)
581{
582 return event->clock();
583}
584
e5d1367f
SE
585#ifdef CONFIG_CGROUP_PERF
586
e5d1367f
SE
587static inline bool
588perf_cgroup_match(struct perf_event *event)
589{
590 struct perf_event_context *ctx = event->ctx;
591 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
592
ef824fa1
TH
593 /* @event doesn't care about cgroup */
594 if (!event->cgrp)
595 return true;
596
597 /* wants specific cgroup scope but @cpuctx isn't associated with any */
598 if (!cpuctx->cgrp)
599 return false;
600
601 /*
602 * Cgroup scoping is recursive. An event enabled for a cgroup is
603 * also enabled for all its descendant cgroups. If @cpuctx's
604 * cgroup is a descendant of @event's (the test covers identity
605 * case), it's a match.
606 */
607 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
608 event->cgrp->css.cgroup);
e5d1367f
SE
609}
610
e5d1367f
SE
611static inline void perf_detach_cgroup(struct perf_event *event)
612{
4e2ba650 613 css_put(&event->cgrp->css);
e5d1367f
SE
614 event->cgrp = NULL;
615}
616
617static inline int is_cgroup_event(struct perf_event *event)
618{
619 return event->cgrp != NULL;
620}
621
622static inline u64 perf_cgroup_event_time(struct perf_event *event)
623{
624 struct perf_cgroup_info *t;
625
626 t = per_cpu_ptr(event->cgrp->info, event->cpu);
627 return t->time;
628}
629
630static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
631{
632 struct perf_cgroup_info *info;
633 u64 now;
634
635 now = perf_clock();
636
637 info = this_cpu_ptr(cgrp->info);
638
639 info->time += now - info->timestamp;
640 info->timestamp = now;
641}
642
643static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
644{
645 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
646 if (cgrp_out)
647 __update_cgrp_time(cgrp_out);
648}
649
650static inline void update_cgrp_time_from_event(struct perf_event *event)
651{
3f7cce3c
SE
652 struct perf_cgroup *cgrp;
653
e5d1367f 654 /*
3f7cce3c
SE
655 * ensure we access cgroup data only when needed and
656 * when we know the cgroup is pinned (css_get)
e5d1367f 657 */
3f7cce3c 658 if (!is_cgroup_event(event))
e5d1367f
SE
659 return;
660
614e4c4e 661 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
662 /*
663 * Do not update time when cgroup is not active
664 */
665 if (cgrp == event->cgrp)
666 __update_cgrp_time(event->cgrp);
e5d1367f
SE
667}
668
669static inline void
3f7cce3c
SE
670perf_cgroup_set_timestamp(struct task_struct *task,
671 struct perf_event_context *ctx)
e5d1367f
SE
672{
673 struct perf_cgroup *cgrp;
674 struct perf_cgroup_info *info;
675
3f7cce3c
SE
676 /*
677 * ctx->lock held by caller
678 * ensure we do not access cgroup data
679 * unless we have the cgroup pinned (css_get)
680 */
681 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
682 return;
683
614e4c4e 684 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 685 info = this_cpu_ptr(cgrp->info);
3f7cce3c 686 info->timestamp = ctx->timestamp;
e5d1367f
SE
687}
688
058fe1c0
DCC
689static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
690
e5d1367f
SE
691#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
692#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
693
694/*
695 * reschedule events based on the cgroup constraint of task.
696 *
697 * mode SWOUT : schedule out everything
698 * mode SWIN : schedule in based on cgroup for next
699 */
18ab2cd3 700static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
701{
702 struct perf_cpu_context *cpuctx;
058fe1c0 703 struct list_head *list;
e5d1367f
SE
704 unsigned long flags;
705
706 /*
058fe1c0
DCC
707 * Disable interrupts and preemption to avoid this CPU's
708 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
709 */
710 local_irq_save(flags);
711
058fe1c0
DCC
712 list = this_cpu_ptr(&cgrp_cpuctx_list);
713 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
714 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 715
058fe1c0
DCC
716 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
717 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 718
058fe1c0
DCC
719 if (mode & PERF_CGROUP_SWOUT) {
720 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
721 /*
722 * must not be done before ctxswout due
723 * to event_filter_match() in event_sched_out()
724 */
725 cpuctx->cgrp = NULL;
726 }
e5d1367f 727
058fe1c0
DCC
728 if (mode & PERF_CGROUP_SWIN) {
729 WARN_ON_ONCE(cpuctx->cgrp);
730 /*
731 * set cgrp before ctxsw in to allow
732 * event_filter_match() to not have to pass
733 * task around
734 * we pass the cpuctx->ctx to perf_cgroup_from_task()
735 * because cgorup events are only per-cpu
736 */
737 cpuctx->cgrp = perf_cgroup_from_task(task,
738 &cpuctx->ctx);
739 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 740 }
058fe1c0
DCC
741 perf_pmu_enable(cpuctx->ctx.pmu);
742 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
743 }
744
e5d1367f
SE
745 local_irq_restore(flags);
746}
747
a8d757ef
SE
748static inline void perf_cgroup_sched_out(struct task_struct *task,
749 struct task_struct *next)
e5d1367f 750{
a8d757ef
SE
751 struct perf_cgroup *cgrp1;
752 struct perf_cgroup *cgrp2 = NULL;
753
ddaaf4e2 754 rcu_read_lock();
a8d757ef
SE
755 /*
756 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
757 * we do not need to pass the ctx here because we know
758 * we are holding the rcu lock
a8d757ef 759 */
614e4c4e 760 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 761 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
762
763 /*
764 * only schedule out current cgroup events if we know
765 * that we are switching to a different cgroup. Otherwise,
766 * do no touch the cgroup events.
767 */
768 if (cgrp1 != cgrp2)
769 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
770
771 rcu_read_unlock();
e5d1367f
SE
772}
773
a8d757ef
SE
774static inline void perf_cgroup_sched_in(struct task_struct *prev,
775 struct task_struct *task)
e5d1367f 776{
a8d757ef
SE
777 struct perf_cgroup *cgrp1;
778 struct perf_cgroup *cgrp2 = NULL;
779
ddaaf4e2 780 rcu_read_lock();
a8d757ef
SE
781 /*
782 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
783 * we do not need to pass the ctx here because we know
784 * we are holding the rcu lock
a8d757ef 785 */
614e4c4e 786 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 787 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
788
789 /*
790 * only need to schedule in cgroup events if we are changing
791 * cgroup during ctxsw. Cgroup events were not scheduled
792 * out of ctxsw out if that was not the case.
793 */
794 if (cgrp1 != cgrp2)
795 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
796
797 rcu_read_unlock();
e5d1367f
SE
798}
799
800static inline int perf_cgroup_connect(int fd, struct perf_event *event,
801 struct perf_event_attr *attr,
802 struct perf_event *group_leader)
803{
804 struct perf_cgroup *cgrp;
805 struct cgroup_subsys_state *css;
2903ff01
AV
806 struct fd f = fdget(fd);
807 int ret = 0;
e5d1367f 808
2903ff01 809 if (!f.file)
e5d1367f
SE
810 return -EBADF;
811
b583043e 812 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 813 &perf_event_cgrp_subsys);
3db272c0
LZ
814 if (IS_ERR(css)) {
815 ret = PTR_ERR(css);
816 goto out;
817 }
e5d1367f
SE
818
819 cgrp = container_of(css, struct perf_cgroup, css);
820 event->cgrp = cgrp;
821
822 /*
823 * all events in a group must monitor
824 * the same cgroup because a task belongs
825 * to only one perf cgroup at a time
826 */
827 if (group_leader && group_leader->cgrp != cgrp) {
828 perf_detach_cgroup(event);
829 ret = -EINVAL;
e5d1367f 830 }
3db272c0 831out:
2903ff01 832 fdput(f);
e5d1367f
SE
833 return ret;
834}
835
836static inline void
837perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
838{
839 struct perf_cgroup_info *t;
840 t = per_cpu_ptr(event->cgrp->info, event->cpu);
841 event->shadow_ctx_time = now - t->timestamp;
842}
843
844static inline void
845perf_cgroup_defer_enabled(struct perf_event *event)
846{
847 /*
848 * when the current task's perf cgroup does not match
849 * the event's, we need to remember to call the
850 * perf_mark_enable() function the first time a task with
851 * a matching perf cgroup is scheduled in.
852 */
853 if (is_cgroup_event(event) && !perf_cgroup_match(event))
854 event->cgrp_defer_enabled = 1;
855}
856
857static inline void
858perf_cgroup_mark_enabled(struct perf_event *event,
859 struct perf_event_context *ctx)
860{
861 struct perf_event *sub;
862 u64 tstamp = perf_event_time(event);
863
864 if (!event->cgrp_defer_enabled)
865 return;
866
867 event->cgrp_defer_enabled = 0;
868
869 event->tstamp_enabled = tstamp - event->total_time_enabled;
870 list_for_each_entry(sub, &event->sibling_list, group_entry) {
871 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
872 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
873 sub->cgrp_defer_enabled = 0;
874 }
875 }
876}
db4a8356
DCC
877
878/*
879 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
880 * cleared when last cgroup event is removed.
881 */
882static inline void
883list_update_cgroup_event(struct perf_event *event,
884 struct perf_event_context *ctx, bool add)
885{
886 struct perf_cpu_context *cpuctx;
058fe1c0 887 struct list_head *cpuctx_entry;
db4a8356
DCC
888
889 if (!is_cgroup_event(event))
890 return;
891
892 if (add && ctx->nr_cgroups++)
893 return;
894 else if (!add && --ctx->nr_cgroups)
895 return;
896 /*
897 * Because cgroup events are always per-cpu events,
898 * this will always be called from the right CPU.
899 */
900 cpuctx = __get_cpu_context(ctx);
058fe1c0
DCC
901 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
902 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
903 if (add) {
904 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
905 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
906 cpuctx->cgrp = event->cgrp;
907 } else {
908 list_del(cpuctx_entry);
8fc31ce8 909 cpuctx->cgrp = NULL;
058fe1c0 910 }
db4a8356
DCC
911}
912
e5d1367f
SE
913#else /* !CONFIG_CGROUP_PERF */
914
915static inline bool
916perf_cgroup_match(struct perf_event *event)
917{
918 return true;
919}
920
921static inline void perf_detach_cgroup(struct perf_event *event)
922{}
923
924static inline int is_cgroup_event(struct perf_event *event)
925{
926 return 0;
927}
928
e5d1367f
SE
929static inline void update_cgrp_time_from_event(struct perf_event *event)
930{
931}
932
933static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934{
935}
936
a8d757ef
SE
937static inline void perf_cgroup_sched_out(struct task_struct *task,
938 struct task_struct *next)
e5d1367f
SE
939{
940}
941
a8d757ef
SE
942static inline void perf_cgroup_sched_in(struct task_struct *prev,
943 struct task_struct *task)
e5d1367f
SE
944{
945}
946
947static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948 struct perf_event_attr *attr,
949 struct perf_event *group_leader)
950{
951 return -EINVAL;
952}
953
954static inline void
3f7cce3c
SE
955perf_cgroup_set_timestamp(struct task_struct *task,
956 struct perf_event_context *ctx)
e5d1367f
SE
957{
958}
959
960void
961perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962{
963}
964
965static inline void
966perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967{
968}
969
970static inline u64 perf_cgroup_event_time(struct perf_event *event)
971{
972 return 0;
973}
974
975static inline void
976perf_cgroup_defer_enabled(struct perf_event *event)
977{
978}
979
980static inline void
981perf_cgroup_mark_enabled(struct perf_event *event,
982 struct perf_event_context *ctx)
983{
984}
db4a8356
DCC
985
986static inline void
987list_update_cgroup_event(struct perf_event *event,
988 struct perf_event_context *ctx, bool add)
989{
990}
991
e5d1367f
SE
992#endif
993
9e630205
SE
994/*
995 * set default to be dependent on timer tick just
996 * like original code
997 */
998#define PERF_CPU_HRTIMER (1000 / HZ)
999/*
8a1115ff 1000 * function must be called with interrupts disabled
9e630205 1001 */
272325c4 1002static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1003{
1004 struct perf_cpu_context *cpuctx;
9e630205
SE
1005 int rotations = 0;
1006
1007 WARN_ON(!irqs_disabled());
1008
1009 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1010 rotations = perf_rotate_context(cpuctx);
1011
4cfafd30
PZ
1012 raw_spin_lock(&cpuctx->hrtimer_lock);
1013 if (rotations)
9e630205 1014 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1015 else
1016 cpuctx->hrtimer_active = 0;
1017 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1018
4cfafd30 1019 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1020}
1021
272325c4 1022static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1023{
272325c4 1024 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1025 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1026 u64 interval;
9e630205
SE
1027
1028 /* no multiplexing needed for SW PMU */
1029 if (pmu->task_ctx_nr == perf_sw_context)
1030 return;
1031
62b85639
SE
1032 /*
1033 * check default is sane, if not set then force to
1034 * default interval (1/tick)
1035 */
272325c4
PZ
1036 interval = pmu->hrtimer_interval_ms;
1037 if (interval < 1)
1038 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1039
272325c4 1040 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1041
4cfafd30
PZ
1042 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1044 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1045}
1046
272325c4 1047static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1048{
272325c4 1049 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1050 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1051 unsigned long flags;
9e630205
SE
1052
1053 /* not for SW PMU */
1054 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1055 return 0;
9e630205 1056
4cfafd30
PZ
1057 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058 if (!cpuctx->hrtimer_active) {
1059 cpuctx->hrtimer_active = 1;
1060 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062 }
1063 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1064
272325c4 1065 return 0;
9e630205
SE
1066}
1067
33696fc0 1068void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1069{
33696fc0
PZ
1070 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071 if (!(*count)++)
1072 pmu->pmu_disable(pmu);
9e35ad38 1073}
9e35ad38 1074
33696fc0 1075void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1076{
33696fc0
PZ
1077 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078 if (!--(*count))
1079 pmu->pmu_enable(pmu);
9e35ad38 1080}
9e35ad38 1081
2fde4f94 1082static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1083
1084/*
2fde4f94
MR
1085 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086 * perf_event_task_tick() are fully serialized because they're strictly cpu
1087 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1089 */
2fde4f94 1090static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1091{
2fde4f94 1092 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1093
e9d2b064 1094 WARN_ON(!irqs_disabled());
b5ab4cd5 1095
2fde4f94
MR
1096 WARN_ON(!list_empty(&ctx->active_ctx_list));
1097
1098 list_add(&ctx->active_ctx_list, head);
1099}
1100
1101static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102{
1103 WARN_ON(!irqs_disabled());
1104
1105 WARN_ON(list_empty(&ctx->active_ctx_list));
1106
1107 list_del_init(&ctx->active_ctx_list);
9e35ad38 1108}
9e35ad38 1109
cdd6c482 1110static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1111{
e5289d4a 1112 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1113}
1114
4af57ef2
YZ
1115static void free_ctx(struct rcu_head *head)
1116{
1117 struct perf_event_context *ctx;
1118
1119 ctx = container_of(head, struct perf_event_context, rcu_head);
1120 kfree(ctx->task_ctx_data);
1121 kfree(ctx);
1122}
1123
cdd6c482 1124static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1125{
564c2b21
PM
1126 if (atomic_dec_and_test(&ctx->refcount)) {
1127 if (ctx->parent_ctx)
1128 put_ctx(ctx->parent_ctx);
63b6da39 1129 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1130 put_task_struct(ctx->task);
4af57ef2 1131 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1132 }
a63eaf34
PM
1133}
1134
f63a8daa
PZ
1135/*
1136 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137 * perf_pmu_migrate_context() we need some magic.
1138 *
1139 * Those places that change perf_event::ctx will hold both
1140 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141 *
8b10c5e2
PZ
1142 * Lock ordering is by mutex address. There are two other sites where
1143 * perf_event_context::mutex nests and those are:
1144 *
1145 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1146 * perf_event_exit_event()
1147 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1148 *
1149 * - perf_event_init_context() [ parent, 0 ]
1150 * inherit_task_group()
1151 * inherit_group()
1152 * inherit_event()
1153 * perf_event_alloc()
1154 * perf_init_event()
1155 * perf_try_init_event() [ child , 1 ]
1156 *
1157 * While it appears there is an obvious deadlock here -- the parent and child
1158 * nesting levels are inverted between the two. This is in fact safe because
1159 * life-time rules separate them. That is an exiting task cannot fork, and a
1160 * spawning task cannot (yet) exit.
1161 *
1162 * But remember that that these are parent<->child context relations, and
1163 * migration does not affect children, therefore these two orderings should not
1164 * interact.
f63a8daa
PZ
1165 *
1166 * The change in perf_event::ctx does not affect children (as claimed above)
1167 * because the sys_perf_event_open() case will install a new event and break
1168 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169 * concerned with cpuctx and that doesn't have children.
1170 *
1171 * The places that change perf_event::ctx will issue:
1172 *
1173 * perf_remove_from_context();
1174 * synchronize_rcu();
1175 * perf_install_in_context();
1176 *
1177 * to affect the change. The remove_from_context() + synchronize_rcu() should
1178 * quiesce the event, after which we can install it in the new location. This
1179 * means that only external vectors (perf_fops, prctl) can perturb the event
1180 * while in transit. Therefore all such accessors should also acquire
1181 * perf_event_context::mutex to serialize against this.
1182 *
1183 * However; because event->ctx can change while we're waiting to acquire
1184 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185 * function.
1186 *
1187 * Lock order:
79c9ce57 1188 * cred_guard_mutex
f63a8daa
PZ
1189 * task_struct::perf_event_mutex
1190 * perf_event_context::mutex
f63a8daa 1191 * perf_event::child_mutex;
07c4a776 1192 * perf_event_context::lock
f63a8daa
PZ
1193 * perf_event::mmap_mutex
1194 * mmap_sem
1195 */
a83fe28e
PZ
1196static struct perf_event_context *
1197perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1198{
1199 struct perf_event_context *ctx;
1200
1201again:
1202 rcu_read_lock();
1203 ctx = ACCESS_ONCE(event->ctx);
1204 if (!atomic_inc_not_zero(&ctx->refcount)) {
1205 rcu_read_unlock();
1206 goto again;
1207 }
1208 rcu_read_unlock();
1209
a83fe28e 1210 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1211 if (event->ctx != ctx) {
1212 mutex_unlock(&ctx->mutex);
1213 put_ctx(ctx);
1214 goto again;
1215 }
1216
1217 return ctx;
1218}
1219
a83fe28e
PZ
1220static inline struct perf_event_context *
1221perf_event_ctx_lock(struct perf_event *event)
1222{
1223 return perf_event_ctx_lock_nested(event, 0);
1224}
1225
f63a8daa
PZ
1226static void perf_event_ctx_unlock(struct perf_event *event,
1227 struct perf_event_context *ctx)
1228{
1229 mutex_unlock(&ctx->mutex);
1230 put_ctx(ctx);
1231}
1232
211de6eb
PZ
1233/*
1234 * This must be done under the ctx->lock, such as to serialize against
1235 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236 * calling scheduler related locks and ctx->lock nests inside those.
1237 */
1238static __must_check struct perf_event_context *
1239unclone_ctx(struct perf_event_context *ctx)
71a851b4 1240{
211de6eb
PZ
1241 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242
1243 lockdep_assert_held(&ctx->lock);
1244
1245 if (parent_ctx)
71a851b4 1246 ctx->parent_ctx = NULL;
5a3126d4 1247 ctx->generation++;
211de6eb
PZ
1248
1249 return parent_ctx;
71a851b4
PZ
1250}
1251
6844c09d
ACM
1252static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1253{
1254 /*
1255 * only top level events have the pid namespace they were created in
1256 */
1257 if (event->parent)
1258 event = event->parent;
1259
1260 return task_tgid_nr_ns(p, event->ns);
1261}
1262
1263static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1264{
1265 /*
1266 * only top level events have the pid namespace they were created in
1267 */
1268 if (event->parent)
1269 event = event->parent;
1270
1271 return task_pid_nr_ns(p, event->ns);
1272}
1273
7f453c24 1274/*
cdd6c482 1275 * If we inherit events we want to return the parent event id
7f453c24
PZ
1276 * to userspace.
1277 */
cdd6c482 1278static u64 primary_event_id(struct perf_event *event)
7f453c24 1279{
cdd6c482 1280 u64 id = event->id;
7f453c24 1281
cdd6c482
IM
1282 if (event->parent)
1283 id = event->parent->id;
7f453c24
PZ
1284
1285 return id;
1286}
1287
25346b93 1288/*
cdd6c482 1289 * Get the perf_event_context for a task and lock it.
63b6da39 1290 *
25346b93
PM
1291 * This has to cope with with the fact that until it is locked,
1292 * the context could get moved to another task.
1293 */
cdd6c482 1294static struct perf_event_context *
8dc85d54 1295perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1296{
cdd6c482 1297 struct perf_event_context *ctx;
25346b93 1298
9ed6060d 1299retry:
058ebd0e
PZ
1300 /*
1301 * One of the few rules of preemptible RCU is that one cannot do
1302 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1303 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1304 * rcu_read_unlock_special().
1305 *
1306 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1307 * side critical section has interrupts disabled.
058ebd0e 1308 */
2fd59077 1309 local_irq_save(*flags);
058ebd0e 1310 rcu_read_lock();
8dc85d54 1311 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1312 if (ctx) {
1313 /*
1314 * If this context is a clone of another, it might
1315 * get swapped for another underneath us by
cdd6c482 1316 * perf_event_task_sched_out, though the
25346b93
PM
1317 * rcu_read_lock() protects us from any context
1318 * getting freed. Lock the context and check if it
1319 * got swapped before we could get the lock, and retry
1320 * if so. If we locked the right context, then it
1321 * can't get swapped on us any more.
1322 */
2fd59077 1323 raw_spin_lock(&ctx->lock);
8dc85d54 1324 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1325 raw_spin_unlock(&ctx->lock);
058ebd0e 1326 rcu_read_unlock();
2fd59077 1327 local_irq_restore(*flags);
25346b93
PM
1328 goto retry;
1329 }
b49a9e7e 1330
63b6da39
PZ
1331 if (ctx->task == TASK_TOMBSTONE ||
1332 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1333 raw_spin_unlock(&ctx->lock);
b49a9e7e 1334 ctx = NULL;
828b6f0e
PZ
1335 } else {
1336 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1337 }
25346b93
PM
1338 }
1339 rcu_read_unlock();
2fd59077
PM
1340 if (!ctx)
1341 local_irq_restore(*flags);
25346b93
PM
1342 return ctx;
1343}
1344
1345/*
1346 * Get the context for a task and increment its pin_count so it
1347 * can't get swapped to another task. This also increments its
1348 * reference count so that the context can't get freed.
1349 */
8dc85d54
PZ
1350static struct perf_event_context *
1351perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1352{
cdd6c482 1353 struct perf_event_context *ctx;
25346b93
PM
1354 unsigned long flags;
1355
8dc85d54 1356 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1357 if (ctx) {
1358 ++ctx->pin_count;
e625cce1 1359 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1360 }
1361 return ctx;
1362}
1363
cdd6c482 1364static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1365{
1366 unsigned long flags;
1367
e625cce1 1368 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1369 --ctx->pin_count;
e625cce1 1370 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1371}
1372
f67218c3
PZ
1373/*
1374 * Update the record of the current time in a context.
1375 */
1376static void update_context_time(struct perf_event_context *ctx)
1377{
1378 u64 now = perf_clock();
1379
1380 ctx->time += now - ctx->timestamp;
1381 ctx->timestamp = now;
1382}
1383
4158755d
SE
1384static u64 perf_event_time(struct perf_event *event)
1385{
1386 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1387
1388 if (is_cgroup_event(event))
1389 return perf_cgroup_event_time(event);
1390
4158755d
SE
1391 return ctx ? ctx->time : 0;
1392}
1393
f67218c3
PZ
1394/*
1395 * Update the total_time_enabled and total_time_running fields for a event.
1396 */
1397static void update_event_times(struct perf_event *event)
1398{
1399 struct perf_event_context *ctx = event->ctx;
1400 u64 run_end;
1401
3cbaa590
PZ
1402 lockdep_assert_held(&ctx->lock);
1403
f67218c3
PZ
1404 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1405 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1406 return;
3cbaa590 1407
e5d1367f
SE
1408 /*
1409 * in cgroup mode, time_enabled represents
1410 * the time the event was enabled AND active
1411 * tasks were in the monitored cgroup. This is
1412 * independent of the activity of the context as
1413 * there may be a mix of cgroup and non-cgroup events.
1414 *
1415 * That is why we treat cgroup events differently
1416 * here.
1417 */
1418 if (is_cgroup_event(event))
46cd6a7f 1419 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1420 else if (ctx->is_active)
1421 run_end = ctx->time;
acd1d7c1
PZ
1422 else
1423 run_end = event->tstamp_stopped;
1424
1425 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1426
1427 if (event->state == PERF_EVENT_STATE_INACTIVE)
1428 run_end = event->tstamp_stopped;
1429 else
4158755d 1430 run_end = perf_event_time(event);
f67218c3
PZ
1431
1432 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1433
f67218c3
PZ
1434}
1435
96c21a46
PZ
1436/*
1437 * Update total_time_enabled and total_time_running for all events in a group.
1438 */
1439static void update_group_times(struct perf_event *leader)
1440{
1441 struct perf_event *event;
1442
1443 update_event_times(leader);
1444 list_for_each_entry(event, &leader->sibling_list, group_entry)
1445 update_event_times(event);
1446}
1447
487f05e1
AS
1448static enum event_type_t get_event_type(struct perf_event *event)
1449{
1450 struct perf_event_context *ctx = event->ctx;
1451 enum event_type_t event_type;
1452
1453 lockdep_assert_held(&ctx->lock);
1454
1455 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1456 if (!ctx->task)
1457 event_type |= EVENT_CPU;
1458
1459 return event_type;
1460}
1461
889ff015
FW
1462static struct list_head *
1463ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1464{
1465 if (event->attr.pinned)
1466 return &ctx->pinned_groups;
1467 else
1468 return &ctx->flexible_groups;
1469}
1470
fccc714b 1471/*
cdd6c482 1472 * Add a event from the lists for its context.
fccc714b
PZ
1473 * Must be called with ctx->mutex and ctx->lock held.
1474 */
04289bb9 1475static void
cdd6c482 1476list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1477{
c994d613
PZ
1478 lockdep_assert_held(&ctx->lock);
1479
8a49542c
PZ
1480 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1481 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1482
1483 /*
8a49542c
PZ
1484 * If we're a stand alone event or group leader, we go to the context
1485 * list, group events are kept attached to the group so that
1486 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1487 */
8a49542c 1488 if (event->group_leader == event) {
889ff015
FW
1489 struct list_head *list;
1490
4ff6a8de 1491 event->group_caps = event->event_caps;
d6f962b5 1492
889ff015
FW
1493 list = ctx_group_list(event, ctx);
1494 list_add_tail(&event->group_entry, list);
5c148194 1495 }
592903cd 1496
db4a8356 1497 list_update_cgroup_event(event, ctx, true);
e5d1367f 1498
cdd6c482
IM
1499 list_add_rcu(&event->event_entry, &ctx->event_list);
1500 ctx->nr_events++;
1501 if (event->attr.inherit_stat)
bfbd3381 1502 ctx->nr_stat++;
5a3126d4
PZ
1503
1504 ctx->generation++;
04289bb9
IM
1505}
1506
0231bb53
JO
1507/*
1508 * Initialize event state based on the perf_event_attr::disabled.
1509 */
1510static inline void perf_event__state_init(struct perf_event *event)
1511{
1512 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1513 PERF_EVENT_STATE_INACTIVE;
1514}
1515
a723968c 1516static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1517{
1518 int entry = sizeof(u64); /* value */
1519 int size = 0;
1520 int nr = 1;
1521
1522 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1523 size += sizeof(u64);
1524
1525 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1526 size += sizeof(u64);
1527
1528 if (event->attr.read_format & PERF_FORMAT_ID)
1529 entry += sizeof(u64);
1530
1531 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1532 nr += nr_siblings;
c320c7b7
ACM
1533 size += sizeof(u64);
1534 }
1535
1536 size += entry * nr;
1537 event->read_size = size;
1538}
1539
a723968c 1540static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1541{
1542 struct perf_sample_data *data;
c320c7b7
ACM
1543 u16 size = 0;
1544
c320c7b7
ACM
1545 if (sample_type & PERF_SAMPLE_IP)
1546 size += sizeof(data->ip);
1547
6844c09d
ACM
1548 if (sample_type & PERF_SAMPLE_ADDR)
1549 size += sizeof(data->addr);
1550
1551 if (sample_type & PERF_SAMPLE_PERIOD)
1552 size += sizeof(data->period);
1553
c3feedf2
AK
1554 if (sample_type & PERF_SAMPLE_WEIGHT)
1555 size += sizeof(data->weight);
1556
6844c09d
ACM
1557 if (sample_type & PERF_SAMPLE_READ)
1558 size += event->read_size;
1559
d6be9ad6
SE
1560 if (sample_type & PERF_SAMPLE_DATA_SRC)
1561 size += sizeof(data->data_src.val);
1562
fdfbbd07
AK
1563 if (sample_type & PERF_SAMPLE_TRANSACTION)
1564 size += sizeof(data->txn);
1565
6844c09d
ACM
1566 event->header_size = size;
1567}
1568
a723968c
PZ
1569/*
1570 * Called at perf_event creation and when events are attached/detached from a
1571 * group.
1572 */
1573static void perf_event__header_size(struct perf_event *event)
1574{
1575 __perf_event_read_size(event,
1576 event->group_leader->nr_siblings);
1577 __perf_event_header_size(event, event->attr.sample_type);
1578}
1579
6844c09d
ACM
1580static void perf_event__id_header_size(struct perf_event *event)
1581{
1582 struct perf_sample_data *data;
1583 u64 sample_type = event->attr.sample_type;
1584 u16 size = 0;
1585
c320c7b7
ACM
1586 if (sample_type & PERF_SAMPLE_TID)
1587 size += sizeof(data->tid_entry);
1588
1589 if (sample_type & PERF_SAMPLE_TIME)
1590 size += sizeof(data->time);
1591
ff3d527c
AH
1592 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1593 size += sizeof(data->id);
1594
c320c7b7
ACM
1595 if (sample_type & PERF_SAMPLE_ID)
1596 size += sizeof(data->id);
1597
1598 if (sample_type & PERF_SAMPLE_STREAM_ID)
1599 size += sizeof(data->stream_id);
1600
1601 if (sample_type & PERF_SAMPLE_CPU)
1602 size += sizeof(data->cpu_entry);
1603
6844c09d 1604 event->id_header_size = size;
c320c7b7
ACM
1605}
1606
a723968c
PZ
1607static bool perf_event_validate_size(struct perf_event *event)
1608{
1609 /*
1610 * The values computed here will be over-written when we actually
1611 * attach the event.
1612 */
1613 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1614 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1615 perf_event__id_header_size(event);
1616
1617 /*
1618 * Sum the lot; should not exceed the 64k limit we have on records.
1619 * Conservative limit to allow for callchains and other variable fields.
1620 */
1621 if (event->read_size + event->header_size +
1622 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1623 return false;
1624
1625 return true;
1626}
1627
8a49542c
PZ
1628static void perf_group_attach(struct perf_event *event)
1629{
c320c7b7 1630 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1631
a76a82a3
PZ
1632 lockdep_assert_held(&event->ctx->lock);
1633
74c3337c
PZ
1634 /*
1635 * We can have double attach due to group movement in perf_event_open.
1636 */
1637 if (event->attach_state & PERF_ATTACH_GROUP)
1638 return;
1639
8a49542c
PZ
1640 event->attach_state |= PERF_ATTACH_GROUP;
1641
1642 if (group_leader == event)
1643 return;
1644
652884fe
PZ
1645 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1646
4ff6a8de 1647 group_leader->group_caps &= event->event_caps;
8a49542c
PZ
1648
1649 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1650 group_leader->nr_siblings++;
c320c7b7
ACM
1651
1652 perf_event__header_size(group_leader);
1653
1654 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1655 perf_event__header_size(pos);
8a49542c
PZ
1656}
1657
a63eaf34 1658/*
cdd6c482 1659 * Remove a event from the lists for its context.
fccc714b 1660 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1661 */
04289bb9 1662static void
cdd6c482 1663list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1664{
652884fe
PZ
1665 WARN_ON_ONCE(event->ctx != ctx);
1666 lockdep_assert_held(&ctx->lock);
1667
8a49542c
PZ
1668 /*
1669 * We can have double detach due to exit/hot-unplug + close.
1670 */
1671 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1672 return;
8a49542c
PZ
1673
1674 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1675
db4a8356 1676 list_update_cgroup_event(event, ctx, false);
e5d1367f 1677
cdd6c482
IM
1678 ctx->nr_events--;
1679 if (event->attr.inherit_stat)
bfbd3381 1680 ctx->nr_stat--;
8bc20959 1681
cdd6c482 1682 list_del_rcu(&event->event_entry);
04289bb9 1683
8a49542c
PZ
1684 if (event->group_leader == event)
1685 list_del_init(&event->group_entry);
5c148194 1686
96c21a46 1687 update_group_times(event);
b2e74a26
SE
1688
1689 /*
1690 * If event was in error state, then keep it
1691 * that way, otherwise bogus counts will be
1692 * returned on read(). The only way to get out
1693 * of error state is by explicit re-enabling
1694 * of the event
1695 */
1696 if (event->state > PERF_EVENT_STATE_OFF)
1697 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1698
1699 ctx->generation++;
050735b0
PZ
1700}
1701
8a49542c 1702static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1703{
1704 struct perf_event *sibling, *tmp;
8a49542c
PZ
1705 struct list_head *list = NULL;
1706
a76a82a3
PZ
1707 lockdep_assert_held(&event->ctx->lock);
1708
8a49542c
PZ
1709 /*
1710 * We can have double detach due to exit/hot-unplug + close.
1711 */
1712 if (!(event->attach_state & PERF_ATTACH_GROUP))
1713 return;
1714
1715 event->attach_state &= ~PERF_ATTACH_GROUP;
1716
1717 /*
1718 * If this is a sibling, remove it from its group.
1719 */
1720 if (event->group_leader != event) {
1721 list_del_init(&event->group_entry);
1722 event->group_leader->nr_siblings--;
c320c7b7 1723 goto out;
8a49542c
PZ
1724 }
1725
1726 if (!list_empty(&event->group_entry))
1727 list = &event->group_entry;
2e2af50b 1728
04289bb9 1729 /*
cdd6c482
IM
1730 * If this was a group event with sibling events then
1731 * upgrade the siblings to singleton events by adding them
8a49542c 1732 * to whatever list we are on.
04289bb9 1733 */
cdd6c482 1734 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1735 if (list)
1736 list_move_tail(&sibling->group_entry, list);
04289bb9 1737 sibling->group_leader = sibling;
d6f962b5
FW
1738
1739 /* Inherit group flags from the previous leader */
4ff6a8de 1740 sibling->group_caps = event->group_caps;
652884fe
PZ
1741
1742 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1743 }
c320c7b7
ACM
1744
1745out:
1746 perf_event__header_size(event->group_leader);
1747
1748 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1749 perf_event__header_size(tmp);
04289bb9
IM
1750}
1751
fadfe7be
JO
1752static bool is_orphaned_event(struct perf_event *event)
1753{
a69b0ca4 1754 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1755}
1756
2c81a647 1757static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1758{
1759 struct pmu *pmu = event->pmu;
1760 return pmu->filter_match ? pmu->filter_match(event) : 1;
1761}
1762
2c81a647
MR
1763/*
1764 * Check whether we should attempt to schedule an event group based on
1765 * PMU-specific filtering. An event group can consist of HW and SW events,
1766 * potentially with a SW leader, so we must check all the filters, to
1767 * determine whether a group is schedulable:
1768 */
1769static inline int pmu_filter_match(struct perf_event *event)
1770{
1771 struct perf_event *child;
1772
1773 if (!__pmu_filter_match(event))
1774 return 0;
1775
1776 list_for_each_entry(child, &event->sibling_list, group_entry) {
1777 if (!__pmu_filter_match(child))
1778 return 0;
1779 }
1780
1781 return 1;
1782}
1783
fa66f07a
SE
1784static inline int
1785event_filter_match(struct perf_event *event)
1786{
0b8f1e2e
PZ
1787 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1788 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1789}
1790
9ffcfa6f
SE
1791static void
1792event_sched_out(struct perf_event *event,
3b6f9e5c 1793 struct perf_cpu_context *cpuctx,
cdd6c482 1794 struct perf_event_context *ctx)
3b6f9e5c 1795{
4158755d 1796 u64 tstamp = perf_event_time(event);
fa66f07a 1797 u64 delta;
652884fe
PZ
1798
1799 WARN_ON_ONCE(event->ctx != ctx);
1800 lockdep_assert_held(&ctx->lock);
1801
fa66f07a
SE
1802 /*
1803 * An event which could not be activated because of
1804 * filter mismatch still needs to have its timings
1805 * maintained, otherwise bogus information is return
1806 * via read() for time_enabled, time_running:
1807 */
0b8f1e2e
PZ
1808 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1809 !event_filter_match(event)) {
e5d1367f 1810 delta = tstamp - event->tstamp_stopped;
fa66f07a 1811 event->tstamp_running += delta;
4158755d 1812 event->tstamp_stopped = tstamp;
fa66f07a
SE
1813 }
1814
cdd6c482 1815 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1816 return;
3b6f9e5c 1817
44377277
AS
1818 perf_pmu_disable(event->pmu);
1819
28a967c3
PZ
1820 event->tstamp_stopped = tstamp;
1821 event->pmu->del(event, 0);
1822 event->oncpu = -1;
cdd6c482
IM
1823 event->state = PERF_EVENT_STATE_INACTIVE;
1824 if (event->pending_disable) {
1825 event->pending_disable = 0;
1826 event->state = PERF_EVENT_STATE_OFF;
970892a9 1827 }
3b6f9e5c 1828
cdd6c482 1829 if (!is_software_event(event))
3b6f9e5c 1830 cpuctx->active_oncpu--;
2fde4f94
MR
1831 if (!--ctx->nr_active)
1832 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1833 if (event->attr.freq && event->attr.sample_freq)
1834 ctx->nr_freq--;
cdd6c482 1835 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1836 cpuctx->exclusive = 0;
44377277
AS
1837
1838 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1839}
1840
d859e29f 1841static void
cdd6c482 1842group_sched_out(struct perf_event *group_event,
d859e29f 1843 struct perf_cpu_context *cpuctx,
cdd6c482 1844 struct perf_event_context *ctx)
d859e29f 1845{
cdd6c482 1846 struct perf_event *event;
fa66f07a 1847 int state = group_event->state;
d859e29f 1848
3f005e7d
MR
1849 perf_pmu_disable(ctx->pmu);
1850
cdd6c482 1851 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1852
1853 /*
1854 * Schedule out siblings (if any):
1855 */
cdd6c482
IM
1856 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1857 event_sched_out(event, cpuctx, ctx);
d859e29f 1858
3f005e7d
MR
1859 perf_pmu_enable(ctx->pmu);
1860
fa66f07a 1861 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1862 cpuctx->exclusive = 0;
1863}
1864
45a0e07a 1865#define DETACH_GROUP 0x01UL
0017960f 1866
0793a61d 1867/*
cdd6c482 1868 * Cross CPU call to remove a performance event
0793a61d 1869 *
cdd6c482 1870 * We disable the event on the hardware level first. After that we
0793a61d
TG
1871 * remove it from the context list.
1872 */
fae3fde6
PZ
1873static void
1874__perf_remove_from_context(struct perf_event *event,
1875 struct perf_cpu_context *cpuctx,
1876 struct perf_event_context *ctx,
1877 void *info)
0793a61d 1878{
45a0e07a 1879 unsigned long flags = (unsigned long)info;
0793a61d 1880
cdd6c482 1881 event_sched_out(event, cpuctx, ctx);
45a0e07a 1882 if (flags & DETACH_GROUP)
46ce0fe9 1883 perf_group_detach(event);
cdd6c482 1884 list_del_event(event, ctx);
39a43640
PZ
1885
1886 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1887 ctx->is_active = 0;
39a43640
PZ
1888 if (ctx->task) {
1889 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1890 cpuctx->task_ctx = NULL;
1891 }
64ce3126 1892 }
0793a61d
TG
1893}
1894
0793a61d 1895/*
cdd6c482 1896 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1897 *
cdd6c482
IM
1898 * If event->ctx is a cloned context, callers must make sure that
1899 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1900 * remains valid. This is OK when called from perf_release since
1901 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1902 * When called from perf_event_exit_task, it's OK because the
c93f7669 1903 * context has been detached from its task.
0793a61d 1904 */
45a0e07a 1905static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1906{
a76a82a3
PZ
1907 struct perf_event_context *ctx = event->ctx;
1908
1909 lockdep_assert_held(&ctx->mutex);
0793a61d 1910
45a0e07a 1911 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
1912
1913 /*
1914 * The above event_function_call() can NO-OP when it hits
1915 * TASK_TOMBSTONE. In that case we must already have been detached
1916 * from the context (by perf_event_exit_event()) but the grouping
1917 * might still be in-tact.
1918 */
1919 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1920 if ((flags & DETACH_GROUP) &&
1921 (event->attach_state & PERF_ATTACH_GROUP)) {
1922 /*
1923 * Since in that case we cannot possibly be scheduled, simply
1924 * detach now.
1925 */
1926 raw_spin_lock_irq(&ctx->lock);
1927 perf_group_detach(event);
1928 raw_spin_unlock_irq(&ctx->lock);
1929 }
0793a61d
TG
1930}
1931
d859e29f 1932/*
cdd6c482 1933 * Cross CPU call to disable a performance event
d859e29f 1934 */
fae3fde6
PZ
1935static void __perf_event_disable(struct perf_event *event,
1936 struct perf_cpu_context *cpuctx,
1937 struct perf_event_context *ctx,
1938 void *info)
7b648018 1939{
fae3fde6
PZ
1940 if (event->state < PERF_EVENT_STATE_INACTIVE)
1941 return;
7b648018 1942
fae3fde6
PZ
1943 update_context_time(ctx);
1944 update_cgrp_time_from_event(event);
1945 update_group_times(event);
1946 if (event == event->group_leader)
1947 group_sched_out(event, cpuctx, ctx);
1948 else
1949 event_sched_out(event, cpuctx, ctx);
1950 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1951}
1952
d859e29f 1953/*
cdd6c482 1954 * Disable a event.
c93f7669 1955 *
cdd6c482
IM
1956 * If event->ctx is a cloned context, callers must make sure that
1957 * every task struct that event->ctx->task could possibly point to
c93f7669 1958 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1959 * perf_event_for_each_child or perf_event_for_each because they
1960 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1961 * goes to exit will block in perf_event_exit_event().
1962 *
cdd6c482 1963 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1964 * is the current context on this CPU and preemption is disabled,
cdd6c482 1965 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1966 */
f63a8daa 1967static void _perf_event_disable(struct perf_event *event)
d859e29f 1968{
cdd6c482 1969 struct perf_event_context *ctx = event->ctx;
d859e29f 1970
e625cce1 1971 raw_spin_lock_irq(&ctx->lock);
7b648018 1972 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1973 raw_spin_unlock_irq(&ctx->lock);
7b648018 1974 return;
53cfbf59 1975 }
e625cce1 1976 raw_spin_unlock_irq(&ctx->lock);
7b648018 1977
fae3fde6
PZ
1978 event_function_call(event, __perf_event_disable, NULL);
1979}
1980
1981void perf_event_disable_local(struct perf_event *event)
1982{
1983 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1984}
f63a8daa
PZ
1985
1986/*
1987 * Strictly speaking kernel users cannot create groups and therefore this
1988 * interface does not need the perf_event_ctx_lock() magic.
1989 */
1990void perf_event_disable(struct perf_event *event)
1991{
1992 struct perf_event_context *ctx;
1993
1994 ctx = perf_event_ctx_lock(event);
1995 _perf_event_disable(event);
1996 perf_event_ctx_unlock(event, ctx);
1997}
dcfce4a0 1998EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1999
5aab90ce
JO
2000void perf_event_disable_inatomic(struct perf_event *event)
2001{
2002 event->pending_disable = 1;
2003 irq_work_queue(&event->pending);
2004}
2005
e5d1367f
SE
2006static void perf_set_shadow_time(struct perf_event *event,
2007 struct perf_event_context *ctx,
2008 u64 tstamp)
2009{
2010 /*
2011 * use the correct time source for the time snapshot
2012 *
2013 * We could get by without this by leveraging the
2014 * fact that to get to this function, the caller
2015 * has most likely already called update_context_time()
2016 * and update_cgrp_time_xx() and thus both timestamp
2017 * are identical (or very close). Given that tstamp is,
2018 * already adjusted for cgroup, we could say that:
2019 * tstamp - ctx->timestamp
2020 * is equivalent to
2021 * tstamp - cgrp->timestamp.
2022 *
2023 * Then, in perf_output_read(), the calculation would
2024 * work with no changes because:
2025 * - event is guaranteed scheduled in
2026 * - no scheduled out in between
2027 * - thus the timestamp would be the same
2028 *
2029 * But this is a bit hairy.
2030 *
2031 * So instead, we have an explicit cgroup call to remain
2032 * within the time time source all along. We believe it
2033 * is cleaner and simpler to understand.
2034 */
2035 if (is_cgroup_event(event))
2036 perf_cgroup_set_shadow_time(event, tstamp);
2037 else
2038 event->shadow_ctx_time = tstamp - ctx->timestamp;
2039}
2040
4fe757dd
PZ
2041#define MAX_INTERRUPTS (~0ULL)
2042
2043static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2044static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2045
235c7fc7 2046static int
9ffcfa6f 2047event_sched_in(struct perf_event *event,
235c7fc7 2048 struct perf_cpu_context *cpuctx,
6e37738a 2049 struct perf_event_context *ctx)
235c7fc7 2050{
4158755d 2051 u64 tstamp = perf_event_time(event);
44377277 2052 int ret = 0;
4158755d 2053
63342411
PZ
2054 lockdep_assert_held(&ctx->lock);
2055
cdd6c482 2056 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2057 return 0;
2058
95ff4ca2
AS
2059 WRITE_ONCE(event->oncpu, smp_processor_id());
2060 /*
2061 * Order event::oncpu write to happen before the ACTIVE state
2062 * is visible.
2063 */
2064 smp_wmb();
2065 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2066
2067 /*
2068 * Unthrottle events, since we scheduled we might have missed several
2069 * ticks already, also for a heavily scheduling task there is little
2070 * guarantee it'll get a tick in a timely manner.
2071 */
2072 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2073 perf_log_throttle(event, 1);
2074 event->hw.interrupts = 0;
2075 }
2076
235c7fc7
IM
2077 /*
2078 * The new state must be visible before we turn it on in the hardware:
2079 */
2080 smp_wmb();
2081
44377277
AS
2082 perf_pmu_disable(event->pmu);
2083
72f669c0
SL
2084 perf_set_shadow_time(event, ctx, tstamp);
2085
ec0d7729
AS
2086 perf_log_itrace_start(event);
2087
a4eaf7f1 2088 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
2089 event->state = PERF_EVENT_STATE_INACTIVE;
2090 event->oncpu = -1;
44377277
AS
2091 ret = -EAGAIN;
2092 goto out;
235c7fc7
IM
2093 }
2094
00a2916f
PZ
2095 event->tstamp_running += tstamp - event->tstamp_stopped;
2096
cdd6c482 2097 if (!is_software_event(event))
3b6f9e5c 2098 cpuctx->active_oncpu++;
2fde4f94
MR
2099 if (!ctx->nr_active++)
2100 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2101 if (event->attr.freq && event->attr.sample_freq)
2102 ctx->nr_freq++;
235c7fc7 2103
cdd6c482 2104 if (event->attr.exclusive)
3b6f9e5c
PM
2105 cpuctx->exclusive = 1;
2106
44377277
AS
2107out:
2108 perf_pmu_enable(event->pmu);
2109
2110 return ret;
235c7fc7
IM
2111}
2112
6751b71e 2113static int
cdd6c482 2114group_sched_in(struct perf_event *group_event,
6751b71e 2115 struct perf_cpu_context *cpuctx,
6e37738a 2116 struct perf_event_context *ctx)
6751b71e 2117{
6bde9b6c 2118 struct perf_event *event, *partial_group = NULL;
4a234593 2119 struct pmu *pmu = ctx->pmu;
d7842da4
SE
2120 u64 now = ctx->time;
2121 bool simulate = false;
6751b71e 2122
cdd6c482 2123 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2124 return 0;
2125
fbbe0701 2126 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2127
9ffcfa6f 2128 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2129 pmu->cancel_txn(pmu);
272325c4 2130 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2131 return -EAGAIN;
90151c35 2132 }
6751b71e
PM
2133
2134 /*
2135 * Schedule in siblings as one group (if any):
2136 */
cdd6c482 2137 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2138 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2139 partial_group = event;
6751b71e
PM
2140 goto group_error;
2141 }
2142 }
2143
9ffcfa6f 2144 if (!pmu->commit_txn(pmu))
6e85158c 2145 return 0;
9ffcfa6f 2146
6751b71e
PM
2147group_error:
2148 /*
2149 * Groups can be scheduled in as one unit only, so undo any
2150 * partial group before returning:
d7842da4
SE
2151 * The events up to the failed event are scheduled out normally,
2152 * tstamp_stopped will be updated.
2153 *
2154 * The failed events and the remaining siblings need to have
2155 * their timings updated as if they had gone thru event_sched_in()
2156 * and event_sched_out(). This is required to get consistent timings
2157 * across the group. This also takes care of the case where the group
2158 * could never be scheduled by ensuring tstamp_stopped is set to mark
2159 * the time the event was actually stopped, such that time delta
2160 * calculation in update_event_times() is correct.
6751b71e 2161 */
cdd6c482
IM
2162 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2163 if (event == partial_group)
d7842da4
SE
2164 simulate = true;
2165
2166 if (simulate) {
2167 event->tstamp_running += now - event->tstamp_stopped;
2168 event->tstamp_stopped = now;
2169 } else {
2170 event_sched_out(event, cpuctx, ctx);
2171 }
6751b71e 2172 }
9ffcfa6f 2173 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2174
ad5133b7 2175 pmu->cancel_txn(pmu);
90151c35 2176
272325c4 2177 perf_mux_hrtimer_restart(cpuctx);
9e630205 2178
6751b71e
PM
2179 return -EAGAIN;
2180}
2181
3b6f9e5c 2182/*
cdd6c482 2183 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2184 */
cdd6c482 2185static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2186 struct perf_cpu_context *cpuctx,
2187 int can_add_hw)
2188{
2189 /*
cdd6c482 2190 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2191 */
4ff6a8de 2192 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2193 return 1;
2194 /*
2195 * If an exclusive group is already on, no other hardware
cdd6c482 2196 * events can go on.
3b6f9e5c
PM
2197 */
2198 if (cpuctx->exclusive)
2199 return 0;
2200 /*
2201 * If this group is exclusive and there are already
cdd6c482 2202 * events on the CPU, it can't go on.
3b6f9e5c 2203 */
cdd6c482 2204 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2205 return 0;
2206 /*
2207 * Otherwise, try to add it if all previous groups were able
2208 * to go on.
2209 */
2210 return can_add_hw;
2211}
2212
cdd6c482
IM
2213static void add_event_to_ctx(struct perf_event *event,
2214 struct perf_event_context *ctx)
53cfbf59 2215{
4158755d
SE
2216 u64 tstamp = perf_event_time(event);
2217
cdd6c482 2218 list_add_event(event, ctx);
8a49542c 2219 perf_group_attach(event);
4158755d
SE
2220 event->tstamp_enabled = tstamp;
2221 event->tstamp_running = tstamp;
2222 event->tstamp_stopped = tstamp;
53cfbf59
PM
2223}
2224
bd2afa49
PZ
2225static void ctx_sched_out(struct perf_event_context *ctx,
2226 struct perf_cpu_context *cpuctx,
2227 enum event_type_t event_type);
2c29ef0f
PZ
2228static void
2229ctx_sched_in(struct perf_event_context *ctx,
2230 struct perf_cpu_context *cpuctx,
2231 enum event_type_t event_type,
2232 struct task_struct *task);
fe4b04fa 2233
bd2afa49 2234static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2235 struct perf_event_context *ctx,
2236 enum event_type_t event_type)
bd2afa49
PZ
2237{
2238 if (!cpuctx->task_ctx)
2239 return;
2240
2241 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2242 return;
2243
487f05e1 2244 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2245}
2246
dce5855b
PZ
2247static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2248 struct perf_event_context *ctx,
2249 struct task_struct *task)
2250{
2251 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2252 if (ctx)
2253 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2254 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2255 if (ctx)
2256 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2257}
2258
487f05e1
AS
2259/*
2260 * We want to maintain the following priority of scheduling:
2261 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2262 * - task pinned (EVENT_PINNED)
2263 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2264 * - task flexible (EVENT_FLEXIBLE).
2265 *
2266 * In order to avoid unscheduling and scheduling back in everything every
2267 * time an event is added, only do it for the groups of equal priority and
2268 * below.
2269 *
2270 * This can be called after a batch operation on task events, in which case
2271 * event_type is a bit mask of the types of events involved. For CPU events,
2272 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2273 */
3e349507 2274static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2275 struct perf_event_context *task_ctx,
2276 enum event_type_t event_type)
0017960f 2277{
487f05e1
AS
2278 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2279 bool cpu_event = !!(event_type & EVENT_CPU);
2280
2281 /*
2282 * If pinned groups are involved, flexible groups also need to be
2283 * scheduled out.
2284 */
2285 if (event_type & EVENT_PINNED)
2286 event_type |= EVENT_FLEXIBLE;
2287
3e349507
PZ
2288 perf_pmu_disable(cpuctx->ctx.pmu);
2289 if (task_ctx)
487f05e1
AS
2290 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2291
2292 /*
2293 * Decide which cpu ctx groups to schedule out based on the types
2294 * of events that caused rescheduling:
2295 * - EVENT_CPU: schedule out corresponding groups;
2296 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2297 * - otherwise, do nothing more.
2298 */
2299 if (cpu_event)
2300 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2301 else if (ctx_event_type & EVENT_PINNED)
2302 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2303
3e349507
PZ
2304 perf_event_sched_in(cpuctx, task_ctx, current);
2305 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2306}
2307
0793a61d 2308/*
cdd6c482 2309 * Cross CPU call to install and enable a performance event
682076ae 2310 *
a096309b
PZ
2311 * Very similar to remote_function() + event_function() but cannot assume that
2312 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2313 */
fe4b04fa 2314static int __perf_install_in_context(void *info)
0793a61d 2315{
a096309b
PZ
2316 struct perf_event *event = info;
2317 struct perf_event_context *ctx = event->ctx;
108b02cf 2318 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2319 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2320 bool reprogram = true;
a096309b 2321 int ret = 0;
0793a61d 2322
63b6da39 2323 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2324 if (ctx->task) {
b58f6b0d
PZ
2325 raw_spin_lock(&ctx->lock);
2326 task_ctx = ctx;
a096309b 2327
63cae12b 2328 reprogram = (ctx->task == current);
b58f6b0d 2329
39a43640 2330 /*
63cae12b
PZ
2331 * If the task is running, it must be running on this CPU,
2332 * otherwise we cannot reprogram things.
2333 *
2334 * If its not running, we don't care, ctx->lock will
2335 * serialize against it becoming runnable.
39a43640 2336 */
63cae12b
PZ
2337 if (task_curr(ctx->task) && !reprogram) {
2338 ret = -ESRCH;
2339 goto unlock;
2340 }
a096309b 2341
63cae12b 2342 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2343 } else if (task_ctx) {
2344 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2345 }
b58f6b0d 2346
63cae12b 2347 if (reprogram) {
a096309b
PZ
2348 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2349 add_event_to_ctx(event, ctx);
487f05e1 2350 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2351 } else {
2352 add_event_to_ctx(event, ctx);
2353 }
2354
63b6da39 2355unlock:
2c29ef0f 2356 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2357
a096309b 2358 return ret;
0793a61d
TG
2359}
2360
2361/*
a096309b
PZ
2362 * Attach a performance event to a context.
2363 *
2364 * Very similar to event_function_call, see comment there.
0793a61d
TG
2365 */
2366static void
cdd6c482
IM
2367perf_install_in_context(struct perf_event_context *ctx,
2368 struct perf_event *event,
0793a61d
TG
2369 int cpu)
2370{
a096309b 2371 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2372
fe4b04fa
PZ
2373 lockdep_assert_held(&ctx->mutex);
2374
0cda4c02
YZ
2375 if (event->cpu != -1)
2376 event->cpu = cpu;
c3f00c70 2377
0b8f1e2e
PZ
2378 /*
2379 * Ensures that if we can observe event->ctx, both the event and ctx
2380 * will be 'complete'. See perf_iterate_sb_cpu().
2381 */
2382 smp_store_release(&event->ctx, ctx);
2383
a096309b
PZ
2384 if (!task) {
2385 cpu_function_call(cpu, __perf_install_in_context, event);
2386 return;
2387 }
2388
2389 /*
2390 * Should not happen, we validate the ctx is still alive before calling.
2391 */
2392 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2393 return;
2394
39a43640
PZ
2395 /*
2396 * Installing events is tricky because we cannot rely on ctx->is_active
2397 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2398 *
2399 * Instead we use task_curr(), which tells us if the task is running.
2400 * However, since we use task_curr() outside of rq::lock, we can race
2401 * against the actual state. This means the result can be wrong.
2402 *
2403 * If we get a false positive, we retry, this is harmless.
2404 *
2405 * If we get a false negative, things are complicated. If we are after
2406 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2407 * value must be correct. If we're before, it doesn't matter since
2408 * perf_event_context_sched_in() will program the counter.
2409 *
2410 * However, this hinges on the remote context switch having observed
2411 * our task->perf_event_ctxp[] store, such that it will in fact take
2412 * ctx::lock in perf_event_context_sched_in().
2413 *
2414 * We do this by task_function_call(), if the IPI fails to hit the task
2415 * we know any future context switch of task must see the
2416 * perf_event_ctpx[] store.
39a43640 2417 */
63cae12b 2418
63b6da39 2419 /*
63cae12b
PZ
2420 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2421 * task_cpu() load, such that if the IPI then does not find the task
2422 * running, a future context switch of that task must observe the
2423 * store.
63b6da39 2424 */
63cae12b
PZ
2425 smp_mb();
2426again:
2427 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2428 return;
2429
2430 raw_spin_lock_irq(&ctx->lock);
2431 task = ctx->task;
84c4e620 2432 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2433 /*
2434 * Cannot happen because we already checked above (which also
2435 * cannot happen), and we hold ctx->mutex, which serializes us
2436 * against perf_event_exit_task_context().
2437 */
63b6da39
PZ
2438 raw_spin_unlock_irq(&ctx->lock);
2439 return;
2440 }
39a43640 2441 /*
63cae12b
PZ
2442 * If the task is not running, ctx->lock will avoid it becoming so,
2443 * thus we can safely install the event.
39a43640 2444 */
63cae12b
PZ
2445 if (task_curr(task)) {
2446 raw_spin_unlock_irq(&ctx->lock);
2447 goto again;
2448 }
2449 add_event_to_ctx(event, ctx);
2450 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2451}
2452
fa289bec 2453/*
cdd6c482 2454 * Put a event into inactive state and update time fields.
fa289bec
PM
2455 * Enabling the leader of a group effectively enables all
2456 * the group members that aren't explicitly disabled, so we
2457 * have to update their ->tstamp_enabled also.
2458 * Note: this works for group members as well as group leaders
2459 * since the non-leader members' sibling_lists will be empty.
2460 */
1d9b482e 2461static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2462{
cdd6c482 2463 struct perf_event *sub;
4158755d 2464 u64 tstamp = perf_event_time(event);
fa289bec 2465
cdd6c482 2466 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2467 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2468 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2469 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2470 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2471 }
fa289bec
PM
2472}
2473
d859e29f 2474/*
cdd6c482 2475 * Cross CPU call to enable a performance event
d859e29f 2476 */
fae3fde6
PZ
2477static void __perf_event_enable(struct perf_event *event,
2478 struct perf_cpu_context *cpuctx,
2479 struct perf_event_context *ctx,
2480 void *info)
04289bb9 2481{
cdd6c482 2482 struct perf_event *leader = event->group_leader;
fae3fde6 2483 struct perf_event_context *task_ctx;
04289bb9 2484
6e801e01
PZ
2485 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2486 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2487 return;
3cbed429 2488
bd2afa49
PZ
2489 if (ctx->is_active)
2490 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2491
1d9b482e 2492 __perf_event_mark_enabled(event);
04289bb9 2493
fae3fde6
PZ
2494 if (!ctx->is_active)
2495 return;
2496
e5d1367f 2497 if (!event_filter_match(event)) {
bd2afa49 2498 if (is_cgroup_event(event))
e5d1367f 2499 perf_cgroup_defer_enabled(event);
bd2afa49 2500 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2501 return;
e5d1367f 2502 }
f4c4176f 2503
04289bb9 2504 /*
cdd6c482 2505 * If the event is in a group and isn't the group leader,
d859e29f 2506 * then don't put it on unless the group is on.
04289bb9 2507 */
bd2afa49
PZ
2508 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2509 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2510 return;
bd2afa49 2511 }
fe4b04fa 2512
fae3fde6
PZ
2513 task_ctx = cpuctx->task_ctx;
2514 if (ctx->task)
2515 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2516
487f05e1 2517 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2518}
2519
d859e29f 2520/*
cdd6c482 2521 * Enable a event.
c93f7669 2522 *
cdd6c482
IM
2523 * If event->ctx is a cloned context, callers must make sure that
2524 * every task struct that event->ctx->task could possibly point to
c93f7669 2525 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2526 * perf_event_for_each_child or perf_event_for_each as described
2527 * for perf_event_disable.
d859e29f 2528 */
f63a8daa 2529static void _perf_event_enable(struct perf_event *event)
d859e29f 2530{
cdd6c482 2531 struct perf_event_context *ctx = event->ctx;
d859e29f 2532
7b648018 2533 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2534 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2535 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2536 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2537 return;
2538 }
2539
d859e29f 2540 /*
cdd6c482 2541 * If the event is in error state, clear that first.
7b648018
PZ
2542 *
2543 * That way, if we see the event in error state below, we know that it
2544 * has gone back into error state, as distinct from the task having
2545 * been scheduled away before the cross-call arrived.
d859e29f 2546 */
cdd6c482
IM
2547 if (event->state == PERF_EVENT_STATE_ERROR)
2548 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2549 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2550
fae3fde6 2551 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2552}
f63a8daa
PZ
2553
2554/*
2555 * See perf_event_disable();
2556 */
2557void perf_event_enable(struct perf_event *event)
2558{
2559 struct perf_event_context *ctx;
2560
2561 ctx = perf_event_ctx_lock(event);
2562 _perf_event_enable(event);
2563 perf_event_ctx_unlock(event, ctx);
2564}
dcfce4a0 2565EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2566
375637bc
AS
2567struct stop_event_data {
2568 struct perf_event *event;
2569 unsigned int restart;
2570};
2571
95ff4ca2
AS
2572static int __perf_event_stop(void *info)
2573{
375637bc
AS
2574 struct stop_event_data *sd = info;
2575 struct perf_event *event = sd->event;
95ff4ca2 2576
375637bc 2577 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2578 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2579 return 0;
2580
2581 /* matches smp_wmb() in event_sched_in() */
2582 smp_rmb();
2583
2584 /*
2585 * There is a window with interrupts enabled before we get here,
2586 * so we need to check again lest we try to stop another CPU's event.
2587 */
2588 if (READ_ONCE(event->oncpu) != smp_processor_id())
2589 return -EAGAIN;
2590
2591 event->pmu->stop(event, PERF_EF_UPDATE);
2592
375637bc
AS
2593 /*
2594 * May race with the actual stop (through perf_pmu_output_stop()),
2595 * but it is only used for events with AUX ring buffer, and such
2596 * events will refuse to restart because of rb::aux_mmap_count==0,
2597 * see comments in perf_aux_output_begin().
2598 *
2599 * Since this is happening on a event-local CPU, no trace is lost
2600 * while restarting.
2601 */
2602 if (sd->restart)
c9bbdd48 2603 event->pmu->start(event, 0);
375637bc 2604
95ff4ca2
AS
2605 return 0;
2606}
2607
767ae086 2608static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2609{
2610 struct stop_event_data sd = {
2611 .event = event,
767ae086 2612 .restart = restart,
375637bc
AS
2613 };
2614 int ret = 0;
2615
2616 do {
2617 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2618 return 0;
2619
2620 /* matches smp_wmb() in event_sched_in() */
2621 smp_rmb();
2622
2623 /*
2624 * We only want to restart ACTIVE events, so if the event goes
2625 * inactive here (event->oncpu==-1), there's nothing more to do;
2626 * fall through with ret==-ENXIO.
2627 */
2628 ret = cpu_function_call(READ_ONCE(event->oncpu),
2629 __perf_event_stop, &sd);
2630 } while (ret == -EAGAIN);
2631
2632 return ret;
2633}
2634
2635/*
2636 * In order to contain the amount of racy and tricky in the address filter
2637 * configuration management, it is a two part process:
2638 *
2639 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2640 * we update the addresses of corresponding vmas in
2641 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2642 * (p2) when an event is scheduled in (pmu::add), it calls
2643 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2644 * if the generation has changed since the previous call.
2645 *
2646 * If (p1) happens while the event is active, we restart it to force (p2).
2647 *
2648 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2649 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2650 * ioctl;
2651 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2652 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2653 * for reading;
2654 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2655 * of exec.
2656 */
2657void perf_event_addr_filters_sync(struct perf_event *event)
2658{
2659 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2660
2661 if (!has_addr_filter(event))
2662 return;
2663
2664 raw_spin_lock(&ifh->lock);
2665 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2666 event->pmu->addr_filters_sync(event);
2667 event->hw.addr_filters_gen = event->addr_filters_gen;
2668 }
2669 raw_spin_unlock(&ifh->lock);
2670}
2671EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2672
f63a8daa 2673static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2674{
2023b359 2675 /*
cdd6c482 2676 * not supported on inherited events
2023b359 2677 */
2e939d1d 2678 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2679 return -EINVAL;
2680
cdd6c482 2681 atomic_add(refresh, &event->event_limit);
f63a8daa 2682 _perf_event_enable(event);
2023b359
PZ
2683
2684 return 0;
79f14641 2685}
f63a8daa
PZ
2686
2687/*
2688 * See perf_event_disable()
2689 */
2690int perf_event_refresh(struct perf_event *event, int refresh)
2691{
2692 struct perf_event_context *ctx;
2693 int ret;
2694
2695 ctx = perf_event_ctx_lock(event);
2696 ret = _perf_event_refresh(event, refresh);
2697 perf_event_ctx_unlock(event, ctx);
2698
2699 return ret;
2700}
26ca5c11 2701EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2702
5b0311e1
FW
2703static void ctx_sched_out(struct perf_event_context *ctx,
2704 struct perf_cpu_context *cpuctx,
2705 enum event_type_t event_type)
235c7fc7 2706{
db24d33e 2707 int is_active = ctx->is_active;
c994d613 2708 struct perf_event *event;
235c7fc7 2709
c994d613 2710 lockdep_assert_held(&ctx->lock);
235c7fc7 2711
39a43640
PZ
2712 if (likely(!ctx->nr_events)) {
2713 /*
2714 * See __perf_remove_from_context().
2715 */
2716 WARN_ON_ONCE(ctx->is_active);
2717 if (ctx->task)
2718 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2719 return;
39a43640
PZ
2720 }
2721
db24d33e 2722 ctx->is_active &= ~event_type;
3cbaa590
PZ
2723 if (!(ctx->is_active & EVENT_ALL))
2724 ctx->is_active = 0;
2725
63e30d3e
PZ
2726 if (ctx->task) {
2727 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2728 if (!ctx->is_active)
2729 cpuctx->task_ctx = NULL;
2730 }
facc4307 2731
8fdc6539
PZ
2732 /*
2733 * Always update time if it was set; not only when it changes.
2734 * Otherwise we can 'forget' to update time for any but the last
2735 * context we sched out. For example:
2736 *
2737 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2738 * ctx_sched_out(.event_type = EVENT_PINNED)
2739 *
2740 * would only update time for the pinned events.
2741 */
3cbaa590
PZ
2742 if (is_active & EVENT_TIME) {
2743 /* update (and stop) ctx time */
2744 update_context_time(ctx);
2745 update_cgrp_time_from_cpuctx(cpuctx);
2746 }
2747
8fdc6539
PZ
2748 is_active ^= ctx->is_active; /* changed bits */
2749
3cbaa590 2750 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2751 return;
5b0311e1 2752
075e0b00 2753 perf_pmu_disable(ctx->pmu);
3cbaa590 2754 if (is_active & EVENT_PINNED) {
889ff015
FW
2755 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2756 group_sched_out(event, cpuctx, ctx);
9ed6060d 2757 }
889ff015 2758
3cbaa590 2759 if (is_active & EVENT_FLEXIBLE) {
889ff015 2760 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2761 group_sched_out(event, cpuctx, ctx);
9ed6060d 2762 }
1b9a644f 2763 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2764}
2765
564c2b21 2766/*
5a3126d4
PZ
2767 * Test whether two contexts are equivalent, i.e. whether they have both been
2768 * cloned from the same version of the same context.
2769 *
2770 * Equivalence is measured using a generation number in the context that is
2771 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2772 * and list_del_event().
564c2b21 2773 */
cdd6c482
IM
2774static int context_equiv(struct perf_event_context *ctx1,
2775 struct perf_event_context *ctx2)
564c2b21 2776{
211de6eb
PZ
2777 lockdep_assert_held(&ctx1->lock);
2778 lockdep_assert_held(&ctx2->lock);
2779
5a3126d4
PZ
2780 /* Pinning disables the swap optimization */
2781 if (ctx1->pin_count || ctx2->pin_count)
2782 return 0;
2783
2784 /* If ctx1 is the parent of ctx2 */
2785 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2786 return 1;
2787
2788 /* If ctx2 is the parent of ctx1 */
2789 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2790 return 1;
2791
2792 /*
2793 * If ctx1 and ctx2 have the same parent; we flatten the parent
2794 * hierarchy, see perf_event_init_context().
2795 */
2796 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2797 ctx1->parent_gen == ctx2->parent_gen)
2798 return 1;
2799
2800 /* Unmatched */
2801 return 0;
564c2b21
PM
2802}
2803
cdd6c482
IM
2804static void __perf_event_sync_stat(struct perf_event *event,
2805 struct perf_event *next_event)
bfbd3381
PZ
2806{
2807 u64 value;
2808
cdd6c482 2809 if (!event->attr.inherit_stat)
bfbd3381
PZ
2810 return;
2811
2812 /*
cdd6c482 2813 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2814 * because we're in the middle of a context switch and have IRQs
2815 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2816 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2817 * don't need to use it.
2818 */
cdd6c482
IM
2819 switch (event->state) {
2820 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2821 event->pmu->read(event);
2822 /* fall-through */
bfbd3381 2823
cdd6c482
IM
2824 case PERF_EVENT_STATE_INACTIVE:
2825 update_event_times(event);
bfbd3381
PZ
2826 break;
2827
2828 default:
2829 break;
2830 }
2831
2832 /*
cdd6c482 2833 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2834 * values when we flip the contexts.
2835 */
e7850595
PZ
2836 value = local64_read(&next_event->count);
2837 value = local64_xchg(&event->count, value);
2838 local64_set(&next_event->count, value);
bfbd3381 2839
cdd6c482
IM
2840 swap(event->total_time_enabled, next_event->total_time_enabled);
2841 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2842
bfbd3381 2843 /*
19d2e755 2844 * Since we swizzled the values, update the user visible data too.
bfbd3381 2845 */
cdd6c482
IM
2846 perf_event_update_userpage(event);
2847 perf_event_update_userpage(next_event);
bfbd3381
PZ
2848}
2849
cdd6c482
IM
2850static void perf_event_sync_stat(struct perf_event_context *ctx,
2851 struct perf_event_context *next_ctx)
bfbd3381 2852{
cdd6c482 2853 struct perf_event *event, *next_event;
bfbd3381
PZ
2854
2855 if (!ctx->nr_stat)
2856 return;
2857
02ffdbc8
PZ
2858 update_context_time(ctx);
2859
cdd6c482
IM
2860 event = list_first_entry(&ctx->event_list,
2861 struct perf_event, event_entry);
bfbd3381 2862
cdd6c482
IM
2863 next_event = list_first_entry(&next_ctx->event_list,
2864 struct perf_event, event_entry);
bfbd3381 2865
cdd6c482
IM
2866 while (&event->event_entry != &ctx->event_list &&
2867 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2868
cdd6c482 2869 __perf_event_sync_stat(event, next_event);
bfbd3381 2870
cdd6c482
IM
2871 event = list_next_entry(event, event_entry);
2872 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2873 }
2874}
2875
fe4b04fa
PZ
2876static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2877 struct task_struct *next)
0793a61d 2878{
8dc85d54 2879 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2880 struct perf_event_context *next_ctx;
5a3126d4 2881 struct perf_event_context *parent, *next_parent;
108b02cf 2882 struct perf_cpu_context *cpuctx;
c93f7669 2883 int do_switch = 1;
0793a61d 2884
108b02cf
PZ
2885 if (likely(!ctx))
2886 return;
10989fb2 2887
108b02cf
PZ
2888 cpuctx = __get_cpu_context(ctx);
2889 if (!cpuctx->task_ctx)
0793a61d
TG
2890 return;
2891
c93f7669 2892 rcu_read_lock();
8dc85d54 2893 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2894 if (!next_ctx)
2895 goto unlock;
2896
2897 parent = rcu_dereference(ctx->parent_ctx);
2898 next_parent = rcu_dereference(next_ctx->parent_ctx);
2899
2900 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2901 if (!parent && !next_parent)
5a3126d4
PZ
2902 goto unlock;
2903
2904 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2905 /*
2906 * Looks like the two contexts are clones, so we might be
2907 * able to optimize the context switch. We lock both
2908 * contexts and check that they are clones under the
2909 * lock (including re-checking that neither has been
2910 * uncloned in the meantime). It doesn't matter which
2911 * order we take the locks because no other cpu could
2912 * be trying to lock both of these tasks.
2913 */
e625cce1
TG
2914 raw_spin_lock(&ctx->lock);
2915 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2916 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2917 WRITE_ONCE(ctx->task, next);
2918 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2919
2920 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2921
63b6da39
PZ
2922 /*
2923 * RCU_INIT_POINTER here is safe because we've not
2924 * modified the ctx and the above modification of
2925 * ctx->task and ctx->task_ctx_data are immaterial
2926 * since those values are always verified under
2927 * ctx->lock which we're now holding.
2928 */
2929 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2930 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2931
c93f7669 2932 do_switch = 0;
bfbd3381 2933
cdd6c482 2934 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2935 }
e625cce1
TG
2936 raw_spin_unlock(&next_ctx->lock);
2937 raw_spin_unlock(&ctx->lock);
564c2b21 2938 }
5a3126d4 2939unlock:
c93f7669 2940 rcu_read_unlock();
564c2b21 2941
c93f7669 2942 if (do_switch) {
facc4307 2943 raw_spin_lock(&ctx->lock);
487f05e1 2944 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 2945 raw_spin_unlock(&ctx->lock);
c93f7669 2946 }
0793a61d
TG
2947}
2948
e48c1788
PZ
2949static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2950
ba532500
YZ
2951void perf_sched_cb_dec(struct pmu *pmu)
2952{
e48c1788
PZ
2953 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2954
ba532500 2955 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
2956
2957 if (!--cpuctx->sched_cb_usage)
2958 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
2959}
2960
e48c1788 2961
ba532500
YZ
2962void perf_sched_cb_inc(struct pmu *pmu)
2963{
e48c1788
PZ
2964 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2965
2966 if (!cpuctx->sched_cb_usage++)
2967 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2968
ba532500
YZ
2969 this_cpu_inc(perf_sched_cb_usages);
2970}
2971
2972/*
2973 * This function provides the context switch callback to the lower code
2974 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
2975 *
2976 * This callback is relevant even to per-cpu events; for example multi event
2977 * PEBS requires this to provide PID/TID information. This requires we flush
2978 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
2979 */
2980static void perf_pmu_sched_task(struct task_struct *prev,
2981 struct task_struct *next,
2982 bool sched_in)
2983{
2984 struct perf_cpu_context *cpuctx;
2985 struct pmu *pmu;
ba532500
YZ
2986
2987 if (prev == next)
2988 return;
2989
e48c1788 2990 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 2991 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 2992
e48c1788
PZ
2993 if (WARN_ON_ONCE(!pmu->sched_task))
2994 continue;
ba532500 2995
e48c1788
PZ
2996 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2997 perf_pmu_disable(pmu);
ba532500 2998
e48c1788 2999 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3000
e48c1788
PZ
3001 perf_pmu_enable(pmu);
3002 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3003 }
ba532500
YZ
3004}
3005
45ac1403
AH
3006static void perf_event_switch(struct task_struct *task,
3007 struct task_struct *next_prev, bool sched_in);
3008
8dc85d54
PZ
3009#define for_each_task_context_nr(ctxn) \
3010 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3011
3012/*
3013 * Called from scheduler to remove the events of the current task,
3014 * with interrupts disabled.
3015 *
3016 * We stop each event and update the event value in event->count.
3017 *
3018 * This does not protect us against NMI, but disable()
3019 * sets the disabled bit in the control field of event _before_
3020 * accessing the event control register. If a NMI hits, then it will
3021 * not restart the event.
3022 */
ab0cce56
JO
3023void __perf_event_task_sched_out(struct task_struct *task,
3024 struct task_struct *next)
8dc85d54
PZ
3025{
3026 int ctxn;
3027
ba532500
YZ
3028 if (__this_cpu_read(perf_sched_cb_usages))
3029 perf_pmu_sched_task(task, next, false);
3030
45ac1403
AH
3031 if (atomic_read(&nr_switch_events))
3032 perf_event_switch(task, next, false);
3033
8dc85d54
PZ
3034 for_each_task_context_nr(ctxn)
3035 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3036
3037 /*
3038 * if cgroup events exist on this CPU, then we need
3039 * to check if we have to switch out PMU state.
3040 * cgroup event are system-wide mode only
3041 */
4a32fea9 3042 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3043 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3044}
3045
5b0311e1
FW
3046/*
3047 * Called with IRQs disabled
3048 */
3049static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3050 enum event_type_t event_type)
3051{
3052 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3053}
3054
235c7fc7 3055static void
5b0311e1 3056ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 3057 struct perf_cpu_context *cpuctx)
0793a61d 3058{
cdd6c482 3059 struct perf_event *event;
0793a61d 3060
889ff015
FW
3061 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3062 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3063 continue;
5632ab12 3064 if (!event_filter_match(event))
3b6f9e5c
PM
3065 continue;
3066
e5d1367f
SE
3067 /* may need to reset tstamp_enabled */
3068 if (is_cgroup_event(event))
3069 perf_cgroup_mark_enabled(event, ctx);
3070
8c9ed8e1 3071 if (group_can_go_on(event, cpuctx, 1))
6e37738a 3072 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
3073
3074 /*
3075 * If this pinned group hasn't been scheduled,
3076 * put it in error state.
3077 */
cdd6c482
IM
3078 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3079 update_group_times(event);
3080 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 3081 }
3b6f9e5c 3082 }
5b0311e1
FW
3083}
3084
3085static void
3086ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 3087 struct perf_cpu_context *cpuctx)
5b0311e1
FW
3088{
3089 struct perf_event *event;
3090 int can_add_hw = 1;
3b6f9e5c 3091
889ff015
FW
3092 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3093 /* Ignore events in OFF or ERROR state */
3094 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3095 continue;
04289bb9
IM
3096 /*
3097 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 3098 * of events:
04289bb9 3099 */
5632ab12 3100 if (!event_filter_match(event))
0793a61d
TG
3101 continue;
3102
e5d1367f
SE
3103 /* may need to reset tstamp_enabled */
3104 if (is_cgroup_event(event))
3105 perf_cgroup_mark_enabled(event, ctx);
3106
9ed6060d 3107 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 3108 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 3109 can_add_hw = 0;
9ed6060d 3110 }
0793a61d 3111 }
5b0311e1
FW
3112}
3113
3114static void
3115ctx_sched_in(struct perf_event_context *ctx,
3116 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3117 enum event_type_t event_type,
3118 struct task_struct *task)
5b0311e1 3119{
db24d33e 3120 int is_active = ctx->is_active;
c994d613
PZ
3121 u64 now;
3122
3123 lockdep_assert_held(&ctx->lock);
e5d1367f 3124
5b0311e1 3125 if (likely(!ctx->nr_events))
facc4307 3126 return;
5b0311e1 3127
3cbaa590 3128 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3129 if (ctx->task) {
3130 if (!is_active)
3131 cpuctx->task_ctx = ctx;
3132 else
3133 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3134 }
3135
3cbaa590
PZ
3136 is_active ^= ctx->is_active; /* changed bits */
3137
3138 if (is_active & EVENT_TIME) {
3139 /* start ctx time */
3140 now = perf_clock();
3141 ctx->timestamp = now;
3142 perf_cgroup_set_timestamp(task, ctx);
3143 }
3144
5b0311e1
FW
3145 /*
3146 * First go through the list and put on any pinned groups
3147 * in order to give them the best chance of going on.
3148 */
3cbaa590 3149 if (is_active & EVENT_PINNED)
6e37738a 3150 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3151
3152 /* Then walk through the lower prio flexible groups */
3cbaa590 3153 if (is_active & EVENT_FLEXIBLE)
6e37738a 3154 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3155}
3156
329c0e01 3157static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3158 enum event_type_t event_type,
3159 struct task_struct *task)
329c0e01
FW
3160{
3161 struct perf_event_context *ctx = &cpuctx->ctx;
3162
e5d1367f 3163 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3164}
3165
e5d1367f
SE
3166static void perf_event_context_sched_in(struct perf_event_context *ctx,
3167 struct task_struct *task)
235c7fc7 3168{
108b02cf 3169 struct perf_cpu_context *cpuctx;
235c7fc7 3170
108b02cf 3171 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3172 if (cpuctx->task_ctx == ctx)
3173 return;
3174
facc4307 3175 perf_ctx_lock(cpuctx, ctx);
1b9a644f 3176 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3177 /*
3178 * We want to keep the following priority order:
3179 * cpu pinned (that don't need to move), task pinned,
3180 * cpu flexible, task flexible.
fe45bafb
AS
3181 *
3182 * However, if task's ctx is not carrying any pinned
3183 * events, no need to flip the cpuctx's events around.
329c0e01 3184 */
fe45bafb
AS
3185 if (!list_empty(&ctx->pinned_groups))
3186 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3187 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
3188 perf_pmu_enable(ctx->pmu);
3189 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3190}
3191
8dc85d54
PZ
3192/*
3193 * Called from scheduler to add the events of the current task
3194 * with interrupts disabled.
3195 *
3196 * We restore the event value and then enable it.
3197 *
3198 * This does not protect us against NMI, but enable()
3199 * sets the enabled bit in the control field of event _before_
3200 * accessing the event control register. If a NMI hits, then it will
3201 * keep the event running.
3202 */
ab0cce56
JO
3203void __perf_event_task_sched_in(struct task_struct *prev,
3204 struct task_struct *task)
8dc85d54
PZ
3205{
3206 struct perf_event_context *ctx;
3207 int ctxn;
3208
7e41d177
PZ
3209 /*
3210 * If cgroup events exist on this CPU, then we need to check if we have
3211 * to switch in PMU state; cgroup event are system-wide mode only.
3212 *
3213 * Since cgroup events are CPU events, we must schedule these in before
3214 * we schedule in the task events.
3215 */
3216 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3217 perf_cgroup_sched_in(prev, task);
3218
8dc85d54
PZ
3219 for_each_task_context_nr(ctxn) {
3220 ctx = task->perf_event_ctxp[ctxn];
3221 if (likely(!ctx))
3222 continue;
3223
e5d1367f 3224 perf_event_context_sched_in(ctx, task);
8dc85d54 3225 }
d010b332 3226
45ac1403
AH
3227 if (atomic_read(&nr_switch_events))
3228 perf_event_switch(task, prev, true);
3229
ba532500
YZ
3230 if (__this_cpu_read(perf_sched_cb_usages))
3231 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3232}
3233
abd50713
PZ
3234static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3235{
3236 u64 frequency = event->attr.sample_freq;
3237 u64 sec = NSEC_PER_SEC;
3238 u64 divisor, dividend;
3239
3240 int count_fls, nsec_fls, frequency_fls, sec_fls;
3241
3242 count_fls = fls64(count);
3243 nsec_fls = fls64(nsec);
3244 frequency_fls = fls64(frequency);
3245 sec_fls = 30;
3246
3247 /*
3248 * We got @count in @nsec, with a target of sample_freq HZ
3249 * the target period becomes:
3250 *
3251 * @count * 10^9
3252 * period = -------------------
3253 * @nsec * sample_freq
3254 *
3255 */
3256
3257 /*
3258 * Reduce accuracy by one bit such that @a and @b converge
3259 * to a similar magnitude.
3260 */
fe4b04fa 3261#define REDUCE_FLS(a, b) \
abd50713
PZ
3262do { \
3263 if (a##_fls > b##_fls) { \
3264 a >>= 1; \
3265 a##_fls--; \
3266 } else { \
3267 b >>= 1; \
3268 b##_fls--; \
3269 } \
3270} while (0)
3271
3272 /*
3273 * Reduce accuracy until either term fits in a u64, then proceed with
3274 * the other, so that finally we can do a u64/u64 division.
3275 */
3276 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3277 REDUCE_FLS(nsec, frequency);
3278 REDUCE_FLS(sec, count);
3279 }
3280
3281 if (count_fls + sec_fls > 64) {
3282 divisor = nsec * frequency;
3283
3284 while (count_fls + sec_fls > 64) {
3285 REDUCE_FLS(count, sec);
3286 divisor >>= 1;
3287 }
3288
3289 dividend = count * sec;
3290 } else {
3291 dividend = count * sec;
3292
3293 while (nsec_fls + frequency_fls > 64) {
3294 REDUCE_FLS(nsec, frequency);
3295 dividend >>= 1;
3296 }
3297
3298 divisor = nsec * frequency;
3299 }
3300
f6ab91ad
PZ
3301 if (!divisor)
3302 return dividend;
3303
abd50713
PZ
3304 return div64_u64(dividend, divisor);
3305}
3306
e050e3f0
SE
3307static DEFINE_PER_CPU(int, perf_throttled_count);
3308static DEFINE_PER_CPU(u64, perf_throttled_seq);
3309
f39d47ff 3310static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3311{
cdd6c482 3312 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3313 s64 period, sample_period;
bd2b5b12
PZ
3314 s64 delta;
3315
abd50713 3316 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3317
3318 delta = (s64)(period - hwc->sample_period);
3319 delta = (delta + 7) / 8; /* low pass filter */
3320
3321 sample_period = hwc->sample_period + delta;
3322
3323 if (!sample_period)
3324 sample_period = 1;
3325
bd2b5b12 3326 hwc->sample_period = sample_period;
abd50713 3327
e7850595 3328 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3329 if (disable)
3330 event->pmu->stop(event, PERF_EF_UPDATE);
3331
e7850595 3332 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3333
3334 if (disable)
3335 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3336 }
bd2b5b12
PZ
3337}
3338
e050e3f0
SE
3339/*
3340 * combine freq adjustment with unthrottling to avoid two passes over the
3341 * events. At the same time, make sure, having freq events does not change
3342 * the rate of unthrottling as that would introduce bias.
3343 */
3344static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3345 int needs_unthr)
60db5e09 3346{
cdd6c482
IM
3347 struct perf_event *event;
3348 struct hw_perf_event *hwc;
e050e3f0 3349 u64 now, period = TICK_NSEC;
abd50713 3350 s64 delta;
60db5e09 3351
e050e3f0
SE
3352 /*
3353 * only need to iterate over all events iff:
3354 * - context have events in frequency mode (needs freq adjust)
3355 * - there are events to unthrottle on this cpu
3356 */
3357 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3358 return;
3359
e050e3f0 3360 raw_spin_lock(&ctx->lock);
f39d47ff 3361 perf_pmu_disable(ctx->pmu);
e050e3f0 3362
03541f8b 3363 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3364 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3365 continue;
3366
5632ab12 3367 if (!event_filter_match(event))
5d27c23d
PZ
3368 continue;
3369
44377277
AS
3370 perf_pmu_disable(event->pmu);
3371
cdd6c482 3372 hwc = &event->hw;
6a24ed6c 3373
ae23bff1 3374 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3375 hwc->interrupts = 0;
cdd6c482 3376 perf_log_throttle(event, 1);
a4eaf7f1 3377 event->pmu->start(event, 0);
a78ac325
PZ
3378 }
3379
cdd6c482 3380 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3381 goto next;
60db5e09 3382
e050e3f0
SE
3383 /*
3384 * stop the event and update event->count
3385 */
3386 event->pmu->stop(event, PERF_EF_UPDATE);
3387
e7850595 3388 now = local64_read(&event->count);
abd50713
PZ
3389 delta = now - hwc->freq_count_stamp;
3390 hwc->freq_count_stamp = now;
60db5e09 3391
e050e3f0
SE
3392 /*
3393 * restart the event
3394 * reload only if value has changed
f39d47ff
SE
3395 * we have stopped the event so tell that
3396 * to perf_adjust_period() to avoid stopping it
3397 * twice.
e050e3f0 3398 */
abd50713 3399 if (delta > 0)
f39d47ff 3400 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3401
3402 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3403 next:
3404 perf_pmu_enable(event->pmu);
60db5e09 3405 }
e050e3f0 3406
f39d47ff 3407 perf_pmu_enable(ctx->pmu);
e050e3f0 3408 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3409}
3410
235c7fc7 3411/*
cdd6c482 3412 * Round-robin a context's events:
235c7fc7 3413 */
cdd6c482 3414static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3415{
dddd3379
TG
3416 /*
3417 * Rotate the first entry last of non-pinned groups. Rotation might be
3418 * disabled by the inheritance code.
3419 */
3420 if (!ctx->rotate_disable)
3421 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3422}
3423
9e630205 3424static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3425{
8dc85d54 3426 struct perf_event_context *ctx = NULL;
2fde4f94 3427 int rotate = 0;
7fc23a53 3428
b5ab4cd5 3429 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3430 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3431 rotate = 1;
3432 }
235c7fc7 3433
8dc85d54 3434 ctx = cpuctx->task_ctx;
b5ab4cd5 3435 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3436 if (ctx->nr_events != ctx->nr_active)
3437 rotate = 1;
3438 }
9717e6cd 3439
e050e3f0 3440 if (!rotate)
0f5a2601
PZ
3441 goto done;
3442
facc4307 3443 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3444 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3445
e050e3f0
SE
3446 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3447 if (ctx)
3448 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3449
e050e3f0
SE
3450 rotate_ctx(&cpuctx->ctx);
3451 if (ctx)
3452 rotate_ctx(ctx);
235c7fc7 3453
e050e3f0 3454 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3455
0f5a2601
PZ
3456 perf_pmu_enable(cpuctx->ctx.pmu);
3457 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3458done:
9e630205
SE
3459
3460 return rotate;
e9d2b064
PZ
3461}
3462
3463void perf_event_task_tick(void)
3464{
2fde4f94
MR
3465 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3466 struct perf_event_context *ctx, *tmp;
e050e3f0 3467 int throttled;
b5ab4cd5 3468
e9d2b064
PZ
3469 WARN_ON(!irqs_disabled());
3470
e050e3f0
SE
3471 __this_cpu_inc(perf_throttled_seq);
3472 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3473 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3474
2fde4f94 3475 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3476 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3477}
3478
889ff015
FW
3479static int event_enable_on_exec(struct perf_event *event,
3480 struct perf_event_context *ctx)
3481{
3482 if (!event->attr.enable_on_exec)
3483 return 0;
3484
3485 event->attr.enable_on_exec = 0;
3486 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3487 return 0;
3488
1d9b482e 3489 __perf_event_mark_enabled(event);
889ff015
FW
3490
3491 return 1;
3492}
3493
57e7986e 3494/*
cdd6c482 3495 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3496 * This expects task == current.
3497 */
c1274499 3498static void perf_event_enable_on_exec(int ctxn)
57e7986e 3499{
c1274499 3500 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3501 enum event_type_t event_type = 0;
3e349507 3502 struct perf_cpu_context *cpuctx;
cdd6c482 3503 struct perf_event *event;
57e7986e
PM
3504 unsigned long flags;
3505 int enabled = 0;
3506
3507 local_irq_save(flags);
c1274499 3508 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3509 if (!ctx || !ctx->nr_events)
57e7986e
PM
3510 goto out;
3511
3e349507
PZ
3512 cpuctx = __get_cpu_context(ctx);
3513 perf_ctx_lock(cpuctx, ctx);
7fce2509 3514 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3515 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3516 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3517 event_type |= get_event_type(event);
3518 }
57e7986e
PM
3519
3520 /*
3e349507 3521 * Unclone and reschedule this context if we enabled any event.
57e7986e 3522 */
3e349507 3523 if (enabled) {
211de6eb 3524 clone_ctx = unclone_ctx(ctx);
487f05e1 3525 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3526 } else {
3527 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3528 }
3529 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3530
9ed6060d 3531out:
57e7986e 3532 local_irq_restore(flags);
211de6eb
PZ
3533
3534 if (clone_ctx)
3535 put_ctx(clone_ctx);
57e7986e
PM
3536}
3537
0492d4c5
PZ
3538struct perf_read_data {
3539 struct perf_event *event;
3540 bool group;
7d88962e 3541 int ret;
0492d4c5
PZ
3542};
3543
451d24d1 3544static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3545{
d6a2f903
DCC
3546 u16 local_pkg, event_pkg;
3547
3548 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3549 int local_cpu = smp_processor_id();
3550
3551 event_pkg = topology_physical_package_id(event_cpu);
3552 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3553
3554 if (event_pkg == local_pkg)
3555 return local_cpu;
3556 }
3557
3558 return event_cpu;
3559}
3560
0793a61d 3561/*
cdd6c482 3562 * Cross CPU call to read the hardware event
0793a61d 3563 */
cdd6c482 3564static void __perf_event_read(void *info)
0793a61d 3565{
0492d4c5
PZ
3566 struct perf_read_data *data = info;
3567 struct perf_event *sub, *event = data->event;
cdd6c482 3568 struct perf_event_context *ctx = event->ctx;
108b02cf 3569 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3570 struct pmu *pmu = event->pmu;
621a01ea 3571
e1ac3614
PM
3572 /*
3573 * If this is a task context, we need to check whether it is
3574 * the current task context of this cpu. If not it has been
3575 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3576 * event->count would have been updated to a recent sample
3577 * when the event was scheduled out.
e1ac3614
PM
3578 */
3579 if (ctx->task && cpuctx->task_ctx != ctx)
3580 return;
3581
e625cce1 3582 raw_spin_lock(&ctx->lock);
e5d1367f 3583 if (ctx->is_active) {
542e72fc 3584 update_context_time(ctx);
e5d1367f
SE
3585 update_cgrp_time_from_event(event);
3586 }
0492d4c5 3587
cdd6c482 3588 update_event_times(event);
4a00c16e
SB
3589 if (event->state != PERF_EVENT_STATE_ACTIVE)
3590 goto unlock;
0492d4c5 3591
4a00c16e
SB
3592 if (!data->group) {
3593 pmu->read(event);
3594 data->ret = 0;
0492d4c5 3595 goto unlock;
4a00c16e
SB
3596 }
3597
3598 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3599
3600 pmu->read(event);
0492d4c5
PZ
3601
3602 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3603 update_event_times(sub);
4a00c16e
SB
3604 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3605 /*
3606 * Use sibling's PMU rather than @event's since
3607 * sibling could be on different (eg: software) PMU.
3608 */
0492d4c5 3609 sub->pmu->read(sub);
4a00c16e 3610 }
0492d4c5 3611 }
4a00c16e
SB
3612
3613 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3614
3615unlock:
e625cce1 3616 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3617}
3618
b5e58793
PZ
3619static inline u64 perf_event_count(struct perf_event *event)
3620{
eacd3ecc
MF
3621 if (event->pmu->count)
3622 return event->pmu->count(event);
3623
3624 return __perf_event_count(event);
b5e58793
PZ
3625}
3626
ffe8690c
KX
3627/*
3628 * NMI-safe method to read a local event, that is an event that
3629 * is:
3630 * - either for the current task, or for this CPU
3631 * - does not have inherit set, for inherited task events
3632 * will not be local and we cannot read them atomically
3633 * - must not have a pmu::count method
3634 */
3635u64 perf_event_read_local(struct perf_event *event)
3636{
3637 unsigned long flags;
3638 u64 val;
3639
3640 /*
3641 * Disabling interrupts avoids all counter scheduling (context
3642 * switches, timer based rotation and IPIs).
3643 */
3644 local_irq_save(flags);
3645
3646 /* If this is a per-task event, it must be for current */
3647 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3648 event->hw.target != current);
3649
3650 /* If this is a per-CPU event, it must be for this CPU */
3651 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3652 event->cpu != smp_processor_id());
3653
3654 /*
3655 * It must not be an event with inherit set, we cannot read
3656 * all child counters from atomic context.
3657 */
3658 WARN_ON_ONCE(event->attr.inherit);
3659
3660 /*
3661 * It must not have a pmu::count method, those are not
3662 * NMI safe.
3663 */
3664 WARN_ON_ONCE(event->pmu->count);
3665
3666 /*
3667 * If the event is currently on this CPU, its either a per-task event,
3668 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3669 * oncpu == -1).
3670 */
3671 if (event->oncpu == smp_processor_id())
3672 event->pmu->read(event);
3673
3674 val = local64_read(&event->count);
3675 local_irq_restore(flags);
3676
3677 return val;
3678}
3679
7d88962e 3680static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3681{
451d24d1 3682 int event_cpu, ret = 0;
7d88962e 3683
0793a61d 3684 /*
cdd6c482
IM
3685 * If event is enabled and currently active on a CPU, update the
3686 * value in the event structure:
0793a61d 3687 */
cdd6c482 3688 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3689 struct perf_read_data data = {
3690 .event = event,
3691 .group = group,
7d88962e 3692 .ret = 0,
0492d4c5 3693 };
d6a2f903 3694
451d24d1
PZ
3695 event_cpu = READ_ONCE(event->oncpu);
3696 if ((unsigned)event_cpu >= nr_cpu_ids)
3697 return 0;
3698
3699 preempt_disable();
3700 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 3701
58763148
PZ
3702 /*
3703 * Purposely ignore the smp_call_function_single() return
3704 * value.
3705 *
451d24d1 3706 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
3707 * scheduled out and that will have updated the event count.
3708 *
3709 * Therefore, either way, we'll have an up-to-date event count
3710 * after this.
3711 */
451d24d1
PZ
3712 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3713 preempt_enable();
58763148 3714 ret = data.ret;
cdd6c482 3715 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3716 struct perf_event_context *ctx = event->ctx;
3717 unsigned long flags;
3718
e625cce1 3719 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3720 /*
3721 * may read while context is not active
3722 * (e.g., thread is blocked), in that case
3723 * we cannot update context time
3724 */
e5d1367f 3725 if (ctx->is_active) {
c530ccd9 3726 update_context_time(ctx);
e5d1367f
SE
3727 update_cgrp_time_from_event(event);
3728 }
0492d4c5
PZ
3729 if (group)
3730 update_group_times(event);
3731 else
3732 update_event_times(event);
e625cce1 3733 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3734 }
7d88962e
SB
3735
3736 return ret;
0793a61d
TG
3737}
3738
a63eaf34 3739/*
cdd6c482 3740 * Initialize the perf_event context in a task_struct:
a63eaf34 3741 */
eb184479 3742static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3743{
e625cce1 3744 raw_spin_lock_init(&ctx->lock);
a63eaf34 3745 mutex_init(&ctx->mutex);
2fde4f94 3746 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3747 INIT_LIST_HEAD(&ctx->pinned_groups);
3748 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3749 INIT_LIST_HEAD(&ctx->event_list);
3750 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3751}
3752
3753static struct perf_event_context *
3754alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3755{
3756 struct perf_event_context *ctx;
3757
3758 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3759 if (!ctx)
3760 return NULL;
3761
3762 __perf_event_init_context(ctx);
3763 if (task) {
3764 ctx->task = task;
3765 get_task_struct(task);
0793a61d 3766 }
eb184479
PZ
3767 ctx->pmu = pmu;
3768
3769 return ctx;
a63eaf34
PM
3770}
3771
2ebd4ffb
MH
3772static struct task_struct *
3773find_lively_task_by_vpid(pid_t vpid)
3774{
3775 struct task_struct *task;
0793a61d
TG
3776
3777 rcu_read_lock();
2ebd4ffb 3778 if (!vpid)
0793a61d
TG
3779 task = current;
3780 else
2ebd4ffb 3781 task = find_task_by_vpid(vpid);
0793a61d
TG
3782 if (task)
3783 get_task_struct(task);
3784 rcu_read_unlock();
3785
3786 if (!task)
3787 return ERR_PTR(-ESRCH);
3788
2ebd4ffb 3789 return task;
2ebd4ffb
MH
3790}
3791
fe4b04fa
PZ
3792/*
3793 * Returns a matching context with refcount and pincount.
3794 */
108b02cf 3795static struct perf_event_context *
4af57ef2
YZ
3796find_get_context(struct pmu *pmu, struct task_struct *task,
3797 struct perf_event *event)
0793a61d 3798{
211de6eb 3799 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3800 struct perf_cpu_context *cpuctx;
4af57ef2 3801 void *task_ctx_data = NULL;
25346b93 3802 unsigned long flags;
8dc85d54 3803 int ctxn, err;
4af57ef2 3804 int cpu = event->cpu;
0793a61d 3805
22a4ec72 3806 if (!task) {
cdd6c482 3807 /* Must be root to operate on a CPU event: */
0764771d 3808 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3809 return ERR_PTR(-EACCES);
3810
108b02cf 3811 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3812 ctx = &cpuctx->ctx;
c93f7669 3813 get_ctx(ctx);
fe4b04fa 3814 ++ctx->pin_count;
0793a61d 3815
0793a61d
TG
3816 return ctx;
3817 }
3818
8dc85d54
PZ
3819 err = -EINVAL;
3820 ctxn = pmu->task_ctx_nr;
3821 if (ctxn < 0)
3822 goto errout;
3823
4af57ef2
YZ
3824 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3825 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3826 if (!task_ctx_data) {
3827 err = -ENOMEM;
3828 goto errout;
3829 }
3830 }
3831
9ed6060d 3832retry:
8dc85d54 3833 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3834 if (ctx) {
211de6eb 3835 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3836 ++ctx->pin_count;
4af57ef2
YZ
3837
3838 if (task_ctx_data && !ctx->task_ctx_data) {
3839 ctx->task_ctx_data = task_ctx_data;
3840 task_ctx_data = NULL;
3841 }
e625cce1 3842 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3843
3844 if (clone_ctx)
3845 put_ctx(clone_ctx);
9137fb28 3846 } else {
eb184479 3847 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3848 err = -ENOMEM;
3849 if (!ctx)
3850 goto errout;
eb184479 3851
4af57ef2
YZ
3852 if (task_ctx_data) {
3853 ctx->task_ctx_data = task_ctx_data;
3854 task_ctx_data = NULL;
3855 }
3856
dbe08d82
ON
3857 err = 0;
3858 mutex_lock(&task->perf_event_mutex);
3859 /*
3860 * If it has already passed perf_event_exit_task().
3861 * we must see PF_EXITING, it takes this mutex too.
3862 */
3863 if (task->flags & PF_EXITING)
3864 err = -ESRCH;
3865 else if (task->perf_event_ctxp[ctxn])
3866 err = -EAGAIN;
fe4b04fa 3867 else {
9137fb28 3868 get_ctx(ctx);
fe4b04fa 3869 ++ctx->pin_count;
dbe08d82 3870 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3871 }
dbe08d82
ON
3872 mutex_unlock(&task->perf_event_mutex);
3873
3874 if (unlikely(err)) {
9137fb28 3875 put_ctx(ctx);
dbe08d82
ON
3876
3877 if (err == -EAGAIN)
3878 goto retry;
3879 goto errout;
a63eaf34
PM
3880 }
3881 }
3882
4af57ef2 3883 kfree(task_ctx_data);
0793a61d 3884 return ctx;
c93f7669 3885
9ed6060d 3886errout:
4af57ef2 3887 kfree(task_ctx_data);
c93f7669 3888 return ERR_PTR(err);
0793a61d
TG
3889}
3890
6fb2915d 3891static void perf_event_free_filter(struct perf_event *event);
2541517c 3892static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3893
cdd6c482 3894static void free_event_rcu(struct rcu_head *head)
592903cd 3895{
cdd6c482 3896 struct perf_event *event;
592903cd 3897
cdd6c482
IM
3898 event = container_of(head, struct perf_event, rcu_head);
3899 if (event->ns)
3900 put_pid_ns(event->ns);
6fb2915d 3901 perf_event_free_filter(event);
cdd6c482 3902 kfree(event);
592903cd
PZ
3903}
3904
b69cf536
PZ
3905static void ring_buffer_attach(struct perf_event *event,
3906 struct ring_buffer *rb);
925d519a 3907
f2fb6bef
KL
3908static void detach_sb_event(struct perf_event *event)
3909{
3910 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3911
3912 raw_spin_lock(&pel->lock);
3913 list_del_rcu(&event->sb_list);
3914 raw_spin_unlock(&pel->lock);
3915}
3916
a4f144eb 3917static bool is_sb_event(struct perf_event *event)
f2fb6bef 3918{
a4f144eb
DCC
3919 struct perf_event_attr *attr = &event->attr;
3920
f2fb6bef 3921 if (event->parent)
a4f144eb 3922 return false;
f2fb6bef
KL
3923
3924 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 3925 return false;
f2fb6bef 3926
a4f144eb
DCC
3927 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3928 attr->comm || attr->comm_exec ||
3929 attr->task ||
3930 attr->context_switch)
3931 return true;
3932 return false;
3933}
3934
3935static void unaccount_pmu_sb_event(struct perf_event *event)
3936{
3937 if (is_sb_event(event))
3938 detach_sb_event(event);
f2fb6bef
KL
3939}
3940
4beb31f3 3941static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3942{
4beb31f3
FW
3943 if (event->parent)
3944 return;
3945
4beb31f3
FW
3946 if (is_cgroup_event(event))
3947 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3948}
925d519a 3949
555e0c1e
FW
3950#ifdef CONFIG_NO_HZ_FULL
3951static DEFINE_SPINLOCK(nr_freq_lock);
3952#endif
3953
3954static void unaccount_freq_event_nohz(void)
3955{
3956#ifdef CONFIG_NO_HZ_FULL
3957 spin_lock(&nr_freq_lock);
3958 if (atomic_dec_and_test(&nr_freq_events))
3959 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3960 spin_unlock(&nr_freq_lock);
3961#endif
3962}
3963
3964static void unaccount_freq_event(void)
3965{
3966 if (tick_nohz_full_enabled())
3967 unaccount_freq_event_nohz();
3968 else
3969 atomic_dec(&nr_freq_events);
3970}
3971
4beb31f3
FW
3972static void unaccount_event(struct perf_event *event)
3973{
25432ae9
PZ
3974 bool dec = false;
3975
4beb31f3
FW
3976 if (event->parent)
3977 return;
3978
3979 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3980 dec = true;
4beb31f3
FW
3981 if (event->attr.mmap || event->attr.mmap_data)
3982 atomic_dec(&nr_mmap_events);
3983 if (event->attr.comm)
3984 atomic_dec(&nr_comm_events);
e4222673
HB
3985 if (event->attr.namespaces)
3986 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
3987 if (event->attr.task)
3988 atomic_dec(&nr_task_events);
948b26b6 3989 if (event->attr.freq)
555e0c1e 3990 unaccount_freq_event();
45ac1403 3991 if (event->attr.context_switch) {
25432ae9 3992 dec = true;
45ac1403
AH
3993 atomic_dec(&nr_switch_events);
3994 }
4beb31f3 3995 if (is_cgroup_event(event))
25432ae9 3996 dec = true;
4beb31f3 3997 if (has_branch_stack(event))
25432ae9
PZ
3998 dec = true;
3999
9107c89e
PZ
4000 if (dec) {
4001 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4002 schedule_delayed_work(&perf_sched_work, HZ);
4003 }
4beb31f3
FW
4004
4005 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4006
4007 unaccount_pmu_sb_event(event);
4beb31f3 4008}
925d519a 4009
9107c89e
PZ
4010static void perf_sched_delayed(struct work_struct *work)
4011{
4012 mutex_lock(&perf_sched_mutex);
4013 if (atomic_dec_and_test(&perf_sched_count))
4014 static_branch_disable(&perf_sched_events);
4015 mutex_unlock(&perf_sched_mutex);
4016}
4017
bed5b25a
AS
4018/*
4019 * The following implement mutual exclusion of events on "exclusive" pmus
4020 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4021 * at a time, so we disallow creating events that might conflict, namely:
4022 *
4023 * 1) cpu-wide events in the presence of per-task events,
4024 * 2) per-task events in the presence of cpu-wide events,
4025 * 3) two matching events on the same context.
4026 *
4027 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4028 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4029 */
4030static int exclusive_event_init(struct perf_event *event)
4031{
4032 struct pmu *pmu = event->pmu;
4033
4034 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4035 return 0;
4036
4037 /*
4038 * Prevent co-existence of per-task and cpu-wide events on the
4039 * same exclusive pmu.
4040 *
4041 * Negative pmu::exclusive_cnt means there are cpu-wide
4042 * events on this "exclusive" pmu, positive means there are
4043 * per-task events.
4044 *
4045 * Since this is called in perf_event_alloc() path, event::ctx
4046 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4047 * to mean "per-task event", because unlike other attach states it
4048 * never gets cleared.
4049 */
4050 if (event->attach_state & PERF_ATTACH_TASK) {
4051 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4052 return -EBUSY;
4053 } else {
4054 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4055 return -EBUSY;
4056 }
4057
4058 return 0;
4059}
4060
4061static void exclusive_event_destroy(struct perf_event *event)
4062{
4063 struct pmu *pmu = event->pmu;
4064
4065 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4066 return;
4067
4068 /* see comment in exclusive_event_init() */
4069 if (event->attach_state & PERF_ATTACH_TASK)
4070 atomic_dec(&pmu->exclusive_cnt);
4071 else
4072 atomic_inc(&pmu->exclusive_cnt);
4073}
4074
4075static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4076{
3bf6215a 4077 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4078 (e1->cpu == e2->cpu ||
4079 e1->cpu == -1 ||
4080 e2->cpu == -1))
4081 return true;
4082 return false;
4083}
4084
4085/* Called under the same ctx::mutex as perf_install_in_context() */
4086static bool exclusive_event_installable(struct perf_event *event,
4087 struct perf_event_context *ctx)
4088{
4089 struct perf_event *iter_event;
4090 struct pmu *pmu = event->pmu;
4091
4092 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4093 return true;
4094
4095 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4096 if (exclusive_event_match(iter_event, event))
4097 return false;
4098 }
4099
4100 return true;
4101}
4102
375637bc
AS
4103static void perf_addr_filters_splice(struct perf_event *event,
4104 struct list_head *head);
4105
683ede43 4106static void _free_event(struct perf_event *event)
f1600952 4107{
e360adbe 4108 irq_work_sync(&event->pending);
925d519a 4109
4beb31f3 4110 unaccount_event(event);
9ee318a7 4111
76369139 4112 if (event->rb) {
9bb5d40c
PZ
4113 /*
4114 * Can happen when we close an event with re-directed output.
4115 *
4116 * Since we have a 0 refcount, perf_mmap_close() will skip
4117 * over us; possibly making our ring_buffer_put() the last.
4118 */
4119 mutex_lock(&event->mmap_mutex);
b69cf536 4120 ring_buffer_attach(event, NULL);
9bb5d40c 4121 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4122 }
4123
e5d1367f
SE
4124 if (is_cgroup_event(event))
4125 perf_detach_cgroup(event);
4126
a0733e69
PZ
4127 if (!event->parent) {
4128 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4129 put_callchain_buffers();
4130 }
4131
4132 perf_event_free_bpf_prog(event);
375637bc
AS
4133 perf_addr_filters_splice(event, NULL);
4134 kfree(event->addr_filters_offs);
a0733e69
PZ
4135
4136 if (event->destroy)
4137 event->destroy(event);
4138
4139 if (event->ctx)
4140 put_ctx(event->ctx);
4141
62a92c8f
AS
4142 exclusive_event_destroy(event);
4143 module_put(event->pmu->module);
a0733e69
PZ
4144
4145 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4146}
4147
683ede43
PZ
4148/*
4149 * Used to free events which have a known refcount of 1, such as in error paths
4150 * where the event isn't exposed yet and inherited events.
4151 */
4152static void free_event(struct perf_event *event)
0793a61d 4153{
683ede43
PZ
4154 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4155 "unexpected event refcount: %ld; ptr=%p\n",
4156 atomic_long_read(&event->refcount), event)) {
4157 /* leak to avoid use-after-free */
4158 return;
4159 }
0793a61d 4160
683ede43 4161 _free_event(event);
0793a61d
TG
4162}
4163
a66a3052 4164/*
f8697762 4165 * Remove user event from the owner task.
a66a3052 4166 */
f8697762 4167static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4168{
8882135b 4169 struct task_struct *owner;
fb0459d7 4170
8882135b 4171 rcu_read_lock();
8882135b 4172 /*
f47c02c0
PZ
4173 * Matches the smp_store_release() in perf_event_exit_task(). If we
4174 * observe !owner it means the list deletion is complete and we can
4175 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4176 * owner->perf_event_mutex.
4177 */
f47c02c0 4178 owner = lockless_dereference(event->owner);
8882135b
PZ
4179 if (owner) {
4180 /*
4181 * Since delayed_put_task_struct() also drops the last
4182 * task reference we can safely take a new reference
4183 * while holding the rcu_read_lock().
4184 */
4185 get_task_struct(owner);
4186 }
4187 rcu_read_unlock();
4188
4189 if (owner) {
f63a8daa
PZ
4190 /*
4191 * If we're here through perf_event_exit_task() we're already
4192 * holding ctx->mutex which would be an inversion wrt. the
4193 * normal lock order.
4194 *
4195 * However we can safely take this lock because its the child
4196 * ctx->mutex.
4197 */
4198 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4199
8882135b
PZ
4200 /*
4201 * We have to re-check the event->owner field, if it is cleared
4202 * we raced with perf_event_exit_task(), acquiring the mutex
4203 * ensured they're done, and we can proceed with freeing the
4204 * event.
4205 */
f47c02c0 4206 if (event->owner) {
8882135b 4207 list_del_init(&event->owner_entry);
f47c02c0
PZ
4208 smp_store_release(&event->owner, NULL);
4209 }
8882135b
PZ
4210 mutex_unlock(&owner->perf_event_mutex);
4211 put_task_struct(owner);
4212 }
f8697762
JO
4213}
4214
f8697762
JO
4215static void put_event(struct perf_event *event)
4216{
f8697762
JO
4217 if (!atomic_long_dec_and_test(&event->refcount))
4218 return;
4219
c6e5b732
PZ
4220 _free_event(event);
4221}
4222
4223/*
4224 * Kill an event dead; while event:refcount will preserve the event
4225 * object, it will not preserve its functionality. Once the last 'user'
4226 * gives up the object, we'll destroy the thing.
4227 */
4228int perf_event_release_kernel(struct perf_event *event)
4229{
a4f4bb6d 4230 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
4231 struct perf_event *child, *tmp;
4232
a4f4bb6d
PZ
4233 /*
4234 * If we got here through err_file: fput(event_file); we will not have
4235 * attached to a context yet.
4236 */
4237 if (!ctx) {
4238 WARN_ON_ONCE(event->attach_state &
4239 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4240 goto no_ctx;
4241 }
4242
f8697762
JO
4243 if (!is_kernel_event(event))
4244 perf_remove_from_owner(event);
8882135b 4245
5fa7c8ec 4246 ctx = perf_event_ctx_lock(event);
a83fe28e 4247 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4248 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4249
a69b0ca4 4250 raw_spin_lock_irq(&ctx->lock);
683ede43 4251 /*
d8a8cfc7 4252 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4253 * anymore.
683ede43 4254 *
a69b0ca4
PZ
4255 * Anybody acquiring event->child_mutex after the below loop _must_
4256 * also see this, most importantly inherit_event() which will avoid
4257 * placing more children on the list.
683ede43 4258 *
c6e5b732
PZ
4259 * Thus this guarantees that we will in fact observe and kill _ALL_
4260 * child events.
683ede43 4261 */
a69b0ca4
PZ
4262 event->state = PERF_EVENT_STATE_DEAD;
4263 raw_spin_unlock_irq(&ctx->lock);
4264
4265 perf_event_ctx_unlock(event, ctx);
683ede43 4266
c6e5b732
PZ
4267again:
4268 mutex_lock(&event->child_mutex);
4269 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4270
c6e5b732
PZ
4271 /*
4272 * Cannot change, child events are not migrated, see the
4273 * comment with perf_event_ctx_lock_nested().
4274 */
4275 ctx = lockless_dereference(child->ctx);
4276 /*
4277 * Since child_mutex nests inside ctx::mutex, we must jump
4278 * through hoops. We start by grabbing a reference on the ctx.
4279 *
4280 * Since the event cannot get freed while we hold the
4281 * child_mutex, the context must also exist and have a !0
4282 * reference count.
4283 */
4284 get_ctx(ctx);
4285
4286 /*
4287 * Now that we have a ctx ref, we can drop child_mutex, and
4288 * acquire ctx::mutex without fear of it going away. Then we
4289 * can re-acquire child_mutex.
4290 */
4291 mutex_unlock(&event->child_mutex);
4292 mutex_lock(&ctx->mutex);
4293 mutex_lock(&event->child_mutex);
4294
4295 /*
4296 * Now that we hold ctx::mutex and child_mutex, revalidate our
4297 * state, if child is still the first entry, it didn't get freed
4298 * and we can continue doing so.
4299 */
4300 tmp = list_first_entry_or_null(&event->child_list,
4301 struct perf_event, child_list);
4302 if (tmp == child) {
4303 perf_remove_from_context(child, DETACH_GROUP);
4304 list_del(&child->child_list);
4305 free_event(child);
4306 /*
4307 * This matches the refcount bump in inherit_event();
4308 * this can't be the last reference.
4309 */
4310 put_event(event);
4311 }
4312
4313 mutex_unlock(&event->child_mutex);
4314 mutex_unlock(&ctx->mutex);
4315 put_ctx(ctx);
4316 goto again;
4317 }
4318 mutex_unlock(&event->child_mutex);
4319
a4f4bb6d
PZ
4320no_ctx:
4321 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4322 return 0;
4323}
4324EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4325
8b10c5e2
PZ
4326/*
4327 * Called when the last reference to the file is gone.
4328 */
a6fa941d
AV
4329static int perf_release(struct inode *inode, struct file *file)
4330{
c6e5b732 4331 perf_event_release_kernel(file->private_data);
a6fa941d 4332 return 0;
fb0459d7 4333}
fb0459d7 4334
59ed446f 4335u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4336{
cdd6c482 4337 struct perf_event *child;
e53c0994
PZ
4338 u64 total = 0;
4339
59ed446f
PZ
4340 *enabled = 0;
4341 *running = 0;
4342
6f10581a 4343 mutex_lock(&event->child_mutex);
01add3ea 4344
7d88962e 4345 (void)perf_event_read(event, false);
01add3ea
SB
4346 total += perf_event_count(event);
4347
59ed446f
PZ
4348 *enabled += event->total_time_enabled +
4349 atomic64_read(&event->child_total_time_enabled);
4350 *running += event->total_time_running +
4351 atomic64_read(&event->child_total_time_running);
4352
4353 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4354 (void)perf_event_read(child, false);
01add3ea 4355 total += perf_event_count(child);
59ed446f
PZ
4356 *enabled += child->total_time_enabled;
4357 *running += child->total_time_running;
4358 }
6f10581a 4359 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4360
4361 return total;
4362}
fb0459d7 4363EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4364
7d88962e 4365static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4366 u64 read_format, u64 *values)
3dab77fb 4367{
fa8c2693
PZ
4368 struct perf_event *sub;
4369 int n = 1; /* skip @nr */
7d88962e 4370 int ret;
f63a8daa 4371
7d88962e
SB
4372 ret = perf_event_read(leader, true);
4373 if (ret)
4374 return ret;
abf4868b 4375
fa8c2693
PZ
4376 /*
4377 * Since we co-schedule groups, {enabled,running} times of siblings
4378 * will be identical to those of the leader, so we only publish one
4379 * set.
4380 */
4381 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4382 values[n++] += leader->total_time_enabled +
4383 atomic64_read(&leader->child_total_time_enabled);
4384 }
3dab77fb 4385
fa8c2693
PZ
4386 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4387 values[n++] += leader->total_time_running +
4388 atomic64_read(&leader->child_total_time_running);
4389 }
4390
4391 /*
4392 * Write {count,id} tuples for every sibling.
4393 */
4394 values[n++] += perf_event_count(leader);
abf4868b
PZ
4395 if (read_format & PERF_FORMAT_ID)
4396 values[n++] = primary_event_id(leader);
3dab77fb 4397
fa8c2693
PZ
4398 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4399 values[n++] += perf_event_count(sub);
4400 if (read_format & PERF_FORMAT_ID)
4401 values[n++] = primary_event_id(sub);
4402 }
7d88962e
SB
4403
4404 return 0;
fa8c2693 4405}
3dab77fb 4406
fa8c2693
PZ
4407static int perf_read_group(struct perf_event *event,
4408 u64 read_format, char __user *buf)
4409{
4410 struct perf_event *leader = event->group_leader, *child;
4411 struct perf_event_context *ctx = leader->ctx;
7d88962e 4412 int ret;
fa8c2693 4413 u64 *values;
3dab77fb 4414
fa8c2693 4415 lockdep_assert_held(&ctx->mutex);
3dab77fb 4416
fa8c2693
PZ
4417 values = kzalloc(event->read_size, GFP_KERNEL);
4418 if (!values)
4419 return -ENOMEM;
3dab77fb 4420
fa8c2693
PZ
4421 values[0] = 1 + leader->nr_siblings;
4422
4423 /*
4424 * By locking the child_mutex of the leader we effectively
4425 * lock the child list of all siblings.. XXX explain how.
4426 */
4427 mutex_lock(&leader->child_mutex);
abf4868b 4428
7d88962e
SB
4429 ret = __perf_read_group_add(leader, read_format, values);
4430 if (ret)
4431 goto unlock;
4432
4433 list_for_each_entry(child, &leader->child_list, child_list) {
4434 ret = __perf_read_group_add(child, read_format, values);
4435 if (ret)
4436 goto unlock;
4437 }
abf4868b 4438
fa8c2693 4439 mutex_unlock(&leader->child_mutex);
abf4868b 4440
7d88962e 4441 ret = event->read_size;
fa8c2693
PZ
4442 if (copy_to_user(buf, values, event->read_size))
4443 ret = -EFAULT;
7d88962e 4444 goto out;
fa8c2693 4445
7d88962e
SB
4446unlock:
4447 mutex_unlock(&leader->child_mutex);
4448out:
fa8c2693 4449 kfree(values);
abf4868b 4450 return ret;
3dab77fb
PZ
4451}
4452
b15f495b 4453static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4454 u64 read_format, char __user *buf)
4455{
59ed446f 4456 u64 enabled, running;
3dab77fb
PZ
4457 u64 values[4];
4458 int n = 0;
4459
59ed446f
PZ
4460 values[n++] = perf_event_read_value(event, &enabled, &running);
4461 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4462 values[n++] = enabled;
4463 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4464 values[n++] = running;
3dab77fb 4465 if (read_format & PERF_FORMAT_ID)
cdd6c482 4466 values[n++] = primary_event_id(event);
3dab77fb
PZ
4467
4468 if (copy_to_user(buf, values, n * sizeof(u64)))
4469 return -EFAULT;
4470
4471 return n * sizeof(u64);
4472}
4473
dc633982
JO
4474static bool is_event_hup(struct perf_event *event)
4475{
4476 bool no_children;
4477
a69b0ca4 4478 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4479 return false;
4480
4481 mutex_lock(&event->child_mutex);
4482 no_children = list_empty(&event->child_list);
4483 mutex_unlock(&event->child_mutex);
4484 return no_children;
4485}
4486
0793a61d 4487/*
cdd6c482 4488 * Read the performance event - simple non blocking version for now
0793a61d
TG
4489 */
4490static ssize_t
b15f495b 4491__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4492{
cdd6c482 4493 u64 read_format = event->attr.read_format;
3dab77fb 4494 int ret;
0793a61d 4495
3b6f9e5c 4496 /*
cdd6c482 4497 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4498 * error state (i.e. because it was pinned but it couldn't be
4499 * scheduled on to the CPU at some point).
4500 */
cdd6c482 4501 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4502 return 0;
4503
c320c7b7 4504 if (count < event->read_size)
3dab77fb
PZ
4505 return -ENOSPC;
4506
cdd6c482 4507 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4508 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4509 ret = perf_read_group(event, read_format, buf);
3dab77fb 4510 else
b15f495b 4511 ret = perf_read_one(event, read_format, buf);
0793a61d 4512
3dab77fb 4513 return ret;
0793a61d
TG
4514}
4515
0793a61d
TG
4516static ssize_t
4517perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4518{
cdd6c482 4519 struct perf_event *event = file->private_data;
f63a8daa
PZ
4520 struct perf_event_context *ctx;
4521 int ret;
0793a61d 4522
f63a8daa 4523 ctx = perf_event_ctx_lock(event);
b15f495b 4524 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4525 perf_event_ctx_unlock(event, ctx);
4526
4527 return ret;
0793a61d
TG
4528}
4529
4530static unsigned int perf_poll(struct file *file, poll_table *wait)
4531{
cdd6c482 4532 struct perf_event *event = file->private_data;
76369139 4533 struct ring_buffer *rb;
61b67684 4534 unsigned int events = POLLHUP;
c7138f37 4535
e708d7ad 4536 poll_wait(file, &event->waitq, wait);
179033b3 4537
dc633982 4538 if (is_event_hup(event))
179033b3 4539 return events;
c7138f37 4540
10c6db11 4541 /*
9bb5d40c
PZ
4542 * Pin the event->rb by taking event->mmap_mutex; otherwise
4543 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4544 */
4545 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4546 rb = event->rb;
4547 if (rb)
76369139 4548 events = atomic_xchg(&rb->poll, 0);
10c6db11 4549 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4550 return events;
4551}
4552
f63a8daa 4553static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4554{
7d88962e 4555 (void)perf_event_read(event, false);
e7850595 4556 local64_set(&event->count, 0);
cdd6c482 4557 perf_event_update_userpage(event);
3df5edad
PZ
4558}
4559
c93f7669 4560/*
cdd6c482
IM
4561 * Holding the top-level event's child_mutex means that any
4562 * descendant process that has inherited this event will block
8ba289b8 4563 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4564 * task existence requirements of perf_event_enable/disable.
c93f7669 4565 */
cdd6c482
IM
4566static void perf_event_for_each_child(struct perf_event *event,
4567 void (*func)(struct perf_event *))
3df5edad 4568{
cdd6c482 4569 struct perf_event *child;
3df5edad 4570
cdd6c482 4571 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4572
cdd6c482
IM
4573 mutex_lock(&event->child_mutex);
4574 func(event);
4575 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4576 func(child);
cdd6c482 4577 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4578}
4579
cdd6c482
IM
4580static void perf_event_for_each(struct perf_event *event,
4581 void (*func)(struct perf_event *))
3df5edad 4582{
cdd6c482
IM
4583 struct perf_event_context *ctx = event->ctx;
4584 struct perf_event *sibling;
3df5edad 4585
f63a8daa
PZ
4586 lockdep_assert_held(&ctx->mutex);
4587
cdd6c482 4588 event = event->group_leader;
75f937f2 4589
cdd6c482 4590 perf_event_for_each_child(event, func);
cdd6c482 4591 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4592 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4593}
4594
fae3fde6
PZ
4595static void __perf_event_period(struct perf_event *event,
4596 struct perf_cpu_context *cpuctx,
4597 struct perf_event_context *ctx,
4598 void *info)
c7999c6f 4599{
fae3fde6 4600 u64 value = *((u64 *)info);
c7999c6f 4601 bool active;
08247e31 4602
cdd6c482 4603 if (event->attr.freq) {
cdd6c482 4604 event->attr.sample_freq = value;
08247e31 4605 } else {
cdd6c482
IM
4606 event->attr.sample_period = value;
4607 event->hw.sample_period = value;
08247e31 4608 }
bad7192b
PZ
4609
4610 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4611 if (active) {
4612 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4613 /*
4614 * We could be throttled; unthrottle now to avoid the tick
4615 * trying to unthrottle while we already re-started the event.
4616 */
4617 if (event->hw.interrupts == MAX_INTERRUPTS) {
4618 event->hw.interrupts = 0;
4619 perf_log_throttle(event, 1);
4620 }
bad7192b
PZ
4621 event->pmu->stop(event, PERF_EF_UPDATE);
4622 }
4623
4624 local64_set(&event->hw.period_left, 0);
4625
4626 if (active) {
4627 event->pmu->start(event, PERF_EF_RELOAD);
4628 perf_pmu_enable(ctx->pmu);
4629 }
c7999c6f
PZ
4630}
4631
4632static int perf_event_period(struct perf_event *event, u64 __user *arg)
4633{
c7999c6f
PZ
4634 u64 value;
4635
4636 if (!is_sampling_event(event))
4637 return -EINVAL;
4638
4639 if (copy_from_user(&value, arg, sizeof(value)))
4640 return -EFAULT;
4641
4642 if (!value)
4643 return -EINVAL;
4644
4645 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4646 return -EINVAL;
4647
fae3fde6 4648 event_function_call(event, __perf_event_period, &value);
08247e31 4649
c7999c6f 4650 return 0;
08247e31
PZ
4651}
4652
ac9721f3
PZ
4653static const struct file_operations perf_fops;
4654
2903ff01 4655static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4656{
2903ff01
AV
4657 struct fd f = fdget(fd);
4658 if (!f.file)
4659 return -EBADF;
ac9721f3 4660
2903ff01
AV
4661 if (f.file->f_op != &perf_fops) {
4662 fdput(f);
4663 return -EBADF;
ac9721f3 4664 }
2903ff01
AV
4665 *p = f;
4666 return 0;
ac9721f3
PZ
4667}
4668
4669static int perf_event_set_output(struct perf_event *event,
4670 struct perf_event *output_event);
6fb2915d 4671static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4672static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4673
f63a8daa 4674static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4675{
cdd6c482 4676 void (*func)(struct perf_event *);
3df5edad 4677 u32 flags = arg;
d859e29f
PM
4678
4679 switch (cmd) {
cdd6c482 4680 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4681 func = _perf_event_enable;
d859e29f 4682 break;
cdd6c482 4683 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4684 func = _perf_event_disable;
79f14641 4685 break;
cdd6c482 4686 case PERF_EVENT_IOC_RESET:
f63a8daa 4687 func = _perf_event_reset;
6de6a7b9 4688 break;
3df5edad 4689
cdd6c482 4690 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4691 return _perf_event_refresh(event, arg);
08247e31 4692
cdd6c482
IM
4693 case PERF_EVENT_IOC_PERIOD:
4694 return perf_event_period(event, (u64 __user *)arg);
08247e31 4695
cf4957f1
JO
4696 case PERF_EVENT_IOC_ID:
4697 {
4698 u64 id = primary_event_id(event);
4699
4700 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4701 return -EFAULT;
4702 return 0;
4703 }
4704
cdd6c482 4705 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4706 {
ac9721f3 4707 int ret;
ac9721f3 4708 if (arg != -1) {
2903ff01
AV
4709 struct perf_event *output_event;
4710 struct fd output;
4711 ret = perf_fget_light(arg, &output);
4712 if (ret)
4713 return ret;
4714 output_event = output.file->private_data;
4715 ret = perf_event_set_output(event, output_event);
4716 fdput(output);
4717 } else {
4718 ret = perf_event_set_output(event, NULL);
ac9721f3 4719 }
ac9721f3
PZ
4720 return ret;
4721 }
a4be7c27 4722
6fb2915d
LZ
4723 case PERF_EVENT_IOC_SET_FILTER:
4724 return perf_event_set_filter(event, (void __user *)arg);
4725
2541517c
AS
4726 case PERF_EVENT_IOC_SET_BPF:
4727 return perf_event_set_bpf_prog(event, arg);
4728
86e7972f
WN
4729 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4730 struct ring_buffer *rb;
4731
4732 rcu_read_lock();
4733 rb = rcu_dereference(event->rb);
4734 if (!rb || !rb->nr_pages) {
4735 rcu_read_unlock();
4736 return -EINVAL;
4737 }
4738 rb_toggle_paused(rb, !!arg);
4739 rcu_read_unlock();
4740 return 0;
4741 }
d859e29f 4742 default:
3df5edad 4743 return -ENOTTY;
d859e29f 4744 }
3df5edad
PZ
4745
4746 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4747 perf_event_for_each(event, func);
3df5edad 4748 else
cdd6c482 4749 perf_event_for_each_child(event, func);
3df5edad
PZ
4750
4751 return 0;
d859e29f
PM
4752}
4753
f63a8daa
PZ
4754static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4755{
4756 struct perf_event *event = file->private_data;
4757 struct perf_event_context *ctx;
4758 long ret;
4759
4760 ctx = perf_event_ctx_lock(event);
4761 ret = _perf_ioctl(event, cmd, arg);
4762 perf_event_ctx_unlock(event, ctx);
4763
4764 return ret;
4765}
4766
b3f20785
PM
4767#ifdef CONFIG_COMPAT
4768static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4769 unsigned long arg)
4770{
4771 switch (_IOC_NR(cmd)) {
4772 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4773 case _IOC_NR(PERF_EVENT_IOC_ID):
4774 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4775 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4776 cmd &= ~IOCSIZE_MASK;
4777 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4778 }
4779 break;
4780 }
4781 return perf_ioctl(file, cmd, arg);
4782}
4783#else
4784# define perf_compat_ioctl NULL
4785#endif
4786
cdd6c482 4787int perf_event_task_enable(void)
771d7cde 4788{
f63a8daa 4789 struct perf_event_context *ctx;
cdd6c482 4790 struct perf_event *event;
771d7cde 4791
cdd6c482 4792 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4793 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4794 ctx = perf_event_ctx_lock(event);
4795 perf_event_for_each_child(event, _perf_event_enable);
4796 perf_event_ctx_unlock(event, ctx);
4797 }
cdd6c482 4798 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4799
4800 return 0;
4801}
4802
cdd6c482 4803int perf_event_task_disable(void)
771d7cde 4804{
f63a8daa 4805 struct perf_event_context *ctx;
cdd6c482 4806 struct perf_event *event;
771d7cde 4807
cdd6c482 4808 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4809 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4810 ctx = perf_event_ctx_lock(event);
4811 perf_event_for_each_child(event, _perf_event_disable);
4812 perf_event_ctx_unlock(event, ctx);
4813 }
cdd6c482 4814 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4815
4816 return 0;
4817}
4818
cdd6c482 4819static int perf_event_index(struct perf_event *event)
194002b2 4820{
a4eaf7f1
PZ
4821 if (event->hw.state & PERF_HES_STOPPED)
4822 return 0;
4823
cdd6c482 4824 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4825 return 0;
4826
35edc2a5 4827 return event->pmu->event_idx(event);
194002b2
PZ
4828}
4829
c4794295 4830static void calc_timer_values(struct perf_event *event,
e3f3541c 4831 u64 *now,
7f310a5d
EM
4832 u64 *enabled,
4833 u64 *running)
c4794295 4834{
e3f3541c 4835 u64 ctx_time;
c4794295 4836
e3f3541c
PZ
4837 *now = perf_clock();
4838 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4839 *enabled = ctx_time - event->tstamp_enabled;
4840 *running = ctx_time - event->tstamp_running;
4841}
4842
fa731587
PZ
4843static void perf_event_init_userpage(struct perf_event *event)
4844{
4845 struct perf_event_mmap_page *userpg;
4846 struct ring_buffer *rb;
4847
4848 rcu_read_lock();
4849 rb = rcu_dereference(event->rb);
4850 if (!rb)
4851 goto unlock;
4852
4853 userpg = rb->user_page;
4854
4855 /* Allow new userspace to detect that bit 0 is deprecated */
4856 userpg->cap_bit0_is_deprecated = 1;
4857 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4858 userpg->data_offset = PAGE_SIZE;
4859 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4860
4861unlock:
4862 rcu_read_unlock();
4863}
4864
c1317ec2
AL
4865void __weak arch_perf_update_userpage(
4866 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4867{
4868}
4869
38ff667b
PZ
4870/*
4871 * Callers need to ensure there can be no nesting of this function, otherwise
4872 * the seqlock logic goes bad. We can not serialize this because the arch
4873 * code calls this from NMI context.
4874 */
cdd6c482 4875void perf_event_update_userpage(struct perf_event *event)
37d81828 4876{
cdd6c482 4877 struct perf_event_mmap_page *userpg;
76369139 4878 struct ring_buffer *rb;
e3f3541c 4879 u64 enabled, running, now;
38ff667b
PZ
4880
4881 rcu_read_lock();
5ec4c599
PZ
4882 rb = rcu_dereference(event->rb);
4883 if (!rb)
4884 goto unlock;
4885
0d641208
EM
4886 /*
4887 * compute total_time_enabled, total_time_running
4888 * based on snapshot values taken when the event
4889 * was last scheduled in.
4890 *
4891 * we cannot simply called update_context_time()
4892 * because of locking issue as we can be called in
4893 * NMI context
4894 */
e3f3541c 4895 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4896
76369139 4897 userpg = rb->user_page;
7b732a75
PZ
4898 /*
4899 * Disable preemption so as to not let the corresponding user-space
4900 * spin too long if we get preempted.
4901 */
4902 preempt_disable();
37d81828 4903 ++userpg->lock;
92f22a38 4904 barrier();
cdd6c482 4905 userpg->index = perf_event_index(event);
b5e58793 4906 userpg->offset = perf_event_count(event);
365a4038 4907 if (userpg->index)
e7850595 4908 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4909
0d641208 4910 userpg->time_enabled = enabled +
cdd6c482 4911 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4912
0d641208 4913 userpg->time_running = running +
cdd6c482 4914 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4915
c1317ec2 4916 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4917
92f22a38 4918 barrier();
37d81828 4919 ++userpg->lock;
7b732a75 4920 preempt_enable();
38ff667b 4921unlock:
7b732a75 4922 rcu_read_unlock();
37d81828
PM
4923}
4924
11bac800 4925static int perf_mmap_fault(struct vm_fault *vmf)
906010b2 4926{
11bac800 4927 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 4928 struct ring_buffer *rb;
906010b2
PZ
4929 int ret = VM_FAULT_SIGBUS;
4930
4931 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4932 if (vmf->pgoff == 0)
4933 ret = 0;
4934 return ret;
4935 }
4936
4937 rcu_read_lock();
76369139
FW
4938 rb = rcu_dereference(event->rb);
4939 if (!rb)
906010b2
PZ
4940 goto unlock;
4941
4942 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4943 goto unlock;
4944
76369139 4945 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4946 if (!vmf->page)
4947 goto unlock;
4948
4949 get_page(vmf->page);
11bac800 4950 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
4951 vmf->page->index = vmf->pgoff;
4952
4953 ret = 0;
4954unlock:
4955 rcu_read_unlock();
4956
4957 return ret;
4958}
4959
10c6db11
PZ
4960static void ring_buffer_attach(struct perf_event *event,
4961 struct ring_buffer *rb)
4962{
b69cf536 4963 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4964 unsigned long flags;
4965
b69cf536
PZ
4966 if (event->rb) {
4967 /*
4968 * Should be impossible, we set this when removing
4969 * event->rb_entry and wait/clear when adding event->rb_entry.
4970 */
4971 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4972
b69cf536 4973 old_rb = event->rb;
b69cf536
PZ
4974 spin_lock_irqsave(&old_rb->event_lock, flags);
4975 list_del_rcu(&event->rb_entry);
4976 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4977
2f993cf0
ON
4978 event->rcu_batches = get_state_synchronize_rcu();
4979 event->rcu_pending = 1;
b69cf536 4980 }
10c6db11 4981
b69cf536 4982 if (rb) {
2f993cf0
ON
4983 if (event->rcu_pending) {
4984 cond_synchronize_rcu(event->rcu_batches);
4985 event->rcu_pending = 0;
4986 }
4987
b69cf536
PZ
4988 spin_lock_irqsave(&rb->event_lock, flags);
4989 list_add_rcu(&event->rb_entry, &rb->event_list);
4990 spin_unlock_irqrestore(&rb->event_lock, flags);
4991 }
4992
767ae086
AS
4993 /*
4994 * Avoid racing with perf_mmap_close(AUX): stop the event
4995 * before swizzling the event::rb pointer; if it's getting
4996 * unmapped, its aux_mmap_count will be 0 and it won't
4997 * restart. See the comment in __perf_pmu_output_stop().
4998 *
4999 * Data will inevitably be lost when set_output is done in
5000 * mid-air, but then again, whoever does it like this is
5001 * not in for the data anyway.
5002 */
5003 if (has_aux(event))
5004 perf_event_stop(event, 0);
5005
b69cf536
PZ
5006 rcu_assign_pointer(event->rb, rb);
5007
5008 if (old_rb) {
5009 ring_buffer_put(old_rb);
5010 /*
5011 * Since we detached before setting the new rb, so that we
5012 * could attach the new rb, we could have missed a wakeup.
5013 * Provide it now.
5014 */
5015 wake_up_all(&event->waitq);
5016 }
10c6db11
PZ
5017}
5018
5019static void ring_buffer_wakeup(struct perf_event *event)
5020{
5021 struct ring_buffer *rb;
5022
5023 rcu_read_lock();
5024 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5025 if (rb) {
5026 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5027 wake_up_all(&event->waitq);
5028 }
10c6db11
PZ
5029 rcu_read_unlock();
5030}
5031
fdc26706 5032struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5033{
76369139 5034 struct ring_buffer *rb;
7b732a75 5035
ac9721f3 5036 rcu_read_lock();
76369139
FW
5037 rb = rcu_dereference(event->rb);
5038 if (rb) {
5039 if (!atomic_inc_not_zero(&rb->refcount))
5040 rb = NULL;
ac9721f3
PZ
5041 }
5042 rcu_read_unlock();
5043
76369139 5044 return rb;
ac9721f3
PZ
5045}
5046
fdc26706 5047void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5048{
76369139 5049 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 5050 return;
7b732a75 5051
9bb5d40c 5052 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5053
76369139 5054 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5055}
5056
5057static void perf_mmap_open(struct vm_area_struct *vma)
5058{
cdd6c482 5059 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5060
cdd6c482 5061 atomic_inc(&event->mmap_count);
9bb5d40c 5062 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5063
45bfb2e5
PZ
5064 if (vma->vm_pgoff)
5065 atomic_inc(&event->rb->aux_mmap_count);
5066
1e0fb9ec
AL
5067 if (event->pmu->event_mapped)
5068 event->pmu->event_mapped(event);
7b732a75
PZ
5069}
5070
95ff4ca2
AS
5071static void perf_pmu_output_stop(struct perf_event *event);
5072
9bb5d40c
PZ
5073/*
5074 * A buffer can be mmap()ed multiple times; either directly through the same
5075 * event, or through other events by use of perf_event_set_output().
5076 *
5077 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5078 * the buffer here, where we still have a VM context. This means we need
5079 * to detach all events redirecting to us.
5080 */
7b732a75
PZ
5081static void perf_mmap_close(struct vm_area_struct *vma)
5082{
cdd6c482 5083 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5084
b69cf536 5085 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5086 struct user_struct *mmap_user = rb->mmap_user;
5087 int mmap_locked = rb->mmap_locked;
5088 unsigned long size = perf_data_size(rb);
789f90fc 5089
1e0fb9ec
AL
5090 if (event->pmu->event_unmapped)
5091 event->pmu->event_unmapped(event);
5092
45bfb2e5
PZ
5093 /*
5094 * rb->aux_mmap_count will always drop before rb->mmap_count and
5095 * event->mmap_count, so it is ok to use event->mmap_mutex to
5096 * serialize with perf_mmap here.
5097 */
5098 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5099 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5100 /*
5101 * Stop all AUX events that are writing to this buffer,
5102 * so that we can free its AUX pages and corresponding PMU
5103 * data. Note that after rb::aux_mmap_count dropped to zero,
5104 * they won't start any more (see perf_aux_output_begin()).
5105 */
5106 perf_pmu_output_stop(event);
5107
5108 /* now it's safe to free the pages */
45bfb2e5
PZ
5109 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5110 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5111
95ff4ca2 5112 /* this has to be the last one */
45bfb2e5 5113 rb_free_aux(rb);
95ff4ca2
AS
5114 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5115
45bfb2e5
PZ
5116 mutex_unlock(&event->mmap_mutex);
5117 }
5118
9bb5d40c
PZ
5119 atomic_dec(&rb->mmap_count);
5120
5121 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5122 goto out_put;
9bb5d40c 5123
b69cf536 5124 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5125 mutex_unlock(&event->mmap_mutex);
5126
5127 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5128 if (atomic_read(&rb->mmap_count))
5129 goto out_put;
ac9721f3 5130
9bb5d40c
PZ
5131 /*
5132 * No other mmap()s, detach from all other events that might redirect
5133 * into the now unreachable buffer. Somewhat complicated by the
5134 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5135 */
5136again:
5137 rcu_read_lock();
5138 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5139 if (!atomic_long_inc_not_zero(&event->refcount)) {
5140 /*
5141 * This event is en-route to free_event() which will
5142 * detach it and remove it from the list.
5143 */
5144 continue;
5145 }
5146 rcu_read_unlock();
789f90fc 5147
9bb5d40c
PZ
5148 mutex_lock(&event->mmap_mutex);
5149 /*
5150 * Check we didn't race with perf_event_set_output() which can
5151 * swizzle the rb from under us while we were waiting to
5152 * acquire mmap_mutex.
5153 *
5154 * If we find a different rb; ignore this event, a next
5155 * iteration will no longer find it on the list. We have to
5156 * still restart the iteration to make sure we're not now
5157 * iterating the wrong list.
5158 */
b69cf536
PZ
5159 if (event->rb == rb)
5160 ring_buffer_attach(event, NULL);
5161
cdd6c482 5162 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5163 put_event(event);
ac9721f3 5164
9bb5d40c
PZ
5165 /*
5166 * Restart the iteration; either we're on the wrong list or
5167 * destroyed its integrity by doing a deletion.
5168 */
5169 goto again;
7b732a75 5170 }
9bb5d40c
PZ
5171 rcu_read_unlock();
5172
5173 /*
5174 * It could be there's still a few 0-ref events on the list; they'll
5175 * get cleaned up by free_event() -- they'll also still have their
5176 * ref on the rb and will free it whenever they are done with it.
5177 *
5178 * Aside from that, this buffer is 'fully' detached and unmapped,
5179 * undo the VM accounting.
5180 */
5181
5182 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5183 vma->vm_mm->pinned_vm -= mmap_locked;
5184 free_uid(mmap_user);
5185
b69cf536 5186out_put:
9bb5d40c 5187 ring_buffer_put(rb); /* could be last */
37d81828
PM
5188}
5189
f0f37e2f 5190static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5191 .open = perf_mmap_open,
45bfb2e5 5192 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5193 .fault = perf_mmap_fault,
5194 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5195};
5196
5197static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5198{
cdd6c482 5199 struct perf_event *event = file->private_data;
22a4f650 5200 unsigned long user_locked, user_lock_limit;
789f90fc 5201 struct user_struct *user = current_user();
22a4f650 5202 unsigned long locked, lock_limit;
45bfb2e5 5203 struct ring_buffer *rb = NULL;
7b732a75
PZ
5204 unsigned long vma_size;
5205 unsigned long nr_pages;
45bfb2e5 5206 long user_extra = 0, extra = 0;
d57e34fd 5207 int ret = 0, flags = 0;
37d81828 5208
c7920614
PZ
5209 /*
5210 * Don't allow mmap() of inherited per-task counters. This would
5211 * create a performance issue due to all children writing to the
76369139 5212 * same rb.
c7920614
PZ
5213 */
5214 if (event->cpu == -1 && event->attr.inherit)
5215 return -EINVAL;
5216
43a21ea8 5217 if (!(vma->vm_flags & VM_SHARED))
37d81828 5218 return -EINVAL;
7b732a75
PZ
5219
5220 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5221
5222 if (vma->vm_pgoff == 0) {
5223 nr_pages = (vma_size / PAGE_SIZE) - 1;
5224 } else {
5225 /*
5226 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5227 * mapped, all subsequent mappings should have the same size
5228 * and offset. Must be above the normal perf buffer.
5229 */
5230 u64 aux_offset, aux_size;
5231
5232 if (!event->rb)
5233 return -EINVAL;
5234
5235 nr_pages = vma_size / PAGE_SIZE;
5236
5237 mutex_lock(&event->mmap_mutex);
5238 ret = -EINVAL;
5239
5240 rb = event->rb;
5241 if (!rb)
5242 goto aux_unlock;
5243
5244 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5245 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5246
5247 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5248 goto aux_unlock;
5249
5250 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5251 goto aux_unlock;
5252
5253 /* already mapped with a different offset */
5254 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5255 goto aux_unlock;
5256
5257 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5258 goto aux_unlock;
5259
5260 /* already mapped with a different size */
5261 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5262 goto aux_unlock;
5263
5264 if (!is_power_of_2(nr_pages))
5265 goto aux_unlock;
5266
5267 if (!atomic_inc_not_zero(&rb->mmap_count))
5268 goto aux_unlock;
5269
5270 if (rb_has_aux(rb)) {
5271 atomic_inc(&rb->aux_mmap_count);
5272 ret = 0;
5273 goto unlock;
5274 }
5275
5276 atomic_set(&rb->aux_mmap_count, 1);
5277 user_extra = nr_pages;
5278
5279 goto accounting;
5280 }
7b732a75 5281
7730d865 5282 /*
76369139 5283 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5284 * can do bitmasks instead of modulo.
5285 */
2ed11312 5286 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5287 return -EINVAL;
5288
7b732a75 5289 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5290 return -EINVAL;
5291
cdd6c482 5292 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5293again:
cdd6c482 5294 mutex_lock(&event->mmap_mutex);
76369139 5295 if (event->rb) {
9bb5d40c 5296 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5297 ret = -EINVAL;
9bb5d40c
PZ
5298 goto unlock;
5299 }
5300
5301 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5302 /*
5303 * Raced against perf_mmap_close() through
5304 * perf_event_set_output(). Try again, hope for better
5305 * luck.
5306 */
5307 mutex_unlock(&event->mmap_mutex);
5308 goto again;
5309 }
5310
ebb3c4c4
PZ
5311 goto unlock;
5312 }
5313
789f90fc 5314 user_extra = nr_pages + 1;
45bfb2e5
PZ
5315
5316accounting:
cdd6c482 5317 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5318
5319 /*
5320 * Increase the limit linearly with more CPUs:
5321 */
5322 user_lock_limit *= num_online_cpus();
5323
789f90fc 5324 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5325
789f90fc
PZ
5326 if (user_locked > user_lock_limit)
5327 extra = user_locked - user_lock_limit;
7b732a75 5328
78d7d407 5329 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5330 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5331 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5332
459ec28a
IM
5333 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5334 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5335 ret = -EPERM;
5336 goto unlock;
5337 }
7b732a75 5338
45bfb2e5 5339 WARN_ON(!rb && event->rb);
906010b2 5340
d57e34fd 5341 if (vma->vm_flags & VM_WRITE)
76369139 5342 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5343
76369139 5344 if (!rb) {
45bfb2e5
PZ
5345 rb = rb_alloc(nr_pages,
5346 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5347 event->cpu, flags);
26cb63ad 5348
45bfb2e5
PZ
5349 if (!rb) {
5350 ret = -ENOMEM;
5351 goto unlock;
5352 }
43a21ea8 5353
45bfb2e5
PZ
5354 atomic_set(&rb->mmap_count, 1);
5355 rb->mmap_user = get_current_user();
5356 rb->mmap_locked = extra;
26cb63ad 5357
45bfb2e5 5358 ring_buffer_attach(event, rb);
ac9721f3 5359
45bfb2e5
PZ
5360 perf_event_init_userpage(event);
5361 perf_event_update_userpage(event);
5362 } else {
1a594131
AS
5363 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5364 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5365 if (!ret)
5366 rb->aux_mmap_locked = extra;
5367 }
9a0f05cb 5368
ebb3c4c4 5369unlock:
45bfb2e5
PZ
5370 if (!ret) {
5371 atomic_long_add(user_extra, &user->locked_vm);
5372 vma->vm_mm->pinned_vm += extra;
5373
ac9721f3 5374 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5375 } else if (rb) {
5376 atomic_dec(&rb->mmap_count);
5377 }
5378aux_unlock:
cdd6c482 5379 mutex_unlock(&event->mmap_mutex);
37d81828 5380
9bb5d40c
PZ
5381 /*
5382 * Since pinned accounting is per vm we cannot allow fork() to copy our
5383 * vma.
5384 */
26cb63ad 5385 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5386 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5387
1e0fb9ec
AL
5388 if (event->pmu->event_mapped)
5389 event->pmu->event_mapped(event);
5390
7b732a75 5391 return ret;
37d81828
PM
5392}
5393
3c446b3d
PZ
5394static int perf_fasync(int fd, struct file *filp, int on)
5395{
496ad9aa 5396 struct inode *inode = file_inode(filp);
cdd6c482 5397 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5398 int retval;
5399
5955102c 5400 inode_lock(inode);
cdd6c482 5401 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5402 inode_unlock(inode);
3c446b3d
PZ
5403
5404 if (retval < 0)
5405 return retval;
5406
5407 return 0;
5408}
5409
0793a61d 5410static const struct file_operations perf_fops = {
3326c1ce 5411 .llseek = no_llseek,
0793a61d
TG
5412 .release = perf_release,
5413 .read = perf_read,
5414 .poll = perf_poll,
d859e29f 5415 .unlocked_ioctl = perf_ioctl,
b3f20785 5416 .compat_ioctl = perf_compat_ioctl,
37d81828 5417 .mmap = perf_mmap,
3c446b3d 5418 .fasync = perf_fasync,
0793a61d
TG
5419};
5420
925d519a 5421/*
cdd6c482 5422 * Perf event wakeup
925d519a
PZ
5423 *
5424 * If there's data, ensure we set the poll() state and publish everything
5425 * to user-space before waking everybody up.
5426 */
5427
fed66e2c
PZ
5428static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5429{
5430 /* only the parent has fasync state */
5431 if (event->parent)
5432 event = event->parent;
5433 return &event->fasync;
5434}
5435
cdd6c482 5436void perf_event_wakeup(struct perf_event *event)
925d519a 5437{
10c6db11 5438 ring_buffer_wakeup(event);
4c9e2542 5439
cdd6c482 5440 if (event->pending_kill) {
fed66e2c 5441 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5442 event->pending_kill = 0;
4c9e2542 5443 }
925d519a
PZ
5444}
5445
e360adbe 5446static void perf_pending_event(struct irq_work *entry)
79f14641 5447{
cdd6c482
IM
5448 struct perf_event *event = container_of(entry,
5449 struct perf_event, pending);
d525211f
PZ
5450 int rctx;
5451
5452 rctx = perf_swevent_get_recursion_context();
5453 /*
5454 * If we 'fail' here, that's OK, it means recursion is already disabled
5455 * and we won't recurse 'further'.
5456 */
79f14641 5457
cdd6c482
IM
5458 if (event->pending_disable) {
5459 event->pending_disable = 0;
fae3fde6 5460 perf_event_disable_local(event);
79f14641
PZ
5461 }
5462
cdd6c482
IM
5463 if (event->pending_wakeup) {
5464 event->pending_wakeup = 0;
5465 perf_event_wakeup(event);
79f14641 5466 }
d525211f
PZ
5467
5468 if (rctx >= 0)
5469 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5470}
5471
39447b38
ZY
5472/*
5473 * We assume there is only KVM supporting the callbacks.
5474 * Later on, we might change it to a list if there is
5475 * another virtualization implementation supporting the callbacks.
5476 */
5477struct perf_guest_info_callbacks *perf_guest_cbs;
5478
5479int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5480{
5481 perf_guest_cbs = cbs;
5482 return 0;
5483}
5484EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5485
5486int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5487{
5488 perf_guest_cbs = NULL;
5489 return 0;
5490}
5491EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5492
4018994f
JO
5493static void
5494perf_output_sample_regs(struct perf_output_handle *handle,
5495 struct pt_regs *regs, u64 mask)
5496{
5497 int bit;
29dd3288 5498 DECLARE_BITMAP(_mask, 64);
4018994f 5499
29dd3288
MS
5500 bitmap_from_u64(_mask, mask);
5501 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5502 u64 val;
5503
5504 val = perf_reg_value(regs, bit);
5505 perf_output_put(handle, val);
5506 }
5507}
5508
60e2364e 5509static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5510 struct pt_regs *regs,
5511 struct pt_regs *regs_user_copy)
4018994f 5512{
88a7c26a
AL
5513 if (user_mode(regs)) {
5514 regs_user->abi = perf_reg_abi(current);
2565711f 5515 regs_user->regs = regs;
88a7c26a
AL
5516 } else if (current->mm) {
5517 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5518 } else {
5519 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5520 regs_user->regs = NULL;
4018994f
JO
5521 }
5522}
5523
60e2364e
SE
5524static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5525 struct pt_regs *regs)
5526{
5527 regs_intr->regs = regs;
5528 regs_intr->abi = perf_reg_abi(current);
5529}
5530
5531
c5ebcedb
JO
5532/*
5533 * Get remaining task size from user stack pointer.
5534 *
5535 * It'd be better to take stack vma map and limit this more
5536 * precisly, but there's no way to get it safely under interrupt,
5537 * so using TASK_SIZE as limit.
5538 */
5539static u64 perf_ustack_task_size(struct pt_regs *regs)
5540{
5541 unsigned long addr = perf_user_stack_pointer(regs);
5542
5543 if (!addr || addr >= TASK_SIZE)
5544 return 0;
5545
5546 return TASK_SIZE - addr;
5547}
5548
5549static u16
5550perf_sample_ustack_size(u16 stack_size, u16 header_size,
5551 struct pt_regs *regs)
5552{
5553 u64 task_size;
5554
5555 /* No regs, no stack pointer, no dump. */
5556 if (!regs)
5557 return 0;
5558
5559 /*
5560 * Check if we fit in with the requested stack size into the:
5561 * - TASK_SIZE
5562 * If we don't, we limit the size to the TASK_SIZE.
5563 *
5564 * - remaining sample size
5565 * If we don't, we customize the stack size to
5566 * fit in to the remaining sample size.
5567 */
5568
5569 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5570 stack_size = min(stack_size, (u16) task_size);
5571
5572 /* Current header size plus static size and dynamic size. */
5573 header_size += 2 * sizeof(u64);
5574
5575 /* Do we fit in with the current stack dump size? */
5576 if ((u16) (header_size + stack_size) < header_size) {
5577 /*
5578 * If we overflow the maximum size for the sample,
5579 * we customize the stack dump size to fit in.
5580 */
5581 stack_size = USHRT_MAX - header_size - sizeof(u64);
5582 stack_size = round_up(stack_size, sizeof(u64));
5583 }
5584
5585 return stack_size;
5586}
5587
5588static void
5589perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5590 struct pt_regs *regs)
5591{
5592 /* Case of a kernel thread, nothing to dump */
5593 if (!regs) {
5594 u64 size = 0;
5595 perf_output_put(handle, size);
5596 } else {
5597 unsigned long sp;
5598 unsigned int rem;
5599 u64 dyn_size;
5600
5601 /*
5602 * We dump:
5603 * static size
5604 * - the size requested by user or the best one we can fit
5605 * in to the sample max size
5606 * data
5607 * - user stack dump data
5608 * dynamic size
5609 * - the actual dumped size
5610 */
5611
5612 /* Static size. */
5613 perf_output_put(handle, dump_size);
5614
5615 /* Data. */
5616 sp = perf_user_stack_pointer(regs);
5617 rem = __output_copy_user(handle, (void *) sp, dump_size);
5618 dyn_size = dump_size - rem;
5619
5620 perf_output_skip(handle, rem);
5621
5622 /* Dynamic size. */
5623 perf_output_put(handle, dyn_size);
5624 }
5625}
5626
c980d109
ACM
5627static void __perf_event_header__init_id(struct perf_event_header *header,
5628 struct perf_sample_data *data,
5629 struct perf_event *event)
6844c09d
ACM
5630{
5631 u64 sample_type = event->attr.sample_type;
5632
5633 data->type = sample_type;
5634 header->size += event->id_header_size;
5635
5636 if (sample_type & PERF_SAMPLE_TID) {
5637 /* namespace issues */
5638 data->tid_entry.pid = perf_event_pid(event, current);
5639 data->tid_entry.tid = perf_event_tid(event, current);
5640 }
5641
5642 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5643 data->time = perf_event_clock(event);
6844c09d 5644
ff3d527c 5645 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5646 data->id = primary_event_id(event);
5647
5648 if (sample_type & PERF_SAMPLE_STREAM_ID)
5649 data->stream_id = event->id;
5650
5651 if (sample_type & PERF_SAMPLE_CPU) {
5652 data->cpu_entry.cpu = raw_smp_processor_id();
5653 data->cpu_entry.reserved = 0;
5654 }
5655}
5656
76369139
FW
5657void perf_event_header__init_id(struct perf_event_header *header,
5658 struct perf_sample_data *data,
5659 struct perf_event *event)
c980d109
ACM
5660{
5661 if (event->attr.sample_id_all)
5662 __perf_event_header__init_id(header, data, event);
5663}
5664
5665static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5666 struct perf_sample_data *data)
5667{
5668 u64 sample_type = data->type;
5669
5670 if (sample_type & PERF_SAMPLE_TID)
5671 perf_output_put(handle, data->tid_entry);
5672
5673 if (sample_type & PERF_SAMPLE_TIME)
5674 perf_output_put(handle, data->time);
5675
5676 if (sample_type & PERF_SAMPLE_ID)
5677 perf_output_put(handle, data->id);
5678
5679 if (sample_type & PERF_SAMPLE_STREAM_ID)
5680 perf_output_put(handle, data->stream_id);
5681
5682 if (sample_type & PERF_SAMPLE_CPU)
5683 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5684
5685 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5686 perf_output_put(handle, data->id);
c980d109
ACM
5687}
5688
76369139
FW
5689void perf_event__output_id_sample(struct perf_event *event,
5690 struct perf_output_handle *handle,
5691 struct perf_sample_data *sample)
c980d109
ACM
5692{
5693 if (event->attr.sample_id_all)
5694 __perf_event__output_id_sample(handle, sample);
5695}
5696
3dab77fb 5697static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5698 struct perf_event *event,
5699 u64 enabled, u64 running)
3dab77fb 5700{
cdd6c482 5701 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5702 u64 values[4];
5703 int n = 0;
5704
b5e58793 5705 values[n++] = perf_event_count(event);
3dab77fb 5706 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5707 values[n++] = enabled +
cdd6c482 5708 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5709 }
5710 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5711 values[n++] = running +
cdd6c482 5712 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5713 }
5714 if (read_format & PERF_FORMAT_ID)
cdd6c482 5715 values[n++] = primary_event_id(event);
3dab77fb 5716
76369139 5717 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5718}
5719
3dab77fb 5720static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5721 struct perf_event *event,
5722 u64 enabled, u64 running)
3dab77fb 5723{
cdd6c482
IM
5724 struct perf_event *leader = event->group_leader, *sub;
5725 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5726 u64 values[5];
5727 int n = 0;
5728
5729 values[n++] = 1 + leader->nr_siblings;
5730
5731 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5732 values[n++] = enabled;
3dab77fb
PZ
5733
5734 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5735 values[n++] = running;
3dab77fb 5736
cdd6c482 5737 if (leader != event)
3dab77fb
PZ
5738 leader->pmu->read(leader);
5739
b5e58793 5740 values[n++] = perf_event_count(leader);
3dab77fb 5741 if (read_format & PERF_FORMAT_ID)
cdd6c482 5742 values[n++] = primary_event_id(leader);
3dab77fb 5743
76369139 5744 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5745
65abc865 5746 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5747 n = 0;
5748
6f5ab001
JO
5749 if ((sub != event) &&
5750 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5751 sub->pmu->read(sub);
5752
b5e58793 5753 values[n++] = perf_event_count(sub);
3dab77fb 5754 if (read_format & PERF_FORMAT_ID)
cdd6c482 5755 values[n++] = primary_event_id(sub);
3dab77fb 5756
76369139 5757 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5758 }
5759}
5760
eed01528
SE
5761#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5762 PERF_FORMAT_TOTAL_TIME_RUNNING)
5763
ba5213ae
PZ
5764/*
5765 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5766 *
5767 * The problem is that its both hard and excessively expensive to iterate the
5768 * child list, not to mention that its impossible to IPI the children running
5769 * on another CPU, from interrupt/NMI context.
5770 */
3dab77fb 5771static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5772 struct perf_event *event)
3dab77fb 5773{
e3f3541c 5774 u64 enabled = 0, running = 0, now;
eed01528
SE
5775 u64 read_format = event->attr.read_format;
5776
5777 /*
5778 * compute total_time_enabled, total_time_running
5779 * based on snapshot values taken when the event
5780 * was last scheduled in.
5781 *
5782 * we cannot simply called update_context_time()
5783 * because of locking issue as we are called in
5784 * NMI context
5785 */
c4794295 5786 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5787 calc_timer_values(event, &now, &enabled, &running);
eed01528 5788
cdd6c482 5789 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5790 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5791 else
eed01528 5792 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5793}
5794
5622f295
MM
5795void perf_output_sample(struct perf_output_handle *handle,
5796 struct perf_event_header *header,
5797 struct perf_sample_data *data,
cdd6c482 5798 struct perf_event *event)
5622f295
MM
5799{
5800 u64 sample_type = data->type;
5801
5802 perf_output_put(handle, *header);
5803
ff3d527c
AH
5804 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5805 perf_output_put(handle, data->id);
5806
5622f295
MM
5807 if (sample_type & PERF_SAMPLE_IP)
5808 perf_output_put(handle, data->ip);
5809
5810 if (sample_type & PERF_SAMPLE_TID)
5811 perf_output_put(handle, data->tid_entry);
5812
5813 if (sample_type & PERF_SAMPLE_TIME)
5814 perf_output_put(handle, data->time);
5815
5816 if (sample_type & PERF_SAMPLE_ADDR)
5817 perf_output_put(handle, data->addr);
5818
5819 if (sample_type & PERF_SAMPLE_ID)
5820 perf_output_put(handle, data->id);
5821
5822 if (sample_type & PERF_SAMPLE_STREAM_ID)
5823 perf_output_put(handle, data->stream_id);
5824
5825 if (sample_type & PERF_SAMPLE_CPU)
5826 perf_output_put(handle, data->cpu_entry);
5827
5828 if (sample_type & PERF_SAMPLE_PERIOD)
5829 perf_output_put(handle, data->period);
5830
5831 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5832 perf_output_read(handle, event);
5622f295
MM
5833
5834 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5835 if (data->callchain) {
5836 int size = 1;
5837
5838 if (data->callchain)
5839 size += data->callchain->nr;
5840
5841 size *= sizeof(u64);
5842
76369139 5843 __output_copy(handle, data->callchain, size);
5622f295
MM
5844 } else {
5845 u64 nr = 0;
5846 perf_output_put(handle, nr);
5847 }
5848 }
5849
5850 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5851 struct perf_raw_record *raw = data->raw;
5852
5853 if (raw) {
5854 struct perf_raw_frag *frag = &raw->frag;
5855
5856 perf_output_put(handle, raw->size);
5857 do {
5858 if (frag->copy) {
5859 __output_custom(handle, frag->copy,
5860 frag->data, frag->size);
5861 } else {
5862 __output_copy(handle, frag->data,
5863 frag->size);
5864 }
5865 if (perf_raw_frag_last(frag))
5866 break;
5867 frag = frag->next;
5868 } while (1);
5869 if (frag->pad)
5870 __output_skip(handle, NULL, frag->pad);
5622f295
MM
5871 } else {
5872 struct {
5873 u32 size;
5874 u32 data;
5875 } raw = {
5876 .size = sizeof(u32),
5877 .data = 0,
5878 };
5879 perf_output_put(handle, raw);
5880 }
5881 }
a7ac67ea 5882
bce38cd5
SE
5883 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5884 if (data->br_stack) {
5885 size_t size;
5886
5887 size = data->br_stack->nr
5888 * sizeof(struct perf_branch_entry);
5889
5890 perf_output_put(handle, data->br_stack->nr);
5891 perf_output_copy(handle, data->br_stack->entries, size);
5892 } else {
5893 /*
5894 * we always store at least the value of nr
5895 */
5896 u64 nr = 0;
5897 perf_output_put(handle, nr);
5898 }
5899 }
4018994f
JO
5900
5901 if (sample_type & PERF_SAMPLE_REGS_USER) {
5902 u64 abi = data->regs_user.abi;
5903
5904 /*
5905 * If there are no regs to dump, notice it through
5906 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5907 */
5908 perf_output_put(handle, abi);
5909
5910 if (abi) {
5911 u64 mask = event->attr.sample_regs_user;
5912 perf_output_sample_regs(handle,
5913 data->regs_user.regs,
5914 mask);
5915 }
5916 }
c5ebcedb 5917
a5cdd40c 5918 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5919 perf_output_sample_ustack(handle,
5920 data->stack_user_size,
5921 data->regs_user.regs);
a5cdd40c 5922 }
c3feedf2
AK
5923
5924 if (sample_type & PERF_SAMPLE_WEIGHT)
5925 perf_output_put(handle, data->weight);
d6be9ad6
SE
5926
5927 if (sample_type & PERF_SAMPLE_DATA_SRC)
5928 perf_output_put(handle, data->data_src.val);
a5cdd40c 5929
fdfbbd07
AK
5930 if (sample_type & PERF_SAMPLE_TRANSACTION)
5931 perf_output_put(handle, data->txn);
5932
60e2364e
SE
5933 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5934 u64 abi = data->regs_intr.abi;
5935 /*
5936 * If there are no regs to dump, notice it through
5937 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5938 */
5939 perf_output_put(handle, abi);
5940
5941 if (abi) {
5942 u64 mask = event->attr.sample_regs_intr;
5943
5944 perf_output_sample_regs(handle,
5945 data->regs_intr.regs,
5946 mask);
5947 }
5948 }
5949
a5cdd40c
PZ
5950 if (!event->attr.watermark) {
5951 int wakeup_events = event->attr.wakeup_events;
5952
5953 if (wakeup_events) {
5954 struct ring_buffer *rb = handle->rb;
5955 int events = local_inc_return(&rb->events);
5956
5957 if (events >= wakeup_events) {
5958 local_sub(wakeup_events, &rb->events);
5959 local_inc(&rb->wakeup);
5960 }
5961 }
5962 }
5622f295
MM
5963}
5964
5965void perf_prepare_sample(struct perf_event_header *header,
5966 struct perf_sample_data *data,
cdd6c482 5967 struct perf_event *event,
5622f295 5968 struct pt_regs *regs)
7b732a75 5969{
cdd6c482 5970 u64 sample_type = event->attr.sample_type;
7b732a75 5971
cdd6c482 5972 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5973 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5974
5975 header->misc = 0;
5976 header->misc |= perf_misc_flags(regs);
6fab0192 5977
c980d109 5978 __perf_event_header__init_id(header, data, event);
6844c09d 5979
c320c7b7 5980 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5981 data->ip = perf_instruction_pointer(regs);
5982
b23f3325 5983 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5984 int size = 1;
394ee076 5985
e6dab5ff 5986 data->callchain = perf_callchain(event, regs);
5622f295
MM
5987
5988 if (data->callchain)
5989 size += data->callchain->nr;
5990
5991 header->size += size * sizeof(u64);
394ee076
PZ
5992 }
5993
3a43ce68 5994 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5995 struct perf_raw_record *raw = data->raw;
5996 int size;
5997
5998 if (raw) {
5999 struct perf_raw_frag *frag = &raw->frag;
6000 u32 sum = 0;
6001
6002 do {
6003 sum += frag->size;
6004 if (perf_raw_frag_last(frag))
6005 break;
6006 frag = frag->next;
6007 } while (1);
6008
6009 size = round_up(sum + sizeof(u32), sizeof(u64));
6010 raw->size = size - sizeof(u32);
6011 frag->pad = raw->size - sum;
6012 } else {
6013 size = sizeof(u64);
6014 }
a044560c 6015
7e3f977e 6016 header->size += size;
7f453c24 6017 }
bce38cd5
SE
6018
6019 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6020 int size = sizeof(u64); /* nr */
6021 if (data->br_stack) {
6022 size += data->br_stack->nr
6023 * sizeof(struct perf_branch_entry);
6024 }
6025 header->size += size;
6026 }
4018994f 6027
2565711f 6028 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6029 perf_sample_regs_user(&data->regs_user, regs,
6030 &data->regs_user_copy);
2565711f 6031
4018994f
JO
6032 if (sample_type & PERF_SAMPLE_REGS_USER) {
6033 /* regs dump ABI info */
6034 int size = sizeof(u64);
6035
4018994f
JO
6036 if (data->regs_user.regs) {
6037 u64 mask = event->attr.sample_regs_user;
6038 size += hweight64(mask) * sizeof(u64);
6039 }
6040
6041 header->size += size;
6042 }
c5ebcedb
JO
6043
6044 if (sample_type & PERF_SAMPLE_STACK_USER) {
6045 /*
6046 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6047 * processed as the last one or have additional check added
6048 * in case new sample type is added, because we could eat
6049 * up the rest of the sample size.
6050 */
c5ebcedb
JO
6051 u16 stack_size = event->attr.sample_stack_user;
6052 u16 size = sizeof(u64);
6053
c5ebcedb 6054 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6055 data->regs_user.regs);
c5ebcedb
JO
6056
6057 /*
6058 * If there is something to dump, add space for the dump
6059 * itself and for the field that tells the dynamic size,
6060 * which is how many have been actually dumped.
6061 */
6062 if (stack_size)
6063 size += sizeof(u64) + stack_size;
6064
6065 data->stack_user_size = stack_size;
6066 header->size += size;
6067 }
60e2364e
SE
6068
6069 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6070 /* regs dump ABI info */
6071 int size = sizeof(u64);
6072
6073 perf_sample_regs_intr(&data->regs_intr, regs);
6074
6075 if (data->regs_intr.regs) {
6076 u64 mask = event->attr.sample_regs_intr;
6077
6078 size += hweight64(mask) * sizeof(u64);
6079 }
6080
6081 header->size += size;
6082 }
5622f295 6083}
7f453c24 6084
9ecda41a
WN
6085static void __always_inline
6086__perf_event_output(struct perf_event *event,
6087 struct perf_sample_data *data,
6088 struct pt_regs *regs,
6089 int (*output_begin)(struct perf_output_handle *,
6090 struct perf_event *,
6091 unsigned int))
5622f295
MM
6092{
6093 struct perf_output_handle handle;
6094 struct perf_event_header header;
689802b2 6095
927c7a9e
FW
6096 /* protect the callchain buffers */
6097 rcu_read_lock();
6098
cdd6c482 6099 perf_prepare_sample(&header, data, event, regs);
5c148194 6100
9ecda41a 6101 if (output_begin(&handle, event, header.size))
927c7a9e 6102 goto exit;
0322cd6e 6103
cdd6c482 6104 perf_output_sample(&handle, &header, data, event);
f413cdb8 6105
8a057d84 6106 perf_output_end(&handle);
927c7a9e
FW
6107
6108exit:
6109 rcu_read_unlock();
0322cd6e
PZ
6110}
6111
9ecda41a
WN
6112void
6113perf_event_output_forward(struct perf_event *event,
6114 struct perf_sample_data *data,
6115 struct pt_regs *regs)
6116{
6117 __perf_event_output(event, data, regs, perf_output_begin_forward);
6118}
6119
6120void
6121perf_event_output_backward(struct perf_event *event,
6122 struct perf_sample_data *data,
6123 struct pt_regs *regs)
6124{
6125 __perf_event_output(event, data, regs, perf_output_begin_backward);
6126}
6127
6128void
6129perf_event_output(struct perf_event *event,
6130 struct perf_sample_data *data,
6131 struct pt_regs *regs)
6132{
6133 __perf_event_output(event, data, regs, perf_output_begin);
6134}
6135
38b200d6 6136/*
cdd6c482 6137 * read event_id
38b200d6
PZ
6138 */
6139
6140struct perf_read_event {
6141 struct perf_event_header header;
6142
6143 u32 pid;
6144 u32 tid;
38b200d6
PZ
6145};
6146
6147static void
cdd6c482 6148perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6149 struct task_struct *task)
6150{
6151 struct perf_output_handle handle;
c980d109 6152 struct perf_sample_data sample;
dfc65094 6153 struct perf_read_event read_event = {
38b200d6 6154 .header = {
cdd6c482 6155 .type = PERF_RECORD_READ,
38b200d6 6156 .misc = 0,
c320c7b7 6157 .size = sizeof(read_event) + event->read_size,
38b200d6 6158 },
cdd6c482
IM
6159 .pid = perf_event_pid(event, task),
6160 .tid = perf_event_tid(event, task),
38b200d6 6161 };
3dab77fb 6162 int ret;
38b200d6 6163
c980d109 6164 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6165 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6166 if (ret)
6167 return;
6168
dfc65094 6169 perf_output_put(&handle, read_event);
cdd6c482 6170 perf_output_read(&handle, event);
c980d109 6171 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6172
38b200d6
PZ
6173 perf_output_end(&handle);
6174}
6175
aab5b71e 6176typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6177
6178static void
aab5b71e
PZ
6179perf_iterate_ctx(struct perf_event_context *ctx,
6180 perf_iterate_f output,
b73e4fef 6181 void *data, bool all)
52d857a8
JO
6182{
6183 struct perf_event *event;
6184
6185 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6186 if (!all) {
6187 if (event->state < PERF_EVENT_STATE_INACTIVE)
6188 continue;
6189 if (!event_filter_match(event))
6190 continue;
6191 }
6192
67516844 6193 output(event, data);
52d857a8
JO
6194 }
6195}
6196
aab5b71e 6197static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6198{
6199 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6200 struct perf_event *event;
6201
6202 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6203 /*
6204 * Skip events that are not fully formed yet; ensure that
6205 * if we observe event->ctx, both event and ctx will be
6206 * complete enough. See perf_install_in_context().
6207 */
6208 if (!smp_load_acquire(&event->ctx))
6209 continue;
6210
f2fb6bef
KL
6211 if (event->state < PERF_EVENT_STATE_INACTIVE)
6212 continue;
6213 if (!event_filter_match(event))
6214 continue;
6215 output(event, data);
6216 }
6217}
6218
aab5b71e
PZ
6219/*
6220 * Iterate all events that need to receive side-band events.
6221 *
6222 * For new callers; ensure that account_pmu_sb_event() includes
6223 * your event, otherwise it might not get delivered.
6224 */
52d857a8 6225static void
aab5b71e 6226perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6227 struct perf_event_context *task_ctx)
6228{
52d857a8 6229 struct perf_event_context *ctx;
52d857a8
JO
6230 int ctxn;
6231
aab5b71e
PZ
6232 rcu_read_lock();
6233 preempt_disable();
6234
4e93ad60 6235 /*
aab5b71e
PZ
6236 * If we have task_ctx != NULL we only notify the task context itself.
6237 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6238 * context.
6239 */
6240 if (task_ctx) {
aab5b71e
PZ
6241 perf_iterate_ctx(task_ctx, output, data, false);
6242 goto done;
4e93ad60
JO
6243 }
6244
aab5b71e 6245 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6246
6247 for_each_task_context_nr(ctxn) {
52d857a8
JO
6248 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6249 if (ctx)
aab5b71e 6250 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6251 }
aab5b71e 6252done:
f2fb6bef 6253 preempt_enable();
52d857a8 6254 rcu_read_unlock();
95ff4ca2
AS
6255}
6256
375637bc
AS
6257/*
6258 * Clear all file-based filters at exec, they'll have to be
6259 * re-instated when/if these objects are mmapped again.
6260 */
6261static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6262{
6263 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6264 struct perf_addr_filter *filter;
6265 unsigned int restart = 0, count = 0;
6266 unsigned long flags;
6267
6268 if (!has_addr_filter(event))
6269 return;
6270
6271 raw_spin_lock_irqsave(&ifh->lock, flags);
6272 list_for_each_entry(filter, &ifh->list, entry) {
6273 if (filter->inode) {
6274 event->addr_filters_offs[count] = 0;
6275 restart++;
6276 }
6277
6278 count++;
6279 }
6280
6281 if (restart)
6282 event->addr_filters_gen++;
6283 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6284
6285 if (restart)
767ae086 6286 perf_event_stop(event, 1);
375637bc
AS
6287}
6288
6289void perf_event_exec(void)
6290{
6291 struct perf_event_context *ctx;
6292 int ctxn;
6293
6294 rcu_read_lock();
6295 for_each_task_context_nr(ctxn) {
6296 ctx = current->perf_event_ctxp[ctxn];
6297 if (!ctx)
6298 continue;
6299
6300 perf_event_enable_on_exec(ctxn);
6301
aab5b71e 6302 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6303 true);
6304 }
6305 rcu_read_unlock();
6306}
6307
95ff4ca2
AS
6308struct remote_output {
6309 struct ring_buffer *rb;
6310 int err;
6311};
6312
6313static void __perf_event_output_stop(struct perf_event *event, void *data)
6314{
6315 struct perf_event *parent = event->parent;
6316 struct remote_output *ro = data;
6317 struct ring_buffer *rb = ro->rb;
375637bc
AS
6318 struct stop_event_data sd = {
6319 .event = event,
6320 };
95ff4ca2
AS
6321
6322 if (!has_aux(event))
6323 return;
6324
6325 if (!parent)
6326 parent = event;
6327
6328 /*
6329 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6330 * ring-buffer, but it will be the child that's actually using it.
6331 *
6332 * We are using event::rb to determine if the event should be stopped,
6333 * however this may race with ring_buffer_attach() (through set_output),
6334 * which will make us skip the event that actually needs to be stopped.
6335 * So ring_buffer_attach() has to stop an aux event before re-assigning
6336 * its rb pointer.
95ff4ca2
AS
6337 */
6338 if (rcu_dereference(parent->rb) == rb)
375637bc 6339 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6340}
6341
6342static int __perf_pmu_output_stop(void *info)
6343{
6344 struct perf_event *event = info;
6345 struct pmu *pmu = event->pmu;
8b6a3fe8 6346 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6347 struct remote_output ro = {
6348 .rb = event->rb,
6349 };
6350
6351 rcu_read_lock();
aab5b71e 6352 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6353 if (cpuctx->task_ctx)
aab5b71e 6354 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6355 &ro, false);
95ff4ca2
AS
6356 rcu_read_unlock();
6357
6358 return ro.err;
6359}
6360
6361static void perf_pmu_output_stop(struct perf_event *event)
6362{
6363 struct perf_event *iter;
6364 int err, cpu;
6365
6366restart:
6367 rcu_read_lock();
6368 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6369 /*
6370 * For per-CPU events, we need to make sure that neither they
6371 * nor their children are running; for cpu==-1 events it's
6372 * sufficient to stop the event itself if it's active, since
6373 * it can't have children.
6374 */
6375 cpu = iter->cpu;
6376 if (cpu == -1)
6377 cpu = READ_ONCE(iter->oncpu);
6378
6379 if (cpu == -1)
6380 continue;
6381
6382 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6383 if (err == -EAGAIN) {
6384 rcu_read_unlock();
6385 goto restart;
6386 }
6387 }
6388 rcu_read_unlock();
52d857a8
JO
6389}
6390
60313ebe 6391/*
9f498cc5
PZ
6392 * task tracking -- fork/exit
6393 *
13d7a241 6394 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6395 */
6396
9f498cc5 6397struct perf_task_event {
3a80b4a3 6398 struct task_struct *task;
cdd6c482 6399 struct perf_event_context *task_ctx;
60313ebe
PZ
6400
6401 struct {
6402 struct perf_event_header header;
6403
6404 u32 pid;
6405 u32 ppid;
9f498cc5
PZ
6406 u32 tid;
6407 u32 ptid;
393b2ad8 6408 u64 time;
cdd6c482 6409 } event_id;
60313ebe
PZ
6410};
6411
67516844
JO
6412static int perf_event_task_match(struct perf_event *event)
6413{
13d7a241
SE
6414 return event->attr.comm || event->attr.mmap ||
6415 event->attr.mmap2 || event->attr.mmap_data ||
6416 event->attr.task;
67516844
JO
6417}
6418
cdd6c482 6419static void perf_event_task_output(struct perf_event *event,
52d857a8 6420 void *data)
60313ebe 6421{
52d857a8 6422 struct perf_task_event *task_event = data;
60313ebe 6423 struct perf_output_handle handle;
c980d109 6424 struct perf_sample_data sample;
9f498cc5 6425 struct task_struct *task = task_event->task;
c980d109 6426 int ret, size = task_event->event_id.header.size;
8bb39f9a 6427
67516844
JO
6428 if (!perf_event_task_match(event))
6429 return;
6430
c980d109 6431 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6432
c980d109 6433 ret = perf_output_begin(&handle, event,
a7ac67ea 6434 task_event->event_id.header.size);
ef60777c 6435 if (ret)
c980d109 6436 goto out;
60313ebe 6437
cdd6c482
IM
6438 task_event->event_id.pid = perf_event_pid(event, task);
6439 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6440
cdd6c482
IM
6441 task_event->event_id.tid = perf_event_tid(event, task);
6442 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6443
34f43927
PZ
6444 task_event->event_id.time = perf_event_clock(event);
6445
cdd6c482 6446 perf_output_put(&handle, task_event->event_id);
393b2ad8 6447
c980d109
ACM
6448 perf_event__output_id_sample(event, &handle, &sample);
6449
60313ebe 6450 perf_output_end(&handle);
c980d109
ACM
6451out:
6452 task_event->event_id.header.size = size;
60313ebe
PZ
6453}
6454
cdd6c482
IM
6455static void perf_event_task(struct task_struct *task,
6456 struct perf_event_context *task_ctx,
3a80b4a3 6457 int new)
60313ebe 6458{
9f498cc5 6459 struct perf_task_event task_event;
60313ebe 6460
cdd6c482
IM
6461 if (!atomic_read(&nr_comm_events) &&
6462 !atomic_read(&nr_mmap_events) &&
6463 !atomic_read(&nr_task_events))
60313ebe
PZ
6464 return;
6465
9f498cc5 6466 task_event = (struct perf_task_event){
3a80b4a3
PZ
6467 .task = task,
6468 .task_ctx = task_ctx,
cdd6c482 6469 .event_id = {
60313ebe 6470 .header = {
cdd6c482 6471 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6472 .misc = 0,
cdd6c482 6473 .size = sizeof(task_event.event_id),
60313ebe 6474 },
573402db
PZ
6475 /* .pid */
6476 /* .ppid */
9f498cc5
PZ
6477 /* .tid */
6478 /* .ptid */
34f43927 6479 /* .time */
60313ebe
PZ
6480 },
6481 };
6482
aab5b71e 6483 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6484 &task_event,
6485 task_ctx);
9f498cc5
PZ
6486}
6487
cdd6c482 6488void perf_event_fork(struct task_struct *task)
9f498cc5 6489{
cdd6c482 6490 perf_event_task(task, NULL, 1);
e4222673 6491 perf_event_namespaces(task);
60313ebe
PZ
6492}
6493
8d1b2d93
PZ
6494/*
6495 * comm tracking
6496 */
6497
6498struct perf_comm_event {
22a4f650
IM
6499 struct task_struct *task;
6500 char *comm;
8d1b2d93
PZ
6501 int comm_size;
6502
6503 struct {
6504 struct perf_event_header header;
6505
6506 u32 pid;
6507 u32 tid;
cdd6c482 6508 } event_id;
8d1b2d93
PZ
6509};
6510
67516844
JO
6511static int perf_event_comm_match(struct perf_event *event)
6512{
6513 return event->attr.comm;
6514}
6515
cdd6c482 6516static void perf_event_comm_output(struct perf_event *event,
52d857a8 6517 void *data)
8d1b2d93 6518{
52d857a8 6519 struct perf_comm_event *comm_event = data;
8d1b2d93 6520 struct perf_output_handle handle;
c980d109 6521 struct perf_sample_data sample;
cdd6c482 6522 int size = comm_event->event_id.header.size;
c980d109
ACM
6523 int ret;
6524
67516844
JO
6525 if (!perf_event_comm_match(event))
6526 return;
6527
c980d109
ACM
6528 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6529 ret = perf_output_begin(&handle, event,
a7ac67ea 6530 comm_event->event_id.header.size);
8d1b2d93
PZ
6531
6532 if (ret)
c980d109 6533 goto out;
8d1b2d93 6534
cdd6c482
IM
6535 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6536 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6537
cdd6c482 6538 perf_output_put(&handle, comm_event->event_id);
76369139 6539 __output_copy(&handle, comm_event->comm,
8d1b2d93 6540 comm_event->comm_size);
c980d109
ACM
6541
6542 perf_event__output_id_sample(event, &handle, &sample);
6543
8d1b2d93 6544 perf_output_end(&handle);
c980d109
ACM
6545out:
6546 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6547}
6548
cdd6c482 6549static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6550{
413ee3b4 6551 char comm[TASK_COMM_LEN];
8d1b2d93 6552 unsigned int size;
8d1b2d93 6553
413ee3b4 6554 memset(comm, 0, sizeof(comm));
96b02d78 6555 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6556 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6557
6558 comm_event->comm = comm;
6559 comm_event->comm_size = size;
6560
cdd6c482 6561 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6562
aab5b71e 6563 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6564 comm_event,
6565 NULL);
8d1b2d93
PZ
6566}
6567
82b89778 6568void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6569{
9ee318a7
PZ
6570 struct perf_comm_event comm_event;
6571
cdd6c482 6572 if (!atomic_read(&nr_comm_events))
9ee318a7 6573 return;
a63eaf34 6574
9ee318a7 6575 comm_event = (struct perf_comm_event){
8d1b2d93 6576 .task = task,
573402db
PZ
6577 /* .comm */
6578 /* .comm_size */
cdd6c482 6579 .event_id = {
573402db 6580 .header = {
cdd6c482 6581 .type = PERF_RECORD_COMM,
82b89778 6582 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6583 /* .size */
6584 },
6585 /* .pid */
6586 /* .tid */
8d1b2d93
PZ
6587 },
6588 };
6589
cdd6c482 6590 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6591}
6592
e4222673
HB
6593/*
6594 * namespaces tracking
6595 */
6596
6597struct perf_namespaces_event {
6598 struct task_struct *task;
6599
6600 struct {
6601 struct perf_event_header header;
6602
6603 u32 pid;
6604 u32 tid;
6605 u64 nr_namespaces;
6606 struct perf_ns_link_info link_info[NR_NAMESPACES];
6607 } event_id;
6608};
6609
6610static int perf_event_namespaces_match(struct perf_event *event)
6611{
6612 return event->attr.namespaces;
6613}
6614
6615static void perf_event_namespaces_output(struct perf_event *event,
6616 void *data)
6617{
6618 struct perf_namespaces_event *namespaces_event = data;
6619 struct perf_output_handle handle;
6620 struct perf_sample_data sample;
6621 int ret;
6622
6623 if (!perf_event_namespaces_match(event))
6624 return;
6625
6626 perf_event_header__init_id(&namespaces_event->event_id.header,
6627 &sample, event);
6628 ret = perf_output_begin(&handle, event,
6629 namespaces_event->event_id.header.size);
6630 if (ret)
6631 return;
6632
6633 namespaces_event->event_id.pid = perf_event_pid(event,
6634 namespaces_event->task);
6635 namespaces_event->event_id.tid = perf_event_tid(event,
6636 namespaces_event->task);
6637
6638 perf_output_put(&handle, namespaces_event->event_id);
6639
6640 perf_event__output_id_sample(event, &handle, &sample);
6641
6642 perf_output_end(&handle);
6643}
6644
6645static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6646 struct task_struct *task,
6647 const struct proc_ns_operations *ns_ops)
6648{
6649 struct path ns_path;
6650 struct inode *ns_inode;
6651 void *error;
6652
6653 error = ns_get_path(&ns_path, task, ns_ops);
6654 if (!error) {
6655 ns_inode = ns_path.dentry->d_inode;
6656 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6657 ns_link_info->ino = ns_inode->i_ino;
6658 }
6659}
6660
6661void perf_event_namespaces(struct task_struct *task)
6662{
6663 struct perf_namespaces_event namespaces_event;
6664 struct perf_ns_link_info *ns_link_info;
6665
6666 if (!atomic_read(&nr_namespaces_events))
6667 return;
6668
6669 namespaces_event = (struct perf_namespaces_event){
6670 .task = task,
6671 .event_id = {
6672 .header = {
6673 .type = PERF_RECORD_NAMESPACES,
6674 .misc = 0,
6675 .size = sizeof(namespaces_event.event_id),
6676 },
6677 /* .pid */
6678 /* .tid */
6679 .nr_namespaces = NR_NAMESPACES,
6680 /* .link_info[NR_NAMESPACES] */
6681 },
6682 };
6683
6684 ns_link_info = namespaces_event.event_id.link_info;
6685
6686 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6687 task, &mntns_operations);
6688
6689#ifdef CONFIG_USER_NS
6690 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6691 task, &userns_operations);
6692#endif
6693#ifdef CONFIG_NET_NS
6694 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6695 task, &netns_operations);
6696#endif
6697#ifdef CONFIG_UTS_NS
6698 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6699 task, &utsns_operations);
6700#endif
6701#ifdef CONFIG_IPC_NS
6702 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6703 task, &ipcns_operations);
6704#endif
6705#ifdef CONFIG_PID_NS
6706 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6707 task, &pidns_operations);
6708#endif
6709#ifdef CONFIG_CGROUPS
6710 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6711 task, &cgroupns_operations);
6712#endif
6713
6714 perf_iterate_sb(perf_event_namespaces_output,
6715 &namespaces_event,
6716 NULL);
6717}
6718
0a4a9391
PZ
6719/*
6720 * mmap tracking
6721 */
6722
6723struct perf_mmap_event {
089dd79d
PZ
6724 struct vm_area_struct *vma;
6725
6726 const char *file_name;
6727 int file_size;
13d7a241
SE
6728 int maj, min;
6729 u64 ino;
6730 u64 ino_generation;
f972eb63 6731 u32 prot, flags;
0a4a9391
PZ
6732
6733 struct {
6734 struct perf_event_header header;
6735
6736 u32 pid;
6737 u32 tid;
6738 u64 start;
6739 u64 len;
6740 u64 pgoff;
cdd6c482 6741 } event_id;
0a4a9391
PZ
6742};
6743
67516844
JO
6744static int perf_event_mmap_match(struct perf_event *event,
6745 void *data)
6746{
6747 struct perf_mmap_event *mmap_event = data;
6748 struct vm_area_struct *vma = mmap_event->vma;
6749 int executable = vma->vm_flags & VM_EXEC;
6750
6751 return (!executable && event->attr.mmap_data) ||
13d7a241 6752 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6753}
6754
cdd6c482 6755static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6756 void *data)
0a4a9391 6757{
52d857a8 6758 struct perf_mmap_event *mmap_event = data;
0a4a9391 6759 struct perf_output_handle handle;
c980d109 6760 struct perf_sample_data sample;
cdd6c482 6761 int size = mmap_event->event_id.header.size;
c980d109 6762 int ret;
0a4a9391 6763
67516844
JO
6764 if (!perf_event_mmap_match(event, data))
6765 return;
6766
13d7a241
SE
6767 if (event->attr.mmap2) {
6768 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6769 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6770 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6771 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6772 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6773 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6774 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6775 }
6776
c980d109
ACM
6777 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6778 ret = perf_output_begin(&handle, event,
a7ac67ea 6779 mmap_event->event_id.header.size);
0a4a9391 6780 if (ret)
c980d109 6781 goto out;
0a4a9391 6782
cdd6c482
IM
6783 mmap_event->event_id.pid = perf_event_pid(event, current);
6784 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6785
cdd6c482 6786 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6787
6788 if (event->attr.mmap2) {
6789 perf_output_put(&handle, mmap_event->maj);
6790 perf_output_put(&handle, mmap_event->min);
6791 perf_output_put(&handle, mmap_event->ino);
6792 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6793 perf_output_put(&handle, mmap_event->prot);
6794 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6795 }
6796
76369139 6797 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6798 mmap_event->file_size);
c980d109
ACM
6799
6800 perf_event__output_id_sample(event, &handle, &sample);
6801
78d613eb 6802 perf_output_end(&handle);
c980d109
ACM
6803out:
6804 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6805}
6806
cdd6c482 6807static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6808{
089dd79d
PZ
6809 struct vm_area_struct *vma = mmap_event->vma;
6810 struct file *file = vma->vm_file;
13d7a241
SE
6811 int maj = 0, min = 0;
6812 u64 ino = 0, gen = 0;
f972eb63 6813 u32 prot = 0, flags = 0;
0a4a9391
PZ
6814 unsigned int size;
6815 char tmp[16];
6816 char *buf = NULL;
2c42cfbf 6817 char *name;
413ee3b4 6818
0b3589be
PZ
6819 if (vma->vm_flags & VM_READ)
6820 prot |= PROT_READ;
6821 if (vma->vm_flags & VM_WRITE)
6822 prot |= PROT_WRITE;
6823 if (vma->vm_flags & VM_EXEC)
6824 prot |= PROT_EXEC;
6825
6826 if (vma->vm_flags & VM_MAYSHARE)
6827 flags = MAP_SHARED;
6828 else
6829 flags = MAP_PRIVATE;
6830
6831 if (vma->vm_flags & VM_DENYWRITE)
6832 flags |= MAP_DENYWRITE;
6833 if (vma->vm_flags & VM_MAYEXEC)
6834 flags |= MAP_EXECUTABLE;
6835 if (vma->vm_flags & VM_LOCKED)
6836 flags |= MAP_LOCKED;
6837 if (vma->vm_flags & VM_HUGETLB)
6838 flags |= MAP_HUGETLB;
6839
0a4a9391 6840 if (file) {
13d7a241
SE
6841 struct inode *inode;
6842 dev_t dev;
3ea2f2b9 6843
2c42cfbf 6844 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6845 if (!buf) {
c7e548b4
ON
6846 name = "//enomem";
6847 goto cpy_name;
0a4a9391 6848 }
413ee3b4 6849 /*
3ea2f2b9 6850 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6851 * need to add enough zero bytes after the string to handle
6852 * the 64bit alignment we do later.
6853 */
9bf39ab2 6854 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6855 if (IS_ERR(name)) {
c7e548b4
ON
6856 name = "//toolong";
6857 goto cpy_name;
0a4a9391 6858 }
13d7a241
SE
6859 inode = file_inode(vma->vm_file);
6860 dev = inode->i_sb->s_dev;
6861 ino = inode->i_ino;
6862 gen = inode->i_generation;
6863 maj = MAJOR(dev);
6864 min = MINOR(dev);
f972eb63 6865
c7e548b4 6866 goto got_name;
0a4a9391 6867 } else {
fbe26abe
JO
6868 if (vma->vm_ops && vma->vm_ops->name) {
6869 name = (char *) vma->vm_ops->name(vma);
6870 if (name)
6871 goto cpy_name;
6872 }
6873
2c42cfbf 6874 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6875 if (name)
6876 goto cpy_name;
089dd79d 6877
32c5fb7e 6878 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6879 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6880 name = "[heap]";
6881 goto cpy_name;
32c5fb7e
ON
6882 }
6883 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6884 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6885 name = "[stack]";
6886 goto cpy_name;
089dd79d
PZ
6887 }
6888
c7e548b4
ON
6889 name = "//anon";
6890 goto cpy_name;
0a4a9391
PZ
6891 }
6892
c7e548b4
ON
6893cpy_name:
6894 strlcpy(tmp, name, sizeof(tmp));
6895 name = tmp;
0a4a9391 6896got_name:
2c42cfbf
PZ
6897 /*
6898 * Since our buffer works in 8 byte units we need to align our string
6899 * size to a multiple of 8. However, we must guarantee the tail end is
6900 * zero'd out to avoid leaking random bits to userspace.
6901 */
6902 size = strlen(name)+1;
6903 while (!IS_ALIGNED(size, sizeof(u64)))
6904 name[size++] = '\0';
0a4a9391
PZ
6905
6906 mmap_event->file_name = name;
6907 mmap_event->file_size = size;
13d7a241
SE
6908 mmap_event->maj = maj;
6909 mmap_event->min = min;
6910 mmap_event->ino = ino;
6911 mmap_event->ino_generation = gen;
f972eb63
PZ
6912 mmap_event->prot = prot;
6913 mmap_event->flags = flags;
0a4a9391 6914
2fe85427
SE
6915 if (!(vma->vm_flags & VM_EXEC))
6916 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6917
cdd6c482 6918 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6919
aab5b71e 6920 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
6921 mmap_event,
6922 NULL);
665c2142 6923
0a4a9391
PZ
6924 kfree(buf);
6925}
6926
375637bc
AS
6927/*
6928 * Check whether inode and address range match filter criteria.
6929 */
6930static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6931 struct file *file, unsigned long offset,
6932 unsigned long size)
6933{
45063097 6934 if (filter->inode != file_inode(file))
375637bc
AS
6935 return false;
6936
6937 if (filter->offset > offset + size)
6938 return false;
6939
6940 if (filter->offset + filter->size < offset)
6941 return false;
6942
6943 return true;
6944}
6945
6946static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6947{
6948 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6949 struct vm_area_struct *vma = data;
6950 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6951 struct file *file = vma->vm_file;
6952 struct perf_addr_filter *filter;
6953 unsigned int restart = 0, count = 0;
6954
6955 if (!has_addr_filter(event))
6956 return;
6957
6958 if (!file)
6959 return;
6960
6961 raw_spin_lock_irqsave(&ifh->lock, flags);
6962 list_for_each_entry(filter, &ifh->list, entry) {
6963 if (perf_addr_filter_match(filter, file, off,
6964 vma->vm_end - vma->vm_start)) {
6965 event->addr_filters_offs[count] = vma->vm_start;
6966 restart++;
6967 }
6968
6969 count++;
6970 }
6971
6972 if (restart)
6973 event->addr_filters_gen++;
6974 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6975
6976 if (restart)
767ae086 6977 perf_event_stop(event, 1);
375637bc
AS
6978}
6979
6980/*
6981 * Adjust all task's events' filters to the new vma
6982 */
6983static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6984{
6985 struct perf_event_context *ctx;
6986 int ctxn;
6987
12b40a23
MP
6988 /*
6989 * Data tracing isn't supported yet and as such there is no need
6990 * to keep track of anything that isn't related to executable code:
6991 */
6992 if (!(vma->vm_flags & VM_EXEC))
6993 return;
6994
375637bc
AS
6995 rcu_read_lock();
6996 for_each_task_context_nr(ctxn) {
6997 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6998 if (!ctx)
6999 continue;
7000
aab5b71e 7001 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7002 }
7003 rcu_read_unlock();
7004}
7005
3af9e859 7006void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7007{
9ee318a7
PZ
7008 struct perf_mmap_event mmap_event;
7009
cdd6c482 7010 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7011 return;
7012
7013 mmap_event = (struct perf_mmap_event){
089dd79d 7014 .vma = vma,
573402db
PZ
7015 /* .file_name */
7016 /* .file_size */
cdd6c482 7017 .event_id = {
573402db 7018 .header = {
cdd6c482 7019 .type = PERF_RECORD_MMAP,
39447b38 7020 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7021 /* .size */
7022 },
7023 /* .pid */
7024 /* .tid */
089dd79d
PZ
7025 .start = vma->vm_start,
7026 .len = vma->vm_end - vma->vm_start,
3a0304e9 7027 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7028 },
13d7a241
SE
7029 /* .maj (attr_mmap2 only) */
7030 /* .min (attr_mmap2 only) */
7031 /* .ino (attr_mmap2 only) */
7032 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7033 /* .prot (attr_mmap2 only) */
7034 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7035 };
7036
375637bc 7037 perf_addr_filters_adjust(vma);
cdd6c482 7038 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7039}
7040
68db7e98
AS
7041void perf_event_aux_event(struct perf_event *event, unsigned long head,
7042 unsigned long size, u64 flags)
7043{
7044 struct perf_output_handle handle;
7045 struct perf_sample_data sample;
7046 struct perf_aux_event {
7047 struct perf_event_header header;
7048 u64 offset;
7049 u64 size;
7050 u64 flags;
7051 } rec = {
7052 .header = {
7053 .type = PERF_RECORD_AUX,
7054 .misc = 0,
7055 .size = sizeof(rec),
7056 },
7057 .offset = head,
7058 .size = size,
7059 .flags = flags,
7060 };
7061 int ret;
7062
7063 perf_event_header__init_id(&rec.header, &sample, event);
7064 ret = perf_output_begin(&handle, event, rec.header.size);
7065
7066 if (ret)
7067 return;
7068
7069 perf_output_put(&handle, rec);
7070 perf_event__output_id_sample(event, &handle, &sample);
7071
7072 perf_output_end(&handle);
7073}
7074
f38b0dbb
KL
7075/*
7076 * Lost/dropped samples logging
7077 */
7078void perf_log_lost_samples(struct perf_event *event, u64 lost)
7079{
7080 struct perf_output_handle handle;
7081 struct perf_sample_data sample;
7082 int ret;
7083
7084 struct {
7085 struct perf_event_header header;
7086 u64 lost;
7087 } lost_samples_event = {
7088 .header = {
7089 .type = PERF_RECORD_LOST_SAMPLES,
7090 .misc = 0,
7091 .size = sizeof(lost_samples_event),
7092 },
7093 .lost = lost,
7094 };
7095
7096 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7097
7098 ret = perf_output_begin(&handle, event,
7099 lost_samples_event.header.size);
7100 if (ret)
7101 return;
7102
7103 perf_output_put(&handle, lost_samples_event);
7104 perf_event__output_id_sample(event, &handle, &sample);
7105 perf_output_end(&handle);
7106}
7107
45ac1403
AH
7108/*
7109 * context_switch tracking
7110 */
7111
7112struct perf_switch_event {
7113 struct task_struct *task;
7114 struct task_struct *next_prev;
7115
7116 struct {
7117 struct perf_event_header header;
7118 u32 next_prev_pid;
7119 u32 next_prev_tid;
7120 } event_id;
7121};
7122
7123static int perf_event_switch_match(struct perf_event *event)
7124{
7125 return event->attr.context_switch;
7126}
7127
7128static void perf_event_switch_output(struct perf_event *event, void *data)
7129{
7130 struct perf_switch_event *se = data;
7131 struct perf_output_handle handle;
7132 struct perf_sample_data sample;
7133 int ret;
7134
7135 if (!perf_event_switch_match(event))
7136 return;
7137
7138 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7139 if (event->ctx->task) {
7140 se->event_id.header.type = PERF_RECORD_SWITCH;
7141 se->event_id.header.size = sizeof(se->event_id.header);
7142 } else {
7143 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7144 se->event_id.header.size = sizeof(se->event_id);
7145 se->event_id.next_prev_pid =
7146 perf_event_pid(event, se->next_prev);
7147 se->event_id.next_prev_tid =
7148 perf_event_tid(event, se->next_prev);
7149 }
7150
7151 perf_event_header__init_id(&se->event_id.header, &sample, event);
7152
7153 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7154 if (ret)
7155 return;
7156
7157 if (event->ctx->task)
7158 perf_output_put(&handle, se->event_id.header);
7159 else
7160 perf_output_put(&handle, se->event_id);
7161
7162 perf_event__output_id_sample(event, &handle, &sample);
7163
7164 perf_output_end(&handle);
7165}
7166
7167static void perf_event_switch(struct task_struct *task,
7168 struct task_struct *next_prev, bool sched_in)
7169{
7170 struct perf_switch_event switch_event;
7171
7172 /* N.B. caller checks nr_switch_events != 0 */
7173
7174 switch_event = (struct perf_switch_event){
7175 .task = task,
7176 .next_prev = next_prev,
7177 .event_id = {
7178 .header = {
7179 /* .type */
7180 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7181 /* .size */
7182 },
7183 /* .next_prev_pid */
7184 /* .next_prev_tid */
7185 },
7186 };
7187
aab5b71e 7188 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7189 &switch_event,
7190 NULL);
7191}
7192
a78ac325
PZ
7193/*
7194 * IRQ throttle logging
7195 */
7196
cdd6c482 7197static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7198{
7199 struct perf_output_handle handle;
c980d109 7200 struct perf_sample_data sample;
a78ac325
PZ
7201 int ret;
7202
7203 struct {
7204 struct perf_event_header header;
7205 u64 time;
cca3f454 7206 u64 id;
7f453c24 7207 u64 stream_id;
a78ac325
PZ
7208 } throttle_event = {
7209 .header = {
cdd6c482 7210 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7211 .misc = 0,
7212 .size = sizeof(throttle_event),
7213 },
34f43927 7214 .time = perf_event_clock(event),
cdd6c482
IM
7215 .id = primary_event_id(event),
7216 .stream_id = event->id,
a78ac325
PZ
7217 };
7218
966ee4d6 7219 if (enable)
cdd6c482 7220 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7221
c980d109
ACM
7222 perf_event_header__init_id(&throttle_event.header, &sample, event);
7223
7224 ret = perf_output_begin(&handle, event,
a7ac67ea 7225 throttle_event.header.size);
a78ac325
PZ
7226 if (ret)
7227 return;
7228
7229 perf_output_put(&handle, throttle_event);
c980d109 7230 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7231 perf_output_end(&handle);
7232}
7233
ec0d7729
AS
7234static void perf_log_itrace_start(struct perf_event *event)
7235{
7236 struct perf_output_handle handle;
7237 struct perf_sample_data sample;
7238 struct perf_aux_event {
7239 struct perf_event_header header;
7240 u32 pid;
7241 u32 tid;
7242 } rec;
7243 int ret;
7244
7245 if (event->parent)
7246 event = event->parent;
7247
7248 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7249 event->hw.itrace_started)
7250 return;
7251
ec0d7729
AS
7252 rec.header.type = PERF_RECORD_ITRACE_START;
7253 rec.header.misc = 0;
7254 rec.header.size = sizeof(rec);
7255 rec.pid = perf_event_pid(event, current);
7256 rec.tid = perf_event_tid(event, current);
7257
7258 perf_event_header__init_id(&rec.header, &sample, event);
7259 ret = perf_output_begin(&handle, event, rec.header.size);
7260
7261 if (ret)
7262 return;
7263
7264 perf_output_put(&handle, rec);
7265 perf_event__output_id_sample(event, &handle, &sample);
7266
7267 perf_output_end(&handle);
7268}
7269
475113d9
JO
7270static int
7271__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7272{
cdd6c482 7273 struct hw_perf_event *hwc = &event->hw;
79f14641 7274 int ret = 0;
475113d9 7275 u64 seq;
96398826 7276
e050e3f0
SE
7277 seq = __this_cpu_read(perf_throttled_seq);
7278 if (seq != hwc->interrupts_seq) {
7279 hwc->interrupts_seq = seq;
7280 hwc->interrupts = 1;
7281 } else {
7282 hwc->interrupts++;
7283 if (unlikely(throttle
7284 && hwc->interrupts >= max_samples_per_tick)) {
7285 __this_cpu_inc(perf_throttled_count);
555e0c1e 7286 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7287 hwc->interrupts = MAX_INTERRUPTS;
7288 perf_log_throttle(event, 0);
a78ac325
PZ
7289 ret = 1;
7290 }
e050e3f0 7291 }
60db5e09 7292
cdd6c482 7293 if (event->attr.freq) {
def0a9b2 7294 u64 now = perf_clock();
abd50713 7295 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7296
abd50713 7297 hwc->freq_time_stamp = now;
bd2b5b12 7298
abd50713 7299 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7300 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7301 }
7302
475113d9
JO
7303 return ret;
7304}
7305
7306int perf_event_account_interrupt(struct perf_event *event)
7307{
7308 return __perf_event_account_interrupt(event, 1);
7309}
7310
7311/*
7312 * Generic event overflow handling, sampling.
7313 */
7314
7315static int __perf_event_overflow(struct perf_event *event,
7316 int throttle, struct perf_sample_data *data,
7317 struct pt_regs *regs)
7318{
7319 int events = atomic_read(&event->event_limit);
7320 int ret = 0;
7321
7322 /*
7323 * Non-sampling counters might still use the PMI to fold short
7324 * hardware counters, ignore those.
7325 */
7326 if (unlikely(!is_sampling_event(event)))
7327 return 0;
7328
7329 ret = __perf_event_account_interrupt(event, throttle);
7330
2023b359
PZ
7331 /*
7332 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7333 * events
2023b359
PZ
7334 */
7335
cdd6c482
IM
7336 event->pending_kill = POLL_IN;
7337 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7338 ret = 1;
cdd6c482 7339 event->pending_kill = POLL_HUP;
5aab90ce
JO
7340
7341 perf_event_disable_inatomic(event);
79f14641
PZ
7342 }
7343
aa6a5f3c 7344 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7345
fed66e2c 7346 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7347 event->pending_wakeup = 1;
7348 irq_work_queue(&event->pending);
f506b3dc
PZ
7349 }
7350
79f14641 7351 return ret;
f6c7d5fe
PZ
7352}
7353
a8b0ca17 7354int perf_event_overflow(struct perf_event *event,
5622f295
MM
7355 struct perf_sample_data *data,
7356 struct pt_regs *regs)
850bc73f 7357{
a8b0ca17 7358 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7359}
7360
15dbf27c 7361/*
cdd6c482 7362 * Generic software event infrastructure
15dbf27c
PZ
7363 */
7364
b28ab83c
PZ
7365struct swevent_htable {
7366 struct swevent_hlist *swevent_hlist;
7367 struct mutex hlist_mutex;
7368 int hlist_refcount;
7369
7370 /* Recursion avoidance in each contexts */
7371 int recursion[PERF_NR_CONTEXTS];
7372};
7373
7374static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7375
7b4b6658 7376/*
cdd6c482
IM
7377 * We directly increment event->count and keep a second value in
7378 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7379 * is kept in the range [-sample_period, 0] so that we can use the
7380 * sign as trigger.
7381 */
7382
ab573844 7383u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7384{
cdd6c482 7385 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7386 u64 period = hwc->last_period;
7387 u64 nr, offset;
7388 s64 old, val;
7389
7390 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7391
7392again:
e7850595 7393 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7394 if (val < 0)
7395 return 0;
15dbf27c 7396
7b4b6658
PZ
7397 nr = div64_u64(period + val, period);
7398 offset = nr * period;
7399 val -= offset;
e7850595 7400 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7401 goto again;
15dbf27c 7402
7b4b6658 7403 return nr;
15dbf27c
PZ
7404}
7405
0cff784a 7406static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7407 struct perf_sample_data *data,
5622f295 7408 struct pt_regs *regs)
15dbf27c 7409{
cdd6c482 7410 struct hw_perf_event *hwc = &event->hw;
850bc73f 7411 int throttle = 0;
15dbf27c 7412
0cff784a
PZ
7413 if (!overflow)
7414 overflow = perf_swevent_set_period(event);
15dbf27c 7415
7b4b6658
PZ
7416 if (hwc->interrupts == MAX_INTERRUPTS)
7417 return;
15dbf27c 7418
7b4b6658 7419 for (; overflow; overflow--) {
a8b0ca17 7420 if (__perf_event_overflow(event, throttle,
5622f295 7421 data, regs)) {
7b4b6658
PZ
7422 /*
7423 * We inhibit the overflow from happening when
7424 * hwc->interrupts == MAX_INTERRUPTS.
7425 */
7426 break;
7427 }
cf450a73 7428 throttle = 1;
7b4b6658 7429 }
15dbf27c
PZ
7430}
7431
a4eaf7f1 7432static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7433 struct perf_sample_data *data,
5622f295 7434 struct pt_regs *regs)
7b4b6658 7435{
cdd6c482 7436 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7437
e7850595 7438 local64_add(nr, &event->count);
d6d020e9 7439
0cff784a
PZ
7440 if (!regs)
7441 return;
7442
6c7e550f 7443 if (!is_sampling_event(event))
7b4b6658 7444 return;
d6d020e9 7445
5d81e5cf
AV
7446 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7447 data->period = nr;
7448 return perf_swevent_overflow(event, 1, data, regs);
7449 } else
7450 data->period = event->hw.last_period;
7451
0cff784a 7452 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7453 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7454
e7850595 7455 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7456 return;
df1a132b 7457
a8b0ca17 7458 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7459}
7460
f5ffe02e
FW
7461static int perf_exclude_event(struct perf_event *event,
7462 struct pt_regs *regs)
7463{
a4eaf7f1 7464 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7465 return 1;
a4eaf7f1 7466
f5ffe02e
FW
7467 if (regs) {
7468 if (event->attr.exclude_user && user_mode(regs))
7469 return 1;
7470
7471 if (event->attr.exclude_kernel && !user_mode(regs))
7472 return 1;
7473 }
7474
7475 return 0;
7476}
7477
cdd6c482 7478static int perf_swevent_match(struct perf_event *event,
1c432d89 7479 enum perf_type_id type,
6fb2915d
LZ
7480 u32 event_id,
7481 struct perf_sample_data *data,
7482 struct pt_regs *regs)
15dbf27c 7483{
cdd6c482 7484 if (event->attr.type != type)
a21ca2ca 7485 return 0;
f5ffe02e 7486
cdd6c482 7487 if (event->attr.config != event_id)
15dbf27c
PZ
7488 return 0;
7489
f5ffe02e
FW
7490 if (perf_exclude_event(event, regs))
7491 return 0;
15dbf27c
PZ
7492
7493 return 1;
7494}
7495
76e1d904
FW
7496static inline u64 swevent_hash(u64 type, u32 event_id)
7497{
7498 u64 val = event_id | (type << 32);
7499
7500 return hash_64(val, SWEVENT_HLIST_BITS);
7501}
7502
49f135ed
FW
7503static inline struct hlist_head *
7504__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7505{
49f135ed
FW
7506 u64 hash = swevent_hash(type, event_id);
7507
7508 return &hlist->heads[hash];
7509}
76e1d904 7510
49f135ed
FW
7511/* For the read side: events when they trigger */
7512static inline struct hlist_head *
b28ab83c 7513find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7514{
7515 struct swevent_hlist *hlist;
76e1d904 7516
b28ab83c 7517 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7518 if (!hlist)
7519 return NULL;
7520
49f135ed
FW
7521 return __find_swevent_head(hlist, type, event_id);
7522}
7523
7524/* For the event head insertion and removal in the hlist */
7525static inline struct hlist_head *
b28ab83c 7526find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7527{
7528 struct swevent_hlist *hlist;
7529 u32 event_id = event->attr.config;
7530 u64 type = event->attr.type;
7531
7532 /*
7533 * Event scheduling is always serialized against hlist allocation
7534 * and release. Which makes the protected version suitable here.
7535 * The context lock guarantees that.
7536 */
b28ab83c 7537 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7538 lockdep_is_held(&event->ctx->lock));
7539 if (!hlist)
7540 return NULL;
7541
7542 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7543}
7544
7545static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7546 u64 nr,
76e1d904
FW
7547 struct perf_sample_data *data,
7548 struct pt_regs *regs)
15dbf27c 7549{
4a32fea9 7550 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7551 struct perf_event *event;
76e1d904 7552 struct hlist_head *head;
15dbf27c 7553
76e1d904 7554 rcu_read_lock();
b28ab83c 7555 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7556 if (!head)
7557 goto end;
7558
b67bfe0d 7559 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7560 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7561 perf_swevent_event(event, nr, data, regs);
15dbf27c 7562 }
76e1d904
FW
7563end:
7564 rcu_read_unlock();
15dbf27c
PZ
7565}
7566
86038c5e
PZI
7567DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7568
4ed7c92d 7569int perf_swevent_get_recursion_context(void)
96f6d444 7570{
4a32fea9 7571 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7572
b28ab83c 7573 return get_recursion_context(swhash->recursion);
96f6d444 7574}
645e8cc0 7575EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7576
98b5c2c6 7577void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7578{
4a32fea9 7579 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7580
b28ab83c 7581 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7582}
15dbf27c 7583
86038c5e 7584void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7585{
a4234bfc 7586 struct perf_sample_data data;
4ed7c92d 7587
86038c5e 7588 if (WARN_ON_ONCE(!regs))
4ed7c92d 7589 return;
a4234bfc 7590
fd0d000b 7591 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7592 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7593}
7594
7595void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7596{
7597 int rctx;
7598
7599 preempt_disable_notrace();
7600 rctx = perf_swevent_get_recursion_context();
7601 if (unlikely(rctx < 0))
7602 goto fail;
7603
7604 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7605
7606 perf_swevent_put_recursion_context(rctx);
86038c5e 7607fail:
1c024eca 7608 preempt_enable_notrace();
b8e83514
PZ
7609}
7610
cdd6c482 7611static void perf_swevent_read(struct perf_event *event)
15dbf27c 7612{
15dbf27c
PZ
7613}
7614
a4eaf7f1 7615static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7616{
4a32fea9 7617 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7618 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7619 struct hlist_head *head;
7620
6c7e550f 7621 if (is_sampling_event(event)) {
7b4b6658 7622 hwc->last_period = hwc->sample_period;
cdd6c482 7623 perf_swevent_set_period(event);
7b4b6658 7624 }
76e1d904 7625
a4eaf7f1
PZ
7626 hwc->state = !(flags & PERF_EF_START);
7627
b28ab83c 7628 head = find_swevent_head(swhash, event);
12ca6ad2 7629 if (WARN_ON_ONCE(!head))
76e1d904
FW
7630 return -EINVAL;
7631
7632 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7633 perf_event_update_userpage(event);
76e1d904 7634
15dbf27c
PZ
7635 return 0;
7636}
7637
a4eaf7f1 7638static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7639{
76e1d904 7640 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7641}
7642
a4eaf7f1 7643static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7644{
a4eaf7f1 7645 event->hw.state = 0;
d6d020e9 7646}
aa9c4c0f 7647
a4eaf7f1 7648static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7649{
a4eaf7f1 7650 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7651}
7652
49f135ed
FW
7653/* Deref the hlist from the update side */
7654static inline struct swevent_hlist *
b28ab83c 7655swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7656{
b28ab83c
PZ
7657 return rcu_dereference_protected(swhash->swevent_hlist,
7658 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7659}
7660
b28ab83c 7661static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7662{
b28ab83c 7663 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7664
49f135ed 7665 if (!hlist)
76e1d904
FW
7666 return;
7667
70691d4a 7668 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7669 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7670}
7671
3b364d7b 7672static void swevent_hlist_put_cpu(int cpu)
76e1d904 7673{
b28ab83c 7674 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7675
b28ab83c 7676 mutex_lock(&swhash->hlist_mutex);
76e1d904 7677
b28ab83c
PZ
7678 if (!--swhash->hlist_refcount)
7679 swevent_hlist_release(swhash);
76e1d904 7680
b28ab83c 7681 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7682}
7683
3b364d7b 7684static void swevent_hlist_put(void)
76e1d904
FW
7685{
7686 int cpu;
7687
76e1d904 7688 for_each_possible_cpu(cpu)
3b364d7b 7689 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7690}
7691
3b364d7b 7692static int swevent_hlist_get_cpu(int cpu)
76e1d904 7693{
b28ab83c 7694 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7695 int err = 0;
7696
b28ab83c 7697 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
7698 if (!swevent_hlist_deref(swhash) &&
7699 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
7700 struct swevent_hlist *hlist;
7701
7702 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7703 if (!hlist) {
7704 err = -ENOMEM;
7705 goto exit;
7706 }
b28ab83c 7707 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7708 }
b28ab83c 7709 swhash->hlist_refcount++;
9ed6060d 7710exit:
b28ab83c 7711 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7712
7713 return err;
7714}
7715
3b364d7b 7716static int swevent_hlist_get(void)
76e1d904 7717{
3b364d7b 7718 int err, cpu, failed_cpu;
76e1d904 7719
a63fbed7 7720 mutex_lock(&pmus_lock);
76e1d904 7721 for_each_possible_cpu(cpu) {
3b364d7b 7722 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7723 if (err) {
7724 failed_cpu = cpu;
7725 goto fail;
7726 }
7727 }
a63fbed7 7728 mutex_unlock(&pmus_lock);
76e1d904 7729 return 0;
9ed6060d 7730fail:
76e1d904
FW
7731 for_each_possible_cpu(cpu) {
7732 if (cpu == failed_cpu)
7733 break;
3b364d7b 7734 swevent_hlist_put_cpu(cpu);
76e1d904 7735 }
a63fbed7 7736 mutex_unlock(&pmus_lock);
76e1d904
FW
7737 return err;
7738}
7739
c5905afb 7740struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7741
b0a873eb
PZ
7742static void sw_perf_event_destroy(struct perf_event *event)
7743{
7744 u64 event_id = event->attr.config;
95476b64 7745
b0a873eb
PZ
7746 WARN_ON(event->parent);
7747
c5905afb 7748 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7749 swevent_hlist_put();
b0a873eb
PZ
7750}
7751
7752static int perf_swevent_init(struct perf_event *event)
7753{
8176cced 7754 u64 event_id = event->attr.config;
b0a873eb
PZ
7755
7756 if (event->attr.type != PERF_TYPE_SOFTWARE)
7757 return -ENOENT;
7758
2481c5fa
SE
7759 /*
7760 * no branch sampling for software events
7761 */
7762 if (has_branch_stack(event))
7763 return -EOPNOTSUPP;
7764
b0a873eb
PZ
7765 switch (event_id) {
7766 case PERF_COUNT_SW_CPU_CLOCK:
7767 case PERF_COUNT_SW_TASK_CLOCK:
7768 return -ENOENT;
7769
7770 default:
7771 break;
7772 }
7773
ce677831 7774 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7775 return -ENOENT;
7776
7777 if (!event->parent) {
7778 int err;
7779
3b364d7b 7780 err = swevent_hlist_get();
b0a873eb
PZ
7781 if (err)
7782 return err;
7783
c5905afb 7784 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7785 event->destroy = sw_perf_event_destroy;
7786 }
7787
7788 return 0;
7789}
7790
7791static struct pmu perf_swevent = {
89a1e187 7792 .task_ctx_nr = perf_sw_context,
95476b64 7793
34f43927
PZ
7794 .capabilities = PERF_PMU_CAP_NO_NMI,
7795
b0a873eb 7796 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7797 .add = perf_swevent_add,
7798 .del = perf_swevent_del,
7799 .start = perf_swevent_start,
7800 .stop = perf_swevent_stop,
1c024eca 7801 .read = perf_swevent_read,
1c024eca
PZ
7802};
7803
b0a873eb
PZ
7804#ifdef CONFIG_EVENT_TRACING
7805
1c024eca
PZ
7806static int perf_tp_filter_match(struct perf_event *event,
7807 struct perf_sample_data *data)
7808{
7e3f977e 7809 void *record = data->raw->frag.data;
1c024eca 7810
b71b437e
PZ
7811 /* only top level events have filters set */
7812 if (event->parent)
7813 event = event->parent;
7814
1c024eca
PZ
7815 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7816 return 1;
7817 return 0;
7818}
7819
7820static int perf_tp_event_match(struct perf_event *event,
7821 struct perf_sample_data *data,
7822 struct pt_regs *regs)
7823{
a0f7d0f7
FW
7824 if (event->hw.state & PERF_HES_STOPPED)
7825 return 0;
580d607c
PZ
7826 /*
7827 * All tracepoints are from kernel-space.
7828 */
7829 if (event->attr.exclude_kernel)
1c024eca
PZ
7830 return 0;
7831
7832 if (!perf_tp_filter_match(event, data))
7833 return 0;
7834
7835 return 1;
7836}
7837
85b67bcb
AS
7838void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7839 struct trace_event_call *call, u64 count,
7840 struct pt_regs *regs, struct hlist_head *head,
7841 struct task_struct *task)
7842{
7843 struct bpf_prog *prog = call->prog;
7844
7845 if (prog) {
7846 *(struct pt_regs **)raw_data = regs;
7847 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7848 perf_swevent_put_recursion_context(rctx);
7849 return;
7850 }
7851 }
7852 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7853 rctx, task);
7854}
7855EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7856
1e1dcd93 7857void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff
AV
7858 struct pt_regs *regs, struct hlist_head *head, int rctx,
7859 struct task_struct *task)
95476b64
FW
7860{
7861 struct perf_sample_data data;
1c024eca 7862 struct perf_event *event;
1c024eca 7863
95476b64 7864 struct perf_raw_record raw = {
7e3f977e
DB
7865 .frag = {
7866 .size = entry_size,
7867 .data = record,
7868 },
95476b64
FW
7869 };
7870
1e1dcd93 7871 perf_sample_data_init(&data, 0, 0);
95476b64
FW
7872 data.raw = &raw;
7873
1e1dcd93
AS
7874 perf_trace_buf_update(record, event_type);
7875
b67bfe0d 7876 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 7877 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7878 perf_swevent_event(event, count, &data, regs);
4f41c013 7879 }
ecc55f84 7880
e6dab5ff
AV
7881 /*
7882 * If we got specified a target task, also iterate its context and
7883 * deliver this event there too.
7884 */
7885 if (task && task != current) {
7886 struct perf_event_context *ctx;
7887 struct trace_entry *entry = record;
7888
7889 rcu_read_lock();
7890 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7891 if (!ctx)
7892 goto unlock;
7893
7894 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7895 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7896 continue;
7897 if (event->attr.config != entry->type)
7898 continue;
7899 if (perf_tp_event_match(event, &data, regs))
7900 perf_swevent_event(event, count, &data, regs);
7901 }
7902unlock:
7903 rcu_read_unlock();
7904 }
7905
ecc55f84 7906 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7907}
7908EXPORT_SYMBOL_GPL(perf_tp_event);
7909
cdd6c482 7910static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7911{
1c024eca 7912 perf_trace_destroy(event);
e077df4f
PZ
7913}
7914
b0a873eb 7915static int perf_tp_event_init(struct perf_event *event)
e077df4f 7916{
76e1d904
FW
7917 int err;
7918
b0a873eb
PZ
7919 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7920 return -ENOENT;
7921
2481c5fa
SE
7922 /*
7923 * no branch sampling for tracepoint events
7924 */
7925 if (has_branch_stack(event))
7926 return -EOPNOTSUPP;
7927
1c024eca
PZ
7928 err = perf_trace_init(event);
7929 if (err)
b0a873eb 7930 return err;
e077df4f 7931
cdd6c482 7932 event->destroy = tp_perf_event_destroy;
e077df4f 7933
b0a873eb
PZ
7934 return 0;
7935}
7936
7937static struct pmu perf_tracepoint = {
89a1e187
PZ
7938 .task_ctx_nr = perf_sw_context,
7939
b0a873eb 7940 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7941 .add = perf_trace_add,
7942 .del = perf_trace_del,
7943 .start = perf_swevent_start,
7944 .stop = perf_swevent_stop,
b0a873eb 7945 .read = perf_swevent_read,
b0a873eb
PZ
7946};
7947
7948static inline void perf_tp_register(void)
7949{
2e80a82a 7950 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7951}
6fb2915d 7952
6fb2915d
LZ
7953static void perf_event_free_filter(struct perf_event *event)
7954{
7955 ftrace_profile_free_filter(event);
7956}
7957
aa6a5f3c
AS
7958#ifdef CONFIG_BPF_SYSCALL
7959static void bpf_overflow_handler(struct perf_event *event,
7960 struct perf_sample_data *data,
7961 struct pt_regs *regs)
7962{
7963 struct bpf_perf_event_data_kern ctx = {
7964 .data = data,
7965 .regs = regs,
7966 };
7967 int ret = 0;
7968
7969 preempt_disable();
7970 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7971 goto out;
7972 rcu_read_lock();
88575199 7973 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
7974 rcu_read_unlock();
7975out:
7976 __this_cpu_dec(bpf_prog_active);
7977 preempt_enable();
7978 if (!ret)
7979 return;
7980
7981 event->orig_overflow_handler(event, data, regs);
7982}
7983
7984static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7985{
7986 struct bpf_prog *prog;
7987
7988 if (event->overflow_handler_context)
7989 /* hw breakpoint or kernel counter */
7990 return -EINVAL;
7991
7992 if (event->prog)
7993 return -EEXIST;
7994
7995 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7996 if (IS_ERR(prog))
7997 return PTR_ERR(prog);
7998
7999 event->prog = prog;
8000 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8001 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8002 return 0;
8003}
8004
8005static void perf_event_free_bpf_handler(struct perf_event *event)
8006{
8007 struct bpf_prog *prog = event->prog;
8008
8009 if (!prog)
8010 return;
8011
8012 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8013 event->prog = NULL;
8014 bpf_prog_put(prog);
8015}
8016#else
8017static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8018{
8019 return -EOPNOTSUPP;
8020}
8021static void perf_event_free_bpf_handler(struct perf_event *event)
8022{
8023}
8024#endif
8025
2541517c
AS
8026static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8027{
98b5c2c6 8028 bool is_kprobe, is_tracepoint;
2541517c
AS
8029 struct bpf_prog *prog;
8030
aa6a5f3c
AS
8031 if (event->attr.type == PERF_TYPE_HARDWARE ||
8032 event->attr.type == PERF_TYPE_SOFTWARE)
8033 return perf_event_set_bpf_handler(event, prog_fd);
8034
2541517c
AS
8035 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8036 return -EINVAL;
8037
8038 if (event->tp_event->prog)
8039 return -EEXIST;
8040
98b5c2c6
AS
8041 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8042 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8043 if (!is_kprobe && !is_tracepoint)
8044 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
8045 return -EINVAL;
8046
8047 prog = bpf_prog_get(prog_fd);
8048 if (IS_ERR(prog))
8049 return PTR_ERR(prog);
8050
98b5c2c6
AS
8051 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8052 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
8053 /* valid fd, but invalid bpf program type */
8054 bpf_prog_put(prog);
8055 return -EINVAL;
8056 }
8057
32bbe007
AS
8058 if (is_tracepoint) {
8059 int off = trace_event_get_offsets(event->tp_event);
8060
8061 if (prog->aux->max_ctx_offset > off) {
8062 bpf_prog_put(prog);
8063 return -EACCES;
8064 }
8065 }
2541517c
AS
8066 event->tp_event->prog = prog;
8067
8068 return 0;
8069}
8070
8071static void perf_event_free_bpf_prog(struct perf_event *event)
8072{
8073 struct bpf_prog *prog;
8074
aa6a5f3c
AS
8075 perf_event_free_bpf_handler(event);
8076
2541517c
AS
8077 if (!event->tp_event)
8078 return;
8079
8080 prog = event->tp_event->prog;
8081 if (prog) {
8082 event->tp_event->prog = NULL;
1aacde3d 8083 bpf_prog_put(prog);
2541517c
AS
8084 }
8085}
8086
e077df4f 8087#else
6fb2915d 8088
b0a873eb 8089static inline void perf_tp_register(void)
e077df4f 8090{
e077df4f 8091}
6fb2915d 8092
6fb2915d
LZ
8093static void perf_event_free_filter(struct perf_event *event)
8094{
8095}
8096
2541517c
AS
8097static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8098{
8099 return -ENOENT;
8100}
8101
8102static void perf_event_free_bpf_prog(struct perf_event *event)
8103{
8104}
07b139c8 8105#endif /* CONFIG_EVENT_TRACING */
e077df4f 8106
24f1e32c 8107#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 8108void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 8109{
f5ffe02e
FW
8110 struct perf_sample_data sample;
8111 struct pt_regs *regs = data;
8112
fd0d000b 8113 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 8114
a4eaf7f1 8115 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 8116 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
8117}
8118#endif
8119
375637bc
AS
8120/*
8121 * Allocate a new address filter
8122 */
8123static struct perf_addr_filter *
8124perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8125{
8126 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8127 struct perf_addr_filter *filter;
8128
8129 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8130 if (!filter)
8131 return NULL;
8132
8133 INIT_LIST_HEAD(&filter->entry);
8134 list_add_tail(&filter->entry, filters);
8135
8136 return filter;
8137}
8138
8139static void free_filters_list(struct list_head *filters)
8140{
8141 struct perf_addr_filter *filter, *iter;
8142
8143 list_for_each_entry_safe(filter, iter, filters, entry) {
8144 if (filter->inode)
8145 iput(filter->inode);
8146 list_del(&filter->entry);
8147 kfree(filter);
8148 }
8149}
8150
8151/*
8152 * Free existing address filters and optionally install new ones
8153 */
8154static void perf_addr_filters_splice(struct perf_event *event,
8155 struct list_head *head)
8156{
8157 unsigned long flags;
8158 LIST_HEAD(list);
8159
8160 if (!has_addr_filter(event))
8161 return;
8162
8163 /* don't bother with children, they don't have their own filters */
8164 if (event->parent)
8165 return;
8166
8167 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8168
8169 list_splice_init(&event->addr_filters.list, &list);
8170 if (head)
8171 list_splice(head, &event->addr_filters.list);
8172
8173 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8174
8175 free_filters_list(&list);
8176}
8177
8178/*
8179 * Scan through mm's vmas and see if one of them matches the
8180 * @filter; if so, adjust filter's address range.
8181 * Called with mm::mmap_sem down for reading.
8182 */
8183static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8184 struct mm_struct *mm)
8185{
8186 struct vm_area_struct *vma;
8187
8188 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8189 struct file *file = vma->vm_file;
8190 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8191 unsigned long vma_size = vma->vm_end - vma->vm_start;
8192
8193 if (!file)
8194 continue;
8195
8196 if (!perf_addr_filter_match(filter, file, off, vma_size))
8197 continue;
8198
8199 return vma->vm_start;
8200 }
8201
8202 return 0;
8203}
8204
8205/*
8206 * Update event's address range filters based on the
8207 * task's existing mappings, if any.
8208 */
8209static void perf_event_addr_filters_apply(struct perf_event *event)
8210{
8211 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8212 struct task_struct *task = READ_ONCE(event->ctx->task);
8213 struct perf_addr_filter *filter;
8214 struct mm_struct *mm = NULL;
8215 unsigned int count = 0;
8216 unsigned long flags;
8217
8218 /*
8219 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8220 * will stop on the parent's child_mutex that our caller is also holding
8221 */
8222 if (task == TASK_TOMBSTONE)
8223 return;
8224
6ce77bfd
AS
8225 if (!ifh->nr_file_filters)
8226 return;
8227
375637bc
AS
8228 mm = get_task_mm(event->ctx->task);
8229 if (!mm)
8230 goto restart;
8231
8232 down_read(&mm->mmap_sem);
8233
8234 raw_spin_lock_irqsave(&ifh->lock, flags);
8235 list_for_each_entry(filter, &ifh->list, entry) {
8236 event->addr_filters_offs[count] = 0;
8237
99f5bc9b
MP
8238 /*
8239 * Adjust base offset if the filter is associated to a binary
8240 * that needs to be mapped:
8241 */
8242 if (filter->inode)
375637bc
AS
8243 event->addr_filters_offs[count] =
8244 perf_addr_filter_apply(filter, mm);
8245
8246 count++;
8247 }
8248
8249 event->addr_filters_gen++;
8250 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8251
8252 up_read(&mm->mmap_sem);
8253
8254 mmput(mm);
8255
8256restart:
767ae086 8257 perf_event_stop(event, 1);
375637bc
AS
8258}
8259
8260/*
8261 * Address range filtering: limiting the data to certain
8262 * instruction address ranges. Filters are ioctl()ed to us from
8263 * userspace as ascii strings.
8264 *
8265 * Filter string format:
8266 *
8267 * ACTION RANGE_SPEC
8268 * where ACTION is one of the
8269 * * "filter": limit the trace to this region
8270 * * "start": start tracing from this address
8271 * * "stop": stop tracing at this address/region;
8272 * RANGE_SPEC is
8273 * * for kernel addresses: <start address>[/<size>]
8274 * * for object files: <start address>[/<size>]@</path/to/object/file>
8275 *
8276 * if <size> is not specified, the range is treated as a single address.
8277 */
8278enum {
e96271f3 8279 IF_ACT_NONE = -1,
375637bc
AS
8280 IF_ACT_FILTER,
8281 IF_ACT_START,
8282 IF_ACT_STOP,
8283 IF_SRC_FILE,
8284 IF_SRC_KERNEL,
8285 IF_SRC_FILEADDR,
8286 IF_SRC_KERNELADDR,
8287};
8288
8289enum {
8290 IF_STATE_ACTION = 0,
8291 IF_STATE_SOURCE,
8292 IF_STATE_END,
8293};
8294
8295static const match_table_t if_tokens = {
8296 { IF_ACT_FILTER, "filter" },
8297 { IF_ACT_START, "start" },
8298 { IF_ACT_STOP, "stop" },
8299 { IF_SRC_FILE, "%u/%u@%s" },
8300 { IF_SRC_KERNEL, "%u/%u" },
8301 { IF_SRC_FILEADDR, "%u@%s" },
8302 { IF_SRC_KERNELADDR, "%u" },
e96271f3 8303 { IF_ACT_NONE, NULL },
375637bc
AS
8304};
8305
8306/*
8307 * Address filter string parser
8308 */
8309static int
8310perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8311 struct list_head *filters)
8312{
8313 struct perf_addr_filter *filter = NULL;
8314 char *start, *orig, *filename = NULL;
8315 struct path path;
8316 substring_t args[MAX_OPT_ARGS];
8317 int state = IF_STATE_ACTION, token;
8318 unsigned int kernel = 0;
8319 int ret = -EINVAL;
8320
8321 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8322 if (!fstr)
8323 return -ENOMEM;
8324
8325 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8326 ret = -EINVAL;
8327
8328 if (!*start)
8329 continue;
8330
8331 /* filter definition begins */
8332 if (state == IF_STATE_ACTION) {
8333 filter = perf_addr_filter_new(event, filters);
8334 if (!filter)
8335 goto fail;
8336 }
8337
8338 token = match_token(start, if_tokens, args);
8339 switch (token) {
8340 case IF_ACT_FILTER:
8341 case IF_ACT_START:
8342 filter->filter = 1;
8343
8344 case IF_ACT_STOP:
8345 if (state != IF_STATE_ACTION)
8346 goto fail;
8347
8348 state = IF_STATE_SOURCE;
8349 break;
8350
8351 case IF_SRC_KERNELADDR:
8352 case IF_SRC_KERNEL:
8353 kernel = 1;
8354
8355 case IF_SRC_FILEADDR:
8356 case IF_SRC_FILE:
8357 if (state != IF_STATE_SOURCE)
8358 goto fail;
8359
8360 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8361 filter->range = 1;
8362
8363 *args[0].to = 0;
8364 ret = kstrtoul(args[0].from, 0, &filter->offset);
8365 if (ret)
8366 goto fail;
8367
8368 if (filter->range) {
8369 *args[1].to = 0;
8370 ret = kstrtoul(args[1].from, 0, &filter->size);
8371 if (ret)
8372 goto fail;
8373 }
8374
4059ffd0
MP
8375 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8376 int fpos = filter->range ? 2 : 1;
8377
8378 filename = match_strdup(&args[fpos]);
375637bc
AS
8379 if (!filename) {
8380 ret = -ENOMEM;
8381 goto fail;
8382 }
8383 }
8384
8385 state = IF_STATE_END;
8386 break;
8387
8388 default:
8389 goto fail;
8390 }
8391
8392 /*
8393 * Filter definition is fully parsed, validate and install it.
8394 * Make sure that it doesn't contradict itself or the event's
8395 * attribute.
8396 */
8397 if (state == IF_STATE_END) {
9ccbfbb1 8398 ret = -EINVAL;
375637bc
AS
8399 if (kernel && event->attr.exclude_kernel)
8400 goto fail;
8401
8402 if (!kernel) {
8403 if (!filename)
8404 goto fail;
8405
6ce77bfd
AS
8406 /*
8407 * For now, we only support file-based filters
8408 * in per-task events; doing so for CPU-wide
8409 * events requires additional context switching
8410 * trickery, since same object code will be
8411 * mapped at different virtual addresses in
8412 * different processes.
8413 */
8414 ret = -EOPNOTSUPP;
8415 if (!event->ctx->task)
8416 goto fail_free_name;
8417
375637bc
AS
8418 /* look up the path and grab its inode */
8419 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8420 if (ret)
8421 goto fail_free_name;
8422
8423 filter->inode = igrab(d_inode(path.dentry));
8424 path_put(&path);
8425 kfree(filename);
8426 filename = NULL;
8427
8428 ret = -EINVAL;
8429 if (!filter->inode ||
8430 !S_ISREG(filter->inode->i_mode))
8431 /* free_filters_list() will iput() */
8432 goto fail;
6ce77bfd
AS
8433
8434 event->addr_filters.nr_file_filters++;
375637bc
AS
8435 }
8436
8437 /* ready to consume more filters */
8438 state = IF_STATE_ACTION;
8439 filter = NULL;
8440 }
8441 }
8442
8443 if (state != IF_STATE_ACTION)
8444 goto fail;
8445
8446 kfree(orig);
8447
8448 return 0;
8449
8450fail_free_name:
8451 kfree(filename);
8452fail:
8453 free_filters_list(filters);
8454 kfree(orig);
8455
8456 return ret;
8457}
8458
8459static int
8460perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8461{
8462 LIST_HEAD(filters);
8463 int ret;
8464
8465 /*
8466 * Since this is called in perf_ioctl() path, we're already holding
8467 * ctx::mutex.
8468 */
8469 lockdep_assert_held(&event->ctx->mutex);
8470
8471 if (WARN_ON_ONCE(event->parent))
8472 return -EINVAL;
8473
375637bc
AS
8474 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8475 if (ret)
6ce77bfd 8476 goto fail_clear_files;
375637bc
AS
8477
8478 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
8479 if (ret)
8480 goto fail_free_filters;
375637bc
AS
8481
8482 /* remove existing filters, if any */
8483 perf_addr_filters_splice(event, &filters);
8484
8485 /* install new filters */
8486 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8487
6ce77bfd
AS
8488 return ret;
8489
8490fail_free_filters:
8491 free_filters_list(&filters);
8492
8493fail_clear_files:
8494 event->addr_filters.nr_file_filters = 0;
8495
375637bc
AS
8496 return ret;
8497}
8498
c796bbbe
AS
8499static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8500{
8501 char *filter_str;
8502 int ret = -EINVAL;
8503
375637bc
AS
8504 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8505 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8506 !has_addr_filter(event))
c796bbbe
AS
8507 return -EINVAL;
8508
8509 filter_str = strndup_user(arg, PAGE_SIZE);
8510 if (IS_ERR(filter_str))
8511 return PTR_ERR(filter_str);
8512
8513 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8514 event->attr.type == PERF_TYPE_TRACEPOINT)
8515 ret = ftrace_profile_set_filter(event, event->attr.config,
8516 filter_str);
375637bc
AS
8517 else if (has_addr_filter(event))
8518 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
8519
8520 kfree(filter_str);
8521 return ret;
8522}
8523
b0a873eb
PZ
8524/*
8525 * hrtimer based swevent callback
8526 */
f29ac756 8527
b0a873eb 8528static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 8529{
b0a873eb
PZ
8530 enum hrtimer_restart ret = HRTIMER_RESTART;
8531 struct perf_sample_data data;
8532 struct pt_regs *regs;
8533 struct perf_event *event;
8534 u64 period;
f29ac756 8535
b0a873eb 8536 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
8537
8538 if (event->state != PERF_EVENT_STATE_ACTIVE)
8539 return HRTIMER_NORESTART;
8540
b0a873eb 8541 event->pmu->read(event);
f344011c 8542
fd0d000b 8543 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
8544 regs = get_irq_regs();
8545
8546 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 8547 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 8548 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
8549 ret = HRTIMER_NORESTART;
8550 }
24f1e32c 8551
b0a873eb
PZ
8552 period = max_t(u64, 10000, event->hw.sample_period);
8553 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 8554
b0a873eb 8555 return ret;
f29ac756
PZ
8556}
8557
b0a873eb 8558static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 8559{
b0a873eb 8560 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
8561 s64 period;
8562
8563 if (!is_sampling_event(event))
8564 return;
f5ffe02e 8565
5d508e82
FBH
8566 period = local64_read(&hwc->period_left);
8567 if (period) {
8568 if (period < 0)
8569 period = 10000;
fa407f35 8570
5d508e82
FBH
8571 local64_set(&hwc->period_left, 0);
8572 } else {
8573 period = max_t(u64, 10000, hwc->sample_period);
8574 }
3497d206
TG
8575 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8576 HRTIMER_MODE_REL_PINNED);
24f1e32c 8577}
b0a873eb
PZ
8578
8579static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 8580{
b0a873eb
PZ
8581 struct hw_perf_event *hwc = &event->hw;
8582
6c7e550f 8583 if (is_sampling_event(event)) {
b0a873eb 8584 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 8585 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
8586
8587 hrtimer_cancel(&hwc->hrtimer);
8588 }
24f1e32c
FW
8589}
8590
ba3dd36c
PZ
8591static void perf_swevent_init_hrtimer(struct perf_event *event)
8592{
8593 struct hw_perf_event *hwc = &event->hw;
8594
8595 if (!is_sampling_event(event))
8596 return;
8597
8598 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8599 hwc->hrtimer.function = perf_swevent_hrtimer;
8600
8601 /*
8602 * Since hrtimers have a fixed rate, we can do a static freq->period
8603 * mapping and avoid the whole period adjust feedback stuff.
8604 */
8605 if (event->attr.freq) {
8606 long freq = event->attr.sample_freq;
8607
8608 event->attr.sample_period = NSEC_PER_SEC / freq;
8609 hwc->sample_period = event->attr.sample_period;
8610 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8611 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8612 event->attr.freq = 0;
8613 }
8614}
8615
b0a873eb
PZ
8616/*
8617 * Software event: cpu wall time clock
8618 */
8619
8620static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8621{
b0a873eb
PZ
8622 s64 prev;
8623 u64 now;
8624
a4eaf7f1 8625 now = local_clock();
b0a873eb
PZ
8626 prev = local64_xchg(&event->hw.prev_count, now);
8627 local64_add(now - prev, &event->count);
24f1e32c 8628}
24f1e32c 8629
a4eaf7f1 8630static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8631{
a4eaf7f1 8632 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8633 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8634}
8635
a4eaf7f1 8636static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8637{
b0a873eb
PZ
8638 perf_swevent_cancel_hrtimer(event);
8639 cpu_clock_event_update(event);
8640}
f29ac756 8641
a4eaf7f1
PZ
8642static int cpu_clock_event_add(struct perf_event *event, int flags)
8643{
8644 if (flags & PERF_EF_START)
8645 cpu_clock_event_start(event, flags);
6a694a60 8646 perf_event_update_userpage(event);
a4eaf7f1
PZ
8647
8648 return 0;
8649}
8650
8651static void cpu_clock_event_del(struct perf_event *event, int flags)
8652{
8653 cpu_clock_event_stop(event, flags);
8654}
8655
b0a873eb
PZ
8656static void cpu_clock_event_read(struct perf_event *event)
8657{
8658 cpu_clock_event_update(event);
8659}
f344011c 8660
b0a873eb
PZ
8661static int cpu_clock_event_init(struct perf_event *event)
8662{
8663 if (event->attr.type != PERF_TYPE_SOFTWARE)
8664 return -ENOENT;
8665
8666 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8667 return -ENOENT;
8668
2481c5fa
SE
8669 /*
8670 * no branch sampling for software events
8671 */
8672 if (has_branch_stack(event))
8673 return -EOPNOTSUPP;
8674
ba3dd36c
PZ
8675 perf_swevent_init_hrtimer(event);
8676
b0a873eb 8677 return 0;
f29ac756
PZ
8678}
8679
b0a873eb 8680static struct pmu perf_cpu_clock = {
89a1e187
PZ
8681 .task_ctx_nr = perf_sw_context,
8682
34f43927
PZ
8683 .capabilities = PERF_PMU_CAP_NO_NMI,
8684
b0a873eb 8685 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8686 .add = cpu_clock_event_add,
8687 .del = cpu_clock_event_del,
8688 .start = cpu_clock_event_start,
8689 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8690 .read = cpu_clock_event_read,
8691};
8692
8693/*
8694 * Software event: task time clock
8695 */
8696
8697static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8698{
b0a873eb
PZ
8699 u64 prev;
8700 s64 delta;
5c92d124 8701
b0a873eb
PZ
8702 prev = local64_xchg(&event->hw.prev_count, now);
8703 delta = now - prev;
8704 local64_add(delta, &event->count);
8705}
5c92d124 8706
a4eaf7f1 8707static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8708{
a4eaf7f1 8709 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8710 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8711}
8712
a4eaf7f1 8713static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8714{
8715 perf_swevent_cancel_hrtimer(event);
8716 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8717}
8718
8719static int task_clock_event_add(struct perf_event *event, int flags)
8720{
8721 if (flags & PERF_EF_START)
8722 task_clock_event_start(event, flags);
6a694a60 8723 perf_event_update_userpage(event);
b0a873eb 8724
a4eaf7f1
PZ
8725 return 0;
8726}
8727
8728static void task_clock_event_del(struct perf_event *event, int flags)
8729{
8730 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8731}
8732
8733static void task_clock_event_read(struct perf_event *event)
8734{
768a06e2
PZ
8735 u64 now = perf_clock();
8736 u64 delta = now - event->ctx->timestamp;
8737 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8738
8739 task_clock_event_update(event, time);
8740}
8741
8742static int task_clock_event_init(struct perf_event *event)
6fb2915d 8743{
b0a873eb
PZ
8744 if (event->attr.type != PERF_TYPE_SOFTWARE)
8745 return -ENOENT;
8746
8747 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8748 return -ENOENT;
8749
2481c5fa
SE
8750 /*
8751 * no branch sampling for software events
8752 */
8753 if (has_branch_stack(event))
8754 return -EOPNOTSUPP;
8755
ba3dd36c
PZ
8756 perf_swevent_init_hrtimer(event);
8757
b0a873eb 8758 return 0;
6fb2915d
LZ
8759}
8760
b0a873eb 8761static struct pmu perf_task_clock = {
89a1e187
PZ
8762 .task_ctx_nr = perf_sw_context,
8763
34f43927
PZ
8764 .capabilities = PERF_PMU_CAP_NO_NMI,
8765
b0a873eb 8766 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8767 .add = task_clock_event_add,
8768 .del = task_clock_event_del,
8769 .start = task_clock_event_start,
8770 .stop = task_clock_event_stop,
b0a873eb
PZ
8771 .read = task_clock_event_read,
8772};
6fb2915d 8773
ad5133b7 8774static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8775{
e077df4f 8776}
6fb2915d 8777
fbbe0701
SB
8778static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8779{
8780}
8781
ad5133b7 8782static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8783{
ad5133b7 8784 return 0;
6fb2915d
LZ
8785}
8786
18ab2cd3 8787static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8788
8789static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8790{
fbbe0701
SB
8791 __this_cpu_write(nop_txn_flags, flags);
8792
8793 if (flags & ~PERF_PMU_TXN_ADD)
8794 return;
8795
ad5133b7 8796 perf_pmu_disable(pmu);
6fb2915d
LZ
8797}
8798
ad5133b7
PZ
8799static int perf_pmu_commit_txn(struct pmu *pmu)
8800{
fbbe0701
SB
8801 unsigned int flags = __this_cpu_read(nop_txn_flags);
8802
8803 __this_cpu_write(nop_txn_flags, 0);
8804
8805 if (flags & ~PERF_PMU_TXN_ADD)
8806 return 0;
8807
ad5133b7
PZ
8808 perf_pmu_enable(pmu);
8809 return 0;
8810}
e077df4f 8811
ad5133b7 8812static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 8813{
fbbe0701
SB
8814 unsigned int flags = __this_cpu_read(nop_txn_flags);
8815
8816 __this_cpu_write(nop_txn_flags, 0);
8817
8818 if (flags & ~PERF_PMU_TXN_ADD)
8819 return;
8820
ad5133b7 8821 perf_pmu_enable(pmu);
24f1e32c
FW
8822}
8823
35edc2a5
PZ
8824static int perf_event_idx_default(struct perf_event *event)
8825{
c719f560 8826 return 0;
35edc2a5
PZ
8827}
8828
8dc85d54
PZ
8829/*
8830 * Ensures all contexts with the same task_ctx_nr have the same
8831 * pmu_cpu_context too.
8832 */
9e317041 8833static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 8834{
8dc85d54 8835 struct pmu *pmu;
b326e956 8836
8dc85d54
PZ
8837 if (ctxn < 0)
8838 return NULL;
24f1e32c 8839
8dc85d54
PZ
8840 list_for_each_entry(pmu, &pmus, entry) {
8841 if (pmu->task_ctx_nr == ctxn)
8842 return pmu->pmu_cpu_context;
8843 }
24f1e32c 8844
8dc85d54 8845 return NULL;
24f1e32c
FW
8846}
8847
51676957
PZ
8848static void free_pmu_context(struct pmu *pmu)
8849{
8dc85d54 8850 mutex_lock(&pmus_lock);
51676957 8851 free_percpu(pmu->pmu_cpu_context);
8dc85d54 8852 mutex_unlock(&pmus_lock);
24f1e32c 8853}
6e855cd4
AS
8854
8855/*
8856 * Let userspace know that this PMU supports address range filtering:
8857 */
8858static ssize_t nr_addr_filters_show(struct device *dev,
8859 struct device_attribute *attr,
8860 char *page)
8861{
8862 struct pmu *pmu = dev_get_drvdata(dev);
8863
8864 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8865}
8866DEVICE_ATTR_RO(nr_addr_filters);
8867
2e80a82a 8868static struct idr pmu_idr;
d6d020e9 8869
abe43400
PZ
8870static ssize_t
8871type_show(struct device *dev, struct device_attribute *attr, char *page)
8872{
8873 struct pmu *pmu = dev_get_drvdata(dev);
8874
8875 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8876}
90826ca7 8877static DEVICE_ATTR_RO(type);
abe43400 8878
62b85639
SE
8879static ssize_t
8880perf_event_mux_interval_ms_show(struct device *dev,
8881 struct device_attribute *attr,
8882 char *page)
8883{
8884 struct pmu *pmu = dev_get_drvdata(dev);
8885
8886 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8887}
8888
272325c4
PZ
8889static DEFINE_MUTEX(mux_interval_mutex);
8890
62b85639
SE
8891static ssize_t
8892perf_event_mux_interval_ms_store(struct device *dev,
8893 struct device_attribute *attr,
8894 const char *buf, size_t count)
8895{
8896 struct pmu *pmu = dev_get_drvdata(dev);
8897 int timer, cpu, ret;
8898
8899 ret = kstrtoint(buf, 0, &timer);
8900 if (ret)
8901 return ret;
8902
8903 if (timer < 1)
8904 return -EINVAL;
8905
8906 /* same value, noting to do */
8907 if (timer == pmu->hrtimer_interval_ms)
8908 return count;
8909
272325c4 8910 mutex_lock(&mux_interval_mutex);
62b85639
SE
8911 pmu->hrtimer_interval_ms = timer;
8912
8913 /* update all cpuctx for this PMU */
a63fbed7 8914 cpus_read_lock();
272325c4 8915 for_each_online_cpu(cpu) {
62b85639
SE
8916 struct perf_cpu_context *cpuctx;
8917 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8918 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8919
272325c4
PZ
8920 cpu_function_call(cpu,
8921 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 8922 }
a63fbed7 8923 cpus_read_unlock();
272325c4 8924 mutex_unlock(&mux_interval_mutex);
62b85639
SE
8925
8926 return count;
8927}
90826ca7 8928static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 8929
90826ca7
GKH
8930static struct attribute *pmu_dev_attrs[] = {
8931 &dev_attr_type.attr,
8932 &dev_attr_perf_event_mux_interval_ms.attr,
8933 NULL,
abe43400 8934};
90826ca7 8935ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
8936
8937static int pmu_bus_running;
8938static struct bus_type pmu_bus = {
8939 .name = "event_source",
90826ca7 8940 .dev_groups = pmu_dev_groups,
abe43400
PZ
8941};
8942
8943static void pmu_dev_release(struct device *dev)
8944{
8945 kfree(dev);
8946}
8947
8948static int pmu_dev_alloc(struct pmu *pmu)
8949{
8950 int ret = -ENOMEM;
8951
8952 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8953 if (!pmu->dev)
8954 goto out;
8955
0c9d42ed 8956 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
8957 device_initialize(pmu->dev);
8958 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8959 if (ret)
8960 goto free_dev;
8961
8962 dev_set_drvdata(pmu->dev, pmu);
8963 pmu->dev->bus = &pmu_bus;
8964 pmu->dev->release = pmu_dev_release;
8965 ret = device_add(pmu->dev);
8966 if (ret)
8967 goto free_dev;
8968
6e855cd4
AS
8969 /* For PMUs with address filters, throw in an extra attribute: */
8970 if (pmu->nr_addr_filters)
8971 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8972
8973 if (ret)
8974 goto del_dev;
8975
abe43400
PZ
8976out:
8977 return ret;
8978
6e855cd4
AS
8979del_dev:
8980 device_del(pmu->dev);
8981
abe43400
PZ
8982free_dev:
8983 put_device(pmu->dev);
8984 goto out;
8985}
8986
547e9fd7 8987static struct lock_class_key cpuctx_mutex;
facc4307 8988static struct lock_class_key cpuctx_lock;
547e9fd7 8989
03d8e80b 8990int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 8991{
108b02cf 8992 int cpu, ret;
24f1e32c 8993
b0a873eb 8994 mutex_lock(&pmus_lock);
33696fc0
PZ
8995 ret = -ENOMEM;
8996 pmu->pmu_disable_count = alloc_percpu(int);
8997 if (!pmu->pmu_disable_count)
8998 goto unlock;
f29ac756 8999
2e80a82a
PZ
9000 pmu->type = -1;
9001 if (!name)
9002 goto skip_type;
9003 pmu->name = name;
9004
9005 if (type < 0) {
0e9c3be2
TH
9006 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9007 if (type < 0) {
9008 ret = type;
2e80a82a
PZ
9009 goto free_pdc;
9010 }
9011 }
9012 pmu->type = type;
9013
abe43400
PZ
9014 if (pmu_bus_running) {
9015 ret = pmu_dev_alloc(pmu);
9016 if (ret)
9017 goto free_idr;
9018 }
9019
2e80a82a 9020skip_type:
26657848
PZ
9021 if (pmu->task_ctx_nr == perf_hw_context) {
9022 static int hw_context_taken = 0;
9023
5101ef20
MR
9024 /*
9025 * Other than systems with heterogeneous CPUs, it never makes
9026 * sense for two PMUs to share perf_hw_context. PMUs which are
9027 * uncore must use perf_invalid_context.
9028 */
9029 if (WARN_ON_ONCE(hw_context_taken &&
9030 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
9031 pmu->task_ctx_nr = perf_invalid_context;
9032
9033 hw_context_taken = 1;
9034 }
9035
8dc85d54
PZ
9036 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9037 if (pmu->pmu_cpu_context)
9038 goto got_cpu_context;
f29ac756 9039
c4814202 9040 ret = -ENOMEM;
108b02cf
PZ
9041 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9042 if (!pmu->pmu_cpu_context)
abe43400 9043 goto free_dev;
f344011c 9044
108b02cf
PZ
9045 for_each_possible_cpu(cpu) {
9046 struct perf_cpu_context *cpuctx;
9047
9048 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 9049 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 9050 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 9051 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 9052 cpuctx->ctx.pmu = pmu;
a63fbed7 9053 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 9054
272325c4 9055 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 9056 }
76e1d904 9057
8dc85d54 9058got_cpu_context:
ad5133b7
PZ
9059 if (!pmu->start_txn) {
9060 if (pmu->pmu_enable) {
9061 /*
9062 * If we have pmu_enable/pmu_disable calls, install
9063 * transaction stubs that use that to try and batch
9064 * hardware accesses.
9065 */
9066 pmu->start_txn = perf_pmu_start_txn;
9067 pmu->commit_txn = perf_pmu_commit_txn;
9068 pmu->cancel_txn = perf_pmu_cancel_txn;
9069 } else {
fbbe0701 9070 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
9071 pmu->commit_txn = perf_pmu_nop_int;
9072 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 9073 }
5c92d124 9074 }
15dbf27c 9075
ad5133b7
PZ
9076 if (!pmu->pmu_enable) {
9077 pmu->pmu_enable = perf_pmu_nop_void;
9078 pmu->pmu_disable = perf_pmu_nop_void;
9079 }
9080
35edc2a5
PZ
9081 if (!pmu->event_idx)
9082 pmu->event_idx = perf_event_idx_default;
9083
b0a873eb 9084 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 9085 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
9086 ret = 0;
9087unlock:
b0a873eb
PZ
9088 mutex_unlock(&pmus_lock);
9089
33696fc0 9090 return ret;
108b02cf 9091
abe43400
PZ
9092free_dev:
9093 device_del(pmu->dev);
9094 put_device(pmu->dev);
9095
2e80a82a
PZ
9096free_idr:
9097 if (pmu->type >= PERF_TYPE_MAX)
9098 idr_remove(&pmu_idr, pmu->type);
9099
108b02cf
PZ
9100free_pdc:
9101 free_percpu(pmu->pmu_disable_count);
9102 goto unlock;
f29ac756 9103}
c464c76e 9104EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 9105
b0a873eb 9106void perf_pmu_unregister(struct pmu *pmu)
5c92d124 9107{
0933840a
JO
9108 int remove_device;
9109
b0a873eb 9110 mutex_lock(&pmus_lock);
0933840a 9111 remove_device = pmu_bus_running;
b0a873eb
PZ
9112 list_del_rcu(&pmu->entry);
9113 mutex_unlock(&pmus_lock);
5c92d124 9114
0475f9ea 9115 /*
cde8e884
PZ
9116 * We dereference the pmu list under both SRCU and regular RCU, so
9117 * synchronize against both of those.
0475f9ea 9118 */
b0a873eb 9119 synchronize_srcu(&pmus_srcu);
cde8e884 9120 synchronize_rcu();
d6d020e9 9121
33696fc0 9122 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
9123 if (pmu->type >= PERF_TYPE_MAX)
9124 idr_remove(&pmu_idr, pmu->type);
0933840a
JO
9125 if (remove_device) {
9126 if (pmu->nr_addr_filters)
9127 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9128 device_del(pmu->dev);
9129 put_device(pmu->dev);
9130 }
51676957 9131 free_pmu_context(pmu);
b0a873eb 9132}
c464c76e 9133EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 9134
cc34b98b
MR
9135static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9136{
ccd41c86 9137 struct perf_event_context *ctx = NULL;
cc34b98b
MR
9138 int ret;
9139
9140 if (!try_module_get(pmu->module))
9141 return -ENODEV;
ccd41c86
PZ
9142
9143 if (event->group_leader != event) {
8b10c5e2
PZ
9144 /*
9145 * This ctx->mutex can nest when we're called through
9146 * inheritance. See the perf_event_ctx_lock_nested() comment.
9147 */
9148 ctx = perf_event_ctx_lock_nested(event->group_leader,
9149 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
9150 BUG_ON(!ctx);
9151 }
9152
cc34b98b
MR
9153 event->pmu = pmu;
9154 ret = pmu->event_init(event);
ccd41c86
PZ
9155
9156 if (ctx)
9157 perf_event_ctx_unlock(event->group_leader, ctx);
9158
cc34b98b
MR
9159 if (ret)
9160 module_put(pmu->module);
9161
9162 return ret;
9163}
9164
18ab2cd3 9165static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 9166{
85c617ab 9167 struct pmu *pmu;
b0a873eb 9168 int idx;
940c5b29 9169 int ret;
b0a873eb
PZ
9170
9171 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 9172
40999312
KL
9173 /* Try parent's PMU first: */
9174 if (event->parent && event->parent->pmu) {
9175 pmu = event->parent->pmu;
9176 ret = perf_try_init_event(pmu, event);
9177 if (!ret)
9178 goto unlock;
9179 }
9180
2e80a82a
PZ
9181 rcu_read_lock();
9182 pmu = idr_find(&pmu_idr, event->attr.type);
9183 rcu_read_unlock();
940c5b29 9184 if (pmu) {
cc34b98b 9185 ret = perf_try_init_event(pmu, event);
940c5b29
LM
9186 if (ret)
9187 pmu = ERR_PTR(ret);
2e80a82a 9188 goto unlock;
940c5b29 9189 }
2e80a82a 9190
b0a873eb 9191 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 9192 ret = perf_try_init_event(pmu, event);
b0a873eb 9193 if (!ret)
e5f4d339 9194 goto unlock;
76e1d904 9195
b0a873eb
PZ
9196 if (ret != -ENOENT) {
9197 pmu = ERR_PTR(ret);
e5f4d339 9198 goto unlock;
f344011c 9199 }
5c92d124 9200 }
e5f4d339
PZ
9201 pmu = ERR_PTR(-ENOENT);
9202unlock:
b0a873eb 9203 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 9204
4aeb0b42 9205 return pmu;
5c92d124
IM
9206}
9207
f2fb6bef
KL
9208static void attach_sb_event(struct perf_event *event)
9209{
9210 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9211
9212 raw_spin_lock(&pel->lock);
9213 list_add_rcu(&event->sb_list, &pel->list);
9214 raw_spin_unlock(&pel->lock);
9215}
9216
aab5b71e
PZ
9217/*
9218 * We keep a list of all !task (and therefore per-cpu) events
9219 * that need to receive side-band records.
9220 *
9221 * This avoids having to scan all the various PMU per-cpu contexts
9222 * looking for them.
9223 */
f2fb6bef
KL
9224static void account_pmu_sb_event(struct perf_event *event)
9225{
a4f144eb 9226 if (is_sb_event(event))
f2fb6bef
KL
9227 attach_sb_event(event);
9228}
9229
4beb31f3
FW
9230static void account_event_cpu(struct perf_event *event, int cpu)
9231{
9232 if (event->parent)
9233 return;
9234
4beb31f3
FW
9235 if (is_cgroup_event(event))
9236 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9237}
9238
555e0c1e
FW
9239/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9240static void account_freq_event_nohz(void)
9241{
9242#ifdef CONFIG_NO_HZ_FULL
9243 /* Lock so we don't race with concurrent unaccount */
9244 spin_lock(&nr_freq_lock);
9245 if (atomic_inc_return(&nr_freq_events) == 1)
9246 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9247 spin_unlock(&nr_freq_lock);
9248#endif
9249}
9250
9251static void account_freq_event(void)
9252{
9253 if (tick_nohz_full_enabled())
9254 account_freq_event_nohz();
9255 else
9256 atomic_inc(&nr_freq_events);
9257}
9258
9259
766d6c07
FW
9260static void account_event(struct perf_event *event)
9261{
25432ae9
PZ
9262 bool inc = false;
9263
4beb31f3
FW
9264 if (event->parent)
9265 return;
9266
766d6c07 9267 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 9268 inc = true;
766d6c07
FW
9269 if (event->attr.mmap || event->attr.mmap_data)
9270 atomic_inc(&nr_mmap_events);
9271 if (event->attr.comm)
9272 atomic_inc(&nr_comm_events);
e4222673
HB
9273 if (event->attr.namespaces)
9274 atomic_inc(&nr_namespaces_events);
766d6c07
FW
9275 if (event->attr.task)
9276 atomic_inc(&nr_task_events);
555e0c1e
FW
9277 if (event->attr.freq)
9278 account_freq_event();
45ac1403
AH
9279 if (event->attr.context_switch) {
9280 atomic_inc(&nr_switch_events);
25432ae9 9281 inc = true;
45ac1403 9282 }
4beb31f3 9283 if (has_branch_stack(event))
25432ae9 9284 inc = true;
4beb31f3 9285 if (is_cgroup_event(event))
25432ae9
PZ
9286 inc = true;
9287
9107c89e
PZ
9288 if (inc) {
9289 if (atomic_inc_not_zero(&perf_sched_count))
9290 goto enabled;
9291
9292 mutex_lock(&perf_sched_mutex);
9293 if (!atomic_read(&perf_sched_count)) {
9294 static_branch_enable(&perf_sched_events);
9295 /*
9296 * Guarantee that all CPUs observe they key change and
9297 * call the perf scheduling hooks before proceeding to
9298 * install events that need them.
9299 */
9300 synchronize_sched();
9301 }
9302 /*
9303 * Now that we have waited for the sync_sched(), allow further
9304 * increments to by-pass the mutex.
9305 */
9306 atomic_inc(&perf_sched_count);
9307 mutex_unlock(&perf_sched_mutex);
9308 }
9309enabled:
4beb31f3
FW
9310
9311 account_event_cpu(event, event->cpu);
f2fb6bef
KL
9312
9313 account_pmu_sb_event(event);
766d6c07
FW
9314}
9315
0793a61d 9316/*
cdd6c482 9317 * Allocate and initialize a event structure
0793a61d 9318 */
cdd6c482 9319static struct perf_event *
c3f00c70 9320perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
9321 struct task_struct *task,
9322 struct perf_event *group_leader,
9323 struct perf_event *parent_event,
4dc0da86 9324 perf_overflow_handler_t overflow_handler,
79dff51e 9325 void *context, int cgroup_fd)
0793a61d 9326{
51b0fe39 9327 struct pmu *pmu;
cdd6c482
IM
9328 struct perf_event *event;
9329 struct hw_perf_event *hwc;
90983b16 9330 long err = -EINVAL;
0793a61d 9331
66832eb4
ON
9332 if ((unsigned)cpu >= nr_cpu_ids) {
9333 if (!task || cpu != -1)
9334 return ERR_PTR(-EINVAL);
9335 }
9336
c3f00c70 9337 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 9338 if (!event)
d5d2bc0d 9339 return ERR_PTR(-ENOMEM);
0793a61d 9340
04289bb9 9341 /*
cdd6c482 9342 * Single events are their own group leaders, with an
04289bb9
IM
9343 * empty sibling list:
9344 */
9345 if (!group_leader)
cdd6c482 9346 group_leader = event;
04289bb9 9347
cdd6c482
IM
9348 mutex_init(&event->child_mutex);
9349 INIT_LIST_HEAD(&event->child_list);
fccc714b 9350
cdd6c482
IM
9351 INIT_LIST_HEAD(&event->group_entry);
9352 INIT_LIST_HEAD(&event->event_entry);
9353 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 9354 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 9355 INIT_LIST_HEAD(&event->active_entry);
375637bc 9356 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
9357 INIT_HLIST_NODE(&event->hlist_entry);
9358
10c6db11 9359
cdd6c482 9360 init_waitqueue_head(&event->waitq);
e360adbe 9361 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9362
cdd6c482 9363 mutex_init(&event->mmap_mutex);
375637bc 9364 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9365
a6fa941d 9366 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9367 event->cpu = cpu;
9368 event->attr = *attr;
9369 event->group_leader = group_leader;
9370 event->pmu = NULL;
cdd6c482 9371 event->oncpu = -1;
a96bbc16 9372
cdd6c482 9373 event->parent = parent_event;
b84fbc9f 9374
17cf22c3 9375 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9376 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9377
cdd6c482 9378 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9379
d580ff86
PZ
9380 if (task) {
9381 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9382 /*
50f16a8b
PZ
9383 * XXX pmu::event_init needs to know what task to account to
9384 * and we cannot use the ctx information because we need the
9385 * pmu before we get a ctx.
d580ff86 9386 */
50f16a8b 9387 event->hw.target = task;
d580ff86
PZ
9388 }
9389
34f43927
PZ
9390 event->clock = &local_clock;
9391 if (parent_event)
9392 event->clock = parent_event->clock;
9393
4dc0da86 9394 if (!overflow_handler && parent_event) {
b326e956 9395 overflow_handler = parent_event->overflow_handler;
4dc0da86 9396 context = parent_event->overflow_handler_context;
f1e4ba5b 9397#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
9398 if (overflow_handler == bpf_overflow_handler) {
9399 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9400
9401 if (IS_ERR(prog)) {
9402 err = PTR_ERR(prog);
9403 goto err_ns;
9404 }
9405 event->prog = prog;
9406 event->orig_overflow_handler =
9407 parent_event->orig_overflow_handler;
9408 }
9409#endif
4dc0da86 9410 }
66832eb4 9411
1879445d
WN
9412 if (overflow_handler) {
9413 event->overflow_handler = overflow_handler;
9414 event->overflow_handler_context = context;
9ecda41a
WN
9415 } else if (is_write_backward(event)){
9416 event->overflow_handler = perf_event_output_backward;
9417 event->overflow_handler_context = NULL;
1879445d 9418 } else {
9ecda41a 9419 event->overflow_handler = perf_event_output_forward;
1879445d
WN
9420 event->overflow_handler_context = NULL;
9421 }
97eaf530 9422
0231bb53 9423 perf_event__state_init(event);
a86ed508 9424
4aeb0b42 9425 pmu = NULL;
b8e83514 9426
cdd6c482 9427 hwc = &event->hw;
bd2b5b12 9428 hwc->sample_period = attr->sample_period;
0d48696f 9429 if (attr->freq && attr->sample_freq)
bd2b5b12 9430 hwc->sample_period = 1;
eced1dfc 9431 hwc->last_period = hwc->sample_period;
bd2b5b12 9432
e7850595 9433 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 9434
2023b359 9435 /*
ba5213ae
PZ
9436 * We currently do not support PERF_SAMPLE_READ on inherited events.
9437 * See perf_output_read().
2023b359 9438 */
ba5213ae 9439 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 9440 goto err_ns;
a46a2300
YZ
9441
9442 if (!has_branch_stack(event))
9443 event->attr.branch_sample_type = 0;
2023b359 9444
79dff51e
MF
9445 if (cgroup_fd != -1) {
9446 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9447 if (err)
9448 goto err_ns;
9449 }
9450
b0a873eb 9451 pmu = perf_init_event(event);
85c617ab 9452 if (IS_ERR(pmu)) {
4aeb0b42 9453 err = PTR_ERR(pmu);
90983b16 9454 goto err_ns;
621a01ea 9455 }
d5d2bc0d 9456
bed5b25a
AS
9457 err = exclusive_event_init(event);
9458 if (err)
9459 goto err_pmu;
9460
375637bc
AS
9461 if (has_addr_filter(event)) {
9462 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9463 sizeof(unsigned long),
9464 GFP_KERNEL);
36cc2b92
DC
9465 if (!event->addr_filters_offs) {
9466 err = -ENOMEM;
375637bc 9467 goto err_per_task;
36cc2b92 9468 }
375637bc
AS
9469
9470 /* force hw sync on the address filters */
9471 event->addr_filters_gen = 1;
9472 }
9473
cdd6c482 9474 if (!event->parent) {
927c7a9e 9475 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 9476 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 9477 if (err)
375637bc 9478 goto err_addr_filters;
d010b332 9479 }
f344011c 9480 }
9ee318a7 9481
927a5570
AS
9482 /* symmetric to unaccount_event() in _free_event() */
9483 account_event(event);
9484
cdd6c482 9485 return event;
90983b16 9486
375637bc
AS
9487err_addr_filters:
9488 kfree(event->addr_filters_offs);
9489
bed5b25a
AS
9490err_per_task:
9491 exclusive_event_destroy(event);
9492
90983b16
FW
9493err_pmu:
9494 if (event->destroy)
9495 event->destroy(event);
c464c76e 9496 module_put(pmu->module);
90983b16 9497err_ns:
79dff51e
MF
9498 if (is_cgroup_event(event))
9499 perf_detach_cgroup(event);
90983b16
FW
9500 if (event->ns)
9501 put_pid_ns(event->ns);
9502 kfree(event);
9503
9504 return ERR_PTR(err);
0793a61d
TG
9505}
9506
cdd6c482
IM
9507static int perf_copy_attr(struct perf_event_attr __user *uattr,
9508 struct perf_event_attr *attr)
974802ea 9509{
974802ea 9510 u32 size;
cdf8073d 9511 int ret;
974802ea
PZ
9512
9513 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9514 return -EFAULT;
9515
9516 /*
9517 * zero the full structure, so that a short copy will be nice.
9518 */
9519 memset(attr, 0, sizeof(*attr));
9520
9521 ret = get_user(size, &uattr->size);
9522 if (ret)
9523 return ret;
9524
9525 if (size > PAGE_SIZE) /* silly large */
9526 goto err_size;
9527
9528 if (!size) /* abi compat */
9529 size = PERF_ATTR_SIZE_VER0;
9530
9531 if (size < PERF_ATTR_SIZE_VER0)
9532 goto err_size;
9533
9534 /*
9535 * If we're handed a bigger struct than we know of,
cdf8073d
IS
9536 * ensure all the unknown bits are 0 - i.e. new
9537 * user-space does not rely on any kernel feature
9538 * extensions we dont know about yet.
974802ea
PZ
9539 */
9540 if (size > sizeof(*attr)) {
cdf8073d
IS
9541 unsigned char __user *addr;
9542 unsigned char __user *end;
9543 unsigned char val;
974802ea 9544
cdf8073d
IS
9545 addr = (void __user *)uattr + sizeof(*attr);
9546 end = (void __user *)uattr + size;
974802ea 9547
cdf8073d 9548 for (; addr < end; addr++) {
974802ea
PZ
9549 ret = get_user(val, addr);
9550 if (ret)
9551 return ret;
9552 if (val)
9553 goto err_size;
9554 }
b3e62e35 9555 size = sizeof(*attr);
974802ea
PZ
9556 }
9557
9558 ret = copy_from_user(attr, uattr, size);
9559 if (ret)
9560 return -EFAULT;
9561
cd757645 9562 if (attr->__reserved_1)
974802ea
PZ
9563 return -EINVAL;
9564
9565 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9566 return -EINVAL;
9567
9568 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9569 return -EINVAL;
9570
bce38cd5
SE
9571 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9572 u64 mask = attr->branch_sample_type;
9573
9574 /* only using defined bits */
9575 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9576 return -EINVAL;
9577
9578 /* at least one branch bit must be set */
9579 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9580 return -EINVAL;
9581
bce38cd5
SE
9582 /* propagate priv level, when not set for branch */
9583 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9584
9585 /* exclude_kernel checked on syscall entry */
9586 if (!attr->exclude_kernel)
9587 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9588
9589 if (!attr->exclude_user)
9590 mask |= PERF_SAMPLE_BRANCH_USER;
9591
9592 if (!attr->exclude_hv)
9593 mask |= PERF_SAMPLE_BRANCH_HV;
9594 /*
9595 * adjust user setting (for HW filter setup)
9596 */
9597 attr->branch_sample_type = mask;
9598 }
e712209a
SE
9599 /* privileged levels capture (kernel, hv): check permissions */
9600 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
9601 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9602 return -EACCES;
bce38cd5 9603 }
4018994f 9604
c5ebcedb 9605 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 9606 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
9607 if (ret)
9608 return ret;
9609 }
9610
9611 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9612 if (!arch_perf_have_user_stack_dump())
9613 return -ENOSYS;
9614
9615 /*
9616 * We have __u32 type for the size, but so far
9617 * we can only use __u16 as maximum due to the
9618 * __u16 sample size limit.
9619 */
9620 if (attr->sample_stack_user >= USHRT_MAX)
9621 ret = -EINVAL;
9622 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9623 ret = -EINVAL;
9624 }
4018994f 9625
60e2364e
SE
9626 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9627 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
9628out:
9629 return ret;
9630
9631err_size:
9632 put_user(sizeof(*attr), &uattr->size);
9633 ret = -E2BIG;
9634 goto out;
9635}
9636
ac9721f3
PZ
9637static int
9638perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9639{
b69cf536 9640 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9641 int ret = -EINVAL;
9642
ac9721f3 9643 if (!output_event)
a4be7c27
PZ
9644 goto set;
9645
ac9721f3
PZ
9646 /* don't allow circular references */
9647 if (event == output_event)
a4be7c27
PZ
9648 goto out;
9649
0f139300
PZ
9650 /*
9651 * Don't allow cross-cpu buffers
9652 */
9653 if (output_event->cpu != event->cpu)
9654 goto out;
9655
9656 /*
76369139 9657 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9658 */
9659 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9660 goto out;
9661
34f43927
PZ
9662 /*
9663 * Mixing clocks in the same buffer is trouble you don't need.
9664 */
9665 if (output_event->clock != event->clock)
9666 goto out;
9667
9ecda41a
WN
9668 /*
9669 * Either writing ring buffer from beginning or from end.
9670 * Mixing is not allowed.
9671 */
9672 if (is_write_backward(output_event) != is_write_backward(event))
9673 goto out;
9674
45bfb2e5
PZ
9675 /*
9676 * If both events generate aux data, they must be on the same PMU
9677 */
9678 if (has_aux(event) && has_aux(output_event) &&
9679 event->pmu != output_event->pmu)
9680 goto out;
9681
a4be7c27 9682set:
cdd6c482 9683 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9684 /* Can't redirect output if we've got an active mmap() */
9685 if (atomic_read(&event->mmap_count))
9686 goto unlock;
a4be7c27 9687
ac9721f3 9688 if (output_event) {
76369139
FW
9689 /* get the rb we want to redirect to */
9690 rb = ring_buffer_get(output_event);
9691 if (!rb)
ac9721f3 9692 goto unlock;
a4be7c27
PZ
9693 }
9694
b69cf536 9695 ring_buffer_attach(event, rb);
9bb5d40c 9696
a4be7c27 9697 ret = 0;
ac9721f3
PZ
9698unlock:
9699 mutex_unlock(&event->mmap_mutex);
9700
a4be7c27 9701out:
a4be7c27
PZ
9702 return ret;
9703}
9704
f63a8daa
PZ
9705static void mutex_lock_double(struct mutex *a, struct mutex *b)
9706{
9707 if (b < a)
9708 swap(a, b);
9709
9710 mutex_lock(a);
9711 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9712}
9713
34f43927
PZ
9714static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9715{
9716 bool nmi_safe = false;
9717
9718 switch (clk_id) {
9719 case CLOCK_MONOTONIC:
9720 event->clock = &ktime_get_mono_fast_ns;
9721 nmi_safe = true;
9722 break;
9723
9724 case CLOCK_MONOTONIC_RAW:
9725 event->clock = &ktime_get_raw_fast_ns;
9726 nmi_safe = true;
9727 break;
9728
9729 case CLOCK_REALTIME:
9730 event->clock = &ktime_get_real_ns;
9731 break;
9732
9733 case CLOCK_BOOTTIME:
9734 event->clock = &ktime_get_boot_ns;
9735 break;
9736
9737 case CLOCK_TAI:
9738 event->clock = &ktime_get_tai_ns;
9739 break;
9740
9741 default:
9742 return -EINVAL;
9743 }
9744
9745 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9746 return -EINVAL;
9747
9748 return 0;
9749}
9750
321027c1
PZ
9751/*
9752 * Variation on perf_event_ctx_lock_nested(), except we take two context
9753 * mutexes.
9754 */
9755static struct perf_event_context *
9756__perf_event_ctx_lock_double(struct perf_event *group_leader,
9757 struct perf_event_context *ctx)
9758{
9759 struct perf_event_context *gctx;
9760
9761again:
9762 rcu_read_lock();
9763 gctx = READ_ONCE(group_leader->ctx);
9764 if (!atomic_inc_not_zero(&gctx->refcount)) {
9765 rcu_read_unlock();
9766 goto again;
9767 }
9768 rcu_read_unlock();
9769
9770 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9771
9772 if (group_leader->ctx != gctx) {
9773 mutex_unlock(&ctx->mutex);
9774 mutex_unlock(&gctx->mutex);
9775 put_ctx(gctx);
9776 goto again;
9777 }
9778
9779 return gctx;
9780}
9781
0793a61d 9782/**
cdd6c482 9783 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9784 *
cdd6c482 9785 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9786 * @pid: target pid
9f66a381 9787 * @cpu: target cpu
cdd6c482 9788 * @group_fd: group leader event fd
0793a61d 9789 */
cdd6c482
IM
9790SYSCALL_DEFINE5(perf_event_open,
9791 struct perf_event_attr __user *, attr_uptr,
2743a5b0 9792 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 9793{
b04243ef
PZ
9794 struct perf_event *group_leader = NULL, *output_event = NULL;
9795 struct perf_event *event, *sibling;
cdd6c482 9796 struct perf_event_attr attr;
f63a8daa 9797 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 9798 struct file *event_file = NULL;
2903ff01 9799 struct fd group = {NULL, 0};
38a81da2 9800 struct task_struct *task = NULL;
89a1e187 9801 struct pmu *pmu;
ea635c64 9802 int event_fd;
b04243ef 9803 int move_group = 0;
dc86cabe 9804 int err;
a21b0b35 9805 int f_flags = O_RDWR;
79dff51e 9806 int cgroup_fd = -1;
0793a61d 9807
2743a5b0 9808 /* for future expandability... */
e5d1367f 9809 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
9810 return -EINVAL;
9811
dc86cabe
IM
9812 err = perf_copy_attr(attr_uptr, &attr);
9813 if (err)
9814 return err;
eab656ae 9815
0764771d
PZ
9816 if (!attr.exclude_kernel) {
9817 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9818 return -EACCES;
9819 }
9820
e4222673
HB
9821 if (attr.namespaces) {
9822 if (!capable(CAP_SYS_ADMIN))
9823 return -EACCES;
9824 }
9825
df58ab24 9826 if (attr.freq) {
cdd6c482 9827 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 9828 return -EINVAL;
0819b2e3
PZ
9829 } else {
9830 if (attr.sample_period & (1ULL << 63))
9831 return -EINVAL;
df58ab24
PZ
9832 }
9833
97c79a38
ACM
9834 if (!attr.sample_max_stack)
9835 attr.sample_max_stack = sysctl_perf_event_max_stack;
9836
e5d1367f
SE
9837 /*
9838 * In cgroup mode, the pid argument is used to pass the fd
9839 * opened to the cgroup directory in cgroupfs. The cpu argument
9840 * designates the cpu on which to monitor threads from that
9841 * cgroup.
9842 */
9843 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9844 return -EINVAL;
9845
a21b0b35
YD
9846 if (flags & PERF_FLAG_FD_CLOEXEC)
9847 f_flags |= O_CLOEXEC;
9848
9849 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
9850 if (event_fd < 0)
9851 return event_fd;
9852
ac9721f3 9853 if (group_fd != -1) {
2903ff01
AV
9854 err = perf_fget_light(group_fd, &group);
9855 if (err)
d14b12d7 9856 goto err_fd;
2903ff01 9857 group_leader = group.file->private_data;
ac9721f3
PZ
9858 if (flags & PERF_FLAG_FD_OUTPUT)
9859 output_event = group_leader;
9860 if (flags & PERF_FLAG_FD_NO_GROUP)
9861 group_leader = NULL;
9862 }
9863
e5d1367f 9864 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
9865 task = find_lively_task_by_vpid(pid);
9866 if (IS_ERR(task)) {
9867 err = PTR_ERR(task);
9868 goto err_group_fd;
9869 }
9870 }
9871
1f4ee503
PZ
9872 if (task && group_leader &&
9873 group_leader->attr.inherit != attr.inherit) {
9874 err = -EINVAL;
9875 goto err_task;
9876 }
9877
79c9ce57
PZ
9878 if (task) {
9879 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9880 if (err)
e5aeee51 9881 goto err_task;
79c9ce57
PZ
9882
9883 /*
9884 * Reuse ptrace permission checks for now.
9885 *
9886 * We must hold cred_guard_mutex across this and any potential
9887 * perf_install_in_context() call for this new event to
9888 * serialize against exec() altering our credentials (and the
9889 * perf_event_exit_task() that could imply).
9890 */
9891 err = -EACCES;
9892 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9893 goto err_cred;
9894 }
9895
79dff51e
MF
9896 if (flags & PERF_FLAG_PID_CGROUP)
9897 cgroup_fd = pid;
9898
4dc0da86 9899 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 9900 NULL, NULL, cgroup_fd);
d14b12d7
SE
9901 if (IS_ERR(event)) {
9902 err = PTR_ERR(event);
79c9ce57 9903 goto err_cred;
d14b12d7
SE
9904 }
9905
53b25335
VW
9906 if (is_sampling_event(event)) {
9907 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 9908 err = -EOPNOTSUPP;
53b25335
VW
9909 goto err_alloc;
9910 }
9911 }
9912
89a1e187
PZ
9913 /*
9914 * Special case software events and allow them to be part of
9915 * any hardware group.
9916 */
9917 pmu = event->pmu;
b04243ef 9918
34f43927
PZ
9919 if (attr.use_clockid) {
9920 err = perf_event_set_clock(event, attr.clockid);
9921 if (err)
9922 goto err_alloc;
9923 }
9924
4ff6a8de
DCC
9925 if (pmu->task_ctx_nr == perf_sw_context)
9926 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9927
b04243ef
PZ
9928 if (group_leader &&
9929 (is_software_event(event) != is_software_event(group_leader))) {
9930 if (is_software_event(event)) {
9931 /*
9932 * If event and group_leader are not both a software
9933 * event, and event is, then group leader is not.
9934 *
9935 * Allow the addition of software events to !software
9936 * groups, this is safe because software events never
9937 * fail to schedule.
9938 */
9939 pmu = group_leader->pmu;
9940 } else if (is_software_event(group_leader) &&
4ff6a8de 9941 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
9942 /*
9943 * In case the group is a pure software group, and we
9944 * try to add a hardware event, move the whole group to
9945 * the hardware context.
9946 */
9947 move_group = 1;
9948 }
9949 }
89a1e187
PZ
9950
9951 /*
9952 * Get the target context (task or percpu):
9953 */
4af57ef2 9954 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
9955 if (IS_ERR(ctx)) {
9956 err = PTR_ERR(ctx);
c6be5a5c 9957 goto err_alloc;
89a1e187
PZ
9958 }
9959
bed5b25a
AS
9960 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9961 err = -EBUSY;
9962 goto err_context;
9963 }
9964
ccff286d 9965 /*
cdd6c482 9966 * Look up the group leader (we will attach this event to it):
04289bb9 9967 */
ac9721f3 9968 if (group_leader) {
dc86cabe 9969 err = -EINVAL;
04289bb9 9970
04289bb9 9971 /*
ccff286d
IM
9972 * Do not allow a recursive hierarchy (this new sibling
9973 * becoming part of another group-sibling):
9974 */
9975 if (group_leader->group_leader != group_leader)
c3f00c70 9976 goto err_context;
34f43927
PZ
9977
9978 /* All events in a group should have the same clock */
9979 if (group_leader->clock != event->clock)
9980 goto err_context;
9981
ccff286d
IM
9982 /*
9983 * Do not allow to attach to a group in a different
9984 * task or CPU context:
04289bb9 9985 */
b04243ef 9986 if (move_group) {
c3c87e77
PZ
9987 /*
9988 * Make sure we're both on the same task, or both
9989 * per-cpu events.
9990 */
9991 if (group_leader->ctx->task != ctx->task)
9992 goto err_context;
9993
9994 /*
9995 * Make sure we're both events for the same CPU;
9996 * grouping events for different CPUs is broken; since
9997 * you can never concurrently schedule them anyhow.
9998 */
9999 if (group_leader->cpu != event->cpu)
b04243ef
PZ
10000 goto err_context;
10001 } else {
10002 if (group_leader->ctx != ctx)
10003 goto err_context;
10004 }
10005
3b6f9e5c
PM
10006 /*
10007 * Only a group leader can be exclusive or pinned
10008 */
0d48696f 10009 if (attr.exclusive || attr.pinned)
c3f00c70 10010 goto err_context;
ac9721f3
PZ
10011 }
10012
10013 if (output_event) {
10014 err = perf_event_set_output(event, output_event);
10015 if (err)
c3f00c70 10016 goto err_context;
ac9721f3 10017 }
0793a61d 10018
a21b0b35
YD
10019 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10020 f_flags);
ea635c64
AV
10021 if (IS_ERR(event_file)) {
10022 err = PTR_ERR(event_file);
201c2f85 10023 event_file = NULL;
c3f00c70 10024 goto err_context;
ea635c64 10025 }
9b51f66d 10026
b04243ef 10027 if (move_group) {
321027c1
PZ
10028 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10029
84c4e620
PZ
10030 if (gctx->task == TASK_TOMBSTONE) {
10031 err = -ESRCH;
10032 goto err_locked;
10033 }
321027c1
PZ
10034
10035 /*
10036 * Check if we raced against another sys_perf_event_open() call
10037 * moving the software group underneath us.
10038 */
10039 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10040 /*
10041 * If someone moved the group out from under us, check
10042 * if this new event wound up on the same ctx, if so
10043 * its the regular !move_group case, otherwise fail.
10044 */
10045 if (gctx != ctx) {
10046 err = -EINVAL;
10047 goto err_locked;
10048 } else {
10049 perf_event_ctx_unlock(group_leader, gctx);
10050 move_group = 0;
10051 }
10052 }
f55fc2a5
PZ
10053 } else {
10054 mutex_lock(&ctx->mutex);
10055 }
10056
84c4e620
PZ
10057 if (ctx->task == TASK_TOMBSTONE) {
10058 err = -ESRCH;
10059 goto err_locked;
10060 }
10061
a723968c
PZ
10062 if (!perf_event_validate_size(event)) {
10063 err = -E2BIG;
10064 goto err_locked;
10065 }
10066
a63fbed7
TG
10067 if (!task) {
10068 /*
10069 * Check if the @cpu we're creating an event for is online.
10070 *
10071 * We use the perf_cpu_context::ctx::mutex to serialize against
10072 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10073 */
10074 struct perf_cpu_context *cpuctx =
10075 container_of(ctx, struct perf_cpu_context, ctx);
10076
10077 if (!cpuctx->online) {
10078 err = -ENODEV;
10079 goto err_locked;
10080 }
10081 }
10082
10083
f55fc2a5
PZ
10084 /*
10085 * Must be under the same ctx::mutex as perf_install_in_context(),
10086 * because we need to serialize with concurrent event creation.
10087 */
10088 if (!exclusive_event_installable(event, ctx)) {
10089 /* exclusive and group stuff are assumed mutually exclusive */
10090 WARN_ON_ONCE(move_group);
f63a8daa 10091
f55fc2a5
PZ
10092 err = -EBUSY;
10093 goto err_locked;
10094 }
f63a8daa 10095
f55fc2a5
PZ
10096 WARN_ON_ONCE(ctx->parent_ctx);
10097
79c9ce57
PZ
10098 /*
10099 * This is the point on no return; we cannot fail hereafter. This is
10100 * where we start modifying current state.
10101 */
10102
f55fc2a5 10103 if (move_group) {
f63a8daa
PZ
10104 /*
10105 * See perf_event_ctx_lock() for comments on the details
10106 * of swizzling perf_event::ctx.
10107 */
45a0e07a 10108 perf_remove_from_context(group_leader, 0);
279b5165 10109 put_ctx(gctx);
0231bb53 10110
b04243ef
PZ
10111 list_for_each_entry(sibling, &group_leader->sibling_list,
10112 group_entry) {
45a0e07a 10113 perf_remove_from_context(sibling, 0);
b04243ef
PZ
10114 put_ctx(gctx);
10115 }
b04243ef 10116
f63a8daa
PZ
10117 /*
10118 * Wait for everybody to stop referencing the events through
10119 * the old lists, before installing it on new lists.
10120 */
0cda4c02 10121 synchronize_rcu();
f63a8daa 10122
8f95b435
PZI
10123 /*
10124 * Install the group siblings before the group leader.
10125 *
10126 * Because a group leader will try and install the entire group
10127 * (through the sibling list, which is still in-tact), we can
10128 * end up with siblings installed in the wrong context.
10129 *
10130 * By installing siblings first we NO-OP because they're not
10131 * reachable through the group lists.
10132 */
b04243ef
PZ
10133 list_for_each_entry(sibling, &group_leader->sibling_list,
10134 group_entry) {
8f95b435 10135 perf_event__state_init(sibling);
9fc81d87 10136 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
10137 get_ctx(ctx);
10138 }
8f95b435
PZI
10139
10140 /*
10141 * Removing from the context ends up with disabled
10142 * event. What we want here is event in the initial
10143 * startup state, ready to be add into new context.
10144 */
10145 perf_event__state_init(group_leader);
10146 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10147 get_ctx(ctx);
bed5b25a
AS
10148 }
10149
f73e22ab
PZ
10150 /*
10151 * Precalculate sample_data sizes; do while holding ctx::mutex such
10152 * that we're serialized against further additions and before
10153 * perf_install_in_context() which is the point the event is active and
10154 * can use these values.
10155 */
10156 perf_event__header_size(event);
10157 perf_event__id_header_size(event);
10158
78cd2c74
PZ
10159 event->owner = current;
10160
e2d37cd2 10161 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 10162 perf_unpin_context(ctx);
f63a8daa 10163
f55fc2a5 10164 if (move_group)
321027c1 10165 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 10166 mutex_unlock(&ctx->mutex);
9b51f66d 10167
79c9ce57
PZ
10168 if (task) {
10169 mutex_unlock(&task->signal->cred_guard_mutex);
10170 put_task_struct(task);
10171 }
10172
cdd6c482
IM
10173 mutex_lock(&current->perf_event_mutex);
10174 list_add_tail(&event->owner_entry, &current->perf_event_list);
10175 mutex_unlock(&current->perf_event_mutex);
082ff5a2 10176
8a49542c
PZ
10177 /*
10178 * Drop the reference on the group_event after placing the
10179 * new event on the sibling_list. This ensures destruction
10180 * of the group leader will find the pointer to itself in
10181 * perf_group_detach().
10182 */
2903ff01 10183 fdput(group);
ea635c64
AV
10184 fd_install(event_fd, event_file);
10185 return event_fd;
0793a61d 10186
f55fc2a5
PZ
10187err_locked:
10188 if (move_group)
321027c1 10189 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
10190 mutex_unlock(&ctx->mutex);
10191/* err_file: */
10192 fput(event_file);
c3f00c70 10193err_context:
fe4b04fa 10194 perf_unpin_context(ctx);
ea635c64 10195 put_ctx(ctx);
c6be5a5c 10196err_alloc:
13005627
PZ
10197 /*
10198 * If event_file is set, the fput() above will have called ->release()
10199 * and that will take care of freeing the event.
10200 */
10201 if (!event_file)
10202 free_event(event);
79c9ce57
PZ
10203err_cred:
10204 if (task)
10205 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 10206err_task:
e7d0bc04
PZ
10207 if (task)
10208 put_task_struct(task);
89a1e187 10209err_group_fd:
2903ff01 10210 fdput(group);
ea635c64
AV
10211err_fd:
10212 put_unused_fd(event_fd);
dc86cabe 10213 return err;
0793a61d
TG
10214}
10215
fb0459d7
AV
10216/**
10217 * perf_event_create_kernel_counter
10218 *
10219 * @attr: attributes of the counter to create
10220 * @cpu: cpu in which the counter is bound
38a81da2 10221 * @task: task to profile (NULL for percpu)
fb0459d7
AV
10222 */
10223struct perf_event *
10224perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 10225 struct task_struct *task,
4dc0da86
AK
10226 perf_overflow_handler_t overflow_handler,
10227 void *context)
fb0459d7 10228{
fb0459d7 10229 struct perf_event_context *ctx;
c3f00c70 10230 struct perf_event *event;
fb0459d7 10231 int err;
d859e29f 10232
fb0459d7
AV
10233 /*
10234 * Get the target context (task or percpu):
10235 */
d859e29f 10236
4dc0da86 10237 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 10238 overflow_handler, context, -1);
c3f00c70
PZ
10239 if (IS_ERR(event)) {
10240 err = PTR_ERR(event);
10241 goto err;
10242 }
d859e29f 10243
f8697762 10244 /* Mark owner so we could distinguish it from user events. */
63b6da39 10245 event->owner = TASK_TOMBSTONE;
f8697762 10246
4af57ef2 10247 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
10248 if (IS_ERR(ctx)) {
10249 err = PTR_ERR(ctx);
c3f00c70 10250 goto err_free;
d859e29f 10251 }
fb0459d7 10252
fb0459d7
AV
10253 WARN_ON_ONCE(ctx->parent_ctx);
10254 mutex_lock(&ctx->mutex);
84c4e620
PZ
10255 if (ctx->task == TASK_TOMBSTONE) {
10256 err = -ESRCH;
10257 goto err_unlock;
10258 }
10259
a63fbed7
TG
10260 if (!task) {
10261 /*
10262 * Check if the @cpu we're creating an event for is online.
10263 *
10264 * We use the perf_cpu_context::ctx::mutex to serialize against
10265 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10266 */
10267 struct perf_cpu_context *cpuctx =
10268 container_of(ctx, struct perf_cpu_context, ctx);
10269 if (!cpuctx->online) {
10270 err = -ENODEV;
10271 goto err_unlock;
10272 }
10273 }
10274
bed5b25a 10275 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 10276 err = -EBUSY;
84c4e620 10277 goto err_unlock;
bed5b25a
AS
10278 }
10279
fb0459d7 10280 perf_install_in_context(ctx, event, cpu);
fe4b04fa 10281 perf_unpin_context(ctx);
fb0459d7
AV
10282 mutex_unlock(&ctx->mutex);
10283
fb0459d7
AV
10284 return event;
10285
84c4e620
PZ
10286err_unlock:
10287 mutex_unlock(&ctx->mutex);
10288 perf_unpin_context(ctx);
10289 put_ctx(ctx);
c3f00c70
PZ
10290err_free:
10291 free_event(event);
10292err:
c6567f64 10293 return ERR_PTR(err);
9b51f66d 10294}
fb0459d7 10295EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 10296
0cda4c02
YZ
10297void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10298{
10299 struct perf_event_context *src_ctx;
10300 struct perf_event_context *dst_ctx;
10301 struct perf_event *event, *tmp;
10302 LIST_HEAD(events);
10303
10304 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10305 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10306
f63a8daa
PZ
10307 /*
10308 * See perf_event_ctx_lock() for comments on the details
10309 * of swizzling perf_event::ctx.
10310 */
10311 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
10312 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10313 event_entry) {
45a0e07a 10314 perf_remove_from_context(event, 0);
9a545de0 10315 unaccount_event_cpu(event, src_cpu);
0cda4c02 10316 put_ctx(src_ctx);
9886167d 10317 list_add(&event->migrate_entry, &events);
0cda4c02 10318 }
0cda4c02 10319
8f95b435
PZI
10320 /*
10321 * Wait for the events to quiesce before re-instating them.
10322 */
0cda4c02
YZ
10323 synchronize_rcu();
10324
8f95b435
PZI
10325 /*
10326 * Re-instate events in 2 passes.
10327 *
10328 * Skip over group leaders and only install siblings on this first
10329 * pass, siblings will not get enabled without a leader, however a
10330 * leader will enable its siblings, even if those are still on the old
10331 * context.
10332 */
10333 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10334 if (event->group_leader == event)
10335 continue;
10336
10337 list_del(&event->migrate_entry);
10338 if (event->state >= PERF_EVENT_STATE_OFF)
10339 event->state = PERF_EVENT_STATE_INACTIVE;
10340 account_event_cpu(event, dst_cpu);
10341 perf_install_in_context(dst_ctx, event, dst_cpu);
10342 get_ctx(dst_ctx);
10343 }
10344
10345 /*
10346 * Once all the siblings are setup properly, install the group leaders
10347 * to make it go.
10348 */
9886167d
PZ
10349 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10350 list_del(&event->migrate_entry);
0cda4c02
YZ
10351 if (event->state >= PERF_EVENT_STATE_OFF)
10352 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 10353 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
10354 perf_install_in_context(dst_ctx, event, dst_cpu);
10355 get_ctx(dst_ctx);
10356 }
10357 mutex_unlock(&dst_ctx->mutex);
f63a8daa 10358 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
10359}
10360EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10361
cdd6c482 10362static void sync_child_event(struct perf_event *child_event,
38b200d6 10363 struct task_struct *child)
d859e29f 10364{
cdd6c482 10365 struct perf_event *parent_event = child_event->parent;
8bc20959 10366 u64 child_val;
d859e29f 10367
cdd6c482
IM
10368 if (child_event->attr.inherit_stat)
10369 perf_event_read_event(child_event, child);
38b200d6 10370
b5e58793 10371 child_val = perf_event_count(child_event);
d859e29f
PM
10372
10373 /*
10374 * Add back the child's count to the parent's count:
10375 */
a6e6dea6 10376 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
10377 atomic64_add(child_event->total_time_enabled,
10378 &parent_event->child_total_time_enabled);
10379 atomic64_add(child_event->total_time_running,
10380 &parent_event->child_total_time_running);
d859e29f
PM
10381}
10382
9b51f66d 10383static void
8ba289b8
PZ
10384perf_event_exit_event(struct perf_event *child_event,
10385 struct perf_event_context *child_ctx,
10386 struct task_struct *child)
9b51f66d 10387{
8ba289b8
PZ
10388 struct perf_event *parent_event = child_event->parent;
10389
1903d50c
PZ
10390 /*
10391 * Do not destroy the 'original' grouping; because of the context
10392 * switch optimization the original events could've ended up in a
10393 * random child task.
10394 *
10395 * If we were to destroy the original group, all group related
10396 * operations would cease to function properly after this random
10397 * child dies.
10398 *
10399 * Do destroy all inherited groups, we don't care about those
10400 * and being thorough is better.
10401 */
32132a3d
PZ
10402 raw_spin_lock_irq(&child_ctx->lock);
10403 WARN_ON_ONCE(child_ctx->is_active);
10404
8ba289b8 10405 if (parent_event)
32132a3d
PZ
10406 perf_group_detach(child_event);
10407 list_del_event(child_event, child_ctx);
a69b0ca4 10408 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 10409 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 10410
9b51f66d 10411 /*
8ba289b8 10412 * Parent events are governed by their filedesc, retain them.
9b51f66d 10413 */
8ba289b8 10414 if (!parent_event) {
179033b3 10415 perf_event_wakeup(child_event);
8ba289b8 10416 return;
4bcf349a 10417 }
8ba289b8
PZ
10418 /*
10419 * Child events can be cleaned up.
10420 */
10421
10422 sync_child_event(child_event, child);
10423
10424 /*
10425 * Remove this event from the parent's list
10426 */
10427 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10428 mutex_lock(&parent_event->child_mutex);
10429 list_del_init(&child_event->child_list);
10430 mutex_unlock(&parent_event->child_mutex);
10431
10432 /*
10433 * Kick perf_poll() for is_event_hup().
10434 */
10435 perf_event_wakeup(parent_event);
10436 free_event(child_event);
10437 put_event(parent_event);
9b51f66d
IM
10438}
10439
8dc85d54 10440static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 10441{
211de6eb 10442 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 10443 struct perf_event *child_event, *next;
63b6da39
PZ
10444
10445 WARN_ON_ONCE(child != current);
9b51f66d 10446
6a3351b6 10447 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 10448 if (!child_ctx)
9b51f66d
IM
10449 return;
10450
ad3a37de 10451 /*
6a3351b6
PZ
10452 * In order to reduce the amount of tricky in ctx tear-down, we hold
10453 * ctx::mutex over the entire thing. This serializes against almost
10454 * everything that wants to access the ctx.
10455 *
10456 * The exception is sys_perf_event_open() /
10457 * perf_event_create_kernel_count() which does find_get_context()
10458 * without ctx::mutex (it cannot because of the move_group double mutex
10459 * lock thing). See the comments in perf_install_in_context().
ad3a37de 10460 */
6a3351b6 10461 mutex_lock(&child_ctx->mutex);
c93f7669
PM
10462
10463 /*
6a3351b6
PZ
10464 * In a single ctx::lock section, de-schedule the events and detach the
10465 * context from the task such that we cannot ever get it scheduled back
10466 * in.
c93f7669 10467 */
6a3351b6 10468 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 10469 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 10470
71a851b4 10471 /*
63b6da39
PZ
10472 * Now that the context is inactive, destroy the task <-> ctx relation
10473 * and mark the context dead.
71a851b4 10474 */
63b6da39
PZ
10475 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10476 put_ctx(child_ctx); /* cannot be last */
10477 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10478 put_task_struct(current); /* cannot be last */
4a1c0f26 10479
211de6eb 10480 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 10481 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 10482
211de6eb
PZ
10483 if (clone_ctx)
10484 put_ctx(clone_ctx);
4a1c0f26 10485
9f498cc5 10486 /*
cdd6c482
IM
10487 * Report the task dead after unscheduling the events so that we
10488 * won't get any samples after PERF_RECORD_EXIT. We can however still
10489 * get a few PERF_RECORD_READ events.
9f498cc5 10490 */
cdd6c482 10491 perf_event_task(child, child_ctx, 0);
a63eaf34 10492
ebf905fc 10493 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 10494 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 10495
a63eaf34
PM
10496 mutex_unlock(&child_ctx->mutex);
10497
10498 put_ctx(child_ctx);
9b51f66d
IM
10499}
10500
8dc85d54
PZ
10501/*
10502 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
10503 *
10504 * Can be called with cred_guard_mutex held when called from
10505 * install_exec_creds().
8dc85d54
PZ
10506 */
10507void perf_event_exit_task(struct task_struct *child)
10508{
8882135b 10509 struct perf_event *event, *tmp;
8dc85d54
PZ
10510 int ctxn;
10511
8882135b
PZ
10512 mutex_lock(&child->perf_event_mutex);
10513 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10514 owner_entry) {
10515 list_del_init(&event->owner_entry);
10516
10517 /*
10518 * Ensure the list deletion is visible before we clear
10519 * the owner, closes a race against perf_release() where
10520 * we need to serialize on the owner->perf_event_mutex.
10521 */
f47c02c0 10522 smp_store_release(&event->owner, NULL);
8882135b
PZ
10523 }
10524 mutex_unlock(&child->perf_event_mutex);
10525
8dc85d54
PZ
10526 for_each_task_context_nr(ctxn)
10527 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
10528
10529 /*
10530 * The perf_event_exit_task_context calls perf_event_task
10531 * with child's task_ctx, which generates EXIT events for
10532 * child contexts and sets child->perf_event_ctxp[] to NULL.
10533 * At this point we need to send EXIT events to cpu contexts.
10534 */
10535 perf_event_task(child, NULL, 0);
8dc85d54
PZ
10536}
10537
889ff015
FW
10538static void perf_free_event(struct perf_event *event,
10539 struct perf_event_context *ctx)
10540{
10541 struct perf_event *parent = event->parent;
10542
10543 if (WARN_ON_ONCE(!parent))
10544 return;
10545
10546 mutex_lock(&parent->child_mutex);
10547 list_del_init(&event->child_list);
10548 mutex_unlock(&parent->child_mutex);
10549
a6fa941d 10550 put_event(parent);
889ff015 10551
652884fe 10552 raw_spin_lock_irq(&ctx->lock);
8a49542c 10553 perf_group_detach(event);
889ff015 10554 list_del_event(event, ctx);
652884fe 10555 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
10556 free_event(event);
10557}
10558
bbbee908 10559/*
652884fe 10560 * Free an unexposed, unused context as created by inheritance by
8dc85d54 10561 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
10562 *
10563 * Not all locks are strictly required, but take them anyway to be nice and
10564 * help out with the lockdep assertions.
bbbee908 10565 */
cdd6c482 10566void perf_event_free_task(struct task_struct *task)
bbbee908 10567{
8dc85d54 10568 struct perf_event_context *ctx;
cdd6c482 10569 struct perf_event *event, *tmp;
8dc85d54 10570 int ctxn;
bbbee908 10571
8dc85d54
PZ
10572 for_each_task_context_nr(ctxn) {
10573 ctx = task->perf_event_ctxp[ctxn];
10574 if (!ctx)
10575 continue;
bbbee908 10576
8dc85d54 10577 mutex_lock(&ctx->mutex);
e552a838
PZ
10578 raw_spin_lock_irq(&ctx->lock);
10579 /*
10580 * Destroy the task <-> ctx relation and mark the context dead.
10581 *
10582 * This is important because even though the task hasn't been
10583 * exposed yet the context has been (through child_list).
10584 */
10585 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10586 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10587 put_task_struct(task); /* cannot be last */
10588 raw_spin_unlock_irq(&ctx->lock);
bbbee908 10589
15121c78 10590 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 10591 perf_free_event(event, ctx);
bbbee908 10592
8dc85d54 10593 mutex_unlock(&ctx->mutex);
8dc85d54
PZ
10594 put_ctx(ctx);
10595 }
889ff015
FW
10596}
10597
4e231c79
PZ
10598void perf_event_delayed_put(struct task_struct *task)
10599{
10600 int ctxn;
10601
10602 for_each_task_context_nr(ctxn)
10603 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10604}
10605
e03e7ee3 10606struct file *perf_event_get(unsigned int fd)
ffe8690c 10607{
e03e7ee3 10608 struct file *file;
ffe8690c 10609
e03e7ee3
AS
10610 file = fget_raw(fd);
10611 if (!file)
10612 return ERR_PTR(-EBADF);
ffe8690c 10613
e03e7ee3
AS
10614 if (file->f_op != &perf_fops) {
10615 fput(file);
10616 return ERR_PTR(-EBADF);
10617 }
ffe8690c 10618
e03e7ee3 10619 return file;
ffe8690c
KX
10620}
10621
10622const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10623{
10624 if (!event)
10625 return ERR_PTR(-EINVAL);
10626
10627 return &event->attr;
10628}
10629
97dee4f3 10630/*
d8a8cfc7
PZ
10631 * Inherit a event from parent task to child task.
10632 *
10633 * Returns:
10634 * - valid pointer on success
10635 * - NULL for orphaned events
10636 * - IS_ERR() on error
97dee4f3
PZ
10637 */
10638static struct perf_event *
10639inherit_event(struct perf_event *parent_event,
10640 struct task_struct *parent,
10641 struct perf_event_context *parent_ctx,
10642 struct task_struct *child,
10643 struct perf_event *group_leader,
10644 struct perf_event_context *child_ctx)
10645{
1929def9 10646 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 10647 struct perf_event *child_event;
cee010ec 10648 unsigned long flags;
97dee4f3
PZ
10649
10650 /*
10651 * Instead of creating recursive hierarchies of events,
10652 * we link inherited events back to the original parent,
10653 * which has a filp for sure, which we use as the reference
10654 * count:
10655 */
10656 if (parent_event->parent)
10657 parent_event = parent_event->parent;
10658
10659 child_event = perf_event_alloc(&parent_event->attr,
10660 parent_event->cpu,
d580ff86 10661 child,
97dee4f3 10662 group_leader, parent_event,
79dff51e 10663 NULL, NULL, -1);
97dee4f3
PZ
10664 if (IS_ERR(child_event))
10665 return child_event;
a6fa941d 10666
c6e5b732
PZ
10667 /*
10668 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10669 * must be under the same lock in order to serialize against
10670 * perf_event_release_kernel(), such that either we must observe
10671 * is_orphaned_event() or they will observe us on the child_list.
10672 */
10673 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
10674 if (is_orphaned_event(parent_event) ||
10675 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 10676 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
10677 free_event(child_event);
10678 return NULL;
10679 }
10680
97dee4f3
PZ
10681 get_ctx(child_ctx);
10682
10683 /*
10684 * Make the child state follow the state of the parent event,
10685 * not its attr.disabled bit. We hold the parent's mutex,
10686 * so we won't race with perf_event_{en, dis}able_family.
10687 */
1929def9 10688 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
10689 child_event->state = PERF_EVENT_STATE_INACTIVE;
10690 else
10691 child_event->state = PERF_EVENT_STATE_OFF;
10692
10693 if (parent_event->attr.freq) {
10694 u64 sample_period = parent_event->hw.sample_period;
10695 struct hw_perf_event *hwc = &child_event->hw;
10696
10697 hwc->sample_period = sample_period;
10698 hwc->last_period = sample_period;
10699
10700 local64_set(&hwc->period_left, sample_period);
10701 }
10702
10703 child_event->ctx = child_ctx;
10704 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
10705 child_event->overflow_handler_context
10706 = parent_event->overflow_handler_context;
97dee4f3 10707
614b6780
TG
10708 /*
10709 * Precalculate sample_data sizes
10710 */
10711 perf_event__header_size(child_event);
6844c09d 10712 perf_event__id_header_size(child_event);
614b6780 10713
97dee4f3
PZ
10714 /*
10715 * Link it up in the child's context:
10716 */
cee010ec 10717 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10718 add_event_to_ctx(child_event, child_ctx);
cee010ec 10719 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10720
97dee4f3
PZ
10721 /*
10722 * Link this into the parent event's child list
10723 */
97dee4f3
PZ
10724 list_add_tail(&child_event->child_list, &parent_event->child_list);
10725 mutex_unlock(&parent_event->child_mutex);
10726
10727 return child_event;
10728}
10729
d8a8cfc7
PZ
10730/*
10731 * Inherits an event group.
10732 *
10733 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10734 * This matches with perf_event_release_kernel() removing all child events.
10735 *
10736 * Returns:
10737 * - 0 on success
10738 * - <0 on error
10739 */
97dee4f3
PZ
10740static int inherit_group(struct perf_event *parent_event,
10741 struct task_struct *parent,
10742 struct perf_event_context *parent_ctx,
10743 struct task_struct *child,
10744 struct perf_event_context *child_ctx)
10745{
10746 struct perf_event *leader;
10747 struct perf_event *sub;
10748 struct perf_event *child_ctr;
10749
10750 leader = inherit_event(parent_event, parent, parent_ctx,
10751 child, NULL, child_ctx);
10752 if (IS_ERR(leader))
10753 return PTR_ERR(leader);
d8a8cfc7
PZ
10754 /*
10755 * @leader can be NULL here because of is_orphaned_event(). In this
10756 * case inherit_event() will create individual events, similar to what
10757 * perf_group_detach() would do anyway.
10758 */
97dee4f3
PZ
10759 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10760 child_ctr = inherit_event(sub, parent, parent_ctx,
10761 child, leader, child_ctx);
10762 if (IS_ERR(child_ctr))
10763 return PTR_ERR(child_ctr);
10764 }
10765 return 0;
889ff015
FW
10766}
10767
d8a8cfc7
PZ
10768/*
10769 * Creates the child task context and tries to inherit the event-group.
10770 *
10771 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10772 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10773 * consistent with perf_event_release_kernel() removing all child events.
10774 *
10775 * Returns:
10776 * - 0 on success
10777 * - <0 on error
10778 */
889ff015
FW
10779static int
10780inherit_task_group(struct perf_event *event, struct task_struct *parent,
10781 struct perf_event_context *parent_ctx,
8dc85d54 10782 struct task_struct *child, int ctxn,
889ff015
FW
10783 int *inherited_all)
10784{
10785 int ret;
8dc85d54 10786 struct perf_event_context *child_ctx;
889ff015
FW
10787
10788 if (!event->attr.inherit) {
10789 *inherited_all = 0;
10790 return 0;
bbbee908
PZ
10791 }
10792
fe4b04fa 10793 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
10794 if (!child_ctx) {
10795 /*
10796 * This is executed from the parent task context, so
10797 * inherit events that have been marked for cloning.
10798 * First allocate and initialize a context for the
10799 * child.
10800 */
734df5ab 10801 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
10802 if (!child_ctx)
10803 return -ENOMEM;
bbbee908 10804
8dc85d54 10805 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
10806 }
10807
10808 ret = inherit_group(event, parent, parent_ctx,
10809 child, child_ctx);
10810
10811 if (ret)
10812 *inherited_all = 0;
10813
10814 return ret;
bbbee908
PZ
10815}
10816
9b51f66d 10817/*
cdd6c482 10818 * Initialize the perf_event context in task_struct
9b51f66d 10819 */
985c8dcb 10820static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 10821{
889ff015 10822 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
10823 struct perf_event_context *cloned_ctx;
10824 struct perf_event *event;
9b51f66d 10825 struct task_struct *parent = current;
564c2b21 10826 int inherited_all = 1;
dddd3379 10827 unsigned long flags;
6ab423e0 10828 int ret = 0;
9b51f66d 10829
8dc85d54 10830 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
10831 return 0;
10832
ad3a37de 10833 /*
25346b93
PM
10834 * If the parent's context is a clone, pin it so it won't get
10835 * swapped under us.
ad3a37de 10836 */
8dc85d54 10837 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
10838 if (!parent_ctx)
10839 return 0;
25346b93 10840
ad3a37de
PM
10841 /*
10842 * No need to check if parent_ctx != NULL here; since we saw
10843 * it non-NULL earlier, the only reason for it to become NULL
10844 * is if we exit, and since we're currently in the middle of
10845 * a fork we can't be exiting at the same time.
10846 */
ad3a37de 10847
9b51f66d
IM
10848 /*
10849 * Lock the parent list. No need to lock the child - not PID
10850 * hashed yet and not running, so nobody can access it.
10851 */
d859e29f 10852 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
10853
10854 /*
10855 * We dont have to disable NMIs - we are only looking at
10856 * the list, not manipulating it:
10857 */
889ff015 10858 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
10859 ret = inherit_task_group(event, parent, parent_ctx,
10860 child, ctxn, &inherited_all);
889ff015 10861 if (ret)
e7cc4865 10862 goto out_unlock;
889ff015 10863 }
b93f7978 10864
dddd3379
TG
10865 /*
10866 * We can't hold ctx->lock when iterating the ->flexible_group list due
10867 * to allocations, but we need to prevent rotation because
10868 * rotate_ctx() will change the list from interrupt context.
10869 */
10870 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10871 parent_ctx->rotate_disable = 1;
10872 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10873
889ff015 10874 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
10875 ret = inherit_task_group(event, parent, parent_ctx,
10876 child, ctxn, &inherited_all);
889ff015 10877 if (ret)
e7cc4865 10878 goto out_unlock;
564c2b21
PM
10879 }
10880
dddd3379
TG
10881 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10882 parent_ctx->rotate_disable = 0;
dddd3379 10883
8dc85d54 10884 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 10885
05cbaa28 10886 if (child_ctx && inherited_all) {
564c2b21
PM
10887 /*
10888 * Mark the child context as a clone of the parent
10889 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
10890 *
10891 * Note that if the parent is a clone, the holding of
10892 * parent_ctx->lock avoids it from being uncloned.
564c2b21 10893 */
c5ed5145 10894 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
10895 if (cloned_ctx) {
10896 child_ctx->parent_ctx = cloned_ctx;
25346b93 10897 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
10898 } else {
10899 child_ctx->parent_ctx = parent_ctx;
10900 child_ctx->parent_gen = parent_ctx->generation;
10901 }
10902 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
10903 }
10904
c5ed5145 10905 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 10906out_unlock:
d859e29f 10907 mutex_unlock(&parent_ctx->mutex);
6ab423e0 10908
25346b93 10909 perf_unpin_context(parent_ctx);
fe4b04fa 10910 put_ctx(parent_ctx);
ad3a37de 10911
6ab423e0 10912 return ret;
9b51f66d
IM
10913}
10914
8dc85d54
PZ
10915/*
10916 * Initialize the perf_event context in task_struct
10917 */
10918int perf_event_init_task(struct task_struct *child)
10919{
10920 int ctxn, ret;
10921
8550d7cb
ON
10922 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10923 mutex_init(&child->perf_event_mutex);
10924 INIT_LIST_HEAD(&child->perf_event_list);
10925
8dc85d54
PZ
10926 for_each_task_context_nr(ctxn) {
10927 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
10928 if (ret) {
10929 perf_event_free_task(child);
8dc85d54 10930 return ret;
6c72e350 10931 }
8dc85d54
PZ
10932 }
10933
10934 return 0;
10935}
10936
220b140b
PM
10937static void __init perf_event_init_all_cpus(void)
10938{
b28ab83c 10939 struct swevent_htable *swhash;
220b140b 10940 int cpu;
220b140b 10941
a63fbed7
TG
10942 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
10943
220b140b 10944 for_each_possible_cpu(cpu) {
b28ab83c
PZ
10945 swhash = &per_cpu(swevent_htable, cpu);
10946 mutex_init(&swhash->hlist_mutex);
2fde4f94 10947 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
10948
10949 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10950 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 10951
058fe1c0
DCC
10952#ifdef CONFIG_CGROUP_PERF
10953 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10954#endif
e48c1788 10955 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
10956 }
10957}
10958
a63fbed7 10959void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 10960{
108b02cf 10961 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 10962
b28ab83c 10963 mutex_lock(&swhash->hlist_mutex);
059fcd8c 10964 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
10965 struct swevent_hlist *hlist;
10966
b28ab83c
PZ
10967 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10968 WARN_ON(!hlist);
10969 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 10970 }
b28ab83c 10971 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
10972}
10973
2965faa5 10974#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 10975static void __perf_event_exit_context(void *__info)
0793a61d 10976{
108b02cf 10977 struct perf_event_context *ctx = __info;
fae3fde6
PZ
10978 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10979 struct perf_event *event;
0793a61d 10980
fae3fde6
PZ
10981 raw_spin_lock(&ctx->lock);
10982 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 10983 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 10984 raw_spin_unlock(&ctx->lock);
0793a61d 10985}
108b02cf
PZ
10986
10987static void perf_event_exit_cpu_context(int cpu)
10988{
a63fbed7 10989 struct perf_cpu_context *cpuctx;
108b02cf
PZ
10990 struct perf_event_context *ctx;
10991 struct pmu *pmu;
108b02cf 10992
a63fbed7
TG
10993 mutex_lock(&pmus_lock);
10994 list_for_each_entry(pmu, &pmus, entry) {
10995 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10996 ctx = &cpuctx->ctx;
108b02cf
PZ
10997
10998 mutex_lock(&ctx->mutex);
10999 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 11000 cpuctx->online = 0;
108b02cf
PZ
11001 mutex_unlock(&ctx->mutex);
11002 }
a63fbed7
TG
11003 cpumask_clear_cpu(cpu, perf_online_mask);
11004 mutex_unlock(&pmus_lock);
108b02cf 11005}
00e16c3d
TG
11006#else
11007
11008static void perf_event_exit_cpu_context(int cpu) { }
11009
11010#endif
108b02cf 11011
a63fbed7
TG
11012int perf_event_init_cpu(unsigned int cpu)
11013{
11014 struct perf_cpu_context *cpuctx;
11015 struct perf_event_context *ctx;
11016 struct pmu *pmu;
11017
11018 perf_swevent_init_cpu(cpu);
11019
11020 mutex_lock(&pmus_lock);
11021 cpumask_set_cpu(cpu, perf_online_mask);
11022 list_for_each_entry(pmu, &pmus, entry) {
11023 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11024 ctx = &cpuctx->ctx;
11025
11026 mutex_lock(&ctx->mutex);
11027 cpuctx->online = 1;
11028 mutex_unlock(&ctx->mutex);
11029 }
11030 mutex_unlock(&pmus_lock);
11031
11032 return 0;
11033}
11034
00e16c3d 11035int perf_event_exit_cpu(unsigned int cpu)
0793a61d 11036{
e3703f8c 11037 perf_event_exit_cpu_context(cpu);
00e16c3d 11038 return 0;
0793a61d 11039}
0793a61d 11040
c277443c
PZ
11041static int
11042perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11043{
11044 int cpu;
11045
11046 for_each_online_cpu(cpu)
11047 perf_event_exit_cpu(cpu);
11048
11049 return NOTIFY_OK;
11050}
11051
11052/*
11053 * Run the perf reboot notifier at the very last possible moment so that
11054 * the generic watchdog code runs as long as possible.
11055 */
11056static struct notifier_block perf_reboot_notifier = {
11057 .notifier_call = perf_reboot,
11058 .priority = INT_MIN,
11059};
11060
cdd6c482 11061void __init perf_event_init(void)
0793a61d 11062{
3c502e7a
JW
11063 int ret;
11064
2e80a82a
PZ
11065 idr_init(&pmu_idr);
11066
220b140b 11067 perf_event_init_all_cpus();
b0a873eb 11068 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
11069 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11070 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11071 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 11072 perf_tp_register();
00e16c3d 11073 perf_event_init_cpu(smp_processor_id());
c277443c 11074 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
11075
11076 ret = init_hw_breakpoint();
11077 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 11078
b01c3a00
JO
11079 /*
11080 * Build time assertion that we keep the data_head at the intended
11081 * location. IOW, validation we got the __reserved[] size right.
11082 */
11083 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11084 != 1024);
0793a61d 11085}
abe43400 11086
fd979c01
CS
11087ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11088 char *page)
11089{
11090 struct perf_pmu_events_attr *pmu_attr =
11091 container_of(attr, struct perf_pmu_events_attr, attr);
11092
11093 if (pmu_attr->event_str)
11094 return sprintf(page, "%s\n", pmu_attr->event_str);
11095
11096 return 0;
11097}
675965b0 11098EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 11099
abe43400
PZ
11100static int __init perf_event_sysfs_init(void)
11101{
11102 struct pmu *pmu;
11103 int ret;
11104
11105 mutex_lock(&pmus_lock);
11106
11107 ret = bus_register(&pmu_bus);
11108 if (ret)
11109 goto unlock;
11110
11111 list_for_each_entry(pmu, &pmus, entry) {
11112 if (!pmu->name || pmu->type < 0)
11113 continue;
11114
11115 ret = pmu_dev_alloc(pmu);
11116 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11117 }
11118 pmu_bus_running = 1;
11119 ret = 0;
11120
11121unlock:
11122 mutex_unlock(&pmus_lock);
11123
11124 return ret;
11125}
11126device_initcall(perf_event_sysfs_init);
e5d1367f
SE
11127
11128#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
11129static struct cgroup_subsys_state *
11130perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
11131{
11132 struct perf_cgroup *jc;
e5d1367f 11133
1b15d055 11134 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
11135 if (!jc)
11136 return ERR_PTR(-ENOMEM);
11137
e5d1367f
SE
11138 jc->info = alloc_percpu(struct perf_cgroup_info);
11139 if (!jc->info) {
11140 kfree(jc);
11141 return ERR_PTR(-ENOMEM);
11142 }
11143
e5d1367f
SE
11144 return &jc->css;
11145}
11146
eb95419b 11147static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 11148{
eb95419b
TH
11149 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11150
e5d1367f
SE
11151 free_percpu(jc->info);
11152 kfree(jc);
11153}
11154
11155static int __perf_cgroup_move(void *info)
11156{
11157 struct task_struct *task = info;
ddaaf4e2 11158 rcu_read_lock();
e5d1367f 11159 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 11160 rcu_read_unlock();
e5d1367f
SE
11161 return 0;
11162}
11163
1f7dd3e5 11164static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 11165{
bb9d97b6 11166 struct task_struct *task;
1f7dd3e5 11167 struct cgroup_subsys_state *css;
bb9d97b6 11168
1f7dd3e5 11169 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 11170 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
11171}
11172
073219e9 11173struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
11174 .css_alloc = perf_cgroup_css_alloc,
11175 .css_free = perf_cgroup_css_free,
bb9d97b6 11176 .attach = perf_cgroup_attach,
968ebff1
TH
11177 /*
11178 * Implicitly enable on dfl hierarchy so that perf events can
11179 * always be filtered by cgroup2 path as long as perf_event
11180 * controller is not mounted on a legacy hierarchy.
11181 */
11182 .implicit_on_dfl = true,
e5d1367f
SE
11183};
11184#endif /* CONFIG_CGROUP_PERF */