]> git.ipfire.org Git - people/arne_f/kernel.git/blame - mm/vmscan.c
uaccess: Add non-pagefault user-space read functions
[people/arne_f/kernel.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
b1de0d13
MH
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
1da177e4 17#include <linux/mm.h>
5b3cc15a 18#include <linux/sched/mm.h>
1da177e4 19#include <linux/module.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/kernel_stat.h>
22#include <linux/swap.h>
23#include <linux/pagemap.h>
24#include <linux/init.h>
25#include <linux/highmem.h>
70ddf637 26#include <linux/vmpressure.h>
e129b5c2 27#include <linux/vmstat.h>
1da177e4
LT
28#include <linux/file.h>
29#include <linux/writeback.h>
30#include <linux/blkdev.h>
31#include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33#include <linux/mm_inline.h>
1da177e4
LT
34#include <linux/backing-dev.h>
35#include <linux/rmap.h>
36#include <linux/topology.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
3e7d3449 39#include <linux/compaction.h>
1da177e4
LT
40#include <linux/notifier.h>
41#include <linux/rwsem.h>
248a0301 42#include <linux/delay.h>
3218ae14 43#include <linux/kthread.h>
7dfb7103 44#include <linux/freezer.h>
66e1707b 45#include <linux/memcontrol.h>
873b4771 46#include <linux/delayacct.h>
af936a16 47#include <linux/sysctl.h>
929bea7c 48#include <linux/oom.h>
268bb0ce 49#include <linux/prefetch.h>
b1de0d13 50#include <linux/printk.h>
f9fe48be 51#include <linux/dax.h>
1da177e4
LT
52
53#include <asm/tlbflush.h>
54#include <asm/div64.h>
55
56#include <linux/swapops.h>
117aad1e 57#include <linux/balloon_compaction.h>
1da177e4 58
0f8053a5
NP
59#include "internal.h"
60
33906bc5
MG
61#define CREATE_TRACE_POINTS
62#include <trace/events/vmscan.h>
63
1da177e4 64struct scan_control {
22fba335
KM
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
1da177e4 68 /* This context's GFP mask */
6daa0e28 69 gfp_t gfp_mask;
1da177e4 70
ee814fe2 71 /* Allocation order */
5ad333eb 72 int order;
66e1707b 73
ee814fe2
JW
74 /*
75 * Nodemask of nodes allowed by the caller. If NULL, all nodes
76 * are scanned.
77 */
78 nodemask_t *nodemask;
9e3b2f8c 79
f16015fb
JW
80 /*
81 * The memory cgroup that hit its limit and as a result is the
82 * primary target of this reclaim invocation.
83 */
84 struct mem_cgroup *target_mem_cgroup;
66e1707b 85
ee814fe2
JW
86 /* Scan (total_size >> priority) pages at once */
87 int priority;
88
b2e18757
MG
89 /* The highest zone to isolate pages for reclaim from */
90 enum zone_type reclaim_idx;
91
1276ad68 92 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
93 unsigned int may_writepage:1;
94
95 /* Can mapped pages be reclaimed? */
96 unsigned int may_unmap:1;
97
98 /* Can pages be swapped as part of reclaim? */
99 unsigned int may_swap:1;
100
d6622f63
YX
101 /*
102 * Cgroups are not reclaimed below their configured memory.low,
103 * unless we threaten to OOM. If any cgroups are skipped due to
104 * memory.low and nothing was reclaimed, go back for memory.low.
105 */
106 unsigned int memcg_low_reclaim:1;
107 unsigned int memcg_low_skipped:1;
241994ed 108
ee814fe2
JW
109 unsigned int hibernation_mode:1;
110
111 /* One of the zones is ready for compaction */
112 unsigned int compaction_ready:1;
113
114 /* Incremented by the number of inactive pages that were scanned */
115 unsigned long nr_scanned;
116
117 /* Number of pages freed so far during a call to shrink_zones() */
118 unsigned long nr_reclaimed;
1da177e4
LT
119};
120
1da177e4
LT
121#ifdef ARCH_HAS_PREFETCH
122#define prefetch_prev_lru_page(_page, _base, _field) \
123 do { \
124 if ((_page)->lru.prev != _base) { \
125 struct page *prev; \
126 \
127 prev = lru_to_page(&(_page->lru)); \
128 prefetch(&prev->_field); \
129 } \
130 } while (0)
131#else
132#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
133#endif
134
135#ifdef ARCH_HAS_PREFETCHW
136#define prefetchw_prev_lru_page(_page, _base, _field) \
137 do { \
138 if ((_page)->lru.prev != _base) { \
139 struct page *prev; \
140 \
141 prev = lru_to_page(&(_page->lru)); \
142 prefetchw(&prev->_field); \
143 } \
144 } while (0)
145#else
146#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
147#endif
148
149/*
150 * From 0 .. 100. Higher means more swappy.
151 */
152int vm_swappiness = 60;
d0480be4
WSH
153/*
154 * The total number of pages which are beyond the high watermark within all
155 * zones.
156 */
157unsigned long vm_total_pages;
1da177e4
LT
158
159static LIST_HEAD(shrinker_list);
160static DECLARE_RWSEM(shrinker_rwsem);
161
c255a458 162#ifdef CONFIG_MEMCG
89b5fae5
JW
163static bool global_reclaim(struct scan_control *sc)
164{
f16015fb 165 return !sc->target_mem_cgroup;
89b5fae5 166}
97c9341f
TH
167
168/**
169 * sane_reclaim - is the usual dirty throttling mechanism operational?
170 * @sc: scan_control in question
171 *
172 * The normal page dirty throttling mechanism in balance_dirty_pages() is
173 * completely broken with the legacy memcg and direct stalling in
174 * shrink_page_list() is used for throttling instead, which lacks all the
175 * niceties such as fairness, adaptive pausing, bandwidth proportional
176 * allocation and configurability.
177 *
178 * This function tests whether the vmscan currently in progress can assume
179 * that the normal dirty throttling mechanism is operational.
180 */
181static bool sane_reclaim(struct scan_control *sc)
182{
183 struct mem_cgroup *memcg = sc->target_mem_cgroup;
184
185 if (!memcg)
186 return true;
187#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 188 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
189 return true;
190#endif
191 return false;
192}
91a45470 193#else
89b5fae5
JW
194static bool global_reclaim(struct scan_control *sc)
195{
196 return true;
197}
97c9341f
TH
198
199static bool sane_reclaim(struct scan_control *sc)
200{
201 return true;
202}
91a45470
KH
203#endif
204
5a1c84b4
MG
205/*
206 * This misses isolated pages which are not accounted for to save counters.
207 * As the data only determines if reclaim or compaction continues, it is
208 * not expected that isolated pages will be a dominating factor.
209 */
210unsigned long zone_reclaimable_pages(struct zone *zone)
211{
212 unsigned long nr;
213
214 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
215 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
216 if (get_nr_swap_pages() > 0)
217 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
218 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
219
220 return nr;
221}
222
599d0c95
MG
223unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
224{
225 unsigned long nr;
226
227 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
228 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
229 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
6e543d57
LD
230
231 if (get_nr_swap_pages() > 0)
599d0c95
MG
232 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
233 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
234 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
6e543d57
LD
235
236 return nr;
237}
238
fd538803
MH
239/**
240 * lruvec_lru_size - Returns the number of pages on the given LRU list.
241 * @lruvec: lru vector
242 * @lru: lru to use
243 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
244 */
245unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
c9f299d9 246{
fd538803
MH
247 unsigned long lru_size;
248 int zid;
249
c3c787e8 250 if (!mem_cgroup_disabled())
fd538803
MH
251 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
252 else
253 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
a3d8e054 254
fd538803
MH
255 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
256 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
257 unsigned long size;
c9f299d9 258
fd538803
MH
259 if (!managed_zone(zone))
260 continue;
261
262 if (!mem_cgroup_disabled())
263 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
264 else
265 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
266 NR_ZONE_LRU_BASE + lru);
267 lru_size -= min(size, lru_size);
268 }
269
270 return lru_size;
b4536f0c 271
b4536f0c
MH
272}
273
1da177e4 274/*
1d3d4437 275 * Add a shrinker callback to be called from the vm.
1da177e4 276 */
1d3d4437 277int register_shrinker(struct shrinker *shrinker)
1da177e4 278{
1d3d4437
GC
279 size_t size = sizeof(*shrinker->nr_deferred);
280
1d3d4437
GC
281 if (shrinker->flags & SHRINKER_NUMA_AWARE)
282 size *= nr_node_ids;
283
284 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
285 if (!shrinker->nr_deferred)
286 return -ENOMEM;
287
8e1f936b
RR
288 down_write(&shrinker_rwsem);
289 list_add_tail(&shrinker->list, &shrinker_list);
290 up_write(&shrinker_rwsem);
1d3d4437 291 return 0;
1da177e4 292}
8e1f936b 293EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
294
295/*
296 * Remove one
297 */
8e1f936b 298void unregister_shrinker(struct shrinker *shrinker)
1da177e4 299{
7880fc54
TH
300 if (!shrinker->nr_deferred)
301 return;
1da177e4
LT
302 down_write(&shrinker_rwsem);
303 list_del(&shrinker->list);
304 up_write(&shrinker_rwsem);
ae393321 305 kfree(shrinker->nr_deferred);
7880fc54 306 shrinker->nr_deferred = NULL;
1da177e4 307}
8e1f936b 308EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
309
310#define SHRINK_BATCH 128
1d3d4437 311
cb731d6c
VD
312static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
313 struct shrinker *shrinker,
314 unsigned long nr_scanned,
315 unsigned long nr_eligible)
1d3d4437
GC
316{
317 unsigned long freed = 0;
318 unsigned long long delta;
319 long total_scan;
d5bc5fd3 320 long freeable;
1d3d4437
GC
321 long nr;
322 long new_nr;
323 int nid = shrinkctl->nid;
324 long batch_size = shrinker->batch ? shrinker->batch
325 : SHRINK_BATCH;
5f33a080 326 long scanned = 0, next_deferred;
1d3d4437 327
d5bc5fd3
VD
328 freeable = shrinker->count_objects(shrinker, shrinkctl);
329 if (freeable == 0)
1d3d4437
GC
330 return 0;
331
332 /*
333 * copy the current shrinker scan count into a local variable
334 * and zero it so that other concurrent shrinker invocations
335 * don't also do this scanning work.
336 */
337 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
338
339 total_scan = nr;
6b4f7799 340 delta = (4 * nr_scanned) / shrinker->seeks;
d5bc5fd3 341 delta *= freeable;
6b4f7799 342 do_div(delta, nr_eligible + 1);
1d3d4437
GC
343 total_scan += delta;
344 if (total_scan < 0) {
8612c663 345 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 346 shrinker->scan_objects, total_scan);
d5bc5fd3 347 total_scan = freeable;
5f33a080
SL
348 next_deferred = nr;
349 } else
350 next_deferred = total_scan;
1d3d4437
GC
351
352 /*
353 * We need to avoid excessive windup on filesystem shrinkers
354 * due to large numbers of GFP_NOFS allocations causing the
355 * shrinkers to return -1 all the time. This results in a large
356 * nr being built up so when a shrink that can do some work
357 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 358 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
359 * memory.
360 *
361 * Hence only allow the shrinker to scan the entire cache when
362 * a large delta change is calculated directly.
363 */
d5bc5fd3
VD
364 if (delta < freeable / 4)
365 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
366
367 /*
368 * Avoid risking looping forever due to too large nr value:
369 * never try to free more than twice the estimate number of
370 * freeable entries.
371 */
d5bc5fd3
VD
372 if (total_scan > freeable * 2)
373 total_scan = freeable * 2;
1d3d4437
GC
374
375 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
6b4f7799
JW
376 nr_scanned, nr_eligible,
377 freeable, delta, total_scan);
1d3d4437 378
0b1fb40a
VD
379 /*
380 * Normally, we should not scan less than batch_size objects in one
381 * pass to avoid too frequent shrinker calls, but if the slab has less
382 * than batch_size objects in total and we are really tight on memory,
383 * we will try to reclaim all available objects, otherwise we can end
384 * up failing allocations although there are plenty of reclaimable
385 * objects spread over several slabs with usage less than the
386 * batch_size.
387 *
388 * We detect the "tight on memory" situations by looking at the total
389 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 390 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
391 * scanning at high prio and therefore should try to reclaim as much as
392 * possible.
393 */
394 while (total_scan >= batch_size ||
d5bc5fd3 395 total_scan >= freeable) {
a0b02131 396 unsigned long ret;
0b1fb40a 397 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 398
0b1fb40a 399 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 400 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
401 ret = shrinker->scan_objects(shrinker, shrinkctl);
402 if (ret == SHRINK_STOP)
403 break;
404 freed += ret;
1d3d4437 405
d460acb5
CW
406 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
407 total_scan -= shrinkctl->nr_scanned;
408 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
409
410 cond_resched();
411 }
412
5f33a080
SL
413 if (next_deferred >= scanned)
414 next_deferred -= scanned;
415 else
416 next_deferred = 0;
1d3d4437
GC
417 /*
418 * move the unused scan count back into the shrinker in a
419 * manner that handles concurrent updates. If we exhausted the
420 * scan, there is no need to do an update.
421 */
5f33a080
SL
422 if (next_deferred > 0)
423 new_nr = atomic_long_add_return(next_deferred,
1d3d4437
GC
424 &shrinker->nr_deferred[nid]);
425 else
426 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
427
df9024a8 428 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 429 return freed;
1495f230
YH
430}
431
6b4f7799 432/**
cb731d6c 433 * shrink_slab - shrink slab caches
6b4f7799
JW
434 * @gfp_mask: allocation context
435 * @nid: node whose slab caches to target
cb731d6c 436 * @memcg: memory cgroup whose slab caches to target
6b4f7799
JW
437 * @nr_scanned: pressure numerator
438 * @nr_eligible: pressure denominator
1da177e4 439 *
6b4f7799 440 * Call the shrink functions to age shrinkable caches.
1da177e4 441 *
6b4f7799
JW
442 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
443 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 444 *
cb731d6c
VD
445 * @memcg specifies the memory cgroup to target. If it is not NULL,
446 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
0fc9f58a
VD
447 * objects from the memory cgroup specified. Otherwise, only unaware
448 * shrinkers are called.
cb731d6c 449 *
6b4f7799
JW
450 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
451 * the available objects should be scanned. Page reclaim for example
452 * passes the number of pages scanned and the number of pages on the
453 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
454 * when it encountered mapped pages. The ratio is further biased by
455 * the ->seeks setting of the shrink function, which indicates the
456 * cost to recreate an object relative to that of an LRU page.
b15e0905 457 *
6b4f7799 458 * Returns the number of reclaimed slab objects.
1da177e4 459 */
cb731d6c
VD
460static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
461 struct mem_cgroup *memcg,
462 unsigned long nr_scanned,
463 unsigned long nr_eligible)
1da177e4
LT
464{
465 struct shrinker *shrinker;
24f7c6b9 466 unsigned long freed = 0;
1da177e4 467
0fc9f58a 468 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
cb731d6c
VD
469 return 0;
470
6b4f7799
JW
471 if (nr_scanned == 0)
472 nr_scanned = SWAP_CLUSTER_MAX;
1da177e4 473
f06590bd 474 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
475 /*
476 * If we would return 0, our callers would understand that we
477 * have nothing else to shrink and give up trying. By returning
478 * 1 we keep it going and assume we'll be able to shrink next
479 * time.
480 */
481 freed = 1;
f06590bd
MK
482 goto out;
483 }
1da177e4
LT
484
485 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
486 struct shrink_control sc = {
487 .gfp_mask = gfp_mask,
488 .nid = nid,
cb731d6c 489 .memcg = memcg,
6b4f7799 490 };
ec97097b 491
0fc9f58a
VD
492 /*
493 * If kernel memory accounting is disabled, we ignore
494 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
495 * passing NULL for memcg.
496 */
497 if (memcg_kmem_enabled() &&
498 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
cb731d6c
VD
499 continue;
500
6b4f7799
JW
501 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
502 sc.nid = 0;
1da177e4 503
cb731d6c 504 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
204fd0bd
MK
505 /*
506 * Bail out if someone want to register a new shrinker to
507 * prevent the regsitration from being stalled for long periods
508 * by parallel ongoing shrinking.
509 */
510 if (rwsem_is_contended(&shrinker_rwsem)) {
511 freed = freed ? : 1;
512 break;
513 }
1da177e4 514 }
6b4f7799 515
1da177e4 516 up_read(&shrinker_rwsem);
f06590bd
MK
517out:
518 cond_resched();
24f7c6b9 519 return freed;
1da177e4
LT
520}
521
cb731d6c
VD
522void drop_slab_node(int nid)
523{
524 unsigned long freed;
525
526 do {
527 struct mem_cgroup *memcg = NULL;
528
529 freed = 0;
530 do {
531 freed += shrink_slab(GFP_KERNEL, nid, memcg,
532 1000, 1000);
533 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
534 } while (freed > 10);
535}
536
537void drop_slab(void)
538{
539 int nid;
540
541 for_each_online_node(nid)
542 drop_slab_node(nid);
543}
544
1da177e4
LT
545static inline int is_page_cache_freeable(struct page *page)
546{
ceddc3a5
JW
547 /*
548 * A freeable page cache page is referenced only by the caller
549 * that isolated the page, the page cache radix tree and
550 * optional buffer heads at page->private.
551 */
bd4c82c2
HY
552 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
553 HPAGE_PMD_NR : 1;
554 return page_count(page) - page_has_private(page) == 1 + radix_pins;
1da177e4
LT
555}
556
703c2708 557static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 558{
930d9152 559 if (current->flags & PF_SWAPWRITE)
1da177e4 560 return 1;
703c2708 561 if (!inode_write_congested(inode))
1da177e4 562 return 1;
703c2708 563 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
564 return 1;
565 return 0;
566}
567
568/*
569 * We detected a synchronous write error writing a page out. Probably
570 * -ENOSPC. We need to propagate that into the address_space for a subsequent
571 * fsync(), msync() or close().
572 *
573 * The tricky part is that after writepage we cannot touch the mapping: nothing
574 * prevents it from being freed up. But we have a ref on the page and once
575 * that page is locked, the mapping is pinned.
576 *
577 * We're allowed to run sleeping lock_page() here because we know the caller has
578 * __GFP_FS.
579 */
580static void handle_write_error(struct address_space *mapping,
581 struct page *page, int error)
582{
7eaceacc 583 lock_page(page);
3e9f45bd
GC
584 if (page_mapping(page) == mapping)
585 mapping_set_error(mapping, error);
1da177e4
LT
586 unlock_page(page);
587}
588
04e62a29
CL
589/* possible outcome of pageout() */
590typedef enum {
591 /* failed to write page out, page is locked */
592 PAGE_KEEP,
593 /* move page to the active list, page is locked */
594 PAGE_ACTIVATE,
595 /* page has been sent to the disk successfully, page is unlocked */
596 PAGE_SUCCESS,
597 /* page is clean and locked */
598 PAGE_CLEAN,
599} pageout_t;
600
1da177e4 601/*
1742f19f
AM
602 * pageout is called by shrink_page_list() for each dirty page.
603 * Calls ->writepage().
1da177e4 604 */
c661b078 605static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 606 struct scan_control *sc)
1da177e4
LT
607{
608 /*
609 * If the page is dirty, only perform writeback if that write
610 * will be non-blocking. To prevent this allocation from being
611 * stalled by pagecache activity. But note that there may be
612 * stalls if we need to run get_block(). We could test
613 * PagePrivate for that.
614 *
8174202b 615 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
616 * this page's queue, we can perform writeback even if that
617 * will block.
618 *
619 * If the page is swapcache, write it back even if that would
620 * block, for some throttling. This happens by accident, because
621 * swap_backing_dev_info is bust: it doesn't reflect the
622 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
623 */
624 if (!is_page_cache_freeable(page))
625 return PAGE_KEEP;
626 if (!mapping) {
627 /*
628 * Some data journaling orphaned pages can have
629 * page->mapping == NULL while being dirty with clean buffers.
630 */
266cf658 631 if (page_has_private(page)) {
1da177e4
LT
632 if (try_to_free_buffers(page)) {
633 ClearPageDirty(page);
b1de0d13 634 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
635 return PAGE_CLEAN;
636 }
637 }
638 return PAGE_KEEP;
639 }
640 if (mapping->a_ops->writepage == NULL)
641 return PAGE_ACTIVATE;
703c2708 642 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
643 return PAGE_KEEP;
644
645 if (clear_page_dirty_for_io(page)) {
646 int res;
647 struct writeback_control wbc = {
648 .sync_mode = WB_SYNC_NONE,
649 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
650 .range_start = 0,
651 .range_end = LLONG_MAX,
1da177e4
LT
652 .for_reclaim = 1,
653 };
654
655 SetPageReclaim(page);
656 res = mapping->a_ops->writepage(page, &wbc);
657 if (res < 0)
658 handle_write_error(mapping, page, res);
994fc28c 659 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
660 ClearPageReclaim(page);
661 return PAGE_ACTIVATE;
662 }
c661b078 663
1da177e4
LT
664 if (!PageWriteback(page)) {
665 /* synchronous write or broken a_ops? */
666 ClearPageReclaim(page);
667 }
3aa23851 668 trace_mm_vmscan_writepage(page);
c4a25635 669 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
670 return PAGE_SUCCESS;
671 }
672
673 return PAGE_CLEAN;
674}
675
a649fd92 676/*
e286781d
NP
677 * Same as remove_mapping, but if the page is removed from the mapping, it
678 * gets returned with a refcount of 0.
a649fd92 679 */
a528910e
JW
680static int __remove_mapping(struct address_space *mapping, struct page *page,
681 bool reclaimed)
49d2e9cc 682{
c4843a75 683 unsigned long flags;
bd4c82c2 684 int refcount;
c4843a75 685
28e4d965
NP
686 BUG_ON(!PageLocked(page));
687 BUG_ON(mapping != page_mapping(page));
49d2e9cc 688
c4843a75 689 spin_lock_irqsave(&mapping->tree_lock, flags);
49d2e9cc 690 /*
0fd0e6b0
NP
691 * The non racy check for a busy page.
692 *
693 * Must be careful with the order of the tests. When someone has
694 * a ref to the page, it may be possible that they dirty it then
695 * drop the reference. So if PageDirty is tested before page_count
696 * here, then the following race may occur:
697 *
698 * get_user_pages(&page);
699 * [user mapping goes away]
700 * write_to(page);
701 * !PageDirty(page) [good]
702 * SetPageDirty(page);
703 * put_page(page);
704 * !page_count(page) [good, discard it]
705 *
706 * [oops, our write_to data is lost]
707 *
708 * Reversing the order of the tests ensures such a situation cannot
709 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 710 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
711 *
712 * Note that if SetPageDirty is always performed via set_page_dirty,
713 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 714 */
bd4c82c2
HY
715 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
716 refcount = 1 + HPAGE_PMD_NR;
717 else
718 refcount = 2;
719 if (!page_ref_freeze(page, refcount))
49d2e9cc 720 goto cannot_free;
e286781d
NP
721 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
722 if (unlikely(PageDirty(page))) {
bd4c82c2 723 page_ref_unfreeze(page, refcount);
49d2e9cc 724 goto cannot_free;
e286781d 725 }
49d2e9cc
CL
726
727 if (PageSwapCache(page)) {
728 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 729 mem_cgroup_swapout(page, swap);
49d2e9cc 730 __delete_from_swap_cache(page);
c4843a75 731 spin_unlock_irqrestore(&mapping->tree_lock, flags);
75f6d6d2 732 put_swap_page(page, swap);
e286781d 733 } else {
6072d13c 734 void (*freepage)(struct page *);
a528910e 735 void *shadow = NULL;
6072d13c
LT
736
737 freepage = mapping->a_ops->freepage;
a528910e
JW
738 /*
739 * Remember a shadow entry for reclaimed file cache in
740 * order to detect refaults, thus thrashing, later on.
741 *
742 * But don't store shadows in an address space that is
743 * already exiting. This is not just an optizimation,
744 * inode reclaim needs to empty out the radix tree or
745 * the nodes are lost. Don't plant shadows behind its
746 * back.
f9fe48be
RZ
747 *
748 * We also don't store shadows for DAX mappings because the
749 * only page cache pages found in these are zero pages
750 * covering holes, and because we don't want to mix DAX
751 * exceptional entries and shadow exceptional entries in the
752 * same page_tree.
a528910e
JW
753 */
754 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 755 !mapping_exiting(mapping) && !dax_mapping(mapping))
a528910e 756 shadow = workingset_eviction(mapping, page);
62cccb8c 757 __delete_from_page_cache(page, shadow);
c4843a75 758 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
759
760 if (freepage != NULL)
761 freepage(page);
49d2e9cc
CL
762 }
763
49d2e9cc
CL
764 return 1;
765
766cannot_free:
c4843a75 767 spin_unlock_irqrestore(&mapping->tree_lock, flags);
49d2e9cc
CL
768 return 0;
769}
770
e286781d
NP
771/*
772 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
773 * someone else has a ref on the page, abort and return 0. If it was
774 * successfully detached, return 1. Assumes the caller has a single ref on
775 * this page.
776 */
777int remove_mapping(struct address_space *mapping, struct page *page)
778{
a528910e 779 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
780 /*
781 * Unfreezing the refcount with 1 rather than 2 effectively
782 * drops the pagecache ref for us without requiring another
783 * atomic operation.
784 */
fe896d18 785 page_ref_unfreeze(page, 1);
e286781d
NP
786 return 1;
787 }
788 return 0;
789}
790
894bc310
LS
791/**
792 * putback_lru_page - put previously isolated page onto appropriate LRU list
793 * @page: page to be put back to appropriate lru list
794 *
795 * Add previously isolated @page to appropriate LRU list.
796 * Page may still be unevictable for other reasons.
797 *
798 * lru_lock must not be held, interrupts must be enabled.
799 */
894bc310
LS
800void putback_lru_page(struct page *page)
801{
0ec3b74c 802 bool is_unevictable;
bbfd28ee 803 int was_unevictable = PageUnevictable(page);
894bc310 804
309381fe 805 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
806
807redo:
808 ClearPageUnevictable(page);
809
39b5f29a 810 if (page_evictable(page)) {
894bc310
LS
811 /*
812 * For evictable pages, we can use the cache.
813 * In event of a race, worst case is we end up with an
814 * unevictable page on [in]active list.
815 * We know how to handle that.
816 */
0ec3b74c 817 is_unevictable = false;
c53954a0 818 lru_cache_add(page);
894bc310
LS
819 } else {
820 /*
821 * Put unevictable pages directly on zone's unevictable
822 * list.
823 */
0ec3b74c 824 is_unevictable = true;
894bc310 825 add_page_to_unevictable_list(page);
6a7b9548 826 /*
21ee9f39
MK
827 * When racing with an mlock or AS_UNEVICTABLE clearing
828 * (page is unlocked) make sure that if the other thread
829 * does not observe our setting of PG_lru and fails
24513264 830 * isolation/check_move_unevictable_pages,
21ee9f39 831 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
832 * the page back to the evictable list.
833 *
21ee9f39 834 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
835 */
836 smp_mb();
894bc310 837 }
894bc310
LS
838
839 /*
840 * page's status can change while we move it among lru. If an evictable
841 * page is on unevictable list, it never be freed. To avoid that,
842 * check after we added it to the list, again.
843 */
0ec3b74c 844 if (is_unevictable && page_evictable(page)) {
894bc310
LS
845 if (!isolate_lru_page(page)) {
846 put_page(page);
847 goto redo;
848 }
849 /* This means someone else dropped this page from LRU
850 * So, it will be freed or putback to LRU again. There is
851 * nothing to do here.
852 */
853 }
854
0ec3b74c 855 if (was_unevictable && !is_unevictable)
bbfd28ee 856 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 857 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
858 count_vm_event(UNEVICTABLE_PGCULLED);
859
894bc310
LS
860 put_page(page); /* drop ref from isolate */
861}
862
dfc8d636
JW
863enum page_references {
864 PAGEREF_RECLAIM,
865 PAGEREF_RECLAIM_CLEAN,
64574746 866 PAGEREF_KEEP,
dfc8d636
JW
867 PAGEREF_ACTIVATE,
868};
869
870static enum page_references page_check_references(struct page *page,
871 struct scan_control *sc)
872{
64574746 873 int referenced_ptes, referenced_page;
dfc8d636 874 unsigned long vm_flags;
dfc8d636 875
c3ac9a8a
JW
876 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
877 &vm_flags);
64574746 878 referenced_page = TestClearPageReferenced(page);
dfc8d636 879
dfc8d636
JW
880 /*
881 * Mlock lost the isolation race with us. Let try_to_unmap()
882 * move the page to the unevictable list.
883 */
884 if (vm_flags & VM_LOCKED)
885 return PAGEREF_RECLAIM;
886
64574746 887 if (referenced_ptes) {
e4898273 888 if (PageSwapBacked(page))
64574746
JW
889 return PAGEREF_ACTIVATE;
890 /*
891 * All mapped pages start out with page table
892 * references from the instantiating fault, so we need
893 * to look twice if a mapped file page is used more
894 * than once.
895 *
896 * Mark it and spare it for another trip around the
897 * inactive list. Another page table reference will
898 * lead to its activation.
899 *
900 * Note: the mark is set for activated pages as well
901 * so that recently deactivated but used pages are
902 * quickly recovered.
903 */
904 SetPageReferenced(page);
905
34dbc67a 906 if (referenced_page || referenced_ptes > 1)
64574746
JW
907 return PAGEREF_ACTIVATE;
908
c909e993
KK
909 /*
910 * Activate file-backed executable pages after first usage.
911 */
912 if (vm_flags & VM_EXEC)
913 return PAGEREF_ACTIVATE;
914
64574746
JW
915 return PAGEREF_KEEP;
916 }
dfc8d636
JW
917
918 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 919 if (referenced_page && !PageSwapBacked(page))
64574746
JW
920 return PAGEREF_RECLAIM_CLEAN;
921
922 return PAGEREF_RECLAIM;
dfc8d636
JW
923}
924
e2be15f6
MG
925/* Check if a page is dirty or under writeback */
926static void page_check_dirty_writeback(struct page *page,
927 bool *dirty, bool *writeback)
928{
b4597226
MG
929 struct address_space *mapping;
930
e2be15f6
MG
931 /*
932 * Anonymous pages are not handled by flushers and must be written
933 * from reclaim context. Do not stall reclaim based on them
934 */
802a3a92
SL
935 if (!page_is_file_cache(page) ||
936 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
937 *dirty = false;
938 *writeback = false;
939 return;
940 }
941
942 /* By default assume that the page flags are accurate */
943 *dirty = PageDirty(page);
944 *writeback = PageWriteback(page);
b4597226
MG
945
946 /* Verify dirty/writeback state if the filesystem supports it */
947 if (!page_has_private(page))
948 return;
949
950 mapping = page_mapping(page);
951 if (mapping && mapping->a_ops->is_dirty_writeback)
952 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
953}
954
3c710c1a
MH
955struct reclaim_stat {
956 unsigned nr_dirty;
957 unsigned nr_unqueued_dirty;
958 unsigned nr_congested;
959 unsigned nr_writeback;
960 unsigned nr_immediate;
5bccd166
MH
961 unsigned nr_activate;
962 unsigned nr_ref_keep;
963 unsigned nr_unmap_fail;
3c710c1a
MH
964};
965
1da177e4 966/*
1742f19f 967 * shrink_page_list() returns the number of reclaimed pages
1da177e4 968 */
1742f19f 969static unsigned long shrink_page_list(struct list_head *page_list,
599d0c95 970 struct pglist_data *pgdat,
f84f6e2b 971 struct scan_control *sc,
02c6de8d 972 enum ttu_flags ttu_flags,
3c710c1a 973 struct reclaim_stat *stat,
02c6de8d 974 bool force_reclaim)
1da177e4
LT
975{
976 LIST_HEAD(ret_pages);
abe4c3b5 977 LIST_HEAD(free_pages);
1da177e4 978 int pgactivate = 0;
3c710c1a
MH
979 unsigned nr_unqueued_dirty = 0;
980 unsigned nr_dirty = 0;
981 unsigned nr_congested = 0;
982 unsigned nr_reclaimed = 0;
983 unsigned nr_writeback = 0;
984 unsigned nr_immediate = 0;
5bccd166
MH
985 unsigned nr_ref_keep = 0;
986 unsigned nr_unmap_fail = 0;
1da177e4
LT
987
988 cond_resched();
989
1da177e4
LT
990 while (!list_empty(page_list)) {
991 struct address_space *mapping;
992 struct page *page;
993 int may_enter_fs;
02c6de8d 994 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 995 bool dirty, writeback;
1da177e4
LT
996
997 cond_resched();
998
999 page = lru_to_page(page_list);
1000 list_del(&page->lru);
1001
529ae9aa 1002 if (!trylock_page(page))
1da177e4
LT
1003 goto keep;
1004
309381fe 1005 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1006
1007 sc->nr_scanned++;
80e43426 1008
39b5f29a 1009 if (unlikely(!page_evictable(page)))
ad6b6704 1010 goto activate_locked;
894bc310 1011
a6dc60f8 1012 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
1013 goto keep_locked;
1014
1da177e4 1015 /* Double the slab pressure for mapped and swapcache pages */
802a3a92
SL
1016 if ((page_mapped(page) || PageSwapCache(page)) &&
1017 !(PageAnon(page) && !PageSwapBacked(page)))
1da177e4
LT
1018 sc->nr_scanned++;
1019
c661b078
AW
1020 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1021 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1022
e2be15f6
MG
1023 /*
1024 * The number of dirty pages determines if a zone is marked
1025 * reclaim_congested which affects wait_iff_congested. kswapd
1026 * will stall and start writing pages if the tail of the LRU
1027 * is all dirty unqueued pages.
1028 */
1029 page_check_dirty_writeback(page, &dirty, &writeback);
1030 if (dirty || writeback)
1031 nr_dirty++;
1032
1033 if (dirty && !writeback)
1034 nr_unqueued_dirty++;
1035
d04e8acd
MG
1036 /*
1037 * Treat this page as congested if the underlying BDI is or if
1038 * pages are cycling through the LRU so quickly that the
1039 * pages marked for immediate reclaim are making it to the
1040 * end of the LRU a second time.
1041 */
e2be15f6 1042 mapping = page_mapping(page);
1da58ee2 1043 if (((dirty || writeback) && mapping &&
703c2708 1044 inode_write_congested(mapping->host)) ||
d04e8acd 1045 (writeback && PageReclaim(page)))
e2be15f6
MG
1046 nr_congested++;
1047
283aba9f
MG
1048 /*
1049 * If a page at the tail of the LRU is under writeback, there
1050 * are three cases to consider.
1051 *
1052 * 1) If reclaim is encountering an excessive number of pages
1053 * under writeback and this page is both under writeback and
1054 * PageReclaim then it indicates that pages are being queued
1055 * for IO but are being recycled through the LRU before the
1056 * IO can complete. Waiting on the page itself risks an
1057 * indefinite stall if it is impossible to writeback the
1058 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1059 * note that the LRU is being scanned too quickly and the
1060 * caller can stall after page list has been processed.
283aba9f 1061 *
97c9341f 1062 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1063 * not marked for immediate reclaim, or the caller does not
1064 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1065 * not to fs). In this case mark the page for immediate
97c9341f 1066 * reclaim and continue scanning.
283aba9f 1067 *
ecf5fc6e
MH
1068 * Require may_enter_fs because we would wait on fs, which
1069 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1070 * enter reclaim, and deadlock if it waits on a page for
1071 * which it is needed to do the write (loop masks off
1072 * __GFP_IO|__GFP_FS for this reason); but more thought
1073 * would probably show more reasons.
1074 *
7fadc820 1075 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1076 * PageReclaim. memcg does not have any dirty pages
1077 * throttling so we could easily OOM just because too many
1078 * pages are in writeback and there is nothing else to
1079 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1080 *
1081 * In cases 1) and 2) we activate the pages to get them out of
1082 * the way while we continue scanning for clean pages on the
1083 * inactive list and refilling from the active list. The
1084 * observation here is that waiting for disk writes is more
1085 * expensive than potentially causing reloads down the line.
1086 * Since they're marked for immediate reclaim, they won't put
1087 * memory pressure on the cache working set any longer than it
1088 * takes to write them to disk.
283aba9f 1089 */
c661b078 1090 if (PageWriteback(page)) {
283aba9f
MG
1091 /* Case 1 above */
1092 if (current_is_kswapd() &&
1093 PageReclaim(page) &&
599d0c95 1094 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
b1a6f21e 1095 nr_immediate++;
c55e8d03 1096 goto activate_locked;
283aba9f
MG
1097
1098 /* Case 2 above */
97c9341f 1099 } else if (sane_reclaim(sc) ||
ecf5fc6e 1100 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1101 /*
1102 * This is slightly racy - end_page_writeback()
1103 * might have just cleared PageReclaim, then
1104 * setting PageReclaim here end up interpreted
1105 * as PageReadahead - but that does not matter
1106 * enough to care. What we do want is for this
1107 * page to have PageReclaim set next time memcg
1108 * reclaim reaches the tests above, so it will
1109 * then wait_on_page_writeback() to avoid OOM;
1110 * and it's also appropriate in global reclaim.
1111 */
1112 SetPageReclaim(page);
e62e384e 1113 nr_writeback++;
c55e8d03 1114 goto activate_locked;
283aba9f
MG
1115
1116 /* Case 3 above */
1117 } else {
7fadc820 1118 unlock_page(page);
283aba9f 1119 wait_on_page_writeback(page);
7fadc820
HD
1120 /* then go back and try same page again */
1121 list_add_tail(&page->lru, page_list);
1122 continue;
e62e384e 1123 }
c661b078 1124 }
1da177e4 1125
02c6de8d
MK
1126 if (!force_reclaim)
1127 references = page_check_references(page, sc);
1128
dfc8d636
JW
1129 switch (references) {
1130 case PAGEREF_ACTIVATE:
1da177e4 1131 goto activate_locked;
64574746 1132 case PAGEREF_KEEP:
5bccd166 1133 nr_ref_keep++;
64574746 1134 goto keep_locked;
dfc8d636
JW
1135 case PAGEREF_RECLAIM:
1136 case PAGEREF_RECLAIM_CLEAN:
1137 ; /* try to reclaim the page below */
1138 }
1da177e4 1139
1da177e4
LT
1140 /*
1141 * Anonymous process memory has backing store?
1142 * Try to allocate it some swap space here.
802a3a92 1143 * Lazyfree page could be freed directly
1da177e4 1144 */
bd4c82c2
HY
1145 if (PageAnon(page) && PageSwapBacked(page)) {
1146 if (!PageSwapCache(page)) {
1147 if (!(sc->gfp_mask & __GFP_IO))
1148 goto keep_locked;
1149 if (PageTransHuge(page)) {
1150 /* cannot split THP, skip it */
1151 if (!can_split_huge_page(page, NULL))
1152 goto activate_locked;
1153 /*
1154 * Split pages without a PMD map right
1155 * away. Chances are some or all of the
1156 * tail pages can be freed without IO.
1157 */
1158 if (!compound_mapcount(page) &&
1159 split_huge_page_to_list(page,
1160 page_list))
1161 goto activate_locked;
1162 }
1163 if (!add_to_swap(page)) {
1164 if (!PageTransHuge(page))
1165 goto activate_locked;
1166 /* Fallback to swap normal pages */
1167 if (split_huge_page_to_list(page,
1168 page_list))
1169 goto activate_locked;
fe490cc0
HY
1170#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1171 count_vm_event(THP_SWPOUT_FALLBACK);
1172#endif
bd4c82c2
HY
1173 if (!add_to_swap(page))
1174 goto activate_locked;
1175 }
0f074658 1176
bd4c82c2 1177 may_enter_fs = 1;
1da177e4 1178
bd4c82c2
HY
1179 /* Adding to swap updated mapping */
1180 mapping = page_mapping(page);
1181 }
7751b2da
KS
1182 } else if (unlikely(PageTransHuge(page))) {
1183 /* Split file THP */
1184 if (split_huge_page_to_list(page, page_list))
1185 goto keep_locked;
e2be15f6 1186 }
1da177e4
LT
1187
1188 /*
1189 * The page is mapped into the page tables of one or more
1190 * processes. Try to unmap it here.
1191 */
802a3a92 1192 if (page_mapped(page)) {
bd4c82c2
HY
1193 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1194
1195 if (unlikely(PageTransHuge(page)))
1196 flags |= TTU_SPLIT_HUGE_PMD;
1197 if (!try_to_unmap(page, flags)) {
5bccd166 1198 nr_unmap_fail++;
1da177e4 1199 goto activate_locked;
1da177e4
LT
1200 }
1201 }
1202
1203 if (PageDirty(page)) {
ee72886d 1204 /*
4eda4823
JW
1205 * Only kswapd can writeback filesystem pages
1206 * to avoid risk of stack overflow. But avoid
1207 * injecting inefficient single-page IO into
1208 * flusher writeback as much as possible: only
1209 * write pages when we've encountered many
1210 * dirty pages, and when we've already scanned
1211 * the rest of the LRU for clean pages and see
1212 * the same dirty pages again (PageReclaim).
ee72886d 1213 */
f84f6e2b 1214 if (page_is_file_cache(page) &&
4eda4823
JW
1215 (!current_is_kswapd() || !PageReclaim(page) ||
1216 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1217 /*
1218 * Immediately reclaim when written back.
1219 * Similar in principal to deactivate_page()
1220 * except we already have the page isolated
1221 * and know it's dirty
1222 */
c4a25635 1223 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1224 SetPageReclaim(page);
1225
c55e8d03 1226 goto activate_locked;
ee72886d
MG
1227 }
1228
dfc8d636 1229 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1230 goto keep_locked;
4dd4b920 1231 if (!may_enter_fs)
1da177e4 1232 goto keep_locked;
52a8363e 1233 if (!sc->may_writepage)
1da177e4
LT
1234 goto keep_locked;
1235
d950c947
MG
1236 /*
1237 * Page is dirty. Flush the TLB if a writable entry
1238 * potentially exists to avoid CPU writes after IO
1239 * starts and then write it out here.
1240 */
1241 try_to_unmap_flush_dirty();
7d3579e8 1242 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1243 case PAGE_KEEP:
1244 goto keep_locked;
1245 case PAGE_ACTIVATE:
1246 goto activate_locked;
1247 case PAGE_SUCCESS:
7d3579e8 1248 if (PageWriteback(page))
41ac1999 1249 goto keep;
7d3579e8 1250 if (PageDirty(page))
1da177e4 1251 goto keep;
7d3579e8 1252
1da177e4
LT
1253 /*
1254 * A synchronous write - probably a ramdisk. Go
1255 * ahead and try to reclaim the page.
1256 */
529ae9aa 1257 if (!trylock_page(page))
1da177e4
LT
1258 goto keep;
1259 if (PageDirty(page) || PageWriteback(page))
1260 goto keep_locked;
1261 mapping = page_mapping(page);
1262 case PAGE_CLEAN:
1263 ; /* try to free the page below */
1264 }
1265 }
1266
1267 /*
1268 * If the page has buffers, try to free the buffer mappings
1269 * associated with this page. If we succeed we try to free
1270 * the page as well.
1271 *
1272 * We do this even if the page is PageDirty().
1273 * try_to_release_page() does not perform I/O, but it is
1274 * possible for a page to have PageDirty set, but it is actually
1275 * clean (all its buffers are clean). This happens if the
1276 * buffers were written out directly, with submit_bh(). ext3
894bc310 1277 * will do this, as well as the blockdev mapping.
1da177e4
LT
1278 * try_to_release_page() will discover that cleanness and will
1279 * drop the buffers and mark the page clean - it can be freed.
1280 *
1281 * Rarely, pages can have buffers and no ->mapping. These are
1282 * the pages which were not successfully invalidated in
1283 * truncate_complete_page(). We try to drop those buffers here
1284 * and if that worked, and the page is no longer mapped into
1285 * process address space (page_count == 1) it can be freed.
1286 * Otherwise, leave the page on the LRU so it is swappable.
1287 */
266cf658 1288 if (page_has_private(page)) {
1da177e4
LT
1289 if (!try_to_release_page(page, sc->gfp_mask))
1290 goto activate_locked;
e286781d
NP
1291 if (!mapping && page_count(page) == 1) {
1292 unlock_page(page);
1293 if (put_page_testzero(page))
1294 goto free_it;
1295 else {
1296 /*
1297 * rare race with speculative reference.
1298 * the speculative reference will free
1299 * this page shortly, so we may
1300 * increment nr_reclaimed here (and
1301 * leave it off the LRU).
1302 */
1303 nr_reclaimed++;
1304 continue;
1305 }
1306 }
1da177e4
LT
1307 }
1308
802a3a92
SL
1309 if (PageAnon(page) && !PageSwapBacked(page)) {
1310 /* follow __remove_mapping for reference */
1311 if (!page_ref_freeze(page, 1))
1312 goto keep_locked;
1313 if (PageDirty(page)) {
1314 page_ref_unfreeze(page, 1);
1315 goto keep_locked;
1316 }
1da177e4 1317
802a3a92 1318 count_vm_event(PGLAZYFREED);
2262185c 1319 count_memcg_page_event(page, PGLAZYFREED);
802a3a92
SL
1320 } else if (!mapping || !__remove_mapping(mapping, page, true))
1321 goto keep_locked;
a978d6f5
NP
1322 /*
1323 * At this point, we have no other references and there is
1324 * no way to pick any more up (removed from LRU, removed
1325 * from pagecache). Can use non-atomic bitops now (and
1326 * we obviously don't have to worry about waking up a process
1327 * waiting on the page lock, because there are no references.
1328 */
48c935ad 1329 __ClearPageLocked(page);
e286781d 1330free_it:
05ff5137 1331 nr_reclaimed++;
abe4c3b5
MG
1332
1333 /*
1334 * Is there need to periodically free_page_list? It would
1335 * appear not as the counts should be low
1336 */
bd4c82c2
HY
1337 if (unlikely(PageTransHuge(page))) {
1338 mem_cgroup_uncharge(page);
1339 (*get_compound_page_dtor(page))(page);
1340 } else
1341 list_add(&page->lru, &free_pages);
1da177e4
LT
1342 continue;
1343
1344activate_locked:
68a22394 1345 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1346 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1347 PageMlocked(page)))
a2c43eed 1348 try_to_free_swap(page);
309381fe 1349 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704
MK
1350 if (!PageMlocked(page)) {
1351 SetPageActive(page);
1352 pgactivate++;
2262185c 1353 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1354 }
1da177e4
LT
1355keep_locked:
1356 unlock_page(page);
1357keep:
1358 list_add(&page->lru, &ret_pages);
309381fe 1359 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1360 }
abe4c3b5 1361
747db954 1362 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1363 try_to_unmap_flush();
b745bc85 1364 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1365
1da177e4 1366 list_splice(&ret_pages, page_list);
f8891e5e 1367 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1368
3c710c1a
MH
1369 if (stat) {
1370 stat->nr_dirty = nr_dirty;
1371 stat->nr_congested = nr_congested;
1372 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1373 stat->nr_writeback = nr_writeback;
1374 stat->nr_immediate = nr_immediate;
5bccd166
MH
1375 stat->nr_activate = pgactivate;
1376 stat->nr_ref_keep = nr_ref_keep;
1377 stat->nr_unmap_fail = nr_unmap_fail;
3c710c1a 1378 }
05ff5137 1379 return nr_reclaimed;
1da177e4
LT
1380}
1381
02c6de8d
MK
1382unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1383 struct list_head *page_list)
1384{
1385 struct scan_control sc = {
1386 .gfp_mask = GFP_KERNEL,
1387 .priority = DEF_PRIORITY,
1388 .may_unmap = 1,
1389 };
3c710c1a 1390 unsigned long ret;
02c6de8d
MK
1391 struct page *page, *next;
1392 LIST_HEAD(clean_pages);
1393
1394 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e 1395 if (page_is_file_cache(page) && !PageDirty(page) &&
89062f03 1396 !__PageMovable(page) && !PageUnevictable(page)) {
02c6de8d
MK
1397 ClearPageActive(page);
1398 list_move(&page->lru, &clean_pages);
1399 }
1400 }
1401
599d0c95 1402 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
a128ca71 1403 TTU_IGNORE_ACCESS, NULL, true);
02c6de8d 1404 list_splice(&clean_pages, page_list);
599d0c95 1405 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1406 return ret;
1407}
1408
5ad333eb
AW
1409/*
1410 * Attempt to remove the specified page from its LRU. Only take this page
1411 * if it is of the appropriate PageActive status. Pages which are being
1412 * freed elsewhere are also ignored.
1413 *
1414 * page: page to consider
1415 * mode: one of the LRU isolation modes defined above
1416 *
1417 * returns 0 on success, -ve errno on failure.
1418 */
f3fd4a61 1419int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1420{
1421 int ret = -EINVAL;
1422
1423 /* Only take pages on the LRU. */
1424 if (!PageLRU(page))
1425 return ret;
1426
e46a2879
MK
1427 /* Compaction should not handle unevictable pages but CMA can do so */
1428 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1429 return ret;
1430
5ad333eb 1431 ret = -EBUSY;
08e552c6 1432
c8244935
MG
1433 /*
1434 * To minimise LRU disruption, the caller can indicate that it only
1435 * wants to isolate pages it will be able to operate on without
1436 * blocking - clean pages for the most part.
1437 *
c8244935
MG
1438 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1439 * that it is possible to migrate without blocking
1440 */
1276ad68 1441 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1442 /* All the caller can do on PageWriteback is block */
1443 if (PageWriteback(page))
1444 return ret;
1445
1446 if (PageDirty(page)) {
1447 struct address_space *mapping;
1f9c87e2 1448 bool migrate_dirty;
c8244935 1449
c8244935
MG
1450 /*
1451 * Only pages without mappings or that have a
1452 * ->migratepage callback are possible to migrate
1f9c87e2
MG
1453 * without blocking. However, we can be racing with
1454 * truncation so it's necessary to lock the page
1455 * to stabilise the mapping as truncation holds
1456 * the page lock until after the page is removed
1457 * from the page cache.
c8244935 1458 */
1f9c87e2
MG
1459 if (!trylock_page(page))
1460 return ret;
1461
c8244935 1462 mapping = page_mapping(page);
b968dd76 1463 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1f9c87e2
MG
1464 unlock_page(page);
1465 if (!migrate_dirty)
c8244935
MG
1466 return ret;
1467 }
1468 }
39deaf85 1469
f80c0673
MK
1470 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1471 return ret;
1472
5ad333eb
AW
1473 if (likely(get_page_unless_zero(page))) {
1474 /*
1475 * Be careful not to clear PageLRU until after we're
1476 * sure the page is not being freed elsewhere -- the
1477 * page release code relies on it.
1478 */
1479 ClearPageLRU(page);
1480 ret = 0;
1481 }
1482
1483 return ret;
1484}
1485
7ee36a14
MG
1486
1487/*
1488 * Update LRU sizes after isolating pages. The LRU size updates must
1489 * be complete before mem_cgroup_update_lru_size due to a santity check.
1490 */
1491static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1492 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1493{
7ee36a14
MG
1494 int zid;
1495
7ee36a14
MG
1496 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1497 if (!nr_zone_taken[zid])
1498 continue;
1499
1500 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1501#ifdef CONFIG_MEMCG
b4536f0c 1502 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1503#endif
b4536f0c
MH
1504 }
1505
7ee36a14
MG
1506}
1507
1da177e4 1508/*
a52633d8 1509 * zone_lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1510 * shrink the lists perform better by taking out a batch of pages
1511 * and working on them outside the LRU lock.
1512 *
1513 * For pagecache intensive workloads, this function is the hottest
1514 * spot in the kernel (apart from copy_*_user functions).
1515 *
1516 * Appropriate locks must be held before calling this function.
1517 *
791b48b6 1518 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 1519 * @lruvec: The LRU vector to pull pages from.
1da177e4 1520 * @dst: The temp list to put pages on to.
f626012d 1521 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1522 * @sc: The scan_control struct for this reclaim session
5ad333eb 1523 * @mode: One of the LRU isolation modes
3cb99451 1524 * @lru: LRU list id for isolating
1da177e4
LT
1525 *
1526 * returns how many pages were moved onto *@dst.
1527 */
69e05944 1528static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1529 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1530 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1531 isolate_mode_t mode, enum lru_list lru)
1da177e4 1532{
75b00af7 1533 struct list_head *src = &lruvec->lists[lru];
69e05944 1534 unsigned long nr_taken = 0;
599d0c95 1535 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1536 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 1537 unsigned long skipped = 0;
791b48b6 1538 unsigned long scan, total_scan, nr_pages;
b2e18757 1539 LIST_HEAD(pages_skipped);
1da177e4 1540
791b48b6
MK
1541 scan = 0;
1542 for (total_scan = 0;
1543 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1544 total_scan++) {
5ad333eb 1545 struct page *page;
5ad333eb 1546
1da177e4
LT
1547 page = lru_to_page(src);
1548 prefetchw_prev_lru_page(page, src, flags);
1549
309381fe 1550 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1551
b2e18757
MG
1552 if (page_zonenum(page) > sc->reclaim_idx) {
1553 list_move(&page->lru, &pages_skipped);
7cc30fcf 1554 nr_skipped[page_zonenum(page)]++;
b2e18757
MG
1555 continue;
1556 }
1557
791b48b6
MK
1558 /*
1559 * Do not count skipped pages because that makes the function
1560 * return with no isolated pages if the LRU mostly contains
1561 * ineligible pages. This causes the VM to not reclaim any
1562 * pages, triggering a premature OOM.
1563 */
1564 scan++;
f3fd4a61 1565 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1566 case 0:
599d0c95
MG
1567 nr_pages = hpage_nr_pages(page);
1568 nr_taken += nr_pages;
1569 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1570 list_move(&page->lru, dst);
5ad333eb
AW
1571 break;
1572
1573 case -EBUSY:
1574 /* else it is being freed elsewhere */
1575 list_move(&page->lru, src);
1576 continue;
46453a6e 1577
5ad333eb
AW
1578 default:
1579 BUG();
1580 }
1da177e4
LT
1581 }
1582
b2e18757
MG
1583 /*
1584 * Splice any skipped pages to the start of the LRU list. Note that
1585 * this disrupts the LRU order when reclaiming for lower zones but
1586 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1587 * scanning would soon rescan the same pages to skip and put the
1588 * system at risk of premature OOM.
1589 */
7cc30fcf
MG
1590 if (!list_empty(&pages_skipped)) {
1591 int zid;
1592
3db65812 1593 list_splice(&pages_skipped, src);
7cc30fcf
MG
1594 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1595 if (!nr_skipped[zid])
1596 continue;
1597
1598 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1599 skipped += nr_skipped[zid];
7cc30fcf
MG
1600 }
1601 }
791b48b6 1602 *nr_scanned = total_scan;
1265e3a6 1603 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 1604 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 1605 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1606 return nr_taken;
1607}
1608
62695a84
NP
1609/**
1610 * isolate_lru_page - tries to isolate a page from its LRU list
1611 * @page: page to isolate from its LRU list
1612 *
1613 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1614 * vmstat statistic corresponding to whatever LRU list the page was on.
1615 *
1616 * Returns 0 if the page was removed from an LRU list.
1617 * Returns -EBUSY if the page was not on an LRU list.
1618 *
1619 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1620 * the active list, it will have PageActive set. If it was found on
1621 * the unevictable list, it will have the PageUnevictable bit set. That flag
1622 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1623 *
1624 * The vmstat statistic corresponding to the list on which the page was
1625 * found will be decremented.
1626 *
1627 * Restrictions:
1628 * (1) Must be called with an elevated refcount on the page. This is a
1629 * fundamentnal difference from isolate_lru_pages (which is called
1630 * without a stable reference).
1631 * (2) the lru_lock must not be held.
1632 * (3) interrupts must be enabled.
1633 */
1634int isolate_lru_page(struct page *page)
1635{
1636 int ret = -EBUSY;
1637
309381fe 1638 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1639 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1640
62695a84
NP
1641 if (PageLRU(page)) {
1642 struct zone *zone = page_zone(page);
fa9add64 1643 struct lruvec *lruvec;
62695a84 1644
a52633d8 1645 spin_lock_irq(zone_lru_lock(zone));
599d0c95 1646 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0c917313 1647 if (PageLRU(page)) {
894bc310 1648 int lru = page_lru(page);
0c917313 1649 get_page(page);
62695a84 1650 ClearPageLRU(page);
fa9add64
HD
1651 del_page_from_lru_list(page, lruvec, lru);
1652 ret = 0;
62695a84 1653 }
a52633d8 1654 spin_unlock_irq(zone_lru_lock(zone));
62695a84
NP
1655 }
1656 return ret;
1657}
1658
35cd7815 1659/*
d37dd5dc
FW
1660 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1661 * then get resheduled. When there are massive number of tasks doing page
1662 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1663 * the LRU list will go small and be scanned faster than necessary, leading to
1664 * unnecessary swapping, thrashing and OOM.
35cd7815 1665 */
599d0c95 1666static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1667 struct scan_control *sc)
1668{
1669 unsigned long inactive, isolated;
1670
1671 if (current_is_kswapd())
1672 return 0;
1673
97c9341f 1674 if (!sane_reclaim(sc))
35cd7815
RR
1675 return 0;
1676
1677 if (file) {
599d0c95
MG
1678 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1679 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1680 } else {
599d0c95
MG
1681 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1682 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1683 }
1684
3cf23841
FW
1685 /*
1686 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1687 * won't get blocked by normal direct-reclaimers, forming a circular
1688 * deadlock.
1689 */
d0164adc 1690 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1691 inactive >>= 3;
1692
35cd7815
RR
1693 return isolated > inactive;
1694}
1695
66635629 1696static noinline_for_stack void
75b00af7 1697putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1698{
27ac81d8 1699 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
599d0c95 1700 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3f79768f 1701 LIST_HEAD(pages_to_free);
66635629 1702
66635629
MG
1703 /*
1704 * Put back any unfreeable pages.
1705 */
66635629 1706 while (!list_empty(page_list)) {
3f79768f 1707 struct page *page = lru_to_page(page_list);
66635629 1708 int lru;
3f79768f 1709
309381fe 1710 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1711 list_del(&page->lru);
39b5f29a 1712 if (unlikely(!page_evictable(page))) {
599d0c95 1713 spin_unlock_irq(&pgdat->lru_lock);
66635629 1714 putback_lru_page(page);
599d0c95 1715 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1716 continue;
1717 }
fa9add64 1718
599d0c95 1719 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1720
7a608572 1721 SetPageLRU(page);
66635629 1722 lru = page_lru(page);
fa9add64
HD
1723 add_page_to_lru_list(page, lruvec, lru);
1724
66635629
MG
1725 if (is_active_lru(lru)) {
1726 int file = is_file_lru(lru);
9992af10
RR
1727 int numpages = hpage_nr_pages(page);
1728 reclaim_stat->recent_rotated[file] += numpages;
66635629 1729 }
2bcf8879
HD
1730 if (put_page_testzero(page)) {
1731 __ClearPageLRU(page);
1732 __ClearPageActive(page);
fa9add64 1733 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1734
1735 if (unlikely(PageCompound(page))) {
599d0c95 1736 spin_unlock_irq(&pgdat->lru_lock);
747db954 1737 mem_cgroup_uncharge(page);
2bcf8879 1738 (*get_compound_page_dtor(page))(page);
599d0c95 1739 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1740 } else
1741 list_add(&page->lru, &pages_to_free);
66635629
MG
1742 }
1743 }
66635629 1744
3f79768f
HD
1745 /*
1746 * To save our caller's stack, now use input list for pages to free.
1747 */
1748 list_splice(&pages_to_free, page_list);
66635629
MG
1749}
1750
399ba0b9
N
1751/*
1752 * If a kernel thread (such as nfsd for loop-back mounts) services
1753 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1754 * In that case we should only throttle if the backing device it is
1755 * writing to is congested. In other cases it is safe to throttle.
1756 */
1757static int current_may_throttle(void)
1758{
1759 return !(current->flags & PF_LESS_THROTTLE) ||
1760 current->backing_dev_info == NULL ||
1761 bdi_write_congested(current->backing_dev_info);
1762}
1763
1da177e4 1764/*
b2e18757 1765 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1766 * of reclaimed pages
1da177e4 1767 */
66635629 1768static noinline_for_stack unsigned long
1a93be0e 1769shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1770 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1771{
1772 LIST_HEAD(page_list);
e247dbce 1773 unsigned long nr_scanned;
05ff5137 1774 unsigned long nr_reclaimed = 0;
e247dbce 1775 unsigned long nr_taken;
3c710c1a 1776 struct reclaim_stat stat = {};
f3fd4a61 1777 isolate_mode_t isolate_mode = 0;
3cb99451 1778 int file = is_file_lru(lru);
599d0c95 1779 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1a93be0e 1780 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
db73ee0d 1781 bool stalled = false;
78dc583d 1782
599d0c95 1783 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
1784 if (stalled)
1785 return 0;
1786
1787 /* wait a bit for the reclaimer. */
1788 msleep(100);
1789 stalled = true;
35cd7815
RR
1790
1791 /* We are about to die and free our memory. Return now. */
1792 if (fatal_signal_pending(current))
1793 return SWAP_CLUSTER_MAX;
1794 }
1795
1da177e4 1796 lru_add_drain();
f80c0673
MK
1797
1798 if (!sc->may_unmap)
61317289 1799 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1800
599d0c95 1801 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1802
5dc35979
KK
1803 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1804 &nr_scanned, sc, isolate_mode, lru);
95d918fc 1805
599d0c95 1806 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1807 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1808
2262185c
RG
1809 if (current_is_kswapd()) {
1810 if (global_reclaim(sc))
599d0c95 1811 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
2262185c
RG
1812 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1813 nr_scanned);
1814 } else {
1815 if (global_reclaim(sc))
599d0c95 1816 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
2262185c
RG
1817 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1818 nr_scanned);
e247dbce 1819 }
599d0c95 1820 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1821
d563c050 1822 if (nr_taken == 0)
66635629 1823 return 0;
5ad333eb 1824
a128ca71 1825 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
3c710c1a 1826 &stat, false);
c661b078 1827
599d0c95 1828 spin_lock_irq(&pgdat->lru_lock);
3f79768f 1829
2262185c
RG
1830 if (current_is_kswapd()) {
1831 if (global_reclaim(sc))
599d0c95 1832 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
2262185c
RG
1833 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1834 nr_reclaimed);
1835 } else {
1836 if (global_reclaim(sc))
599d0c95 1837 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
2262185c
RG
1838 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1839 nr_reclaimed);
904249aa 1840 }
a74609fa 1841
27ac81d8 1842 putback_inactive_pages(lruvec, &page_list);
3f79768f 1843
599d0c95 1844 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f 1845
599d0c95 1846 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 1847
747db954 1848 mem_cgroup_uncharge_list(&page_list);
b745bc85 1849 free_hot_cold_page_list(&page_list, true);
e11da5b4 1850
92df3a72
MG
1851 /*
1852 * If reclaim is isolating dirty pages under writeback, it implies
1853 * that the long-lived page allocation rate is exceeding the page
1854 * laundering rate. Either the global limits are not being effective
1855 * at throttling processes due to the page distribution throughout
1856 * zones or there is heavy usage of a slow backing device. The
1857 * only option is to throttle from reclaim context which is not ideal
1858 * as there is no guarantee the dirtying process is throttled in the
1859 * same way balance_dirty_pages() manages.
1860 *
8e950282
MG
1861 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1862 * of pages under pages flagged for immediate reclaim and stall if any
1863 * are encountered in the nr_immediate check below.
92df3a72 1864 */
3c710c1a 1865 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
599d0c95 1866 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
92df3a72 1867
b8b81518
AR
1868 /*
1869 * If dirty pages are scanned that are not queued for IO, it
1870 * implies that flushers are not doing their job. This can
1871 * happen when memory pressure pushes dirty pages to the end of
1872 * the LRU before the dirty limits are breached and the dirty
1873 * data has expired. It can also happen when the proportion of
1874 * dirty pages grows not through writes but through memory
1875 * pressure reclaiming all the clean cache. And in some cases,
1876 * the flushers simply cannot keep up with the allocation
1877 * rate. Nudge the flusher threads in case they are asleep.
1878 */
1879 if (stat.nr_unqueued_dirty == nr_taken)
1880 wakeup_flusher_threads(0, WB_REASON_VMSCAN);
1881
d43006d5 1882 /*
97c9341f
TH
1883 * Legacy memcg will stall in page writeback so avoid forcibly
1884 * stalling here.
d43006d5 1885 */
97c9341f 1886 if (sane_reclaim(sc)) {
8e950282
MG
1887 /*
1888 * Tag a zone as congested if all the dirty pages scanned were
1889 * backed by a congested BDI and wait_iff_congested will stall.
1890 */
3c710c1a 1891 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
599d0c95 1892 set_bit(PGDAT_CONGESTED, &pgdat->flags);
8e950282 1893
b8b81518
AR
1894 /* Allow kswapd to start writing pages during reclaim. */
1895 if (stat.nr_unqueued_dirty == nr_taken)
599d0c95 1896 set_bit(PGDAT_DIRTY, &pgdat->flags);
b1a6f21e
MG
1897
1898 /*
b738d764
LT
1899 * If kswapd scans pages marked marked for immediate
1900 * reclaim and under writeback (nr_immediate), it implies
1901 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1902 * they are written so also forcibly stall.
1903 */
3c710c1a 1904 if (stat.nr_immediate && current_may_throttle())
b1a6f21e 1905 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1906 }
d43006d5 1907
8e950282
MG
1908 /*
1909 * Stall direct reclaim for IO completions if underlying BDIs or zone
1910 * is congested. Allow kswapd to continue until it starts encountering
1911 * unqueued dirty pages or cycling through the LRU too quickly.
1912 */
399ba0b9
N
1913 if (!sc->hibernation_mode && !current_is_kswapd() &&
1914 current_may_throttle())
599d0c95 1915 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
8e950282 1916
599d0c95
MG
1917 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1918 nr_scanned, nr_reclaimed,
5bccd166
MH
1919 stat.nr_dirty, stat.nr_writeback,
1920 stat.nr_congested, stat.nr_immediate,
1921 stat.nr_activate, stat.nr_ref_keep,
1922 stat.nr_unmap_fail,
ba5e9579 1923 sc->priority, file);
05ff5137 1924 return nr_reclaimed;
1da177e4
LT
1925}
1926
1927/*
1928 * This moves pages from the active list to the inactive list.
1929 *
1930 * We move them the other way if the page is referenced by one or more
1931 * processes, from rmap.
1932 *
1933 * If the pages are mostly unmapped, the processing is fast and it is
a52633d8 1934 * appropriate to hold zone_lru_lock across the whole operation. But if
1da177e4 1935 * the pages are mapped, the processing is slow (page_referenced()) so we
a52633d8 1936 * should drop zone_lru_lock around each page. It's impossible to balance
1da177e4
LT
1937 * this, so instead we remove the pages from the LRU while processing them.
1938 * It is safe to rely on PG_active against the non-LRU pages in here because
1939 * nobody will play with that bit on a non-LRU page.
1940 *
0139aa7b 1941 * The downside is that we have to touch page->_refcount against each page.
1da177e4 1942 * But we had to alter page->flags anyway.
9d998b4f
MH
1943 *
1944 * Returns the number of pages moved to the given lru.
1da177e4 1945 */
1cfb419b 1946
9d998b4f 1947static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1948 struct list_head *list,
2bcf8879 1949 struct list_head *pages_to_free,
3eb4140f
WF
1950 enum lru_list lru)
1951{
599d0c95 1952 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3eb4140f 1953 struct page *page;
fa9add64 1954 int nr_pages;
9d998b4f 1955 int nr_moved = 0;
3eb4140f 1956
3eb4140f
WF
1957 while (!list_empty(list)) {
1958 page = lru_to_page(list);
599d0c95 1959 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3eb4140f 1960
309381fe 1961 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1962 SetPageLRU(page);
1963
fa9add64 1964 nr_pages = hpage_nr_pages(page);
599d0c95 1965 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
925b7673 1966 list_move(&page->lru, &lruvec->lists[lru]);
3eb4140f 1967
2bcf8879
HD
1968 if (put_page_testzero(page)) {
1969 __ClearPageLRU(page);
1970 __ClearPageActive(page);
fa9add64 1971 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1972
1973 if (unlikely(PageCompound(page))) {
599d0c95 1974 spin_unlock_irq(&pgdat->lru_lock);
747db954 1975 mem_cgroup_uncharge(page);
2bcf8879 1976 (*get_compound_page_dtor(page))(page);
599d0c95 1977 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1978 } else
1979 list_add(&page->lru, pages_to_free);
9d998b4f
MH
1980 } else {
1981 nr_moved += nr_pages;
3eb4140f
WF
1982 }
1983 }
9d5e6a9f 1984
2262185c 1985 if (!is_active_lru(lru)) {
f0958906 1986 __count_vm_events(PGDEACTIVATE, nr_moved);
2262185c
RG
1987 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1988 nr_moved);
1989 }
9d998b4f
MH
1990
1991 return nr_moved;
3eb4140f 1992}
1cfb419b 1993
f626012d 1994static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1995 struct lruvec *lruvec,
f16015fb 1996 struct scan_control *sc,
9e3b2f8c 1997 enum lru_list lru)
1da177e4 1998{
44c241f1 1999 unsigned long nr_taken;
f626012d 2000 unsigned long nr_scanned;
6fe6b7e3 2001 unsigned long vm_flags;
1da177e4 2002 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2003 LIST_HEAD(l_active);
b69408e8 2004 LIST_HEAD(l_inactive);
1da177e4 2005 struct page *page;
1a93be0e 2006 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
9d998b4f
MH
2007 unsigned nr_deactivate, nr_activate;
2008 unsigned nr_rotated = 0;
f3fd4a61 2009 isolate_mode_t isolate_mode = 0;
3cb99451 2010 int file = is_file_lru(lru);
599d0c95 2011 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2012
2013 lru_add_drain();
f80c0673
MK
2014
2015 if (!sc->may_unmap)
61317289 2016 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 2017
599d0c95 2018 spin_lock_irq(&pgdat->lru_lock);
925b7673 2019
5dc35979
KK
2020 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2021 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 2022
599d0c95 2023 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 2024 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 2025
599d0c95 2026 __count_vm_events(PGREFILL, nr_scanned);
2262185c 2027 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2028
599d0c95 2029 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 2030
1da177e4
LT
2031 while (!list_empty(&l_hold)) {
2032 cond_resched();
2033 page = lru_to_page(&l_hold);
2034 list_del(&page->lru);
7e9cd484 2035
39b5f29a 2036 if (unlikely(!page_evictable(page))) {
894bc310
LS
2037 putback_lru_page(page);
2038 continue;
2039 }
2040
cc715d99
MG
2041 if (unlikely(buffer_heads_over_limit)) {
2042 if (page_has_private(page) && trylock_page(page)) {
2043 if (page_has_private(page))
2044 try_to_release_page(page, 0);
2045 unlock_page(page);
2046 }
2047 }
2048
c3ac9a8a
JW
2049 if (page_referenced(page, 0, sc->target_mem_cgroup,
2050 &vm_flags)) {
9992af10 2051 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
2052 /*
2053 * Identify referenced, file-backed active pages and
2054 * give them one more trip around the active list. So
2055 * that executable code get better chances to stay in
2056 * memory under moderate memory pressure. Anon pages
2057 * are not likely to be evicted by use-once streaming
2058 * IO, plus JVM can create lots of anon VM_EXEC pages,
2059 * so we ignore them here.
2060 */
41e20983 2061 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
2062 list_add(&page->lru, &l_active);
2063 continue;
2064 }
2065 }
7e9cd484 2066
5205e56e 2067 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
2068 list_add(&page->lru, &l_inactive);
2069 }
2070
b555749a 2071 /*
8cab4754 2072 * Move pages back to the lru list.
b555749a 2073 */
599d0c95 2074 spin_lock_irq(&pgdat->lru_lock);
556adecb 2075 /*
8cab4754
WF
2076 * Count referenced pages from currently used mappings as rotated,
2077 * even though only some of them are actually re-activated. This
2078 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 2079 * get_scan_count.
7e9cd484 2080 */
b7c46d15 2081 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 2082
9d998b4f
MH
2083 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2084 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
599d0c95
MG
2085 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2086 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 2087
747db954 2088 mem_cgroup_uncharge_list(&l_hold);
b745bc85 2089 free_hot_cold_page_list(&l_hold, true);
9d998b4f
MH
2090 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2091 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2092}
2093
59dc76b0
RR
2094/*
2095 * The inactive anon list should be small enough that the VM never has
2096 * to do too much work.
14797e23 2097 *
59dc76b0
RR
2098 * The inactive file list should be small enough to leave most memory
2099 * to the established workingset on the scan-resistant active list,
2100 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2101 *
59dc76b0
RR
2102 * Both inactive lists should also be large enough that each inactive
2103 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2104 *
2a2e4885
JW
2105 * If that fails and refaulting is observed, the inactive list grows.
2106 *
59dc76b0
RR
2107 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2108 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2109 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2110 *
59dc76b0
RR
2111 * total target max
2112 * memory ratio inactive
2113 * -------------------------------------
2114 * 10MB 1 5MB
2115 * 100MB 1 50MB
2116 * 1GB 3 250MB
2117 * 10GB 10 0.9GB
2118 * 100GB 31 3GB
2119 * 1TB 101 10GB
2120 * 10TB 320 32GB
56e49d21 2121 */
f8d1a311 2122static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2fc44624 2123 struct scan_control *sc, bool trace)
56e49d21 2124{
fd538803 2125 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2a2e4885
JW
2126 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2127 enum lru_list inactive_lru = file * LRU_FILE;
2128 unsigned long inactive, active;
2129 unsigned long inactive_ratio;
2130 unsigned long refaults;
59dc76b0 2131 unsigned long gb;
e3790144 2132
59dc76b0
RR
2133 /*
2134 * If we don't have swap space, anonymous page deactivation
2135 * is pointless.
2136 */
2137 if (!file && !total_swap_pages)
2138 return false;
56e49d21 2139
fd538803
MH
2140 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2141 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
f8d1a311 2142
2a2e4885
JW
2143 /*
2144 * When refaults are being observed, it means a new workingset
2145 * is being established. Disable active list protection to get
2146 * rid of the stale workingset quickly.
2147 */
aeceeab3 2148 refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE);
2fc44624 2149 if (file && lruvec->refaults != refaults) {
2a2e4885
JW
2150 inactive_ratio = 0;
2151 } else {
2152 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2153 if (gb)
2154 inactive_ratio = int_sqrt(10 * gb);
2155 else
2156 inactive_ratio = 1;
2157 }
59dc76b0 2158
2fc44624 2159 if (trace)
2a2e4885
JW
2160 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2161 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2162 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2163 inactive_ratio, file);
fd538803 2164
59dc76b0 2165 return inactive * inactive_ratio < active;
b39415b2
RR
2166}
2167
4f98a2fe 2168static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
aeceeab3 2169 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 2170{
b39415b2 2171 if (is_active_lru(lru)) {
aeceeab3 2172 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
1a93be0e 2173 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
2174 return 0;
2175 }
2176
1a93be0e 2177 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
2178}
2179
9a265114
JW
2180enum scan_balance {
2181 SCAN_EQUAL,
2182 SCAN_FRACT,
2183 SCAN_ANON,
2184 SCAN_FILE,
2185};
2186
4f98a2fe
RR
2187/*
2188 * Determine how aggressively the anon and file LRU lists should be
2189 * scanned. The relative value of each set of LRU lists is determined
2190 * by looking at the fraction of the pages scanned we did rotate back
2191 * onto the active list instead of evict.
2192 *
be7bd59d
WL
2193 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2194 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2195 */
33377678 2196static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
2197 struct scan_control *sc, unsigned long *nr,
2198 unsigned long *lru_pages)
4f98a2fe 2199{
33377678 2200 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
2201 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2202 u64 fraction[2];
2203 u64 denominator = 0; /* gcc */
599d0c95 2204 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4f98a2fe 2205 unsigned long anon_prio, file_prio;
9a265114 2206 enum scan_balance scan_balance;
0bf1457f 2207 unsigned long anon, file;
4f98a2fe 2208 unsigned long ap, fp;
4111304d 2209 enum lru_list lru;
76a33fc3
SL
2210
2211 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2212 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2213 scan_balance = SCAN_FILE;
76a33fc3
SL
2214 goto out;
2215 }
4f98a2fe 2216
10316b31
JW
2217 /*
2218 * Global reclaim will swap to prevent OOM even with no
2219 * swappiness, but memcg users want to use this knob to
2220 * disable swapping for individual groups completely when
2221 * using the memory controller's swap limit feature would be
2222 * too expensive.
2223 */
02695175 2224 if (!global_reclaim(sc) && !swappiness) {
9a265114 2225 scan_balance = SCAN_FILE;
10316b31
JW
2226 goto out;
2227 }
2228
2229 /*
2230 * Do not apply any pressure balancing cleverness when the
2231 * system is close to OOM, scan both anon and file equally
2232 * (unless the swappiness setting disagrees with swapping).
2233 */
02695175 2234 if (!sc->priority && swappiness) {
9a265114 2235 scan_balance = SCAN_EQUAL;
10316b31
JW
2236 goto out;
2237 }
2238
62376251
JW
2239 /*
2240 * Prevent the reclaimer from falling into the cache trap: as
2241 * cache pages start out inactive, every cache fault will tip
2242 * the scan balance towards the file LRU. And as the file LRU
2243 * shrinks, so does the window for rotation from references.
2244 * This means we have a runaway feedback loop where a tiny
2245 * thrashing file LRU becomes infinitely more attractive than
2246 * anon pages. Try to detect this based on file LRU size.
2247 */
2248 if (global_reclaim(sc)) {
599d0c95
MG
2249 unsigned long pgdatfile;
2250 unsigned long pgdatfree;
2251 int z;
2252 unsigned long total_high_wmark = 0;
2ab051e1 2253
599d0c95
MG
2254 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2255 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2256 node_page_state(pgdat, NR_INACTIVE_FILE);
2257
2258 for (z = 0; z < MAX_NR_ZONES; z++) {
2259 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2260 if (!managed_zone(zone))
599d0c95
MG
2261 continue;
2262
2263 total_high_wmark += high_wmark_pages(zone);
2264 }
62376251 2265
599d0c95 2266 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
06226226
DR
2267 /*
2268 * Force SCAN_ANON if there are enough inactive
2269 * anonymous pages on the LRU in eligible zones.
2270 * Otherwise, the small LRU gets thrashed.
2271 */
aeceeab3 2272 if (!inactive_list_is_low(lruvec, false, sc, false) &&
06226226
DR
2273 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2274 >> sc->priority) {
2275 scan_balance = SCAN_ANON;
2276 goto out;
2277 }
62376251
JW
2278 }
2279 }
2280
7c5bd705 2281 /*
316bda0e
VD
2282 * If there is enough inactive page cache, i.e. if the size of the
2283 * inactive list is greater than that of the active list *and* the
2284 * inactive list actually has some pages to scan on this priority, we
2285 * do not reclaim anything from the anonymous working set right now.
2286 * Without the second condition we could end up never scanning an
2287 * lruvec even if it has plenty of old anonymous pages unless the
2288 * system is under heavy pressure.
7c5bd705 2289 */
aeceeab3 2290 if (!inactive_list_is_low(lruvec, true, sc, false) &&
71ab6cfe 2291 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
9a265114 2292 scan_balance = SCAN_FILE;
7c5bd705
JW
2293 goto out;
2294 }
2295
9a265114
JW
2296 scan_balance = SCAN_FRACT;
2297
58c37f6e
KM
2298 /*
2299 * With swappiness at 100, anonymous and file have the same priority.
2300 * This scanning priority is essentially the inverse of IO cost.
2301 */
02695175 2302 anon_prio = swappiness;
75b00af7 2303 file_prio = 200 - anon_prio;
58c37f6e 2304
4f98a2fe
RR
2305 /*
2306 * OK, so we have swap space and a fair amount of page cache
2307 * pages. We use the recently rotated / recently scanned
2308 * ratios to determine how valuable each cache is.
2309 *
2310 * Because workloads change over time (and to avoid overflow)
2311 * we keep these statistics as a floating average, which ends
2312 * up weighing recent references more than old ones.
2313 *
2314 * anon in [0], file in [1]
2315 */
2ab051e1 2316
fd538803
MH
2317 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2318 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2319 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2320 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2ab051e1 2321
599d0c95 2322 spin_lock_irq(&pgdat->lru_lock);
6e901571 2323 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2324 reclaim_stat->recent_scanned[0] /= 2;
2325 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2326 }
2327
6e901571 2328 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2329 reclaim_stat->recent_scanned[1] /= 2;
2330 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2331 }
2332
4f98a2fe 2333 /*
00d8089c
RR
2334 * The amount of pressure on anon vs file pages is inversely
2335 * proportional to the fraction of recently scanned pages on
2336 * each list that were recently referenced and in active use.
4f98a2fe 2337 */
fe35004f 2338 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2339 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2340
fe35004f 2341 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2342 fp /= reclaim_stat->recent_rotated[1] + 1;
599d0c95 2343 spin_unlock_irq(&pgdat->lru_lock);
4f98a2fe 2344
76a33fc3
SL
2345 fraction[0] = ap;
2346 fraction[1] = fp;
2347 denominator = ap + fp + 1;
2348out:
688035f7
JW
2349 *lru_pages = 0;
2350 for_each_evictable_lru(lru) {
2351 int file = is_file_lru(lru);
2352 unsigned long size;
2353 unsigned long scan;
6b4f7799 2354
688035f7
JW
2355 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2356 scan = size >> sc->priority;
2357 /*
2358 * If the cgroup's already been deleted, make sure to
2359 * scrape out the remaining cache.
2360 */
2361 if (!scan && !mem_cgroup_online(memcg))
2362 scan = min(size, SWAP_CLUSTER_MAX);
6b4f7799 2363
688035f7
JW
2364 switch (scan_balance) {
2365 case SCAN_EQUAL:
2366 /* Scan lists relative to size */
2367 break;
2368 case SCAN_FRACT:
9a265114 2369 /*
688035f7
JW
2370 * Scan types proportional to swappiness and
2371 * their relative recent reclaim efficiency.
e3880aaa
GS
2372 * Make sure we don't miss the last page on
2373 * the offlined memory cgroups because of a
2374 * round-off error.
9a265114 2375 */
e3880aaa
GS
2376 scan = mem_cgroup_online(memcg) ?
2377 div64_u64(scan * fraction[file], denominator) :
2378 DIV64_U64_ROUND_UP(scan * fraction[file],
36f93a2e 2379 denominator);
688035f7
JW
2380 break;
2381 case SCAN_FILE:
2382 case SCAN_ANON:
2383 /* Scan one type exclusively */
2384 if ((scan_balance == SCAN_FILE) != file) {
2385 size = 0;
2386 scan = 0;
2387 }
2388 break;
2389 default:
2390 /* Look ma, no brain */
2391 BUG();
9a265114 2392 }
688035f7
JW
2393
2394 *lru_pages += size;
2395 nr[lru] = scan;
76a33fc3 2396 }
6e08a369 2397}
4f98a2fe 2398
9b4f98cd 2399/*
a9dd0a83 2400 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
9b4f98cd 2401 */
a9dd0a83 2402static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
33377678 2403 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2404{
ef8f2327 2405 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
9b4f98cd 2406 unsigned long nr[NR_LRU_LISTS];
e82e0561 2407 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2408 unsigned long nr_to_scan;
2409 enum lru_list lru;
2410 unsigned long nr_reclaimed = 0;
2411 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2412 struct blk_plug plug;
1a501907 2413 bool scan_adjusted;
9b4f98cd 2414
33377678 2415 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2416
e82e0561
MG
2417 /* Record the original scan target for proportional adjustments later */
2418 memcpy(targets, nr, sizeof(nr));
2419
1a501907
MG
2420 /*
2421 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2422 * event that can occur when there is little memory pressure e.g.
2423 * multiple streaming readers/writers. Hence, we do not abort scanning
2424 * when the requested number of pages are reclaimed when scanning at
2425 * DEF_PRIORITY on the assumption that the fact we are direct
2426 * reclaiming implies that kswapd is not keeping up and it is best to
2427 * do a batch of work at once. For memcg reclaim one check is made to
2428 * abort proportional reclaim if either the file or anon lru has already
2429 * dropped to zero at the first pass.
2430 */
2431 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2432 sc->priority == DEF_PRIORITY);
2433
9b4f98cd
JW
2434 blk_start_plug(&plug);
2435 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2436 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2437 unsigned long nr_anon, nr_file, percentage;
2438 unsigned long nr_scanned;
2439
9b4f98cd
JW
2440 for_each_evictable_lru(lru) {
2441 if (nr[lru]) {
2442 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2443 nr[lru] -= nr_to_scan;
2444
2445 nr_reclaimed += shrink_list(lru, nr_to_scan,
aeceeab3 2446 lruvec, sc);
9b4f98cd
JW
2447 }
2448 }
e82e0561 2449
bd041733
MH
2450 cond_resched();
2451
e82e0561
MG
2452 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2453 continue;
2454
e82e0561
MG
2455 /*
2456 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2457 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2458 * proportionally what was requested by get_scan_count(). We
2459 * stop reclaiming one LRU and reduce the amount scanning
2460 * proportional to the original scan target.
2461 */
2462 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2463 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2464
1a501907
MG
2465 /*
2466 * It's just vindictive to attack the larger once the smaller
2467 * has gone to zero. And given the way we stop scanning the
2468 * smaller below, this makes sure that we only make one nudge
2469 * towards proportionality once we've got nr_to_reclaim.
2470 */
2471 if (!nr_file || !nr_anon)
2472 break;
2473
e82e0561
MG
2474 if (nr_file > nr_anon) {
2475 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2476 targets[LRU_ACTIVE_ANON] + 1;
2477 lru = LRU_BASE;
2478 percentage = nr_anon * 100 / scan_target;
2479 } else {
2480 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2481 targets[LRU_ACTIVE_FILE] + 1;
2482 lru = LRU_FILE;
2483 percentage = nr_file * 100 / scan_target;
2484 }
2485
2486 /* Stop scanning the smaller of the LRU */
2487 nr[lru] = 0;
2488 nr[lru + LRU_ACTIVE] = 0;
2489
2490 /*
2491 * Recalculate the other LRU scan count based on its original
2492 * scan target and the percentage scanning already complete
2493 */
2494 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2495 nr_scanned = targets[lru] - nr[lru];
2496 nr[lru] = targets[lru] * (100 - percentage) / 100;
2497 nr[lru] -= min(nr[lru], nr_scanned);
2498
2499 lru += LRU_ACTIVE;
2500 nr_scanned = targets[lru] - nr[lru];
2501 nr[lru] = targets[lru] * (100 - percentage) / 100;
2502 nr[lru] -= min(nr[lru], nr_scanned);
2503
2504 scan_adjusted = true;
9b4f98cd
JW
2505 }
2506 blk_finish_plug(&plug);
2507 sc->nr_reclaimed += nr_reclaimed;
2508
2509 /*
2510 * Even if we did not try to evict anon pages at all, we want to
2511 * rebalance the anon lru active/inactive ratio.
2512 */
aeceeab3 2513 if (inactive_list_is_low(lruvec, false, sc, true))
9b4f98cd
JW
2514 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2515 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2516}
2517
23b9da55 2518/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2519static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2520{
d84da3f9 2521 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2522 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2523 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2524 return true;
2525
2526 return false;
2527}
2528
3e7d3449 2529/*
23b9da55
MG
2530 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2531 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2532 * true if more pages should be reclaimed such that when the page allocator
2533 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2534 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2535 */
a9dd0a83 2536static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449
MG
2537 unsigned long nr_reclaimed,
2538 unsigned long nr_scanned,
2539 struct scan_control *sc)
2540{
2541 unsigned long pages_for_compaction;
2542 unsigned long inactive_lru_pages;
a9dd0a83 2543 int z;
3e7d3449
MG
2544
2545 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2546 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2547 return false;
2548
2876592f 2549 /* Consider stopping depending on scan and reclaim activity */
dcda9b04 2550 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2876592f 2551 /*
dcda9b04 2552 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2876592f
MG
2553 * full LRU list has been scanned and we are still failing
2554 * to reclaim pages. This full LRU scan is potentially
dcda9b04 2555 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2876592f
MG
2556 */
2557 if (!nr_reclaimed && !nr_scanned)
2558 return false;
2559 } else {
2560 /*
dcda9b04 2561 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2876592f
MG
2562 * fail without consequence, stop if we failed to reclaim
2563 * any pages from the last SWAP_CLUSTER_MAX number of
2564 * pages that were scanned. This will return to the
2565 * caller faster at the risk reclaim/compaction and
2566 * the resulting allocation attempt fails
2567 */
2568 if (!nr_reclaimed)
2569 return false;
2570 }
3e7d3449
MG
2571
2572 /*
2573 * If we have not reclaimed enough pages for compaction and the
2574 * inactive lists are large enough, continue reclaiming
2575 */
9861a62c 2576 pages_for_compaction = compact_gap(sc->order);
a9dd0a83 2577 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
ec8acf20 2578 if (get_nr_swap_pages() > 0)
a9dd0a83 2579 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3e7d3449
MG
2580 if (sc->nr_reclaimed < pages_for_compaction &&
2581 inactive_lru_pages > pages_for_compaction)
2582 return true;
2583
2584 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2585 for (z = 0; z <= sc->reclaim_idx; z++) {
2586 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2587 if (!managed_zone(zone))
a9dd0a83
MG
2588 continue;
2589
2590 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2591 case COMPACT_SUCCESS:
a9dd0a83
MG
2592 case COMPACT_CONTINUE:
2593 return false;
2594 default:
2595 /* check next zone */
2596 ;
2597 }
3e7d3449 2598 }
a9dd0a83 2599 return true;
3e7d3449
MG
2600}
2601
970a39a3 2602static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2603{
cb731d6c 2604 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2605 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2606 bool reclaimable = false;
1da177e4 2607
9b4f98cd
JW
2608 do {
2609 struct mem_cgroup *root = sc->target_mem_cgroup;
2610 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 2611 .pgdat = pgdat,
9b4f98cd
JW
2612 .priority = sc->priority,
2613 };
a9dd0a83 2614 unsigned long node_lru_pages = 0;
694fbc0f 2615 struct mem_cgroup *memcg;
3e7d3449 2616
9b4f98cd
JW
2617 nr_reclaimed = sc->nr_reclaimed;
2618 nr_scanned = sc->nr_scanned;
1da177e4 2619
694fbc0f
AM
2620 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2621 do {
6b4f7799 2622 unsigned long lru_pages;
8e8ae645 2623 unsigned long reclaimed;
cb731d6c 2624 unsigned long scanned;
5660048c 2625
241994ed 2626 if (mem_cgroup_low(root, memcg)) {
d6622f63
YX
2627 if (!sc->memcg_low_reclaim) {
2628 sc->memcg_low_skipped = 1;
241994ed 2629 continue;
d6622f63 2630 }
31176c78 2631 mem_cgroup_event(memcg, MEMCG_LOW);
241994ed
JW
2632 }
2633
8e8ae645 2634 reclaimed = sc->nr_reclaimed;
cb731d6c 2635 scanned = sc->nr_scanned;
f9be23d6 2636
a9dd0a83
MG
2637 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2638 node_lru_pages += lru_pages;
f16015fb 2639
b5afba29 2640 if (memcg)
a9dd0a83 2641 shrink_slab(sc->gfp_mask, pgdat->node_id,
cb731d6c
VD
2642 memcg, sc->nr_scanned - scanned,
2643 lru_pages);
2644
8e8ae645
JW
2645 /* Record the group's reclaim efficiency */
2646 vmpressure(sc->gfp_mask, memcg, false,
2647 sc->nr_scanned - scanned,
2648 sc->nr_reclaimed - reclaimed);
2649
9b4f98cd 2650 /*
a394cb8e
MH
2651 * Direct reclaim and kswapd have to scan all memory
2652 * cgroups to fulfill the overall scan target for the
a9dd0a83 2653 * node.
a394cb8e
MH
2654 *
2655 * Limit reclaim, on the other hand, only cares about
2656 * nr_to_reclaim pages to be reclaimed and it will
2657 * retry with decreasing priority if one round over the
2658 * whole hierarchy is not sufficient.
9b4f98cd 2659 */
a394cb8e
MH
2660 if (!global_reclaim(sc) &&
2661 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2662 mem_cgroup_iter_break(root, memcg);
2663 break;
2664 }
241994ed 2665 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2666
6b4f7799
JW
2667 /*
2668 * Shrink the slab caches in the same proportion that
2669 * the eligible LRU pages were scanned.
2670 */
b2e18757 2671 if (global_reclaim(sc))
a9dd0a83 2672 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
cb731d6c 2673 sc->nr_scanned - nr_scanned,
a9dd0a83 2674 node_lru_pages);
cb731d6c
VD
2675
2676 if (reclaim_state) {
2677 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2678 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2679 }
2680
8e8ae645
JW
2681 /* Record the subtree's reclaim efficiency */
2682 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2683 sc->nr_scanned - nr_scanned,
2684 sc->nr_reclaimed - nr_reclaimed);
2685
2344d7e4
JW
2686 if (sc->nr_reclaimed - nr_reclaimed)
2687 reclaimable = true;
2688
a9dd0a83 2689 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
9b4f98cd 2690 sc->nr_scanned - nr_scanned, sc));
2344d7e4 2691
c73322d0
JW
2692 /*
2693 * Kswapd gives up on balancing particular nodes after too
2694 * many failures to reclaim anything from them and goes to
2695 * sleep. On reclaim progress, reset the failure counter. A
2696 * successful direct reclaim run will revive a dormant kswapd.
2697 */
2698 if (reclaimable)
2699 pgdat->kswapd_failures = 0;
2700
2344d7e4 2701 return reclaimable;
f16015fb
JW
2702}
2703
53853e2d 2704/*
fdd4c614
VB
2705 * Returns true if compaction should go ahead for a costly-order request, or
2706 * the allocation would already succeed without compaction. Return false if we
2707 * should reclaim first.
53853e2d 2708 */
4f588331 2709static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2710{
31483b6a 2711 unsigned long watermark;
fdd4c614 2712 enum compact_result suitable;
fe4b1b24 2713
fdd4c614
VB
2714 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2715 if (suitable == COMPACT_SUCCESS)
2716 /* Allocation should succeed already. Don't reclaim. */
2717 return true;
2718 if (suitable == COMPACT_SKIPPED)
2719 /* Compaction cannot yet proceed. Do reclaim. */
2720 return false;
fe4b1b24 2721
53853e2d 2722 /*
fdd4c614
VB
2723 * Compaction is already possible, but it takes time to run and there
2724 * are potentially other callers using the pages just freed. So proceed
2725 * with reclaim to make a buffer of free pages available to give
2726 * compaction a reasonable chance of completing and allocating the page.
2727 * Note that we won't actually reclaim the whole buffer in one attempt
2728 * as the target watermark in should_continue_reclaim() is lower. But if
2729 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 2730 */
fdd4c614 2731 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 2732
fdd4c614 2733 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2734}
2735
1da177e4
LT
2736/*
2737 * This is the direct reclaim path, for page-allocating processes. We only
2738 * try to reclaim pages from zones which will satisfy the caller's allocation
2739 * request.
2740 *
1da177e4
LT
2741 * If a zone is deemed to be full of pinned pages then just give it a light
2742 * scan then give up on it.
2743 */
0a0337e0 2744static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2745{
dd1a239f 2746 struct zoneref *z;
54a6eb5c 2747 struct zone *zone;
0608f43d
AM
2748 unsigned long nr_soft_reclaimed;
2749 unsigned long nr_soft_scanned;
619d0d76 2750 gfp_t orig_mask;
79dafcdc 2751 pg_data_t *last_pgdat = NULL;
1cfb419b 2752
cc715d99
MG
2753 /*
2754 * If the number of buffer_heads in the machine exceeds the maximum
2755 * allowed level, force direct reclaim to scan the highmem zone as
2756 * highmem pages could be pinning lowmem pages storing buffer_heads
2757 */
619d0d76 2758 orig_mask = sc->gfp_mask;
b2e18757 2759 if (buffer_heads_over_limit) {
cc715d99 2760 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2761 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2762 }
cc715d99 2763
d4debc66 2764 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2765 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
2766 /*
2767 * Take care memory controller reclaiming has small influence
2768 * to global LRU.
2769 */
89b5fae5 2770 if (global_reclaim(sc)) {
344736f2
VD
2771 if (!cpuset_zone_allowed(zone,
2772 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2773 continue;
65ec02cb 2774
0b06496a
JW
2775 /*
2776 * If we already have plenty of memory free for
2777 * compaction in this zone, don't free any more.
2778 * Even though compaction is invoked for any
2779 * non-zero order, only frequent costly order
2780 * reclamation is disruptive enough to become a
2781 * noticeable problem, like transparent huge
2782 * page allocations.
2783 */
2784 if (IS_ENABLED(CONFIG_COMPACTION) &&
2785 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 2786 compaction_ready(zone, sc)) {
0b06496a
JW
2787 sc->compaction_ready = true;
2788 continue;
e0887c19 2789 }
0b06496a 2790
79dafcdc
MG
2791 /*
2792 * Shrink each node in the zonelist once. If the
2793 * zonelist is ordered by zone (not the default) then a
2794 * node may be shrunk multiple times but in that case
2795 * the user prefers lower zones being preserved.
2796 */
2797 if (zone->zone_pgdat == last_pgdat)
2798 continue;
2799
0608f43d
AM
2800 /*
2801 * This steals pages from memory cgroups over softlimit
2802 * and returns the number of reclaimed pages and
2803 * scanned pages. This works for global memory pressure
2804 * and balancing, not for a memcg's limit.
2805 */
2806 nr_soft_scanned = 0;
ef8f2327 2807 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
2808 sc->order, sc->gfp_mask,
2809 &nr_soft_scanned);
2810 sc->nr_reclaimed += nr_soft_reclaimed;
2811 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2812 /* need some check for avoid more shrink_zone() */
1cfb419b 2813 }
408d8544 2814
79dafcdc
MG
2815 /* See comment about same check for global reclaim above */
2816 if (zone->zone_pgdat == last_pgdat)
2817 continue;
2818 last_pgdat = zone->zone_pgdat;
970a39a3 2819 shrink_node(zone->zone_pgdat, sc);
1da177e4 2820 }
e0c23279 2821
619d0d76
WY
2822 /*
2823 * Restore to original mask to avoid the impact on the caller if we
2824 * promoted it to __GFP_HIGHMEM.
2825 */
2826 sc->gfp_mask = orig_mask;
1da177e4 2827}
4f98a2fe 2828
2a2e4885
JW
2829static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2830{
2831 struct mem_cgroup *memcg;
2832
2833 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2834 do {
2835 unsigned long refaults;
2836 struct lruvec *lruvec;
2837
2a2e4885 2838 lruvec = mem_cgroup_lruvec(pgdat, memcg);
aeceeab3 2839 refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE);
2a2e4885
JW
2840 lruvec->refaults = refaults;
2841 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2842}
2843
1da177e4
LT
2844/*
2845 * This is the main entry point to direct page reclaim.
2846 *
2847 * If a full scan of the inactive list fails to free enough memory then we
2848 * are "out of memory" and something needs to be killed.
2849 *
2850 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2851 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2852 * caller can't do much about. We kick the writeback threads and take explicit
2853 * naps in the hope that some of these pages can be written. But if the
2854 * allocating task holds filesystem locks which prevent writeout this might not
2855 * work, and the allocation attempt will fail.
a41f24ea
NA
2856 *
2857 * returns: 0, if no pages reclaimed
2858 * else, the number of pages reclaimed
1da177e4 2859 */
dac1d27b 2860static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2861 struct scan_control *sc)
1da177e4 2862{
241994ed 2863 int initial_priority = sc->priority;
2a2e4885
JW
2864 pg_data_t *last_pgdat;
2865 struct zoneref *z;
2866 struct zone *zone;
241994ed 2867retry:
873b4771
KK
2868 delayacct_freepages_start();
2869
89b5fae5 2870 if (global_reclaim(sc))
7cc30fcf 2871 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 2872
9e3b2f8c 2873 do {
70ddf637
AV
2874 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2875 sc->priority);
66e1707b 2876 sc->nr_scanned = 0;
0a0337e0 2877 shrink_zones(zonelist, sc);
c6a8a8c5 2878
bb21c7ce 2879 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2880 break;
2881
2882 if (sc->compaction_ready)
2883 break;
1da177e4 2884
0e50ce3b
MK
2885 /*
2886 * If we're getting trouble reclaiming, start doing
2887 * writepage even in laptop mode.
2888 */
2889 if (sc->priority < DEF_PRIORITY - 2)
2890 sc->may_writepage = 1;
0b06496a 2891 } while (--sc->priority >= 0);
bb21c7ce 2892
2a2e4885
JW
2893 last_pgdat = NULL;
2894 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2895 sc->nodemask) {
2896 if (zone->zone_pgdat == last_pgdat)
2897 continue;
2898 last_pgdat = zone->zone_pgdat;
2899 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2900 }
2901
873b4771
KK
2902 delayacct_freepages_end();
2903
bb21c7ce
KM
2904 if (sc->nr_reclaimed)
2905 return sc->nr_reclaimed;
2906
0cee34fd 2907 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2908 if (sc->compaction_ready)
7335084d
MG
2909 return 1;
2910
241994ed 2911 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 2912 if (sc->memcg_low_skipped) {
241994ed 2913 sc->priority = initial_priority;
d6622f63
YX
2914 sc->memcg_low_reclaim = 1;
2915 sc->memcg_low_skipped = 0;
241994ed
JW
2916 goto retry;
2917 }
2918
bb21c7ce 2919 return 0;
1da177e4
LT
2920}
2921
c73322d0 2922static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
2923{
2924 struct zone *zone;
2925 unsigned long pfmemalloc_reserve = 0;
2926 unsigned long free_pages = 0;
2927 int i;
2928 bool wmark_ok;
2929
c73322d0
JW
2930 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2931 return true;
2932
5515061d
MG
2933 for (i = 0; i <= ZONE_NORMAL; i++) {
2934 zone = &pgdat->node_zones[i];
d450abd8
JW
2935 if (!managed_zone(zone))
2936 continue;
2937
2938 if (!zone_reclaimable_pages(zone))
675becce
MG
2939 continue;
2940
5515061d
MG
2941 pfmemalloc_reserve += min_wmark_pages(zone);
2942 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2943 }
2944
675becce
MG
2945 /* If there are no reserves (unexpected config) then do not throttle */
2946 if (!pfmemalloc_reserve)
2947 return true;
2948
5515061d
MG
2949 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2950
2951 /* kswapd must be awake if processes are being throttled */
2952 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
38087d9b 2953 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
5515061d
MG
2954 (enum zone_type)ZONE_NORMAL);
2955 wake_up_interruptible(&pgdat->kswapd_wait);
2956 }
2957
2958 return wmark_ok;
2959}
2960
2961/*
2962 * Throttle direct reclaimers if backing storage is backed by the network
2963 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2964 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2965 * when the low watermark is reached.
2966 *
2967 * Returns true if a fatal signal was delivered during throttling. If this
2968 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2969 */
50694c28 2970static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2971 nodemask_t *nodemask)
2972{
675becce 2973 struct zoneref *z;
5515061d 2974 struct zone *zone;
675becce 2975 pg_data_t *pgdat = NULL;
5515061d
MG
2976
2977 /*
2978 * Kernel threads should not be throttled as they may be indirectly
2979 * responsible for cleaning pages necessary for reclaim to make forward
2980 * progress. kjournald for example may enter direct reclaim while
2981 * committing a transaction where throttling it could forcing other
2982 * processes to block on log_wait_commit().
2983 */
2984 if (current->flags & PF_KTHREAD)
50694c28
MG
2985 goto out;
2986
2987 /*
2988 * If a fatal signal is pending, this process should not throttle.
2989 * It should return quickly so it can exit and free its memory
2990 */
2991 if (fatal_signal_pending(current))
2992 goto out;
5515061d 2993
675becce
MG
2994 /*
2995 * Check if the pfmemalloc reserves are ok by finding the first node
2996 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2997 * GFP_KERNEL will be required for allocating network buffers when
2998 * swapping over the network so ZONE_HIGHMEM is unusable.
2999 *
3000 * Throttling is based on the first usable node and throttled processes
3001 * wait on a queue until kswapd makes progress and wakes them. There
3002 * is an affinity then between processes waking up and where reclaim
3003 * progress has been made assuming the process wakes on the same node.
3004 * More importantly, processes running on remote nodes will not compete
3005 * for remote pfmemalloc reserves and processes on different nodes
3006 * should make reasonable progress.
3007 */
3008 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3009 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3010 if (zone_idx(zone) > ZONE_NORMAL)
3011 continue;
3012
3013 /* Throttle based on the first usable node */
3014 pgdat = zone->zone_pgdat;
c73322d0 3015 if (allow_direct_reclaim(pgdat))
675becce
MG
3016 goto out;
3017 break;
3018 }
3019
3020 /* If no zone was usable by the allocation flags then do not throttle */
3021 if (!pgdat)
50694c28 3022 goto out;
5515061d 3023
68243e76
MG
3024 /* Account for the throttling */
3025 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3026
5515061d
MG
3027 /*
3028 * If the caller cannot enter the filesystem, it's possible that it
3029 * is due to the caller holding an FS lock or performing a journal
3030 * transaction in the case of a filesystem like ext[3|4]. In this case,
3031 * it is not safe to block on pfmemalloc_wait as kswapd could be
3032 * blocked waiting on the same lock. Instead, throttle for up to a
3033 * second before continuing.
3034 */
3035 if (!(gfp_mask & __GFP_FS)) {
3036 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3037 allow_direct_reclaim(pgdat), HZ);
50694c28
MG
3038
3039 goto check_pending;
5515061d
MG
3040 }
3041
3042 /* Throttle until kswapd wakes the process */
3043 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
c73322d0 3044 allow_direct_reclaim(pgdat));
50694c28
MG
3045
3046check_pending:
3047 if (fatal_signal_pending(current))
3048 return true;
3049
3050out:
3051 return false;
5515061d
MG
3052}
3053
dac1d27b 3054unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3055 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3056{
33906bc5 3057 unsigned long nr_reclaimed;
66e1707b 3058 struct scan_control sc = {
ee814fe2 3059 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3060 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3061 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3062 .order = order,
3063 .nodemask = nodemask,
3064 .priority = DEF_PRIORITY,
66e1707b 3065 .may_writepage = !laptop_mode,
a6dc60f8 3066 .may_unmap = 1,
2e2e4259 3067 .may_swap = 1,
66e1707b
BS
3068 };
3069
5515061d 3070 /*
50694c28
MG
3071 * Do not enter reclaim if fatal signal was delivered while throttled.
3072 * 1 is returned so that the page allocator does not OOM kill at this
3073 * point.
5515061d 3074 */
f2f43e56 3075 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3076 return 1;
3077
33906bc5
MG
3078 trace_mm_vmscan_direct_reclaim_begin(order,
3079 sc.may_writepage,
f2f43e56 3080 sc.gfp_mask,
e5146b12 3081 sc.reclaim_idx);
33906bc5 3082
3115cd91 3083 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3084
3085 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3086
3087 return nr_reclaimed;
66e1707b
BS
3088}
3089
c255a458 3090#ifdef CONFIG_MEMCG
66e1707b 3091
a9dd0a83 3092unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3093 gfp_t gfp_mask, bool noswap,
ef8f2327 3094 pg_data_t *pgdat,
0ae5e89c 3095 unsigned long *nr_scanned)
4e416953
BS
3096{
3097 struct scan_control sc = {
b8f5c566 3098 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3099 .target_mem_cgroup = memcg,
4e416953
BS
3100 .may_writepage = !laptop_mode,
3101 .may_unmap = 1,
b2e18757 3102 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3103 .may_swap = !noswap,
4e416953 3104 };
6b4f7799 3105 unsigned long lru_pages;
0ae5e89c 3106
4e416953
BS
3107 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3108 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3109
9e3b2f8c 3110 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e 3111 sc.may_writepage,
e5146b12
MG
3112 sc.gfp_mask,
3113 sc.reclaim_idx);
bdce6d9e 3114
4e416953
BS
3115 /*
3116 * NOTE: Although we can get the priority field, using it
3117 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3118 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3119 * will pick up pages from other mem cgroup's as well. We hack
3120 * the priority and make it zero.
3121 */
ef8f2327 3122 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
bdce6d9e
KM
3123
3124 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3125
0ae5e89c 3126 *nr_scanned = sc.nr_scanned;
4e416953
BS
3127 return sc.nr_reclaimed;
3128}
3129
72835c86 3130unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3131 unsigned long nr_pages,
a7885eb8 3132 gfp_t gfp_mask,
b70a2a21 3133 bool may_swap)
66e1707b 3134{
4e416953 3135 struct zonelist *zonelist;
bdce6d9e 3136 unsigned long nr_reclaimed;
889976db 3137 int nid;
499118e9 3138 unsigned int noreclaim_flag;
66e1707b 3139 struct scan_control sc = {
b70a2a21 3140 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3141 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3142 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3143 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3144 .target_mem_cgroup = memcg,
3145 .priority = DEF_PRIORITY,
3146 .may_writepage = !laptop_mode,
3147 .may_unmap = 1,
b70a2a21 3148 .may_swap = may_swap,
a09ed5e0 3149 };
66e1707b 3150
889976db
YH
3151 /*
3152 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3153 * take care of from where we get pages. So the node where we start the
3154 * scan does not need to be the current node.
3155 */
72835c86 3156 nid = mem_cgroup_select_victim_node(memcg);
889976db 3157
c9634cf0 3158 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
bdce6d9e
KM
3159
3160 trace_mm_vmscan_memcg_reclaim_begin(0,
3161 sc.may_writepage,
e5146b12
MG
3162 sc.gfp_mask,
3163 sc.reclaim_idx);
bdce6d9e 3164
499118e9 3165 noreclaim_flag = memalloc_noreclaim_save();
3115cd91 3166 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
499118e9 3167 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e
KM
3168
3169 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3170
3171 return nr_reclaimed;
66e1707b
BS
3172}
3173#endif
3174
1d82de61 3175static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3176 struct scan_control *sc)
f16015fb 3177{
b95a2f2d 3178 struct mem_cgroup *memcg;
f16015fb 3179
b95a2f2d
JW
3180 if (!total_swap_pages)
3181 return;
3182
3183 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3184 do {
ef8f2327 3185 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
b95a2f2d 3186
aeceeab3 3187 if (inactive_list_is_low(lruvec, false, sc, true))
1a93be0e 3188 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 3189 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3190
3191 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3192 } while (memcg);
f16015fb
JW
3193}
3194
e716f2eb
MG
3195/*
3196 * Returns true if there is an eligible zone balanced for the request order
3197 * and classzone_idx
3198 */
3199static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
60cefed4 3200{
e716f2eb
MG
3201 int i;
3202 unsigned long mark = -1;
3203 struct zone *zone;
60cefed4 3204
e716f2eb
MG
3205 for (i = 0; i <= classzone_idx; i++) {
3206 zone = pgdat->node_zones + i;
6256c6b4 3207
e716f2eb
MG
3208 if (!managed_zone(zone))
3209 continue;
3210
3211 mark = high_wmark_pages(zone);
3212 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3213 return true;
3214 }
3215
3216 /*
3217 * If a node has no populated zone within classzone_idx, it does not
3218 * need balancing by definition. This can happen if a zone-restricted
3219 * allocation tries to wake a remote kswapd.
3220 */
3221 if (mark == -1)
3222 return true;
3223
3224 return false;
60cefed4
JW
3225}
3226
631b6e08
MG
3227/* Clear pgdat state for congested, dirty or under writeback. */
3228static void clear_pgdat_congested(pg_data_t *pgdat)
3229{
3230 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3231 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3232 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3233}
3234
5515061d
MG
3235/*
3236 * Prepare kswapd for sleeping. This verifies that there are no processes
3237 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3238 *
3239 * Returns true if kswapd is ready to sleep
3240 */
d9f21d42 3241static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f50de2d3 3242{
5515061d 3243 /*
9e5e3661 3244 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3245 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3246 * race between when kswapd checks the watermarks and a process gets
3247 * throttled. There is also a potential race if processes get
3248 * throttled, kswapd wakes, a large process exits thereby balancing the
3249 * zones, which causes kswapd to exit balance_pgdat() before reaching
3250 * the wake up checks. If kswapd is going to sleep, no process should
3251 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3252 * the wake up is premature, processes will wake kswapd and get
3253 * throttled again. The difference from wake ups in balance_pgdat() is
3254 * that here we are under prepare_to_wait().
5515061d 3255 */
9e5e3661
VB
3256 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3257 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3258
c73322d0
JW
3259 /* Hopeless node, leave it to direct reclaim */
3260 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3261 return true;
3262
e716f2eb
MG
3263 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3264 clear_pgdat_congested(pgdat);
3265 return true;
1d82de61
MG
3266 }
3267
333b0a45 3268 return false;
f50de2d3
MG
3269}
3270
75485363 3271/*
1d82de61
MG
3272 * kswapd shrinks a node of pages that are at or below the highest usable
3273 * zone that is currently unbalanced.
b8e83b94
MG
3274 *
3275 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3276 * reclaim or if the lack of progress was due to pages under writeback.
3277 * This is used to determine if the scanning priority needs to be raised.
75485363 3278 */
1d82de61 3279static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3280 struct scan_control *sc)
75485363 3281{
1d82de61
MG
3282 struct zone *zone;
3283 int z;
75485363 3284
1d82de61
MG
3285 /* Reclaim a number of pages proportional to the number of zones */
3286 sc->nr_to_reclaim = 0;
970a39a3 3287 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3288 zone = pgdat->node_zones + z;
6aa303de 3289 if (!managed_zone(zone))
1d82de61 3290 continue;
7c954f6d 3291
1d82de61
MG
3292 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3293 }
7c954f6d
MG
3294
3295 /*
1d82de61
MG
3296 * Historically care was taken to put equal pressure on all zones but
3297 * now pressure is applied based on node LRU order.
7c954f6d 3298 */
970a39a3 3299 shrink_node(pgdat, sc);
283aba9f 3300
7c954f6d 3301 /*
1d82de61
MG
3302 * Fragmentation may mean that the system cannot be rebalanced for
3303 * high-order allocations. If twice the allocation size has been
3304 * reclaimed then recheck watermarks only at order-0 to prevent
3305 * excessive reclaim. Assume that a process requested a high-order
3306 * can direct reclaim/compact.
7c954f6d 3307 */
9861a62c 3308 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3309 sc->order = 0;
7c954f6d 3310
b8e83b94 3311 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3312}
3313
1da177e4 3314/*
1d82de61
MG
3315 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3316 * that are eligible for use by the caller until at least one zone is
3317 * balanced.
1da177e4 3318 *
1d82de61 3319 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3320 *
3321 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3322 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1d82de61
MG
3323 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3324 * or lower is eligible for reclaim until at least one usable zone is
3325 * balanced.
1da177e4 3326 */
accf6242 3327static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3328{
1da177e4 3329 int i;
0608f43d
AM
3330 unsigned long nr_soft_reclaimed;
3331 unsigned long nr_soft_scanned;
1d82de61 3332 struct zone *zone;
179e9639
AM
3333 struct scan_control sc = {
3334 .gfp_mask = GFP_KERNEL,
ee814fe2 3335 .order = order,
b8e83b94 3336 .priority = DEF_PRIORITY,
ee814fe2 3337 .may_writepage = !laptop_mode,
a6dc60f8 3338 .may_unmap = 1,
2e2e4259 3339 .may_swap = 1,
179e9639 3340 };
f8891e5e 3341 count_vm_event(PAGEOUTRUN);
1da177e4 3342
9e3b2f8c 3343 do {
c73322d0 3344 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94
MG
3345 bool raise_priority = true;
3346
84c7a777 3347 sc.reclaim_idx = classzone_idx;
1da177e4 3348
86c79f6b 3349 /*
84c7a777
MG
3350 * If the number of buffer_heads exceeds the maximum allowed
3351 * then consider reclaiming from all zones. This has a dual
3352 * purpose -- on 64-bit systems it is expected that
3353 * buffer_heads are stripped during active rotation. On 32-bit
3354 * systems, highmem pages can pin lowmem memory and shrinking
3355 * buffers can relieve lowmem pressure. Reclaim may still not
3356 * go ahead if all eligible zones for the original allocation
3357 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3358 */
3359 if (buffer_heads_over_limit) {
3360 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3361 zone = pgdat->node_zones + i;
6aa303de 3362 if (!managed_zone(zone))
86c79f6b 3363 continue;
cc715d99 3364
970a39a3 3365 sc.reclaim_idx = i;
e1dbeda6 3366 break;
1da177e4 3367 }
1da177e4 3368 }
dafcb73e 3369
86c79f6b 3370 /*
e716f2eb
MG
3371 * Only reclaim if there are no eligible zones. Note that
3372 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3373 * have adjusted it.
86c79f6b 3374 */
e716f2eb
MG
3375 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3376 goto out;
e1dbeda6 3377
1d82de61
MG
3378 /*
3379 * Do some background aging of the anon list, to give
3380 * pages a chance to be referenced before reclaiming. All
3381 * pages are rotated regardless of classzone as this is
3382 * about consistent aging.
3383 */
ef8f2327 3384 age_active_anon(pgdat, &sc);
1d82de61 3385
b7ea3c41
MG
3386 /*
3387 * If we're getting trouble reclaiming, start doing writepage
3388 * even in laptop mode.
3389 */
047d72c3 3390 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
3391 sc.may_writepage = 1;
3392
1d82de61
MG
3393 /* Call soft limit reclaim before calling shrink_node. */
3394 sc.nr_scanned = 0;
3395 nr_soft_scanned = 0;
ef8f2327 3396 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3397 sc.gfp_mask, &nr_soft_scanned);
3398 sc.nr_reclaimed += nr_soft_reclaimed;
3399
1da177e4 3400 /*
1d82de61
MG
3401 * There should be no need to raise the scanning priority if
3402 * enough pages are already being scanned that that high
3403 * watermark would be met at 100% efficiency.
1da177e4 3404 */
970a39a3 3405 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3406 raise_priority = false;
5515061d
MG
3407
3408 /*
3409 * If the low watermark is met there is no need for processes
3410 * to be throttled on pfmemalloc_wait as they should not be
3411 * able to safely make forward progress. Wake them
3412 */
3413 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 3414 allow_direct_reclaim(pgdat))
cfc51155 3415 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3416
b8e83b94
MG
3417 /* Check if kswapd should be suspending */
3418 if (try_to_freeze() || kthread_should_stop())
3419 break;
8357376d 3420
73ce02e9 3421 /*
b8e83b94
MG
3422 * Raise priority if scanning rate is too low or there was no
3423 * progress in reclaiming pages
73ce02e9 3424 */
c73322d0
JW
3425 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3426 if (raise_priority || !nr_reclaimed)
b8e83b94 3427 sc.priority--;
1d82de61 3428 } while (sc.priority >= 1);
1da177e4 3429
c73322d0
JW
3430 if (!sc.nr_reclaimed)
3431 pgdat->kswapd_failures++;
3432
b8e83b94 3433out:
2a2e4885 3434 snapshot_refaults(NULL, pgdat);
0abdee2b 3435 /*
1d82de61
MG
3436 * Return the order kswapd stopped reclaiming at as
3437 * prepare_kswapd_sleep() takes it into account. If another caller
3438 * entered the allocator slow path while kswapd was awake, order will
3439 * remain at the higher level.
0abdee2b 3440 */
1d82de61 3441 return sc.order;
1da177e4
LT
3442}
3443
e716f2eb 3444/*
584810d3
SB
3445 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3446 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3447 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3448 * after previous reclaim attempt (node is still unbalanced). In that case
3449 * return the zone index of the previous kswapd reclaim cycle.
e716f2eb
MG
3450 */
3451static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
584810d3 3452 enum zone_type prev_classzone_idx)
e716f2eb
MG
3453{
3454 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
584810d3
SB
3455 return prev_classzone_idx;
3456 return pgdat->kswapd_classzone_idx;
e716f2eb
MG
3457}
3458
38087d9b
MG
3459static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3460 unsigned int classzone_idx)
f0bc0a60
KM
3461{
3462 long remaining = 0;
3463 DEFINE_WAIT(wait);
3464
3465 if (freezing(current) || kthread_should_stop())
3466 return;
3467
3468 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3469
333b0a45
SG
3470 /*
3471 * Try to sleep for a short interval. Note that kcompactd will only be
3472 * woken if it is possible to sleep for a short interval. This is
3473 * deliberate on the assumption that if reclaim cannot keep an
3474 * eligible zone balanced that it's also unlikely that compaction will
3475 * succeed.
3476 */
d9f21d42 3477 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
fd901c95
VB
3478 /*
3479 * Compaction records what page blocks it recently failed to
3480 * isolate pages from and skips them in the future scanning.
3481 * When kswapd is going to sleep, it is reasonable to assume
3482 * that pages and compaction may succeed so reset the cache.
3483 */
3484 reset_isolation_suitable(pgdat);
3485
3486 /*
3487 * We have freed the memory, now we should compact it to make
3488 * allocation of the requested order possible.
3489 */
38087d9b 3490 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
fd901c95 3491
f0bc0a60 3492 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3493
3494 /*
3495 * If woken prematurely then reset kswapd_classzone_idx and
3496 * order. The values will either be from a wakeup request or
3497 * the previous request that slept prematurely.
3498 */
3499 if (remaining) {
e716f2eb 3500 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
38087d9b
MG
3501 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3502 }
3503
f0bc0a60
KM
3504 finish_wait(&pgdat->kswapd_wait, &wait);
3505 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3506 }
3507
3508 /*
3509 * After a short sleep, check if it was a premature sleep. If not, then
3510 * go fully to sleep until explicitly woken up.
3511 */
d9f21d42
MG
3512 if (!remaining &&
3513 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
f0bc0a60
KM
3514 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3515
3516 /*
3517 * vmstat counters are not perfectly accurate and the estimated
3518 * value for counters such as NR_FREE_PAGES can deviate from the
3519 * true value by nr_online_cpus * threshold. To avoid the zone
3520 * watermarks being breached while under pressure, we reduce the
3521 * per-cpu vmstat threshold while kswapd is awake and restore
3522 * them before going back to sleep.
3523 */
3524 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3525
3526 if (!kthread_should_stop())
3527 schedule();
3528
f0bc0a60
KM
3529 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3530 } else {
3531 if (remaining)
3532 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3533 else
3534 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3535 }
3536 finish_wait(&pgdat->kswapd_wait, &wait);
3537}
3538
1da177e4
LT
3539/*
3540 * The background pageout daemon, started as a kernel thread
4f98a2fe 3541 * from the init process.
1da177e4
LT
3542 *
3543 * This basically trickles out pages so that we have _some_
3544 * free memory available even if there is no other activity
3545 * that frees anything up. This is needed for things like routing
3546 * etc, where we otherwise might have all activity going on in
3547 * asynchronous contexts that cannot page things out.
3548 *
3549 * If there are applications that are active memory-allocators
3550 * (most normal use), this basically shouldn't matter.
3551 */
3552static int kswapd(void *p)
3553{
e716f2eb
MG
3554 unsigned int alloc_order, reclaim_order;
3555 unsigned int classzone_idx = MAX_NR_ZONES - 1;
1da177e4
LT
3556 pg_data_t *pgdat = (pg_data_t*)p;
3557 struct task_struct *tsk = current;
f0bc0a60 3558
1da177e4
LT
3559 struct reclaim_state reclaim_state = {
3560 .reclaimed_slab = 0,
3561 };
a70f7302 3562 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3563
174596a0 3564 if (!cpumask_empty(cpumask))
c5f59f08 3565 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3566 current->reclaim_state = &reclaim_state;
3567
3568 /*
3569 * Tell the memory management that we're a "memory allocator",
3570 * and that if we need more memory we should get access to it
3571 * regardless (see "__alloc_pages()"). "kswapd" should
3572 * never get caught in the normal page freeing logic.
3573 *
3574 * (Kswapd normally doesn't need memory anyway, but sometimes
3575 * you need a small amount of memory in order to be able to
3576 * page out something else, and this flag essentially protects
3577 * us from recursively trying to free more memory as we're
3578 * trying to free the first piece of memory in the first place).
3579 */
930d9152 3580 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3581 set_freezable();
1da177e4 3582
e716f2eb
MG
3583 pgdat->kswapd_order = 0;
3584 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3585 for ( ; ; ) {
6f6313d4 3586 bool ret;
3e1d1d28 3587
e716f2eb
MG
3588 alloc_order = reclaim_order = pgdat->kswapd_order;
3589 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3590
38087d9b
MG
3591kswapd_try_sleep:
3592 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3593 classzone_idx);
215ddd66 3594
38087d9b
MG
3595 /* Read the new order and classzone_idx */
3596 alloc_order = reclaim_order = pgdat->kswapd_order;
584810d3 3597 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
38087d9b 3598 pgdat->kswapd_order = 0;
e716f2eb 3599 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3600
8fe23e05
DR
3601 ret = try_to_freeze();
3602 if (kthread_should_stop())
3603 break;
3604
3605 /*
3606 * We can speed up thawing tasks if we don't call balance_pgdat
3607 * after returning from the refrigerator
3608 */
38087d9b
MG
3609 if (ret)
3610 continue;
3611
3612 /*
3613 * Reclaim begins at the requested order but if a high-order
3614 * reclaim fails then kswapd falls back to reclaiming for
3615 * order-0. If that happens, kswapd will consider sleeping
3616 * for the order it finished reclaiming at (reclaim_order)
3617 * but kcompactd is woken to compact for the original
3618 * request (alloc_order).
3619 */
e5146b12
MG
3620 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3621 alloc_order);
d92a8cfc 3622 fs_reclaim_acquire(GFP_KERNEL);
38087d9b 3623 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
d92a8cfc 3624 fs_reclaim_release(GFP_KERNEL);
38087d9b
MG
3625 if (reclaim_order < alloc_order)
3626 goto kswapd_try_sleep;
1da177e4 3627 }
b0a8cc58 3628
71abdc15 3629 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3630 current->reclaim_state = NULL;
71abdc15 3631
1da177e4
LT
3632 return 0;
3633}
3634
3635/*
3636 * A zone is low on free memory, so wake its kswapd task to service it.
3637 */
99504748 3638void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3639{
3640 pg_data_t *pgdat;
3641
6aa303de 3642 if (!managed_zone(zone))
1da177e4
LT
3643 return;
3644
344736f2 3645 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
1da177e4 3646 return;
88f5acf8 3647 pgdat = zone->zone_pgdat;
584810d3
SB
3648
3649 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3650 pgdat->kswapd_classzone_idx = classzone_idx;
3651 else
3652 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3653 classzone_idx);
38087d9b 3654 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
8d0986e2 3655 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3656 return;
e1a55637 3657
c73322d0
JW
3658 /* Hopeless node, leave it to direct reclaim */
3659 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3660 return;
3661
e716f2eb
MG
3662 if (pgdat_balanced(pgdat, order, classzone_idx))
3663 return;
88f5acf8 3664
e716f2eb 3665 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
8d0986e2 3666 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3667}
3668
c6f37f12 3669#ifdef CONFIG_HIBERNATION
1da177e4 3670/*
7b51755c 3671 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3672 * freed pages.
3673 *
3674 * Rather than trying to age LRUs the aim is to preserve the overall
3675 * LRU order by reclaiming preferentially
3676 * inactive > active > active referenced > active mapped
1da177e4 3677 */
7b51755c 3678unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3679{
d6277db4 3680 struct reclaim_state reclaim_state;
d6277db4 3681 struct scan_control sc = {
ee814fe2 3682 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3683 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 3684 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 3685 .priority = DEF_PRIORITY,
d6277db4 3686 .may_writepage = 1,
ee814fe2
JW
3687 .may_unmap = 1,
3688 .may_swap = 1,
7b51755c 3689 .hibernation_mode = 1,
1da177e4 3690 };
a09ed5e0 3691 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3692 struct task_struct *p = current;
3693 unsigned long nr_reclaimed;
499118e9 3694 unsigned int noreclaim_flag;
1da177e4 3695
499118e9 3696 noreclaim_flag = memalloc_noreclaim_save();
d92a8cfc 3697 fs_reclaim_acquire(sc.gfp_mask);
7b51755c
KM
3698 reclaim_state.reclaimed_slab = 0;
3699 p->reclaim_state = &reclaim_state;
d6277db4 3700
3115cd91 3701 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3702
7b51755c 3703 p->reclaim_state = NULL;
d92a8cfc 3704 fs_reclaim_release(sc.gfp_mask);
499118e9 3705 memalloc_noreclaim_restore(noreclaim_flag);
d6277db4 3706
7b51755c 3707 return nr_reclaimed;
1da177e4 3708}
c6f37f12 3709#endif /* CONFIG_HIBERNATION */
1da177e4 3710
1da177e4
LT
3711/* It's optimal to keep kswapds on the same CPUs as their memory, but
3712 not required for correctness. So if the last cpu in a node goes
3713 away, we get changed to run anywhere: as the first one comes back,
3714 restore their cpu bindings. */
517bbed9 3715static int kswapd_cpu_online(unsigned int cpu)
1da177e4 3716{
58c0a4a7 3717 int nid;
1da177e4 3718
517bbed9
SAS
3719 for_each_node_state(nid, N_MEMORY) {
3720 pg_data_t *pgdat = NODE_DATA(nid);
3721 const struct cpumask *mask;
a70f7302 3722
517bbed9 3723 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3724
517bbed9
SAS
3725 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3726 /* One of our CPUs online: restore mask */
3727 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4 3728 }
517bbed9 3729 return 0;
1da177e4 3730}
1da177e4 3731
3218ae14
YG
3732/*
3733 * This kswapd start function will be called by init and node-hot-add.
3734 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3735 */
3736int kswapd_run(int nid)
3737{
3738 pg_data_t *pgdat = NODE_DATA(nid);
3739 int ret = 0;
3740
3741 if (pgdat->kswapd)
3742 return 0;
3743
3744 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3745 if (IS_ERR(pgdat->kswapd)) {
3746 /* failure at boot is fatal */
c6202adf 3747 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9
GS
3748 pr_err("Failed to start kswapd on node %d\n", nid);
3749 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3750 pgdat->kswapd = NULL;
3218ae14
YG
3751 }
3752 return ret;
3753}
3754
8fe23e05 3755/*
d8adde17 3756 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3757 * hold mem_hotplug_begin/end().
8fe23e05
DR
3758 */
3759void kswapd_stop(int nid)
3760{
3761 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3762
d8adde17 3763 if (kswapd) {
8fe23e05 3764 kthread_stop(kswapd);
d8adde17
JL
3765 NODE_DATA(nid)->kswapd = NULL;
3766 }
8fe23e05
DR
3767}
3768
1da177e4
LT
3769static int __init kswapd_init(void)
3770{
517bbed9 3771 int nid, ret;
69e05944 3772
1da177e4 3773 swap_setup();
48fb2e24 3774 for_each_node_state(nid, N_MEMORY)
3218ae14 3775 kswapd_run(nid);
517bbed9
SAS
3776 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3777 "mm/vmscan:online", kswapd_cpu_online,
3778 NULL);
3779 WARN_ON(ret < 0);
1da177e4
LT
3780 return 0;
3781}
3782
3783module_init(kswapd_init)
9eeff239
CL
3784
3785#ifdef CONFIG_NUMA
3786/*
a5f5f91d 3787 * Node reclaim mode
9eeff239 3788 *
a5f5f91d 3789 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 3790 * the watermarks.
9eeff239 3791 */
a5f5f91d 3792int node_reclaim_mode __read_mostly;
9eeff239 3793
1b2ffb78 3794#define RECLAIM_OFF 0
7d03431c 3795#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 3796#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 3797#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 3798
a92f7126 3799/*
a5f5f91d 3800 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
3801 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3802 * a zone.
3803 */
a5f5f91d 3804#define NODE_RECLAIM_PRIORITY 4
a92f7126 3805
9614634f 3806/*
a5f5f91d 3807 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
3808 * occur.
3809 */
3810int sysctl_min_unmapped_ratio = 1;
3811
0ff38490
CL
3812/*
3813 * If the number of slab pages in a zone grows beyond this percentage then
3814 * slab reclaim needs to occur.
3815 */
3816int sysctl_min_slab_ratio = 5;
3817
11fb9989 3818static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 3819{
11fb9989
MG
3820 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3821 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3822 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
3823
3824 /*
3825 * It's possible for there to be more file mapped pages than
3826 * accounted for by the pages on the file LRU lists because
3827 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3828 */
3829 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3830}
3831
3832/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 3833static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 3834{
d031a157
AM
3835 unsigned long nr_pagecache_reclaimable;
3836 unsigned long delta = 0;
90afa5de
MG
3837
3838 /*
95bbc0c7 3839 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 3840 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 3841 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
3842 * a better estimate
3843 */
a5f5f91d
MG
3844 if (node_reclaim_mode & RECLAIM_UNMAP)
3845 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 3846 else
a5f5f91d 3847 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
3848
3849 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
3850 if (!(node_reclaim_mode & RECLAIM_WRITE))
3851 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
3852
3853 /* Watch for any possible underflows due to delta */
3854 if (unlikely(delta > nr_pagecache_reclaimable))
3855 delta = nr_pagecache_reclaimable;
3856
3857 return nr_pagecache_reclaimable - delta;
3858}
3859
9eeff239 3860/*
a5f5f91d 3861 * Try to free up some pages from this node through reclaim.
9eeff239 3862 */
a5f5f91d 3863static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 3864{
7fb2d46d 3865 /* Minimum pages needed in order to stay on node */
69e05944 3866 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3867 struct task_struct *p = current;
3868 struct reclaim_state reclaim_state;
499118e9 3869 unsigned int noreclaim_flag;
179e9639 3870 struct scan_control sc = {
62b726c1 3871 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 3872 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 3873 .order = order,
a5f5f91d
MG
3874 .priority = NODE_RECLAIM_PRIORITY,
3875 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3876 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 3877 .may_swap = 1,
f2f43e56 3878 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 3879 };
9eeff239 3880
9eeff239 3881 cond_resched();
d4f7796e 3882 /*
95bbc0c7 3883 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 3884 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 3885 * and RECLAIM_UNMAP.
d4f7796e 3886 */
499118e9
VB
3887 noreclaim_flag = memalloc_noreclaim_save();
3888 p->flags |= PF_SWAPWRITE;
d92a8cfc 3889 fs_reclaim_acquire(sc.gfp_mask);
9eeff239
CL
3890 reclaim_state.reclaimed_slab = 0;
3891 p->reclaim_state = &reclaim_state;
c84db23c 3892
a5f5f91d 3893 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490
CL
3894 /*
3895 * Free memory by calling shrink zone with increasing
3896 * priorities until we have enough memory freed.
3897 */
0ff38490 3898 do {
970a39a3 3899 shrink_node(pgdat, &sc);
9e3b2f8c 3900 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3901 }
c84db23c 3902
9eeff239 3903 p->reclaim_state = NULL;
d92a8cfc 3904 fs_reclaim_release(gfp_mask);
499118e9
VB
3905 current->flags &= ~PF_SWAPWRITE;
3906 memalloc_noreclaim_restore(noreclaim_flag);
a79311c1 3907 return sc.nr_reclaimed >= nr_pages;
9eeff239 3908}
179e9639 3909
a5f5f91d 3910int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 3911{
d773ed6b 3912 int ret;
179e9639
AM
3913
3914 /*
a5f5f91d 3915 * Node reclaim reclaims unmapped file backed pages and
0ff38490 3916 * slab pages if we are over the defined limits.
34aa1330 3917 *
9614634f
CL
3918 * A small portion of unmapped file backed pages is needed for
3919 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
3920 * thrown out if the node is overallocated. So we do not reclaim
3921 * if less than a specified percentage of the node is used by
9614634f 3922 * unmapped file backed pages.
179e9639 3923 */
a5f5f91d 3924 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
385386cf 3925 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
a5f5f91d 3926 return NODE_RECLAIM_FULL;
179e9639
AM
3927
3928 /*
d773ed6b 3929 * Do not scan if the allocation should not be delayed.
179e9639 3930 */
d0164adc 3931 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 3932 return NODE_RECLAIM_NOSCAN;
179e9639
AM
3933
3934 /*
a5f5f91d 3935 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
3936 * have associated processors. This will favor the local processor
3937 * over remote processors and spread off node memory allocations
3938 * as wide as possible.
3939 */
a5f5f91d
MG
3940 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3941 return NODE_RECLAIM_NOSCAN;
d773ed6b 3942
a5f5f91d
MG
3943 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3944 return NODE_RECLAIM_NOSCAN;
fa5e084e 3945
a5f5f91d
MG
3946 ret = __node_reclaim(pgdat, gfp_mask, order);
3947 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 3948
24cf7251
MG
3949 if (!ret)
3950 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3951
d773ed6b 3952 return ret;
179e9639 3953}
9eeff239 3954#endif
894bc310 3955
894bc310
LS
3956/*
3957 * page_evictable - test whether a page is evictable
3958 * @page: the page to test
894bc310
LS
3959 *
3960 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3961 * lists vs unevictable list.
894bc310
LS
3962 *
3963 * Reasons page might not be evictable:
ba9ddf49 3964 * (1) page's mapping marked unevictable
b291f000 3965 * (2) page is part of an mlocked VMA
ba9ddf49 3966 *
894bc310 3967 */
39b5f29a 3968int page_evictable(struct page *page)
894bc310 3969{
8d700626
HY
3970 int ret;
3971
3972 /* Prevent address_space of inode and swap cache from being freed */
3973 rcu_read_lock();
3974 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3975 rcu_read_unlock();
3976 return ret;
894bc310 3977}
89e004ea 3978
85046579 3979#ifdef CONFIG_SHMEM
89e004ea 3980/**
24513264
HD
3981 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3982 * @pages: array of pages to check
3983 * @nr_pages: number of pages to check
89e004ea 3984 *
24513264 3985 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3986 *
3987 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3988 */
24513264 3989void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3990{
925b7673 3991 struct lruvec *lruvec;
785b99fe 3992 struct pglist_data *pgdat = NULL;
24513264
HD
3993 int pgscanned = 0;
3994 int pgrescued = 0;
3995 int i;
89e004ea 3996
24513264
HD
3997 for (i = 0; i < nr_pages; i++) {
3998 struct page *page = pages[i];
785b99fe 3999 struct pglist_data *pagepgdat = page_pgdat(page);
89e004ea 4000
24513264 4001 pgscanned++;
785b99fe
MG
4002 if (pagepgdat != pgdat) {
4003 if (pgdat)
4004 spin_unlock_irq(&pgdat->lru_lock);
4005 pgdat = pagepgdat;
4006 spin_lock_irq(&pgdat->lru_lock);
24513264 4007 }
785b99fe 4008 lruvec = mem_cgroup_page_lruvec(page, pgdat);
89e004ea 4009
24513264
HD
4010 if (!PageLRU(page) || !PageUnevictable(page))
4011 continue;
89e004ea 4012
39b5f29a 4013 if (page_evictable(page)) {
24513264
HD
4014 enum lru_list lru = page_lru_base_type(page);
4015
309381fe 4016 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 4017 ClearPageUnevictable(page);
fa9add64
HD
4018 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4019 add_page_to_lru_list(page, lruvec, lru);
24513264 4020 pgrescued++;
89e004ea 4021 }
24513264 4022 }
89e004ea 4023
785b99fe 4024 if (pgdat) {
24513264
HD
4025 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4026 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
785b99fe 4027 spin_unlock_irq(&pgdat->lru_lock);
89e004ea 4028 }
89e004ea 4029}
85046579 4030#endif /* CONFIG_SHMEM */