]> git.ipfire.org Git - people/ms/linux.git/blame - block/bio.c
blkcg: kill unused field nr_undestroyed_grps
[people/ms/linux.git] / block / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
1da177e4 31
55782138 32#include <trace/events/block.h>
0bfc2455 33
392ddc32
JA
34/*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38#define BIO_INLINE_VECS 4
39
1da177e4
LT
40/*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
1da177e4 45#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
ed996a52 46static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
1da177e4
LT
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48};
49#undef BV
50
1da177e4
LT
51/*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
51d654e1 55struct bio_set *fs_bio_set;
3f86a82a 56EXPORT_SYMBOL(fs_bio_set);
1da177e4 57
bb799ca0
JA
58/*
59 * Our slab pool management
60 */
61struct bio_slab {
62 struct kmem_cache *slab;
63 unsigned int slab_ref;
64 unsigned int slab_size;
65 char name[8];
66};
67static DEFINE_MUTEX(bio_slab_lock);
68static struct bio_slab *bio_slabs;
69static unsigned int bio_slab_nr, bio_slab_max;
70
71static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72{
73 unsigned int sz = sizeof(struct bio) + extra_size;
74 struct kmem_cache *slab = NULL;
389d7b26 75 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 76 unsigned int new_bio_slab_max;
bb799ca0
JA
77 unsigned int i, entry = -1;
78
79 mutex_lock(&bio_slab_lock);
80
81 i = 0;
82 while (i < bio_slab_nr) {
f06f135d 83 bslab = &bio_slabs[i];
bb799ca0
JA
84
85 if (!bslab->slab && entry == -1)
86 entry = i;
87 else if (bslab->slab_size == sz) {
88 slab = bslab->slab;
89 bslab->slab_ref++;
90 break;
91 }
92 i++;
93 }
94
95 if (slab)
96 goto out_unlock;
97
98 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 99 new_bio_slab_max = bio_slab_max << 1;
389d7b26 100 new_bio_slabs = krealloc(bio_slabs,
386bc35a 101 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
102 GFP_KERNEL);
103 if (!new_bio_slabs)
bb799ca0 104 goto out_unlock;
386bc35a 105 bio_slab_max = new_bio_slab_max;
389d7b26 106 bio_slabs = new_bio_slabs;
bb799ca0
JA
107 }
108 if (entry == -1)
109 entry = bio_slab_nr++;
110
111 bslab = &bio_slabs[entry];
112
113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
116 if (!slab)
117 goto out_unlock;
118
bb799ca0
JA
119 bslab->slab = slab;
120 bslab->slab_ref = 1;
121 bslab->slab_size = sz;
122out_unlock:
123 mutex_unlock(&bio_slab_lock);
124 return slab;
125}
126
127static void bio_put_slab(struct bio_set *bs)
128{
129 struct bio_slab *bslab = NULL;
130 unsigned int i;
131
132 mutex_lock(&bio_slab_lock);
133
134 for (i = 0; i < bio_slab_nr; i++) {
135 if (bs->bio_slab == bio_slabs[i].slab) {
136 bslab = &bio_slabs[i];
137 break;
138 }
139 }
140
141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 goto out;
143
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
149 kmem_cache_destroy(bslab->slab);
150 bslab->slab = NULL;
151
152out:
153 mutex_unlock(&bio_slab_lock);
154}
155
7ba1ba12
MP
156unsigned int bvec_nr_vecs(unsigned short idx)
157{
158 return bvec_slabs[idx].nr_vecs;
159}
160
9f060e22 161void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 162{
ed996a52
CH
163 if (!idx)
164 return;
165 idx--;
166
167 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 168
ed996a52 169 if (idx == BVEC_POOL_MAX) {
9f060e22 170 mempool_free(bv, pool);
ed996a52 171 } else {
bb799ca0
JA
172 struct biovec_slab *bvs = bvec_slabs + idx;
173
174 kmem_cache_free(bvs->slab, bv);
175 }
176}
177
9f060e22
KO
178struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
179 mempool_t *pool)
1da177e4
LT
180{
181 struct bio_vec *bvl;
1da177e4 182
7ff9345f
JA
183 /*
184 * see comment near bvec_array define!
185 */
186 switch (nr) {
187 case 1:
188 *idx = 0;
189 break;
190 case 2 ... 4:
191 *idx = 1;
192 break;
193 case 5 ... 16:
194 *idx = 2;
195 break;
196 case 17 ... 64:
197 *idx = 3;
198 break;
199 case 65 ... 128:
200 *idx = 4;
201 break;
202 case 129 ... BIO_MAX_PAGES:
203 *idx = 5;
204 break;
205 default:
206 return NULL;
207 }
208
209 /*
210 * idx now points to the pool we want to allocate from. only the
211 * 1-vec entry pool is mempool backed.
212 */
ed996a52 213 if (*idx == BVEC_POOL_MAX) {
7ff9345f 214fallback:
9f060e22 215 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
216 } else {
217 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 218 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 219
0a0d96b0 220 /*
7ff9345f
JA
221 * Make this allocation restricted and don't dump info on
222 * allocation failures, since we'll fallback to the mempool
223 * in case of failure.
0a0d96b0 224 */
7ff9345f 225 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 226
0a0d96b0 227 /*
d0164adc 228 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 229 * is set, retry with the 1-entry mempool
0a0d96b0 230 */
7ff9345f 231 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 232 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 233 *idx = BVEC_POOL_MAX;
7ff9345f
JA
234 goto fallback;
235 }
236 }
237
ed996a52 238 (*idx)++;
1da177e4
LT
239 return bvl;
240}
241
4254bba1 242static void __bio_free(struct bio *bio)
1da177e4 243{
4254bba1 244 bio_disassociate_task(bio);
1da177e4 245
7ba1ba12 246 if (bio_integrity(bio))
1e2a410f 247 bio_integrity_free(bio);
4254bba1 248}
7ba1ba12 249
4254bba1
KO
250static void bio_free(struct bio *bio)
251{
252 struct bio_set *bs = bio->bi_pool;
253 void *p;
254
255 __bio_free(bio);
256
257 if (bs) {
ed996a52 258 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
259
260 /*
261 * If we have front padding, adjust the bio pointer before freeing
262 */
263 p = bio;
bb799ca0
JA
264 p -= bs->front_pad;
265
4254bba1
KO
266 mempool_free(p, bs->bio_pool);
267 } else {
268 /* Bio was allocated by bio_kmalloc() */
269 kfree(bio);
270 }
3676347a
PO
271}
272
858119e1 273void bio_init(struct bio *bio)
1da177e4 274{
2b94de55 275 memset(bio, 0, sizeof(*bio));
c4cf5261 276 atomic_set(&bio->__bi_remaining, 1);
dac56212 277 atomic_set(&bio->__bi_cnt, 1);
1da177e4 278}
a112a71d 279EXPORT_SYMBOL(bio_init);
1da177e4 280
f44b48c7
KO
281/**
282 * bio_reset - reinitialize a bio
283 * @bio: bio to reset
284 *
285 * Description:
286 * After calling bio_reset(), @bio will be in the same state as a freshly
287 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
288 * preserved are the ones that are initialized by bio_alloc_bioset(). See
289 * comment in struct bio.
290 */
291void bio_reset(struct bio *bio)
292{
293 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
294
4254bba1 295 __bio_free(bio);
f44b48c7
KO
296
297 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 298 bio->bi_flags = flags;
c4cf5261 299 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
300}
301EXPORT_SYMBOL(bio_reset);
302
38f8baae 303static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 304{
4246a0b6
CH
305 struct bio *parent = bio->bi_private;
306
af3e3a52
CH
307 if (!parent->bi_error)
308 parent->bi_error = bio->bi_error;
196d38bc 309 bio_put(bio);
38f8baae
CH
310 return parent;
311}
312
313static void bio_chain_endio(struct bio *bio)
314{
315 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
316}
317
318/**
319 * bio_chain - chain bio completions
1051a902
RD
320 * @bio: the target bio
321 * @parent: the @bio's parent bio
196d38bc
KO
322 *
323 * The caller won't have a bi_end_io called when @bio completes - instead,
324 * @parent's bi_end_io won't be called until both @parent and @bio have
325 * completed; the chained bio will also be freed when it completes.
326 *
327 * The caller must not set bi_private or bi_end_io in @bio.
328 */
329void bio_chain(struct bio *bio, struct bio *parent)
330{
331 BUG_ON(bio->bi_private || bio->bi_end_io);
332
333 bio->bi_private = parent;
334 bio->bi_end_io = bio_chain_endio;
c4cf5261 335 bio_inc_remaining(parent);
196d38bc
KO
336}
337EXPORT_SYMBOL(bio_chain);
338
df2cb6da
KO
339static void bio_alloc_rescue(struct work_struct *work)
340{
341 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
342 struct bio *bio;
343
344 while (1) {
345 spin_lock(&bs->rescue_lock);
346 bio = bio_list_pop(&bs->rescue_list);
347 spin_unlock(&bs->rescue_lock);
348
349 if (!bio)
350 break;
351
352 generic_make_request(bio);
353 }
354}
355
356static void punt_bios_to_rescuer(struct bio_set *bs)
357{
358 struct bio_list punt, nopunt;
359 struct bio *bio;
360
361 /*
362 * In order to guarantee forward progress we must punt only bios that
363 * were allocated from this bio_set; otherwise, if there was a bio on
364 * there for a stacking driver higher up in the stack, processing it
365 * could require allocating bios from this bio_set, and doing that from
366 * our own rescuer would be bad.
367 *
368 * Since bio lists are singly linked, pop them all instead of trying to
369 * remove from the middle of the list:
370 */
371
372 bio_list_init(&punt);
373 bio_list_init(&nopunt);
374
375 while ((bio = bio_list_pop(current->bio_list)))
376 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
377
378 *current->bio_list = nopunt;
379
380 spin_lock(&bs->rescue_lock);
381 bio_list_merge(&bs->rescue_list, &punt);
382 spin_unlock(&bs->rescue_lock);
383
384 queue_work(bs->rescue_workqueue, &bs->rescue_work);
385}
386
1da177e4
LT
387/**
388 * bio_alloc_bioset - allocate a bio for I/O
389 * @gfp_mask: the GFP_ mask given to the slab allocator
390 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 391 * @bs: the bio_set to allocate from.
1da177e4
LT
392 *
393 * Description:
3f86a82a
KO
394 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
395 * backed by the @bs's mempool.
396 *
d0164adc
MG
397 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
398 * always be able to allocate a bio. This is due to the mempool guarantees.
399 * To make this work, callers must never allocate more than 1 bio at a time
400 * from this pool. Callers that need to allocate more than 1 bio must always
401 * submit the previously allocated bio for IO before attempting to allocate
402 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 403 *
df2cb6da
KO
404 * Note that when running under generic_make_request() (i.e. any block
405 * driver), bios are not submitted until after you return - see the code in
406 * generic_make_request() that converts recursion into iteration, to prevent
407 * stack overflows.
408 *
409 * This would normally mean allocating multiple bios under
410 * generic_make_request() would be susceptible to deadlocks, but we have
411 * deadlock avoidance code that resubmits any blocked bios from a rescuer
412 * thread.
413 *
414 * However, we do not guarantee forward progress for allocations from other
415 * mempools. Doing multiple allocations from the same mempool under
416 * generic_make_request() should be avoided - instead, use bio_set's front_pad
417 * for per bio allocations.
418 *
3f86a82a
KO
419 * RETURNS:
420 * Pointer to new bio on success, NULL on failure.
421 */
dd0fc66f 422struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4 423{
df2cb6da 424 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
425 unsigned front_pad;
426 unsigned inline_vecs;
34053979 427 struct bio_vec *bvl = NULL;
451a9ebf
TH
428 struct bio *bio;
429 void *p;
430
3f86a82a
KO
431 if (!bs) {
432 if (nr_iovecs > UIO_MAXIOV)
433 return NULL;
434
435 p = kmalloc(sizeof(struct bio) +
436 nr_iovecs * sizeof(struct bio_vec),
437 gfp_mask);
438 front_pad = 0;
439 inline_vecs = nr_iovecs;
440 } else {
d8f429e1
JN
441 /* should not use nobvec bioset for nr_iovecs > 0 */
442 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
443 return NULL;
df2cb6da
KO
444 /*
445 * generic_make_request() converts recursion to iteration; this
446 * means if we're running beneath it, any bios we allocate and
447 * submit will not be submitted (and thus freed) until after we
448 * return.
449 *
450 * This exposes us to a potential deadlock if we allocate
451 * multiple bios from the same bio_set() while running
452 * underneath generic_make_request(). If we were to allocate
453 * multiple bios (say a stacking block driver that was splitting
454 * bios), we would deadlock if we exhausted the mempool's
455 * reserve.
456 *
457 * We solve this, and guarantee forward progress, with a rescuer
458 * workqueue per bio_set. If we go to allocate and there are
459 * bios on current->bio_list, we first try the allocation
d0164adc
MG
460 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
461 * bios we would be blocking to the rescuer workqueue before
462 * we retry with the original gfp_flags.
df2cb6da
KO
463 */
464
465 if (current->bio_list && !bio_list_empty(current->bio_list))
d0164adc 466 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 467
3f86a82a 468 p = mempool_alloc(bs->bio_pool, gfp_mask);
df2cb6da
KO
469 if (!p && gfp_mask != saved_gfp) {
470 punt_bios_to_rescuer(bs);
471 gfp_mask = saved_gfp;
472 p = mempool_alloc(bs->bio_pool, gfp_mask);
473 }
474
3f86a82a
KO
475 front_pad = bs->front_pad;
476 inline_vecs = BIO_INLINE_VECS;
477 }
478
451a9ebf
TH
479 if (unlikely(!p))
480 return NULL;
1da177e4 481
3f86a82a 482 bio = p + front_pad;
34053979
IM
483 bio_init(bio);
484
3f86a82a 485 if (nr_iovecs > inline_vecs) {
ed996a52
CH
486 unsigned long idx = 0;
487
9f060e22 488 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
489 if (!bvl && gfp_mask != saved_gfp) {
490 punt_bios_to_rescuer(bs);
491 gfp_mask = saved_gfp;
9f060e22 492 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
493 }
494
34053979
IM
495 if (unlikely(!bvl))
496 goto err_free;
a38352e0 497
ed996a52 498 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
499 } else if (nr_iovecs) {
500 bvl = bio->bi_inline_vecs;
1da177e4 501 }
3f86a82a
KO
502
503 bio->bi_pool = bs;
34053979 504 bio->bi_max_vecs = nr_iovecs;
34053979 505 bio->bi_io_vec = bvl;
1da177e4 506 return bio;
34053979
IM
507
508err_free:
451a9ebf 509 mempool_free(p, bs->bio_pool);
34053979 510 return NULL;
1da177e4 511}
a112a71d 512EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 513
1da177e4
LT
514void zero_fill_bio(struct bio *bio)
515{
516 unsigned long flags;
7988613b
KO
517 struct bio_vec bv;
518 struct bvec_iter iter;
1da177e4 519
7988613b
KO
520 bio_for_each_segment(bv, bio, iter) {
521 char *data = bvec_kmap_irq(&bv, &flags);
522 memset(data, 0, bv.bv_len);
523 flush_dcache_page(bv.bv_page);
1da177e4
LT
524 bvec_kunmap_irq(data, &flags);
525 }
526}
527EXPORT_SYMBOL(zero_fill_bio);
528
529/**
530 * bio_put - release a reference to a bio
531 * @bio: bio to release reference to
532 *
533 * Description:
534 * Put a reference to a &struct bio, either one you have gotten with
ad0bf110 535 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
1da177e4
LT
536 **/
537void bio_put(struct bio *bio)
538{
dac56212 539 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 540 bio_free(bio);
dac56212
JA
541 else {
542 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
543
544 /*
545 * last put frees it
546 */
547 if (atomic_dec_and_test(&bio->__bi_cnt))
548 bio_free(bio);
549 }
1da177e4 550}
a112a71d 551EXPORT_SYMBOL(bio_put);
1da177e4 552
165125e1 553inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
554{
555 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
556 blk_recount_segments(q, bio);
557
558 return bio->bi_phys_segments;
559}
a112a71d 560EXPORT_SYMBOL(bio_phys_segments);
1da177e4 561
59d276fe
KO
562/**
563 * __bio_clone_fast - clone a bio that shares the original bio's biovec
564 * @bio: destination bio
565 * @bio_src: bio to clone
566 *
567 * Clone a &bio. Caller will own the returned bio, but not
568 * the actual data it points to. Reference count of returned
569 * bio will be one.
570 *
571 * Caller must ensure that @bio_src is not freed before @bio.
572 */
573void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
574{
ed996a52 575 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
576
577 /*
578 * most users will be overriding ->bi_bdev with a new target,
579 * so we don't set nor calculate new physical/hw segment counts here
580 */
581 bio->bi_bdev = bio_src->bi_bdev;
b7c44ed9 582 bio_set_flag(bio, BIO_CLONED);
59d276fe
KO
583 bio->bi_rw = bio_src->bi_rw;
584 bio->bi_iter = bio_src->bi_iter;
585 bio->bi_io_vec = bio_src->bi_io_vec;
586}
587EXPORT_SYMBOL(__bio_clone_fast);
588
589/**
590 * bio_clone_fast - clone a bio that shares the original bio's biovec
591 * @bio: bio to clone
592 * @gfp_mask: allocation priority
593 * @bs: bio_set to allocate from
594 *
595 * Like __bio_clone_fast, only also allocates the returned bio
596 */
597struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
598{
599 struct bio *b;
600
601 b = bio_alloc_bioset(gfp_mask, 0, bs);
602 if (!b)
603 return NULL;
604
605 __bio_clone_fast(b, bio);
606
607 if (bio_integrity(bio)) {
608 int ret;
609
610 ret = bio_integrity_clone(b, bio, gfp_mask);
611
612 if (ret < 0) {
613 bio_put(b);
614 return NULL;
615 }
616 }
617
618 return b;
619}
620EXPORT_SYMBOL(bio_clone_fast);
621
1da177e4 622/**
bdb53207
KO
623 * bio_clone_bioset - clone a bio
624 * @bio_src: bio to clone
1da177e4 625 * @gfp_mask: allocation priority
bf800ef1 626 * @bs: bio_set to allocate from
1da177e4 627 *
bdb53207
KO
628 * Clone bio. Caller will own the returned bio, but not the actual data it
629 * points to. Reference count of returned bio will be one.
1da177e4 630 */
bdb53207 631struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
bf800ef1 632 struct bio_set *bs)
1da177e4 633{
bdb53207
KO
634 struct bvec_iter iter;
635 struct bio_vec bv;
636 struct bio *bio;
1da177e4 637
bdb53207
KO
638 /*
639 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
640 * bio_src->bi_io_vec to bio->bi_io_vec.
641 *
642 * We can't do that anymore, because:
643 *
644 * - The point of cloning the biovec is to produce a bio with a biovec
645 * the caller can modify: bi_idx and bi_bvec_done should be 0.
646 *
647 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
648 * we tried to clone the whole thing bio_alloc_bioset() would fail.
649 * But the clone should succeed as long as the number of biovecs we
650 * actually need to allocate is fewer than BIO_MAX_PAGES.
651 *
652 * - Lastly, bi_vcnt should not be looked at or relied upon by code
653 * that does not own the bio - reason being drivers don't use it for
654 * iterating over the biovec anymore, so expecting it to be kept up
655 * to date (i.e. for clones that share the parent biovec) is just
656 * asking for trouble and would force extra work on
657 * __bio_clone_fast() anyways.
658 */
659
8423ae3d 660 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
bdb53207 661 if (!bio)
7ba1ba12 662 return NULL;
bdb53207
KO
663 bio->bi_bdev = bio_src->bi_bdev;
664 bio->bi_rw = bio_src->bi_rw;
665 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
666 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
7ba1ba12 667
95fe6c1a 668 if (bio_op(bio) == REQ_OP_DISCARD)
8423ae3d
KO
669 goto integrity_clone;
670
95fe6c1a 671 if (bio_op(bio) == REQ_OP_WRITE_SAME) {
8423ae3d
KO
672 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
673 goto integrity_clone;
674 }
675
bdb53207
KO
676 bio_for_each_segment(bv, bio_src, iter)
677 bio->bi_io_vec[bio->bi_vcnt++] = bv;
7ba1ba12 678
8423ae3d 679integrity_clone:
bdb53207
KO
680 if (bio_integrity(bio_src)) {
681 int ret;
7ba1ba12 682
bdb53207 683 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
059ea331 684 if (ret < 0) {
bdb53207 685 bio_put(bio);
7ba1ba12 686 return NULL;
059ea331 687 }
3676347a 688 }
1da177e4 689
bdb53207 690 return bio;
1da177e4 691}
bf800ef1 692EXPORT_SYMBOL(bio_clone_bioset);
1da177e4
LT
693
694/**
c66a14d0
KO
695 * bio_add_pc_page - attempt to add page to bio
696 * @q: the target queue
697 * @bio: destination bio
698 * @page: page to add
699 * @len: vec entry length
700 * @offset: vec entry offset
1da177e4 701 *
c66a14d0
KO
702 * Attempt to add a page to the bio_vec maplist. This can fail for a
703 * number of reasons, such as the bio being full or target block device
704 * limitations. The target block device must allow bio's up to PAGE_SIZE,
705 * so it is always possible to add a single page to an empty bio.
706 *
707 * This should only be used by REQ_PC bios.
1da177e4 708 */
c66a14d0
KO
709int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
710 *page, unsigned int len, unsigned int offset)
1da177e4
LT
711{
712 int retried_segments = 0;
713 struct bio_vec *bvec;
714
715 /*
716 * cloned bio must not modify vec list
717 */
718 if (unlikely(bio_flagged(bio, BIO_CLONED)))
719 return 0;
720
c66a14d0 721 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
722 return 0;
723
80cfd548
JA
724 /*
725 * For filesystems with a blocksize smaller than the pagesize
726 * we will often be called with the same page as last time and
727 * a consecutive offset. Optimize this special case.
728 */
729 if (bio->bi_vcnt > 0) {
730 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
731
732 if (page == prev->bv_page &&
733 offset == prev->bv_offset + prev->bv_len) {
734 prev->bv_len += len;
fcbf6a08 735 bio->bi_iter.bi_size += len;
80cfd548
JA
736 goto done;
737 }
66cb45aa
JA
738
739 /*
740 * If the queue doesn't support SG gaps and adding this
741 * offset would create a gap, disallow it.
742 */
03100aad 743 if (bvec_gap_to_prev(q, prev, offset))
66cb45aa 744 return 0;
80cfd548
JA
745 }
746
747 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
748 return 0;
749
750 /*
fcbf6a08
ML
751 * setup the new entry, we might clear it again later if we
752 * cannot add the page
753 */
754 bvec = &bio->bi_io_vec[bio->bi_vcnt];
755 bvec->bv_page = page;
756 bvec->bv_len = len;
757 bvec->bv_offset = offset;
758 bio->bi_vcnt++;
759 bio->bi_phys_segments++;
760 bio->bi_iter.bi_size += len;
761
762 /*
763 * Perform a recount if the number of segments is greater
764 * than queue_max_segments(q).
1da177e4
LT
765 */
766
fcbf6a08 767 while (bio->bi_phys_segments > queue_max_segments(q)) {
1da177e4
LT
768
769 if (retried_segments)
fcbf6a08 770 goto failed;
1da177e4
LT
771
772 retried_segments = 1;
773 blk_recount_segments(q, bio);
774 }
775
1da177e4 776 /* If we may be able to merge these biovecs, force a recount */
fcbf6a08 777 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
b7c44ed9 778 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4 779
80cfd548 780 done:
1da177e4 781 return len;
fcbf6a08
ML
782
783 failed:
784 bvec->bv_page = NULL;
785 bvec->bv_len = 0;
786 bvec->bv_offset = 0;
787 bio->bi_vcnt--;
788 bio->bi_iter.bi_size -= len;
789 blk_recount_segments(q, bio);
790 return 0;
1da177e4 791}
a112a71d 792EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 793
1da177e4
LT
794/**
795 * bio_add_page - attempt to add page to bio
796 * @bio: destination bio
797 * @page: page to add
798 * @len: vec entry length
799 * @offset: vec entry offset
800 *
c66a14d0
KO
801 * Attempt to add a page to the bio_vec maplist. This will only fail
802 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1da177e4 803 */
c66a14d0
KO
804int bio_add_page(struct bio *bio, struct page *page,
805 unsigned int len, unsigned int offset)
1da177e4 806{
c66a14d0
KO
807 struct bio_vec *bv;
808
809 /*
810 * cloned bio must not modify vec list
811 */
812 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
813 return 0;
762380ad 814
c66a14d0
KO
815 /*
816 * For filesystems with a blocksize smaller than the pagesize
817 * we will often be called with the same page as last time and
818 * a consecutive offset. Optimize this special case.
819 */
820 if (bio->bi_vcnt > 0) {
821 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
58a4915a 822
c66a14d0
KO
823 if (page == bv->bv_page &&
824 offset == bv->bv_offset + bv->bv_len) {
825 bv->bv_len += len;
826 goto done;
827 }
828 }
829
830 if (bio->bi_vcnt >= bio->bi_max_vecs)
831 return 0;
832
833 bv = &bio->bi_io_vec[bio->bi_vcnt];
834 bv->bv_page = page;
835 bv->bv_len = len;
836 bv->bv_offset = offset;
837
838 bio->bi_vcnt++;
839done:
840 bio->bi_iter.bi_size += len;
841 return len;
1da177e4 842}
a112a71d 843EXPORT_SYMBOL(bio_add_page);
1da177e4 844
9e882242
KO
845struct submit_bio_ret {
846 struct completion event;
847 int error;
848};
849
4246a0b6 850static void submit_bio_wait_endio(struct bio *bio)
9e882242
KO
851{
852 struct submit_bio_ret *ret = bio->bi_private;
853
4246a0b6 854 ret->error = bio->bi_error;
9e882242
KO
855 complete(&ret->event);
856}
857
858/**
859 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
860 * @bio: The &struct bio which describes the I/O
861 *
862 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
863 * bio_endio() on failure.
864 */
4e49ea4a 865int submit_bio_wait(struct bio *bio)
9e882242
KO
866{
867 struct submit_bio_ret ret;
868
9e882242
KO
869 init_completion(&ret.event);
870 bio->bi_private = &ret;
871 bio->bi_end_io = submit_bio_wait_endio;
4e49ea4a
MC
872 bio->bi_rw |= REQ_SYNC;
873 submit_bio(bio);
d57d6115 874 wait_for_completion_io(&ret.event);
9e882242
KO
875
876 return ret.error;
877}
878EXPORT_SYMBOL(submit_bio_wait);
879
054bdf64
KO
880/**
881 * bio_advance - increment/complete a bio by some number of bytes
882 * @bio: bio to advance
883 * @bytes: number of bytes to complete
884 *
885 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
886 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
887 * be updated on the last bvec as well.
888 *
889 * @bio will then represent the remaining, uncompleted portion of the io.
890 */
891void bio_advance(struct bio *bio, unsigned bytes)
892{
893 if (bio_integrity(bio))
894 bio_integrity_advance(bio, bytes);
895
4550dd6c 896 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
897}
898EXPORT_SYMBOL(bio_advance);
899
a0787606
KO
900/**
901 * bio_alloc_pages - allocates a single page for each bvec in a bio
902 * @bio: bio to allocate pages for
903 * @gfp_mask: flags for allocation
904 *
905 * Allocates pages up to @bio->bi_vcnt.
906 *
907 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
908 * freed.
909 */
910int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
911{
912 int i;
913 struct bio_vec *bv;
914
915 bio_for_each_segment_all(bv, bio, i) {
916 bv->bv_page = alloc_page(gfp_mask);
917 if (!bv->bv_page) {
918 while (--bv >= bio->bi_io_vec)
919 __free_page(bv->bv_page);
920 return -ENOMEM;
921 }
922 }
923
924 return 0;
925}
926EXPORT_SYMBOL(bio_alloc_pages);
927
16ac3d63
KO
928/**
929 * bio_copy_data - copy contents of data buffers from one chain of bios to
930 * another
931 * @src: source bio list
932 * @dst: destination bio list
933 *
934 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
935 * @src and @dst as linked lists of bios.
936 *
937 * Stops when it reaches the end of either @src or @dst - that is, copies
938 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
939 */
940void bio_copy_data(struct bio *dst, struct bio *src)
941{
1cb9dda4
KO
942 struct bvec_iter src_iter, dst_iter;
943 struct bio_vec src_bv, dst_bv;
16ac3d63 944 void *src_p, *dst_p;
1cb9dda4 945 unsigned bytes;
16ac3d63 946
1cb9dda4
KO
947 src_iter = src->bi_iter;
948 dst_iter = dst->bi_iter;
16ac3d63
KO
949
950 while (1) {
1cb9dda4
KO
951 if (!src_iter.bi_size) {
952 src = src->bi_next;
953 if (!src)
954 break;
16ac3d63 955
1cb9dda4 956 src_iter = src->bi_iter;
16ac3d63
KO
957 }
958
1cb9dda4
KO
959 if (!dst_iter.bi_size) {
960 dst = dst->bi_next;
961 if (!dst)
962 break;
16ac3d63 963
1cb9dda4 964 dst_iter = dst->bi_iter;
16ac3d63
KO
965 }
966
1cb9dda4
KO
967 src_bv = bio_iter_iovec(src, src_iter);
968 dst_bv = bio_iter_iovec(dst, dst_iter);
969
970 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 971
1cb9dda4
KO
972 src_p = kmap_atomic(src_bv.bv_page);
973 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 974
1cb9dda4
KO
975 memcpy(dst_p + dst_bv.bv_offset,
976 src_p + src_bv.bv_offset,
16ac3d63
KO
977 bytes);
978
979 kunmap_atomic(dst_p);
980 kunmap_atomic(src_p);
981
1cb9dda4
KO
982 bio_advance_iter(src, &src_iter, bytes);
983 bio_advance_iter(dst, &dst_iter, bytes);
16ac3d63
KO
984 }
985}
986EXPORT_SYMBOL(bio_copy_data);
987
1da177e4 988struct bio_map_data {
152e283f 989 int is_our_pages;
26e49cfc
KO
990 struct iov_iter iter;
991 struct iovec iov[];
1da177e4
LT
992};
993
7410b3c6 994static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
76029ff3 995 gfp_t gfp_mask)
1da177e4 996{
f3f63c1c
JA
997 if (iov_count > UIO_MAXIOV)
998 return NULL;
1da177e4 999
c8db4448 1000 return kmalloc(sizeof(struct bio_map_data) +
26e49cfc 1001 sizeof(struct iovec) * iov_count, gfp_mask);
1da177e4
LT
1002}
1003
9124d3fe
DP
1004/**
1005 * bio_copy_from_iter - copy all pages from iov_iter to bio
1006 * @bio: The &struct bio which describes the I/O as destination
1007 * @iter: iov_iter as source
1008 *
1009 * Copy all pages from iov_iter to bio.
1010 * Returns 0 on success, or error on failure.
1011 */
1012static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
c5dec1c3 1013{
9124d3fe 1014 int i;
c5dec1c3 1015 struct bio_vec *bvec;
c5dec1c3 1016
d74c6d51 1017 bio_for_each_segment_all(bvec, bio, i) {
9124d3fe 1018 ssize_t ret;
c5dec1c3 1019
9124d3fe
DP
1020 ret = copy_page_from_iter(bvec->bv_page,
1021 bvec->bv_offset,
1022 bvec->bv_len,
1023 &iter);
1024
1025 if (!iov_iter_count(&iter))
1026 break;
1027
1028 if (ret < bvec->bv_len)
1029 return -EFAULT;
c5dec1c3
FT
1030 }
1031
9124d3fe
DP
1032 return 0;
1033}
1034
1035/**
1036 * bio_copy_to_iter - copy all pages from bio to iov_iter
1037 * @bio: The &struct bio which describes the I/O as source
1038 * @iter: iov_iter as destination
1039 *
1040 * Copy all pages from bio to iov_iter.
1041 * Returns 0 on success, or error on failure.
1042 */
1043static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1044{
1045 int i;
1046 struct bio_vec *bvec;
1047
1048 bio_for_each_segment_all(bvec, bio, i) {
1049 ssize_t ret;
1050
1051 ret = copy_page_to_iter(bvec->bv_page,
1052 bvec->bv_offset,
1053 bvec->bv_len,
1054 &iter);
1055
1056 if (!iov_iter_count(&iter))
1057 break;
1058
1059 if (ret < bvec->bv_len)
1060 return -EFAULT;
1061 }
1062
1063 return 0;
c5dec1c3
FT
1064}
1065
1dfa0f68
CH
1066static void bio_free_pages(struct bio *bio)
1067{
1068 struct bio_vec *bvec;
1069 int i;
1070
1071 bio_for_each_segment_all(bvec, bio, i)
1072 __free_page(bvec->bv_page);
1073}
1074
1da177e4
LT
1075/**
1076 * bio_uncopy_user - finish previously mapped bio
1077 * @bio: bio being terminated
1078 *
ddad8dd0 1079 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1080 * to user space in case of a read.
1081 */
1082int bio_uncopy_user(struct bio *bio)
1083{
1084 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1085 int ret = 0;
1da177e4 1086
35dc2483
RD
1087 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1088 /*
1089 * if we're in a workqueue, the request is orphaned, so
2d99b55d
HR
1090 * don't copy into a random user address space, just free
1091 * and return -EINTR so user space doesn't expect any data.
35dc2483 1092 */
2d99b55d
HR
1093 if (!current->mm)
1094 ret = -EINTR;
1095 else if (bio_data_dir(bio) == READ)
9124d3fe 1096 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1097 if (bmd->is_our_pages)
1098 bio_free_pages(bio);
35dc2483 1099 }
c8db4448 1100 kfree(bmd);
1da177e4
LT
1101 bio_put(bio);
1102 return ret;
1103}
1104
1105/**
c5dec1c3 1106 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1107 * @q: destination block queue
1108 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1109 * @iter: iovec iterator
1110 * @gfp_mask: memory allocation flags
1da177e4
LT
1111 *
1112 * Prepares and returns a bio for indirect user io, bouncing data
1113 * to/from kernel pages as necessary. Must be paired with
1114 * call bio_uncopy_user() on io completion.
1115 */
152e283f
FT
1116struct bio *bio_copy_user_iov(struct request_queue *q,
1117 struct rq_map_data *map_data,
26e49cfc
KO
1118 const struct iov_iter *iter,
1119 gfp_t gfp_mask)
1da177e4 1120{
1da177e4 1121 struct bio_map_data *bmd;
1da177e4
LT
1122 struct page *page;
1123 struct bio *bio;
1124 int i, ret;
c5dec1c3 1125 int nr_pages = 0;
26e49cfc 1126 unsigned int len = iter->count;
bd5cecea 1127 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1da177e4 1128
26e49cfc 1129 for (i = 0; i < iter->nr_segs; i++) {
c5dec1c3
FT
1130 unsigned long uaddr;
1131 unsigned long end;
1132 unsigned long start;
1133
26e49cfc
KO
1134 uaddr = (unsigned long) iter->iov[i].iov_base;
1135 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1136 >> PAGE_SHIFT;
c5dec1c3
FT
1137 start = uaddr >> PAGE_SHIFT;
1138
cb4644ca
JA
1139 /*
1140 * Overflow, abort
1141 */
1142 if (end < start)
1143 return ERR_PTR(-EINVAL);
1144
c5dec1c3 1145 nr_pages += end - start;
c5dec1c3
FT
1146 }
1147
69838727
FT
1148 if (offset)
1149 nr_pages++;
1150
26e49cfc 1151 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1da177e4
LT
1152 if (!bmd)
1153 return ERR_PTR(-ENOMEM);
1154
26e49cfc
KO
1155 /*
1156 * We need to do a deep copy of the iov_iter including the iovecs.
1157 * The caller provided iov might point to an on-stack or otherwise
1158 * shortlived one.
1159 */
1160 bmd->is_our_pages = map_data ? 0 : 1;
1161 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1162 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1163 iter->nr_segs, iter->count);
1164
1da177e4 1165 ret = -ENOMEM;
a9e9dc24 1166 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1167 if (!bio)
1168 goto out_bmd;
1169
26e49cfc 1170 if (iter->type & WRITE)
95fe6c1a 1171 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1da177e4
LT
1172
1173 ret = 0;
56c451f4
FT
1174
1175 if (map_data) {
e623ddb4 1176 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1177 i = map_data->offset / PAGE_SIZE;
1178 }
1da177e4 1179 while (len) {
e623ddb4 1180 unsigned int bytes = PAGE_SIZE;
1da177e4 1181
56c451f4
FT
1182 bytes -= offset;
1183
1da177e4
LT
1184 if (bytes > len)
1185 bytes = len;
1186
152e283f 1187 if (map_data) {
e623ddb4 1188 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1189 ret = -ENOMEM;
1190 break;
1191 }
e623ddb4
FT
1192
1193 page = map_data->pages[i / nr_pages];
1194 page += (i % nr_pages);
1195
1196 i++;
1197 } else {
152e283f 1198 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1199 if (!page) {
1200 ret = -ENOMEM;
1201 break;
1202 }
1da177e4
LT
1203 }
1204
56c451f4 1205 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1206 break;
1da177e4
LT
1207
1208 len -= bytes;
56c451f4 1209 offset = 0;
1da177e4
LT
1210 }
1211
1212 if (ret)
1213 goto cleanup;
1214
1215 /*
1216 * success
1217 */
26e49cfc 1218 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1219 (map_data && map_data->from_user)) {
9124d3fe 1220 ret = bio_copy_from_iter(bio, *iter);
c5dec1c3
FT
1221 if (ret)
1222 goto cleanup;
1da177e4
LT
1223 }
1224
26e49cfc 1225 bio->bi_private = bmd;
1da177e4
LT
1226 return bio;
1227cleanup:
152e283f 1228 if (!map_data)
1dfa0f68 1229 bio_free_pages(bio);
1da177e4
LT
1230 bio_put(bio);
1231out_bmd:
c8db4448 1232 kfree(bmd);
1da177e4
LT
1233 return ERR_PTR(ret);
1234}
1235
37f19e57
CH
1236/**
1237 * bio_map_user_iov - map user iovec into bio
1238 * @q: the struct request_queue for the bio
1239 * @iter: iovec iterator
1240 * @gfp_mask: memory allocation flags
1241 *
1242 * Map the user space address into a bio suitable for io to a block
1243 * device. Returns an error pointer in case of error.
1244 */
1245struct bio *bio_map_user_iov(struct request_queue *q,
1246 const struct iov_iter *iter,
1247 gfp_t gfp_mask)
1da177e4 1248{
26e49cfc 1249 int j;
f1970baf 1250 int nr_pages = 0;
1da177e4
LT
1251 struct page **pages;
1252 struct bio *bio;
f1970baf
JB
1253 int cur_page = 0;
1254 int ret, offset;
26e49cfc
KO
1255 struct iov_iter i;
1256 struct iovec iov;
1da177e4 1257
26e49cfc
KO
1258 iov_for_each(iov, i, *iter) {
1259 unsigned long uaddr = (unsigned long) iov.iov_base;
1260 unsigned long len = iov.iov_len;
f1970baf
JB
1261 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1262 unsigned long start = uaddr >> PAGE_SHIFT;
1263
cb4644ca
JA
1264 /*
1265 * Overflow, abort
1266 */
1267 if (end < start)
1268 return ERR_PTR(-EINVAL);
1269
f1970baf
JB
1270 nr_pages += end - start;
1271 /*
ad2d7225 1272 * buffer must be aligned to at least hardsector size for now
f1970baf 1273 */
ad2d7225 1274 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
1275 return ERR_PTR(-EINVAL);
1276 }
1277
1278 if (!nr_pages)
1da177e4
LT
1279 return ERR_PTR(-EINVAL);
1280
a9e9dc24 1281 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1282 if (!bio)
1283 return ERR_PTR(-ENOMEM);
1284
1285 ret = -ENOMEM;
a3bce90e 1286 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
1287 if (!pages)
1288 goto out;
1289
26e49cfc
KO
1290 iov_for_each(iov, i, *iter) {
1291 unsigned long uaddr = (unsigned long) iov.iov_base;
1292 unsigned long len = iov.iov_len;
f1970baf
JB
1293 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1294 unsigned long start = uaddr >> PAGE_SHIFT;
1295 const int local_nr_pages = end - start;
1296 const int page_limit = cur_page + local_nr_pages;
cb4644ca 1297
f5dd33c4 1298 ret = get_user_pages_fast(uaddr, local_nr_pages,
26e49cfc
KO
1299 (iter->type & WRITE) != WRITE,
1300 &pages[cur_page]);
99172157
JA
1301 if (ret < local_nr_pages) {
1302 ret = -EFAULT;
f1970baf 1303 goto out_unmap;
99172157 1304 }
f1970baf 1305
bd5cecea 1306 offset = offset_in_page(uaddr);
f1970baf
JB
1307 for (j = cur_page; j < page_limit; j++) {
1308 unsigned int bytes = PAGE_SIZE - offset;
1309
1310 if (len <= 0)
1311 break;
1312
1313 if (bytes > len)
1314 bytes = len;
1315
1316 /*
1317 * sorry...
1318 */
defd94b7
MC
1319 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1320 bytes)
f1970baf
JB
1321 break;
1322
1323 len -= bytes;
1324 offset = 0;
1325 }
1da177e4 1326
f1970baf 1327 cur_page = j;
1da177e4 1328 /*
f1970baf 1329 * release the pages we didn't map into the bio, if any
1da177e4 1330 */
f1970baf 1331 while (j < page_limit)
09cbfeaf 1332 put_page(pages[j++]);
1da177e4
LT
1333 }
1334
1da177e4
LT
1335 kfree(pages);
1336
1337 /*
1338 * set data direction, and check if mapped pages need bouncing
1339 */
26e49cfc 1340 if (iter->type & WRITE)
95fe6c1a 1341 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1da177e4 1342
b7c44ed9 1343 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1344
1345 /*
1346 * subtle -- if __bio_map_user() ended up bouncing a bio,
1347 * it would normally disappear when its bi_end_io is run.
1348 * however, we need it for the unmap, so grab an extra
1349 * reference to it
1350 */
1351 bio_get(bio);
1da177e4 1352 return bio;
f1970baf
JB
1353
1354 out_unmap:
26e49cfc
KO
1355 for (j = 0; j < nr_pages; j++) {
1356 if (!pages[j])
f1970baf 1357 break;
09cbfeaf 1358 put_page(pages[j]);
f1970baf
JB
1359 }
1360 out:
1da177e4
LT
1361 kfree(pages);
1362 bio_put(bio);
1363 return ERR_PTR(ret);
1364}
1365
1da177e4
LT
1366static void __bio_unmap_user(struct bio *bio)
1367{
1368 struct bio_vec *bvec;
1369 int i;
1370
1371 /*
1372 * make sure we dirty pages we wrote to
1373 */
d74c6d51 1374 bio_for_each_segment_all(bvec, bio, i) {
1da177e4
LT
1375 if (bio_data_dir(bio) == READ)
1376 set_page_dirty_lock(bvec->bv_page);
1377
09cbfeaf 1378 put_page(bvec->bv_page);
1da177e4
LT
1379 }
1380
1381 bio_put(bio);
1382}
1383
1384/**
1385 * bio_unmap_user - unmap a bio
1386 * @bio: the bio being unmapped
1387 *
1388 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1389 * a process context.
1390 *
1391 * bio_unmap_user() may sleep.
1392 */
1393void bio_unmap_user(struct bio *bio)
1394{
1395 __bio_unmap_user(bio);
1396 bio_put(bio);
1397}
1398
4246a0b6 1399static void bio_map_kern_endio(struct bio *bio)
b823825e 1400{
b823825e 1401 bio_put(bio);
b823825e
JA
1402}
1403
75c72b83
CH
1404/**
1405 * bio_map_kern - map kernel address into bio
1406 * @q: the struct request_queue for the bio
1407 * @data: pointer to buffer to map
1408 * @len: length in bytes
1409 * @gfp_mask: allocation flags for bio allocation
1410 *
1411 * Map the kernel address into a bio suitable for io to a block
1412 * device. Returns an error pointer in case of error.
1413 */
1414struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1415 gfp_t gfp_mask)
df46b9a4
MC
1416{
1417 unsigned long kaddr = (unsigned long)data;
1418 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1419 unsigned long start = kaddr >> PAGE_SHIFT;
1420 const int nr_pages = end - start;
1421 int offset, i;
1422 struct bio *bio;
1423
a9e9dc24 1424 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1425 if (!bio)
1426 return ERR_PTR(-ENOMEM);
1427
1428 offset = offset_in_page(kaddr);
1429 for (i = 0; i < nr_pages; i++) {
1430 unsigned int bytes = PAGE_SIZE - offset;
1431
1432 if (len <= 0)
1433 break;
1434
1435 if (bytes > len)
1436 bytes = len;
1437
defd94b7 1438 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
75c72b83
CH
1439 offset) < bytes) {
1440 /* we don't support partial mappings */
1441 bio_put(bio);
1442 return ERR_PTR(-EINVAL);
1443 }
df46b9a4
MC
1444
1445 data += bytes;
1446 len -= bytes;
1447 offset = 0;
1448 }
1449
b823825e 1450 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1451 return bio;
1452}
a112a71d 1453EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1454
4246a0b6 1455static void bio_copy_kern_endio(struct bio *bio)
68154e90 1456{
1dfa0f68
CH
1457 bio_free_pages(bio);
1458 bio_put(bio);
1459}
1460
4246a0b6 1461static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1462{
42d2683a 1463 char *p = bio->bi_private;
1dfa0f68 1464 struct bio_vec *bvec;
68154e90
FT
1465 int i;
1466
d74c6d51 1467 bio_for_each_segment_all(bvec, bio, i) {
1dfa0f68 1468 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1469 p += bvec->bv_len;
68154e90
FT
1470 }
1471
4246a0b6 1472 bio_copy_kern_endio(bio);
68154e90
FT
1473}
1474
1475/**
1476 * bio_copy_kern - copy kernel address into bio
1477 * @q: the struct request_queue for the bio
1478 * @data: pointer to buffer to copy
1479 * @len: length in bytes
1480 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1481 * @reading: data direction is READ
68154e90
FT
1482 *
1483 * copy the kernel address into a bio suitable for io to a block
1484 * device. Returns an error pointer in case of error.
1485 */
1486struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1487 gfp_t gfp_mask, int reading)
1488{
42d2683a
CH
1489 unsigned long kaddr = (unsigned long)data;
1490 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1491 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1492 struct bio *bio;
1493 void *p = data;
1dfa0f68 1494 int nr_pages = 0;
68154e90 1495
42d2683a
CH
1496 /*
1497 * Overflow, abort
1498 */
1499 if (end < start)
1500 return ERR_PTR(-EINVAL);
68154e90 1501
42d2683a
CH
1502 nr_pages = end - start;
1503 bio = bio_kmalloc(gfp_mask, nr_pages);
1504 if (!bio)
1505 return ERR_PTR(-ENOMEM);
68154e90 1506
42d2683a
CH
1507 while (len) {
1508 struct page *page;
1509 unsigned int bytes = PAGE_SIZE;
68154e90 1510
42d2683a
CH
1511 if (bytes > len)
1512 bytes = len;
1513
1514 page = alloc_page(q->bounce_gfp | gfp_mask);
1515 if (!page)
1516 goto cleanup;
1517
1518 if (!reading)
1519 memcpy(page_address(page), p, bytes);
1520
1521 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1522 break;
1523
1524 len -= bytes;
1525 p += bytes;
68154e90
FT
1526 }
1527
1dfa0f68
CH
1528 if (reading) {
1529 bio->bi_end_io = bio_copy_kern_endio_read;
1530 bio->bi_private = data;
1531 } else {
1532 bio->bi_end_io = bio_copy_kern_endio;
95fe6c1a 1533 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1dfa0f68 1534 }
76029ff3 1535
68154e90 1536 return bio;
42d2683a
CH
1537
1538cleanup:
1dfa0f68 1539 bio_free_pages(bio);
42d2683a
CH
1540 bio_put(bio);
1541 return ERR_PTR(-ENOMEM);
68154e90
FT
1542}
1543
1da177e4
LT
1544/*
1545 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1546 * for performing direct-IO in BIOs.
1547 *
1548 * The problem is that we cannot run set_page_dirty() from interrupt context
1549 * because the required locks are not interrupt-safe. So what we can do is to
1550 * mark the pages dirty _before_ performing IO. And in interrupt context,
1551 * check that the pages are still dirty. If so, fine. If not, redirty them
1552 * in process context.
1553 *
1554 * We special-case compound pages here: normally this means reads into hugetlb
1555 * pages. The logic in here doesn't really work right for compound pages
1556 * because the VM does not uniformly chase down the head page in all cases.
1557 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1558 * handle them at all. So we skip compound pages here at an early stage.
1559 *
1560 * Note that this code is very hard to test under normal circumstances because
1561 * direct-io pins the pages with get_user_pages(). This makes
1562 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1563 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1564 * pagecache.
1565 *
1566 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1567 * deferred bio dirtying paths.
1568 */
1569
1570/*
1571 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1572 */
1573void bio_set_pages_dirty(struct bio *bio)
1574{
cb34e057 1575 struct bio_vec *bvec;
1da177e4
LT
1576 int i;
1577
cb34e057
KO
1578 bio_for_each_segment_all(bvec, bio, i) {
1579 struct page *page = bvec->bv_page;
1da177e4
LT
1580
1581 if (page && !PageCompound(page))
1582 set_page_dirty_lock(page);
1583 }
1584}
1585
86b6c7a7 1586static void bio_release_pages(struct bio *bio)
1da177e4 1587{
cb34e057 1588 struct bio_vec *bvec;
1da177e4
LT
1589 int i;
1590
cb34e057
KO
1591 bio_for_each_segment_all(bvec, bio, i) {
1592 struct page *page = bvec->bv_page;
1da177e4
LT
1593
1594 if (page)
1595 put_page(page);
1596 }
1597}
1598
1599/*
1600 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1601 * If they are, then fine. If, however, some pages are clean then they must
1602 * have been written out during the direct-IO read. So we take another ref on
1603 * the BIO and the offending pages and re-dirty the pages in process context.
1604 *
1605 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1606 * here on. It will run one put_page() against each page and will run one
1607 * bio_put() against the BIO.
1da177e4
LT
1608 */
1609
65f27f38 1610static void bio_dirty_fn(struct work_struct *work);
1da177e4 1611
65f27f38 1612static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1613static DEFINE_SPINLOCK(bio_dirty_lock);
1614static struct bio *bio_dirty_list;
1615
1616/*
1617 * This runs in process context
1618 */
65f27f38 1619static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1620{
1621 unsigned long flags;
1622 struct bio *bio;
1623
1624 spin_lock_irqsave(&bio_dirty_lock, flags);
1625 bio = bio_dirty_list;
1626 bio_dirty_list = NULL;
1627 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1628
1629 while (bio) {
1630 struct bio *next = bio->bi_private;
1631
1632 bio_set_pages_dirty(bio);
1633 bio_release_pages(bio);
1634 bio_put(bio);
1635 bio = next;
1636 }
1637}
1638
1639void bio_check_pages_dirty(struct bio *bio)
1640{
cb34e057 1641 struct bio_vec *bvec;
1da177e4
LT
1642 int nr_clean_pages = 0;
1643 int i;
1644
cb34e057
KO
1645 bio_for_each_segment_all(bvec, bio, i) {
1646 struct page *page = bvec->bv_page;
1da177e4
LT
1647
1648 if (PageDirty(page) || PageCompound(page)) {
09cbfeaf 1649 put_page(page);
cb34e057 1650 bvec->bv_page = NULL;
1da177e4
LT
1651 } else {
1652 nr_clean_pages++;
1653 }
1654 }
1655
1656 if (nr_clean_pages) {
1657 unsigned long flags;
1658
1659 spin_lock_irqsave(&bio_dirty_lock, flags);
1660 bio->bi_private = bio_dirty_list;
1661 bio_dirty_list = bio;
1662 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1663 schedule_work(&bio_dirty_work);
1664 } else {
1665 bio_put(bio);
1666 }
1667}
1668
394ffa50
GZ
1669void generic_start_io_acct(int rw, unsigned long sectors,
1670 struct hd_struct *part)
1671{
1672 int cpu = part_stat_lock();
1673
1674 part_round_stats(cpu, part);
1675 part_stat_inc(cpu, part, ios[rw]);
1676 part_stat_add(cpu, part, sectors[rw], sectors);
1677 part_inc_in_flight(part, rw);
1678
1679 part_stat_unlock();
1680}
1681EXPORT_SYMBOL(generic_start_io_acct);
1682
1683void generic_end_io_acct(int rw, struct hd_struct *part,
1684 unsigned long start_time)
1685{
1686 unsigned long duration = jiffies - start_time;
1687 int cpu = part_stat_lock();
1688
1689 part_stat_add(cpu, part, ticks[rw], duration);
1690 part_round_stats(cpu, part);
1691 part_dec_in_flight(part, rw);
1692
1693 part_stat_unlock();
1694}
1695EXPORT_SYMBOL(generic_end_io_acct);
1696
2d4dc890
IL
1697#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1698void bio_flush_dcache_pages(struct bio *bi)
1699{
7988613b
KO
1700 struct bio_vec bvec;
1701 struct bvec_iter iter;
2d4dc890 1702
7988613b
KO
1703 bio_for_each_segment(bvec, bi, iter)
1704 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1705}
1706EXPORT_SYMBOL(bio_flush_dcache_pages);
1707#endif
1708
c4cf5261
JA
1709static inline bool bio_remaining_done(struct bio *bio)
1710{
1711 /*
1712 * If we're not chaining, then ->__bi_remaining is always 1 and
1713 * we always end io on the first invocation.
1714 */
1715 if (!bio_flagged(bio, BIO_CHAIN))
1716 return true;
1717
1718 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1719
326e1dbb 1720 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1721 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1722 return true;
326e1dbb 1723 }
c4cf5261
JA
1724
1725 return false;
1726}
1727
1da177e4
LT
1728/**
1729 * bio_endio - end I/O on a bio
1730 * @bio: bio
1da177e4
LT
1731 *
1732 * Description:
4246a0b6
CH
1733 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1734 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1735 * bio unless they own it and thus know that it has an end_io function.
1da177e4 1736 **/
4246a0b6 1737void bio_endio(struct bio *bio)
1da177e4 1738{
ba8c6967 1739again:
2b885517 1740 if (!bio_remaining_done(bio))
ba8c6967 1741 return;
1da177e4 1742
ba8c6967
CH
1743 /*
1744 * Need to have a real endio function for chained bios, otherwise
1745 * various corner cases will break (like stacking block devices that
1746 * save/restore bi_end_io) - however, we want to avoid unbounded
1747 * recursion and blowing the stack. Tail call optimization would
1748 * handle this, but compiling with frame pointers also disables
1749 * gcc's sibling call optimization.
1750 */
1751 if (bio->bi_end_io == bio_chain_endio) {
1752 bio = __bio_chain_endio(bio);
1753 goto again;
196d38bc 1754 }
ba8c6967
CH
1755
1756 if (bio->bi_end_io)
1757 bio->bi_end_io(bio);
1da177e4 1758}
a112a71d 1759EXPORT_SYMBOL(bio_endio);
1da177e4 1760
20d0189b
KO
1761/**
1762 * bio_split - split a bio
1763 * @bio: bio to split
1764 * @sectors: number of sectors to split from the front of @bio
1765 * @gfp: gfp mask
1766 * @bs: bio set to allocate from
1767 *
1768 * Allocates and returns a new bio which represents @sectors from the start of
1769 * @bio, and updates @bio to represent the remaining sectors.
1770 *
f3f5da62
MP
1771 * Unless this is a discard request the newly allocated bio will point
1772 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1773 * @bio is not freed before the split.
20d0189b
KO
1774 */
1775struct bio *bio_split(struct bio *bio, int sectors,
1776 gfp_t gfp, struct bio_set *bs)
1777{
1778 struct bio *split = NULL;
1779
1780 BUG_ON(sectors <= 0);
1781 BUG_ON(sectors >= bio_sectors(bio));
1782
f3f5da62
MP
1783 /*
1784 * Discards need a mutable bio_vec to accommodate the payload
1785 * required by the DSM TRIM and UNMAP commands.
1786 */
95fe6c1a 1787 if (bio_op(bio) == REQ_OP_DISCARD)
f3f5da62
MP
1788 split = bio_clone_bioset(bio, gfp, bs);
1789 else
1790 split = bio_clone_fast(bio, gfp, bs);
1791
20d0189b
KO
1792 if (!split)
1793 return NULL;
1794
1795 split->bi_iter.bi_size = sectors << 9;
1796
1797 if (bio_integrity(split))
1798 bio_integrity_trim(split, 0, sectors);
1799
1800 bio_advance(bio, split->bi_iter.bi_size);
1801
1802 return split;
1803}
1804EXPORT_SYMBOL(bio_split);
1805
6678d83f
KO
1806/**
1807 * bio_trim - trim a bio
1808 * @bio: bio to trim
1809 * @offset: number of sectors to trim from the front of @bio
1810 * @size: size we want to trim @bio to, in sectors
1811 */
1812void bio_trim(struct bio *bio, int offset, int size)
1813{
1814 /* 'bio' is a cloned bio which we need to trim to match
1815 * the given offset and size.
6678d83f 1816 */
6678d83f
KO
1817
1818 size <<= 9;
4f024f37 1819 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1820 return;
1821
b7c44ed9 1822 bio_clear_flag(bio, BIO_SEG_VALID);
6678d83f
KO
1823
1824 bio_advance(bio, offset << 9);
1825
4f024f37 1826 bio->bi_iter.bi_size = size;
6678d83f
KO
1827}
1828EXPORT_SYMBOL_GPL(bio_trim);
1829
1da177e4
LT
1830/*
1831 * create memory pools for biovec's in a bio_set.
1832 * use the global biovec slabs created for general use.
1833 */
a6c39cb4 1834mempool_t *biovec_create_pool(int pool_entries)
1da177e4 1835{
ed996a52 1836 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1837
9f060e22 1838 return mempool_create_slab_pool(pool_entries, bp->slab);
1da177e4
LT
1839}
1840
1841void bioset_free(struct bio_set *bs)
1842{
df2cb6da
KO
1843 if (bs->rescue_workqueue)
1844 destroy_workqueue(bs->rescue_workqueue);
1845
1da177e4
LT
1846 if (bs->bio_pool)
1847 mempool_destroy(bs->bio_pool);
1848
9f060e22
KO
1849 if (bs->bvec_pool)
1850 mempool_destroy(bs->bvec_pool);
1851
7878cba9 1852 bioset_integrity_free(bs);
bb799ca0 1853 bio_put_slab(bs);
1da177e4
LT
1854
1855 kfree(bs);
1856}
a112a71d 1857EXPORT_SYMBOL(bioset_free);
1da177e4 1858
d8f429e1
JN
1859static struct bio_set *__bioset_create(unsigned int pool_size,
1860 unsigned int front_pad,
1861 bool create_bvec_pool)
1da177e4 1862{
392ddc32 1863 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1864 struct bio_set *bs;
1da177e4 1865
1b434498 1866 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1867 if (!bs)
1868 return NULL;
1869
bb799ca0 1870 bs->front_pad = front_pad;
1b434498 1871
df2cb6da
KO
1872 spin_lock_init(&bs->rescue_lock);
1873 bio_list_init(&bs->rescue_list);
1874 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1875
392ddc32 1876 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
1877 if (!bs->bio_slab) {
1878 kfree(bs);
1879 return NULL;
1880 }
1881
1882 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
1883 if (!bs->bio_pool)
1884 goto bad;
1885
d8f429e1
JN
1886 if (create_bvec_pool) {
1887 bs->bvec_pool = biovec_create_pool(pool_size);
1888 if (!bs->bvec_pool)
1889 goto bad;
1890 }
df2cb6da
KO
1891
1892 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1893 if (!bs->rescue_workqueue)
1894 goto bad;
1da177e4 1895
df2cb6da 1896 return bs;
1da177e4
LT
1897bad:
1898 bioset_free(bs);
1899 return NULL;
1900}
d8f429e1
JN
1901
1902/**
1903 * bioset_create - Create a bio_set
1904 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1905 * @front_pad: Number of bytes to allocate in front of the returned bio
1906 *
1907 * Description:
1908 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1909 * to ask for a number of bytes to be allocated in front of the bio.
1910 * Front pad allocation is useful for embedding the bio inside
1911 * another structure, to avoid allocating extra data to go with the bio.
1912 * Note that the bio must be embedded at the END of that structure always,
1913 * or things will break badly.
1914 */
1915struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1916{
1917 return __bioset_create(pool_size, front_pad, true);
1918}
a112a71d 1919EXPORT_SYMBOL(bioset_create);
1da177e4 1920
d8f429e1
JN
1921/**
1922 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
1923 * @pool_size: Number of bio to cache in the mempool
1924 * @front_pad: Number of bytes to allocate in front of the returned bio
1925 *
1926 * Description:
1927 * Same functionality as bioset_create() except that mempool is not
1928 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
1929 */
1930struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1931{
1932 return __bioset_create(pool_size, front_pad, false);
1933}
1934EXPORT_SYMBOL(bioset_create_nobvec);
1935
852c788f 1936#ifdef CONFIG_BLK_CGROUP
1d933cf0
TH
1937
1938/**
1939 * bio_associate_blkcg - associate a bio with the specified blkcg
1940 * @bio: target bio
1941 * @blkcg_css: css of the blkcg to associate
1942 *
1943 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
1944 * treat @bio as if it were issued by a task which belongs to the blkcg.
1945 *
1946 * This function takes an extra reference of @blkcg_css which will be put
1947 * when @bio is released. The caller must own @bio and is responsible for
1948 * synchronizing calls to this function.
1949 */
1950int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1951{
1952 if (unlikely(bio->bi_css))
1953 return -EBUSY;
1954 css_get(blkcg_css);
1955 bio->bi_css = blkcg_css;
1956 return 0;
1957}
5aa2a96b 1958EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1d933cf0 1959
852c788f
TH
1960/**
1961 * bio_associate_current - associate a bio with %current
1962 * @bio: target bio
1963 *
1964 * Associate @bio with %current if it hasn't been associated yet. Block
1965 * layer will treat @bio as if it were issued by %current no matter which
1966 * task actually issues it.
1967 *
1968 * This function takes an extra reference of @task's io_context and blkcg
1969 * which will be put when @bio is released. The caller must own @bio,
1970 * ensure %current->io_context exists, and is responsible for synchronizing
1971 * calls to this function.
1972 */
1973int bio_associate_current(struct bio *bio)
1974{
1975 struct io_context *ioc;
852c788f 1976
1d933cf0 1977 if (bio->bi_css)
852c788f
TH
1978 return -EBUSY;
1979
1980 ioc = current->io_context;
1981 if (!ioc)
1982 return -ENOENT;
1983
852c788f
TH
1984 get_io_context_active(ioc);
1985 bio->bi_ioc = ioc;
c165b3e3 1986 bio->bi_css = task_get_css(current, io_cgrp_id);
852c788f
TH
1987 return 0;
1988}
5aa2a96b 1989EXPORT_SYMBOL_GPL(bio_associate_current);
852c788f
TH
1990
1991/**
1992 * bio_disassociate_task - undo bio_associate_current()
1993 * @bio: target bio
1994 */
1995void bio_disassociate_task(struct bio *bio)
1996{
1997 if (bio->bi_ioc) {
1998 put_io_context(bio->bi_ioc);
1999 bio->bi_ioc = NULL;
2000 }
2001 if (bio->bi_css) {
2002 css_put(bio->bi_css);
2003 bio->bi_css = NULL;
2004 }
2005}
2006
2007#endif /* CONFIG_BLK_CGROUP */
2008
1da177e4
LT
2009static void __init biovec_init_slabs(void)
2010{
2011 int i;
2012
ed996a52 2013 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
2014 int size;
2015 struct biovec_slab *bvs = bvec_slabs + i;
2016
a7fcd37c
JA
2017 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2018 bvs->slab = NULL;
2019 continue;
2020 }
a7fcd37c 2021
1da177e4
LT
2022 size = bvs->nr_vecs * sizeof(struct bio_vec);
2023 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2024 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2025 }
2026}
2027
2028static int __init init_bio(void)
2029{
bb799ca0
JA
2030 bio_slab_max = 2;
2031 bio_slab_nr = 0;
2032 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2033 if (!bio_slabs)
2034 panic("bio: can't allocate bios\n");
1da177e4 2035
7878cba9 2036 bio_integrity_init();
1da177e4
LT
2037 biovec_init_slabs();
2038
bb799ca0 2039 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1da177e4
LT
2040 if (!fs_bio_set)
2041 panic("bio: can't allocate bios\n");
2042
a91a2785
MP
2043 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2044 panic("bio: can't create integrity pool\n");
2045
1da177e4
LT
2046 return 0;
2047}
1da177e4 2048subsys_initcall(init_bio);