]> git.ipfire.org Git - people/ms/linux.git/blame - drivers/lguest/page_tables.c
Importing "grsecurity-3.1-3.19.2-201503201903.patch"
[people/ms/linux.git] / drivers / lguest / page_tables.c
CommitLineData
2e04ef76
RR
1/*P:700
2 * The pagetable code, on the other hand, still shows the scars of
f938d2c8
RR
3 * previous encounters. It's functional, and as neat as it can be in the
4 * circumstances, but be wary, for these things are subtle and break easily.
5 * The Guest provides a virtual to physical mapping, but we can neither trust
a6bd8e13 6 * it nor use it: we verify and convert it here then point the CPU to the
2e04ef76
RR
7 * converted Guest pages when running the Guest.
8:*/
f938d2c8 9
6d0cda93 10/* Copyright (C) Rusty Russell IBM Corporation 2013.
d7e28ffe
RR
11 * GPL v2 and any later version */
12#include <linux/mm.h>
5a0e3ad6 13#include <linux/gfp.h>
d7e28ffe
RR
14#include <linux/types.h>
15#include <linux/spinlock.h>
16#include <linux/random.h>
17#include <linux/percpu.h>
18#include <asm/tlbflush.h>
47436aa4 19#include <asm/uaccess.h>
d7e28ffe
RR
20#include "lg.h"
21
2e04ef76
RR
22/*M:008
23 * We hold reference to pages, which prevents them from being swapped.
f56a384e
RR
24 * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
25 * to swap out. If we had this, and a shrinker callback to trim PTE pages, we
2e04ef76
RR
26 * could probably consider launching Guests as non-root.
27:*/
f56a384e 28
bff672e6
RR
29/*H:300
30 * The Page Table Code
31 *
a91d74a3
RR
32 * We use two-level page tables for the Guest, or three-level with PAE. If
33 * you're not entirely comfortable with virtual addresses, physical addresses
34 * and page tables then I recommend you review arch/x86/lguest/boot.c's "Page
35 * Table Handling" (with diagrams!).
bff672e6
RR
36 *
37 * The Guest keeps page tables, but we maintain the actual ones here: these are
38 * called "shadow" page tables. Which is a very Guest-centric name: these are
39 * the real page tables the CPU uses, although we keep them up to date to
40 * reflect the Guest's. (See what I mean about weird naming? Since when do
41 * shadows reflect anything?)
42 *
43 * Anyway, this is the most complicated part of the Host code. There are seven
44 * parts to this:
e1e72965
RR
45 * (i) Looking up a page table entry when the Guest faults,
46 * (ii) Making sure the Guest stack is mapped,
47 * (iii) Setting up a page table entry when the Guest tells us one has changed,
bff672e6 48 * (iv) Switching page tables,
e1e72965 49 * (v) Flushing (throwing away) page tables,
bff672e6
RR
50 * (vi) Mapping the Switcher when the Guest is about to run,
51 * (vii) Setting up the page tables initially.
2e04ef76 52:*/
bff672e6 53
2e04ef76 54/*
a91d74a3
RR
55 * The Switcher uses the complete top PTE page. That's 1024 PTE entries (4MB)
56 * or 512 PTE entries with PAE (2MB).
2e04ef76 57 */
df29f43e 58#define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
d7e28ffe 59
2e04ef76
RR
60/*
61 * For PAE we need the PMD index as well. We use the last 2MB, so we
62 * will need the last pmd entry of the last pmd page.
63 */
acdd0b62 64#ifdef CONFIG_X86_PAE
acdd0b62
MZ
65#define CHECK_GPGD_MASK _PAGE_PRESENT
66#else
acdd0b62
MZ
67#define CHECK_GPGD_MASK _PAGE_TABLE
68#endif
69
2e04ef76
RR
70/*H:320
71 * The page table code is curly enough to need helper functions to keep it
a91d74a3 72 * clear and clean. The kernel itself provides many of them; one advantage
e3d1848f 73 * of insisting that the Guest and Host use the same CONFIG_X86_PAE setting.
bff672e6 74 *
df29f43e 75 * There are two functions which return pointers to the shadow (aka "real")
bff672e6
RR
76 * page tables.
77 *
78 * spgd_addr() takes the virtual address and returns a pointer to the top-level
e1e72965
RR
79 * page directory entry (PGD) for that address. Since we keep track of several
80 * page tables, the "i" argument tells us which one we're interested in (it's
2e04ef76
RR
81 * usually the current one).
82 */
382ac6b3 83static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
d7e28ffe 84{
df29f43e 85 unsigned int index = pgd_index(vaddr);
d7e28ffe 86
bff672e6 87 /* Return a pointer index'th pgd entry for the i'th page table. */
382ac6b3 88 return &cpu->lg->pgdirs[i].pgdir[index];
d7e28ffe
RR
89}
90
acdd0b62 91#ifdef CONFIG_X86_PAE
2e04ef76
RR
92/*
93 * This routine then takes the PGD entry given above, which contains the
acdd0b62 94 * address of the PMD page. It then returns a pointer to the PMD entry for the
2e04ef76
RR
95 * given address.
96 */
acdd0b62
MZ
97static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
98{
99 unsigned int index = pmd_index(vaddr);
100 pmd_t *page;
101
acdd0b62
MZ
102 /* You should never call this if the PGD entry wasn't valid */
103 BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
104 page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
105
106 return &page[index];
107}
108#endif
109
2e04ef76
RR
110/*
111 * This routine then takes the page directory entry returned above, which
e1e72965 112 * contains the address of the page table entry (PTE) page. It then returns a
2e04ef76
RR
113 * pointer to the PTE entry for the given address.
114 */
acdd0b62 115static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
d7e28ffe 116{
acdd0b62
MZ
117#ifdef CONFIG_X86_PAE
118 pmd_t *pmd = spmd_addr(cpu, spgd, vaddr);
119 pte_t *page = __va(pmd_pfn(*pmd) << PAGE_SHIFT);
120
121 /* You should never call this if the PMD entry wasn't valid */
122 BUG_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT));
123#else
df29f43e 124 pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
bff672e6 125 /* You should never call this if the PGD entry wasn't valid */
df29f43e 126 BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
acdd0b62
MZ
127#endif
128
90603d15 129 return &page[pte_index(vaddr)];
d7e28ffe
RR
130}
131
2e04ef76 132/*
9f54288d 133 * These functions are just like the above, except they access the Guest
2e04ef76
RR
134 * page tables. Hence they return a Guest address.
135 */
1713608f 136static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
d7e28ffe 137{
df29f43e 138 unsigned int index = vaddr >> (PGDIR_SHIFT);
1713608f 139 return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
d7e28ffe
RR
140}
141
acdd0b62 142#ifdef CONFIG_X86_PAE
a91d74a3 143/* Follow the PGD to the PMD. */
acdd0b62 144static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr)
d7e28ffe 145{
df29f43e
MZ
146 unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
147 BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
acdd0b62
MZ
148 return gpage + pmd_index(vaddr) * sizeof(pmd_t);
149}
acdd0b62 150
a91d74a3 151/* Follow the PMD to the PTE. */
acdd0b62 152static unsigned long gpte_addr(struct lg_cpu *cpu,
92b4d8df 153 pmd_t gpmd, unsigned long vaddr)
acdd0b62 154{
92b4d8df 155 unsigned long gpage = pmd_pfn(gpmd) << PAGE_SHIFT;
acdd0b62 156
acdd0b62 157 BUG_ON(!(pmd_flags(gpmd) & _PAGE_PRESENT));
92b4d8df
RR
158 return gpage + pte_index(vaddr) * sizeof(pte_t);
159}
acdd0b62 160#else
a91d74a3 161/* Follow the PGD to the PTE (no mid-level for !PAE). */
92b4d8df
RR
162static unsigned long gpte_addr(struct lg_cpu *cpu,
163 pgd_t gpgd, unsigned long vaddr)
164{
165 unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
166
167 BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
90603d15 168 return gpage + pte_index(vaddr) * sizeof(pte_t);
d7e28ffe 169}
92b4d8df 170#endif
a6bd8e13
RR
171/*:*/
172
9f54288d 173/*M:007
2e04ef76
RR
174 * get_pfn is slow: we could probably try to grab batches of pages here as
175 * an optimization (ie. pre-faulting).
176:*/
d7e28ffe 177
2e04ef76
RR
178/*H:350
179 * This routine takes a page number given by the Guest and converts it to
bff672e6
RR
180 * an actual, physical page number. It can fail for several reasons: the
181 * virtual address might not be mapped by the Launcher, the write flag is set
182 * and the page is read-only, or the write flag was set and the page was
183 * shared so had to be copied, but we ran out of memory.
184 *
a6bd8e13 185 * This holds a reference to the page, so release_pte() is careful to put that
2e04ef76
RR
186 * back.
187 */
d7e28ffe
RR
188static unsigned long get_pfn(unsigned long virtpfn, int write)
189{
190 struct page *page;
71a3f4ed
RR
191
192 /* gup me one page at this address please! */
193 if (get_user_pages_fast(virtpfn << PAGE_SHIFT, 1, write, &page) == 1)
194 return page_to_pfn(page);
195
bff672e6 196 /* This value indicates failure. */
71a3f4ed 197 return -1UL;
d7e28ffe
RR
198}
199
2e04ef76
RR
200/*H:340
201 * Converting a Guest page table entry to a shadow (ie. real) page table
bff672e6
RR
202 * entry can be a little tricky. The flags are (almost) the same, but the
203 * Guest PTE contains a virtual page number: the CPU needs the real page
2e04ef76
RR
204 * number.
205 */
382ac6b3 206static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write)
d7e28ffe 207{
df29f43e 208 unsigned long pfn, base, flags;
d7e28ffe 209
2e04ef76
RR
210 /*
211 * The Guest sets the global flag, because it thinks that it is using
bff672e6
RR
212 * PGE. We only told it to use PGE so it would tell us whether it was
213 * flushing a kernel mapping or a userspace mapping. We don't actually
2e04ef76
RR
214 * use the global bit, so throw it away.
215 */
df29f43e 216 flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
bff672e6 217
3c6b5bfa 218 /* The Guest's pages are offset inside the Launcher. */
382ac6b3 219 base = (unsigned long)cpu->lg->mem_base / PAGE_SIZE;
3c6b5bfa 220
2e04ef76
RR
221 /*
222 * We need a temporary "unsigned long" variable to hold the answer from
bff672e6
RR
223 * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
224 * fit in spte.pfn. get_pfn() finds the real physical number of the
2e04ef76
RR
225 * page, given the virtual number.
226 */
df29f43e 227 pfn = get_pfn(base + pte_pfn(gpte), write);
d7e28ffe 228 if (pfn == -1UL) {
382ac6b3 229 kill_guest(cpu, "failed to get page %lu", pte_pfn(gpte));
2e04ef76
RR
230 /*
231 * When we destroy the Guest, we'll go through the shadow page
bff672e6 232 * tables and release_pte() them. Make sure we don't think
2e04ef76
RR
233 * this one is valid!
234 */
df29f43e 235 flags = 0;
d7e28ffe 236 }
df29f43e
MZ
237 /* Now we assemble our shadow PTE from the page number and flags. */
238 return pfn_pte(pfn, __pgprot(flags));
d7e28ffe
RR
239}
240
bff672e6 241/*H:460 And to complete the chain, release_pte() looks like this: */
df29f43e 242static void release_pte(pte_t pte)
d7e28ffe 243{
2e04ef76
RR
244 /*
245 * Remember that get_user_pages_fast() took a reference to the page, in
246 * get_pfn()? We have to put it back now.
247 */
df29f43e 248 if (pte_flags(pte) & _PAGE_PRESENT)
90603d15 249 put_page(pte_page(pte));
d7e28ffe 250}
bff672e6 251/*:*/
d7e28ffe 252
e1d12606 253static bool check_gpte(struct lg_cpu *cpu, pte_t gpte)
d7e28ffe 254{
31f4b46e 255 if ((pte_flags(gpte) & _PAGE_PSE) ||
e1d12606 256 pte_pfn(gpte) >= cpu->lg->pfn_limit) {
382ac6b3 257 kill_guest(cpu, "bad page table entry");
e1d12606
RR
258 return false;
259 }
260 return true;
d7e28ffe
RR
261}
262
e1d12606 263static bool check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
d7e28ffe 264{
acdd0b62 265 if ((pgd_flags(gpgd) & ~CHECK_GPGD_MASK) ||
e1d12606 266 (pgd_pfn(gpgd) >= cpu->lg->pfn_limit)) {
382ac6b3 267 kill_guest(cpu, "bad page directory entry");
e1d12606
RR
268 return false;
269 }
270 return true;
d7e28ffe
RR
271}
272
acdd0b62 273#ifdef CONFIG_X86_PAE
e1d12606 274static bool check_gpmd(struct lg_cpu *cpu, pmd_t gpmd)
acdd0b62
MZ
275{
276 if ((pmd_flags(gpmd) & ~_PAGE_TABLE) ||
e1d12606 277 (pmd_pfn(gpmd) >= cpu->lg->pfn_limit)) {
acdd0b62 278 kill_guest(cpu, "bad page middle directory entry");
e1d12606
RR
279 return false;
280 }
281 return true;
acdd0b62
MZ
282}
283#endif
284
17427e08
RR
285/*H:331
286 * This is the core routine to walk the shadow page tables and find the page
287 * table entry for a specific address.
bff672e6 288 *
17427e08
RR
289 * If allocate is set, then we allocate any missing levels, setting the flags
290 * on the new page directory and mid-level directories using the arguments
291 * (which are copied from the Guest's page table entries).
2e04ef76 292 */
17427e08
RR
293static pte_t *find_spte(struct lg_cpu *cpu, unsigned long vaddr, bool allocate,
294 int pgd_flags, int pmd_flags)
d7e28ffe 295{
df29f43e 296 pgd_t *spgd;
a91d74a3 297 /* Mid level for PAE. */
acdd0b62
MZ
298#ifdef CONFIG_X86_PAE
299 pmd_t *spmd;
acdd0b62
MZ
300#endif
301
17427e08 302 /* Get top level entry. */
382ac6b3 303 spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
df29f43e 304 if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
bff672e6 305 /* No shadow entry: allocate a new shadow PTE page. */
17427e08
RR
306 unsigned long ptepage;
307
308 /* If they didn't want us to allocate anything, stop. */
309 if (!allocate)
310 return NULL;
311
312 ptepage = get_zeroed_page(GFP_KERNEL);
2e04ef76
RR
313 /*
314 * This is not really the Guest's fault, but killing it is
315 * simple for this corner case.
316 */
d7e28ffe 317 if (!ptepage) {
382ac6b3 318 kill_guest(cpu, "out of memory allocating pte page");
17427e08 319 return NULL;
d7e28ffe 320 }
2e04ef76
RR
321 /*
322 * And we copy the flags to the shadow PGD entry. The page
323 * number in the shadow PGD is the page we just allocated.
324 */
17427e08 325 set_pgd(spgd, __pgd(__pa(ptepage) | pgd_flags));
d7e28ffe
RR
326 }
327
17427e08
RR
328 /*
329 * Intel's Physical Address Extension actually uses three levels of
330 * page tables, so we need to look in the mid-level.
331 */
acdd0b62 332#ifdef CONFIG_X86_PAE
17427e08 333 /* Now look at the mid-level shadow entry. */
acdd0b62
MZ
334 spmd = spmd_addr(cpu, *spgd, vaddr);
335
336 if (!(pmd_flags(*spmd) & _PAGE_PRESENT)) {
337 /* No shadow entry: allocate a new shadow PTE page. */
17427e08
RR
338 unsigned long ptepage;
339
340 /* If they didn't want us to allocate anything, stop. */
341 if (!allocate)
342 return NULL;
343
344 ptepage = get_zeroed_page(GFP_KERNEL);
acdd0b62 345
2e04ef76
RR
346 /*
347 * This is not really the Guest's fault, but killing it is
348 * simple for this corner case.
349 */
acdd0b62 350 if (!ptepage) {
17427e08
RR
351 kill_guest(cpu, "out of memory allocating pmd page");
352 return NULL;
acdd0b62
MZ
353 }
354
2e04ef76
RR
355 /*
356 * And we copy the flags to the shadow PMD entry. The page
357 * number in the shadow PMD is the page we just allocated.
358 */
17427e08
RR
359 set_pmd(spmd, __pmd(__pa(ptepage) | pmd_flags));
360 }
361#endif
362
363 /* Get the pointer to the shadow PTE entry we're going to set. */
364 return spte_addr(cpu, *spgd, vaddr);
365}
366
bff672e6 367/*H:330
e1e72965 368 * (i) Looking up a page table entry when the Guest faults.
bff672e6
RR
369 *
370 * We saw this call in run_guest(): when we see a page fault in the Guest, we
371 * come here. That's because we only set up the shadow page tables lazily as
372 * they're needed, so we get page faults all the time and quietly fix them up
373 * and return to the Guest without it knowing.
374 *
375 * If we fixed up the fault (ie. we mapped the address), this routine returns
2e04ef76
RR
376 * true. Otherwise, it was a real fault and we need to tell the Guest.
377 */
df1693ab 378bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
d7e28ffe 379{
d7e28ffe 380 unsigned long gpte_ptr;
df29f43e
MZ
381 pte_t gpte;
382 pte_t *spte;
acdd0b62 383 pmd_t gpmd;
17427e08 384 pgd_t gpgd;
acdd0b62 385
68a644d7
RR
386 /* We never demand page the Switcher, so trying is a mistake. */
387 if (vaddr >= switcher_addr)
388 return false;
389
bff672e6 390 /* First step: get the top-level Guest page table entry. */
5dea1c88
RR
391 if (unlikely(cpu->linear_pages)) {
392 /* Faking up a linear mapping. */
393 gpgd = __pgd(CHECK_GPGD_MASK);
394 } else {
395 gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
396 /* Toplevel not present? We can't map it in. */
397 if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
398 return false;
d7e28ffe 399
17427e08
RR
400 /*
401 * This kills the Guest if it has weird flags or tries to
402 * refer to a "physical" address outside the bounds.
2e04ef76 403 */
e1d12606
RR
404 if (!check_gpgd(cpu, gpgd))
405 return false;
d7e28ffe
RR
406 }
407
17427e08
RR
408 /* This "mid-level" entry is only used for non-linear, PAE mode. */
409 gpmd = __pmd(_PAGE_TABLE);
410
acdd0b62 411#ifdef CONFIG_X86_PAE
17427e08 412 if (likely(!cpu->linear_pages)) {
5dea1c88
RR
413 gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
414 /* Middle level not present? We can't map it in. */
415 if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
416 return false;
acdd0b62 417
17427e08
RR
418 /*
419 * This kills the Guest if it has weird flags or tries to
420 * refer to a "physical" address outside the bounds.
2e04ef76 421 */
e1d12606
RR
422 if (!check_gpmd(cpu, gpmd))
423 return false;
acdd0b62 424 }
92b4d8df 425
2e04ef76
RR
426 /*
427 * OK, now we look at the lower level in the Guest page table: keep its
428 * address, because we might update it later.
429 */
92b4d8df
RR
430 gpte_ptr = gpte_addr(cpu, gpmd, vaddr);
431#else
2e04ef76
RR
432 /*
433 * OK, now we look at the lower level in the Guest page table: keep its
434 * address, because we might update it later.
435 */
acdd0b62 436 gpte_ptr = gpte_addr(cpu, gpgd, vaddr);
92b4d8df 437#endif
a91d74a3 438
5dea1c88
RR
439 if (unlikely(cpu->linear_pages)) {
440 /* Linear? Make up a PTE which points to same page. */
441 gpte = __pte((vaddr & PAGE_MASK) | _PAGE_RW | _PAGE_PRESENT);
442 } else {
443 /* Read the actual PTE value. */
444 gpte = lgread(cpu, gpte_ptr, pte_t);
445 }
d7e28ffe 446
bff672e6 447 /* If this page isn't in the Guest page tables, we can't page it in. */
df29f43e 448 if (!(pte_flags(gpte) & _PAGE_PRESENT))
df1693ab 449 return false;
d7e28ffe 450
2e04ef76
RR
451 /*
452 * Check they're not trying to write to a page the Guest wants
453 * read-only (bit 2 of errcode == write).
454 */
df29f43e 455 if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
df1693ab 456 return false;
d7e28ffe 457
e1e72965 458 /* User access to a kernel-only page? (bit 3 == user access) */
df29f43e 459 if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
df1693ab 460 return false;
d7e28ffe 461
2e04ef76
RR
462 /*
463 * Check that the Guest PTE flags are OK, and the page number is below
464 * the pfn_limit (ie. not mapping the Launcher binary).
465 */
e1d12606
RR
466 if (!check_gpte(cpu, gpte))
467 return false;
e1e72965 468
bff672e6 469 /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
df29f43e 470 gpte = pte_mkyoung(gpte);
d7e28ffe 471 if (errcode & 2)
df29f43e 472 gpte = pte_mkdirty(gpte);
d7e28ffe 473
bff672e6 474 /* Get the pointer to the shadow PTE entry we're going to set. */
17427e08
RR
475 spte = find_spte(cpu, vaddr, true, pgd_flags(gpgd), pmd_flags(gpmd));
476 if (!spte)
477 return false;
2e04ef76
RR
478
479 /*
480 * If there was a valid shadow PTE entry here before, we release it.
481 * This can happen with a write to a previously read-only entry.
482 */
d7e28ffe
RR
483 release_pte(*spte);
484
2e04ef76
RR
485 /*
486 * If this is a write, we insist that the Guest page is writable (the
487 * final arg to gpte_to_spte()).
488 */
df29f43e 489 if (pte_dirty(gpte))
382ac6b3 490 *spte = gpte_to_spte(cpu, gpte, 1);
df29f43e 491 else
2e04ef76
RR
492 /*
493 * If this is a read, don't set the "writable" bit in the page
bff672e6 494 * table entry, even if the Guest says it's writable. That way
e1e72965 495 * we will come back here when a write does actually occur, so
2e04ef76
RR
496 * we can update the Guest's _PAGE_DIRTY flag.
497 */
4c1ea3dd 498 set_pte(spte, gpte_to_spte(cpu, pte_wrprotect(gpte), 0));
d7e28ffe 499
2e04ef76
RR
500 /*
501 * Finally, we write the Guest PTE entry back: we've set the
502 * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags.
503 */
5dea1c88
RR
504 if (likely(!cpu->linear_pages))
505 lgwrite(cpu, gpte_ptr, pte_t, gpte);
bff672e6 506
2e04ef76
RR
507 /*
508 * The fault is fixed, the page table is populated, the mapping
e1e72965
RR
509 * manipulated, the result returned and the code complete. A small
510 * delay and a trace of alliteration are the only indications the Guest
2e04ef76
RR
511 * has that a page fault occurred at all.
512 */
df1693ab 513 return true;
d7e28ffe
RR
514}
515
e1e72965
RR
516/*H:360
517 * (ii) Making sure the Guest stack is mapped.
bff672e6 518 *
e1e72965
RR
519 * Remember that direct traps into the Guest need a mapped Guest kernel stack.
520 * pin_stack_pages() calls us here: we could simply call demand_page(), but as
521 * we've seen that logic is quite long, and usually the stack pages are already
522 * mapped, so it's overkill.
bff672e6
RR
523 *
524 * This is a quick version which answers the question: is this virtual address
2e04ef76
RR
525 * mapped by the shadow page tables, and is it writable?
526 */
df1693ab 527static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr)
d7e28ffe 528{
17427e08 529 pte_t *spte;
d7e28ffe
RR
530 unsigned long flags;
531
68a644d7
RR
532 /* You can't put your stack in the Switcher! */
533 if (vaddr >= switcher_addr)
df1693ab 534 return false;
d7e28ffe 535
17427e08
RR
536 /* If there's no shadow PTE, it's not writable. */
537 spte = find_spte(cpu, vaddr, false, 0, 0);
538 if (!spte)
acdd0b62 539 return false;
acdd0b62 540
2e04ef76
RR
541 /*
542 * Check the flags on the pte entry itself: it must be present and
543 * writable.
544 */
17427e08 545 flags = pte_flags(*spte);
d7e28ffe
RR
546 return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
547}
548
2e04ef76
RR
549/*
550 * So, when pin_stack_pages() asks us to pin a page, we check if it's already
bff672e6 551 * in the page tables, and if not, we call demand_page() with error code 2
2e04ef76
RR
552 * (meaning "write").
553 */
1713608f 554void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
d7e28ffe 555{
1713608f 556 if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2))
382ac6b3 557 kill_guest(cpu, "bad stack page %#lx", vaddr);
d7e28ffe 558}
a91d74a3 559/*:*/
d7e28ffe 560
acdd0b62 561#ifdef CONFIG_X86_PAE
63d9c273 562static void __intentional_overflow(-1) release_pmd(pmd_t *spmd)
acdd0b62
MZ
563{
564 /* If the entry's not present, there's nothing to release. */
565 if (pmd_flags(*spmd) & _PAGE_PRESENT) {
566 unsigned int i;
567 pte_t *ptepage = __va(pmd_pfn(*spmd) << PAGE_SHIFT);
568 /* For each entry in the page, we might need to release it. */
569 for (i = 0; i < PTRS_PER_PTE; i++)
570 release_pte(ptepage[i]);
571 /* Now we can free the page of PTEs */
572 free_page((long)ptepage);
573 /* And zero out the PMD entry so we never release it twice. */
4c1ea3dd 574 set_pmd(spmd, __pmd(0));
acdd0b62
MZ
575 }
576}
577
578static void release_pgd(pgd_t *spgd)
579{
580 /* If the entry's not present, there's nothing to release. */
581 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
582 unsigned int i;
583 pmd_t *pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
584
585 for (i = 0; i < PTRS_PER_PMD; i++)
586 release_pmd(&pmdpage[i]);
587
588 /* Now we can free the page of PMDs */
589 free_page((long)pmdpage);
590 /* And zero out the PGD entry so we never release it twice. */
591 set_pgd(spgd, __pgd(0));
592 }
593}
594
595#else /* !CONFIG_X86_PAE */
a91d74a3
RR
596/*H:450
597 * If we chase down the release_pgd() code, the non-PAE version looks like
598 * this. The PAE version is almost identical, but instead of calling
599 * release_pte it calls release_pmd(), which looks much like this.
600 */
90603d15 601static void release_pgd(pgd_t *spgd)
d7e28ffe 602{
bff672e6 603 /* If the entry's not present, there's nothing to release. */
df29f43e 604 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
d7e28ffe 605 unsigned int i;
2e04ef76
RR
606 /*
607 * Converting the pfn to find the actual PTE page is easy: turn
bff672e6 608 * the page number into a physical address, then convert to a
2e04ef76
RR
609 * virtual address (easy for kernel pages like this one).
610 */
df29f43e 611 pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
bff672e6 612 /* For each entry in the page, we might need to release it. */
df29f43e 613 for (i = 0; i < PTRS_PER_PTE; i++)
d7e28ffe 614 release_pte(ptepage[i]);
bff672e6 615 /* Now we can free the page of PTEs */
d7e28ffe 616 free_page((long)ptepage);
e1e72965 617 /* And zero out the PGD entry so we never release it twice. */
df29f43e 618 *spgd = __pgd(0);
d7e28ffe
RR
619 }
620}
acdd0b62 621#endif
2e04ef76
RR
622
623/*H:445
624 * We saw flush_user_mappings() twice: once from the flush_user_mappings()
e1e72965 625 * hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
2e04ef76
RR
626 * It simply releases every PTE page from 0 up to the Guest's kernel address.
627 */
d7e28ffe
RR
628static void flush_user_mappings(struct lguest *lg, int idx)
629{
630 unsigned int i;
bff672e6 631 /* Release every pgd entry up to the kernel's address. */
47436aa4 632 for (i = 0; i < pgd_index(lg->kernel_address); i++)
90603d15 633 release_pgd(lg->pgdirs[idx].pgdir + i);
d7e28ffe
RR
634}
635
2e04ef76
RR
636/*H:440
637 * (v) Flushing (throwing away) page tables,
e1e72965
RR
638 *
639 * The Guest has a hypercall to throw away the page tables: it's used when a
2e04ef76
RR
640 * large number of mappings have been changed.
641 */
1713608f 642void guest_pagetable_flush_user(struct lg_cpu *cpu)
d7e28ffe 643{
bff672e6 644 /* Drop the userspace part of the current page table. */
1713608f 645 flush_user_mappings(cpu->lg, cpu->cpu_pgd);
d7e28ffe 646}
bff672e6 647/*:*/
d7e28ffe 648
47436aa4 649/* We walk down the guest page tables to get a guest-physical address */
1713608f 650unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
47436aa4
RR
651{
652 pgd_t gpgd;
653 pte_t gpte;
acdd0b62
MZ
654#ifdef CONFIG_X86_PAE
655 pmd_t gpmd;
656#endif
5dea1c88
RR
657
658 /* Still not set up? Just map 1:1. */
659 if (unlikely(cpu->linear_pages))
660 return vaddr;
661
47436aa4 662 /* First step: get the top-level Guest page table entry. */
382ac6b3 663 gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
47436aa4 664 /* Toplevel not present? We can't map it in. */
6afbdd05 665 if (!(pgd_flags(gpgd) & _PAGE_PRESENT)) {
382ac6b3 666 kill_guest(cpu, "Bad address %#lx", vaddr);
6afbdd05
RR
667 return -1UL;
668 }
47436aa4 669
acdd0b62
MZ
670#ifdef CONFIG_X86_PAE
671 gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
4623c28e 672 if (!(pmd_flags(gpmd) & _PAGE_PRESENT)) {
acdd0b62 673 kill_guest(cpu, "Bad address %#lx", vaddr);
4623c28e
RR
674 return -1UL;
675 }
92b4d8df
RR
676 gpte = lgread(cpu, gpte_addr(cpu, gpmd, vaddr), pte_t);
677#else
acdd0b62 678 gpte = lgread(cpu, gpte_addr(cpu, gpgd, vaddr), pte_t);
92b4d8df 679#endif
47436aa4 680 if (!(pte_flags(gpte) & _PAGE_PRESENT))
382ac6b3 681 kill_guest(cpu, "Bad address %#lx", vaddr);
47436aa4
RR
682
683 return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
684}
685
2e04ef76
RR
686/*
687 * We keep several page tables. This is a simple routine to find the page
bff672e6 688 * table (if any) corresponding to this top-level address the Guest has given
2e04ef76
RR
689 * us.
690 */
d7e28ffe
RR
691static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
692{
693 unsigned int i;
694 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
4357bd94 695 if (lg->pgdirs[i].pgdir && lg->pgdirs[i].gpgdir == pgtable)
d7e28ffe
RR
696 break;
697 return i;
698}
699
2e04ef76
RR
700/*H:435
701 * And this is us, creating the new page directory. If we really do
bff672e6 702 * allocate a new one (and so the kernel parts are not there), we set
2e04ef76
RR
703 * blank_pgdir.
704 */
1713608f 705static unsigned int new_pgdir(struct lg_cpu *cpu,
ee3db0f2 706 unsigned long gpgdir,
d7e28ffe
RR
707 int *blank_pgdir)
708{
709 unsigned int next;
710
2e04ef76
RR
711 /*
712 * We pick one entry at random to throw out. Choosing the Least
713 * Recently Used might be better, but this is easy.
714 */
10fdc141 715 next = prandom_u32() % ARRAY_SIZE(cpu->lg->pgdirs);
bff672e6 716 /* If it's never been allocated at all before, try now. */
382ac6b3
GOC
717 if (!cpu->lg->pgdirs[next].pgdir) {
718 cpu->lg->pgdirs[next].pgdir =
719 (pgd_t *)get_zeroed_page(GFP_KERNEL);
bff672e6 720 /* If the allocation fails, just keep using the one we have */
382ac6b3 721 if (!cpu->lg->pgdirs[next].pgdir)
1713608f 722 next = cpu->cpu_pgd;
acdd0b62 723 else {
2e04ef76 724 /*
3412b6ae
RR
725 * This is a blank page, so there are no kernel
726 * mappings: caller must map the stack!
2e04ef76 727 */
d7e28ffe 728 *blank_pgdir = 1;
acdd0b62 729 }
d7e28ffe 730 }
bff672e6 731 /* Record which Guest toplevel this shadows. */
382ac6b3 732 cpu->lg->pgdirs[next].gpgdir = gpgdir;
d7e28ffe 733 /* Release all the non-kernel mappings. */
382ac6b3 734 flush_user_mappings(cpu->lg, next);
d7e28ffe 735
6d0cda93
RR
736 /* This hasn't run on any CPU at all. */
737 cpu->lg->pgdirs[next].last_host_cpu = -1;
738
d7e28ffe
RR
739 return next;
740}
741
3412b6ae
RR
742/*H:501
743 * We do need the Switcher code mapped at all times, so we allocate that
86935fc4
RR
744 * part of the Guest page table here. We map the Switcher code immediately,
745 * but defer mapping of the guest register page and IDT/LDT etc page until
746 * just before we run the guest in map_switcher_in_guest().
747 *
748 * We *could* do this setup in map_switcher_in_guest(), but at that point
749 * we've interrupts disabled, and allocating pages like that is fraught: we
750 * can't sleep if we need to free up some memory.
3412b6ae
RR
751 */
752static bool allocate_switcher_mapping(struct lg_cpu *cpu)
753{
754 int i;
755
756 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
86935fc4
RR
757 pte_t *pte = find_spte(cpu, switcher_addr + i * PAGE_SIZE, true,
758 CHECK_GPGD_MASK, _PAGE_TABLE);
759 if (!pte)
3412b6ae 760 return false;
86935fc4
RR
761
762 /*
763 * Map the switcher page if not already there. It might
764 * already be there because we call allocate_switcher_mapping()
765 * in guest_set_pgd() just in case it did discard our Switcher
766 * mapping, but it probably didn't.
767 */
768 if (i == 0 && !(pte_flags(*pte) & _PAGE_PRESENT)) {
769 /* Get a reference to the Switcher page. */
770 get_page(lg_switcher_pages[0]);
771 /* Create a read-only, exectuable, kernel-style PTE */
772 set_pte(pte,
773 mk_pte(lg_switcher_pages[0], PAGE_KERNEL_RX));
774 }
3412b6ae 775 }
86935fc4 776 cpu->lg->pgdirs[cpu->cpu_pgd].switcher_mapped = true;
3412b6ae
RR
777 return true;
778}
779
2e04ef76
RR
780/*H:470
781 * Finally, a routine which throws away everything: all PGD entries in all
e1e72965 782 * the shadow page tables, including the Guest's kernel mappings. This is used
2e04ef76
RR
783 * when we destroy the Guest.
784 */
d7e28ffe
RR
785static void release_all_pagetables(struct lguest *lg)
786{
787 unsigned int i, j;
788
bff672e6 789 /* Every shadow pagetable this Guest has */
3412b6ae
RR
790 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) {
791 if (!lg->pgdirs[i].pgdir)
792 continue;
acdd0b62 793
3412b6ae
RR
794 /* Every PGD entry. */
795 for (j = 0; j < PTRS_PER_PGD; j++)
796 release_pgd(lg->pgdirs[i].pgdir + j);
86935fc4 797 lg->pgdirs[i].switcher_mapped = false;
6d0cda93 798 lg->pgdirs[i].last_host_cpu = -1;
3412b6ae 799 }
d7e28ffe
RR
800}
801
2e04ef76
RR
802/*
803 * We also throw away everything when a Guest tells us it's changed a kernel
bff672e6 804 * mapping. Since kernel mappings are in every page table, it's easiest to
e1e72965 805 * throw them all away. This traps the Guest in amber for a while as
2e04ef76
RR
806 * everything faults back in, but it's rare.
807 */
4665ac8e 808void guest_pagetable_clear_all(struct lg_cpu *cpu)
d7e28ffe 809{
4665ac8e 810 release_all_pagetables(cpu->lg);
bff672e6 811 /* We need the Guest kernel stack mapped again. */
4665ac8e 812 pin_stack_pages(cpu);
3412b6ae
RR
813 /* And we need Switcher allocated. */
814 if (!allocate_switcher_mapping(cpu))
815 kill_guest(cpu, "Cannot populate switcher mapping");
d7e28ffe 816}
5dea1c88
RR
817
818/*H:430
819 * (iv) Switching page tables
820 *
821 * Now we've seen all the page table setting and manipulation, let's see
822 * what happens when the Guest changes page tables (ie. changes the top-level
823 * pgdir). This occurs on almost every context switch.
824 */
825void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
826{
827 int newpgdir, repin = 0;
828
829 /*
830 * The very first time they call this, we're actually running without
831 * any page tables; we've been making it up. Throw them away now.
832 */
833 if (unlikely(cpu->linear_pages)) {
834 release_all_pagetables(cpu->lg);
835 cpu->linear_pages = false;
836 /* Force allocation of a new pgdir. */
837 newpgdir = ARRAY_SIZE(cpu->lg->pgdirs);
838 } else {
839 /* Look to see if we have this one already. */
840 newpgdir = find_pgdir(cpu->lg, pgtable);
841 }
842
843 /*
844 * If not, we allocate or mug an existing one: if it's a fresh one,
845 * repin gets set to 1.
846 */
847 if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs))
848 newpgdir = new_pgdir(cpu, pgtable, &repin);
849 /* Change the current pgd index to the new one. */
850 cpu->cpu_pgd = newpgdir;
3412b6ae
RR
851 /*
852 * If it was completely blank, we map in the Guest kernel stack and
853 * the Switcher.
854 */
5dea1c88
RR
855 if (repin)
856 pin_stack_pages(cpu);
3412b6ae 857
86935fc4
RR
858 if (!cpu->lg->pgdirs[cpu->cpu_pgd].switcher_mapped) {
859 if (!allocate_switcher_mapping(cpu))
860 kill_guest(cpu, "Cannot populate switcher mapping");
861 }
5dea1c88 862}
e1e72965 863/*:*/
2e04ef76
RR
864
865/*M:009
866 * Since we throw away all mappings when a kernel mapping changes, our
e1e72965
RR
867 * performance sucks for guests using highmem. In fact, a guest with
868 * PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is
869 * usually slower than a Guest with less memory.
870 *
871 * This, of course, cannot be fixed. It would take some kind of... well, I
2e04ef76
RR
872 * don't know, but the term "puissant code-fu" comes to mind.
873:*/
d7e28ffe 874
2e04ef76
RR
875/*H:420
876 * This is the routine which actually sets the page table entry for then
bff672e6
RR
877 * "idx"'th shadow page table.
878 *
879 * Normally, we can just throw out the old entry and replace it with 0: if they
880 * use it demand_page() will put the new entry in. We need to do this anyway:
881 * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
882 * is read from, and _PAGE_DIRTY when it's written to.
883 *
884 * But Avi Kivity pointed out that most Operating Systems (Linux included) set
885 * these bits on PTEs immediately anyway. This is done to save the CPU from
886 * having to update them, but it helps us the same way: if they set
887 * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
888 * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
889 */
179e0963 890static void __guest_set_pte(struct lg_cpu *cpu, int idx,
df29f43e 891 unsigned long vaddr, pte_t gpte)
d7e28ffe 892{
e1e72965 893 /* Look up the matching shadow page directory entry. */
382ac6b3 894 pgd_t *spgd = spgd_addr(cpu, idx, vaddr);
acdd0b62
MZ
895#ifdef CONFIG_X86_PAE
896 pmd_t *spmd;
897#endif
bff672e6
RR
898
899 /* If the top level isn't present, there's no entry to update. */
df29f43e 900 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
acdd0b62
MZ
901#ifdef CONFIG_X86_PAE
902 spmd = spmd_addr(cpu, *spgd, vaddr);
903 if (pmd_flags(*spmd) & _PAGE_PRESENT) {
904#endif
2e04ef76 905 /* Otherwise, start by releasing the existing entry. */
acdd0b62
MZ
906 pte_t *spte = spte_addr(cpu, *spgd, vaddr);
907 release_pte(*spte);
908
2e04ef76
RR
909 /*
910 * If they're setting this entry as dirty or accessed,
911 * we might as well put that entry they've given us in
912 * now. This shaves 10% off a copy-on-write
913 * micro-benchmark.
914 */
acdd0b62 915 if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
e1d12606
RR
916 if (!check_gpte(cpu, gpte))
917 return;
4c1ea3dd
RR
918 set_pte(spte,
919 gpte_to_spte(cpu, gpte,
acdd0b62 920 pte_flags(gpte) & _PAGE_DIRTY));
2e04ef76
RR
921 } else {
922 /*
923 * Otherwise kill it and we can demand_page()
924 * it in later.
925 */
4c1ea3dd 926 set_pte(spte, __pte(0));
2e04ef76 927 }
acdd0b62
MZ
928#ifdef CONFIG_X86_PAE
929 }
930#endif
d7e28ffe
RR
931 }
932}
933
2e04ef76
RR
934/*H:410
935 * Updating a PTE entry is a little trickier.
bff672e6
RR
936 *
937 * We keep track of several different page tables (the Guest uses one for each
938 * process, so it makes sense to cache at least a few). Each of these have
939 * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
940 * all processes. So when the page table above that address changes, we update
941 * all the page tables, not just the current one. This is rare.
942 *
a6bd8e13 943 * The benefit is that when we have to track a new page table, we can keep all
2e04ef76
RR
944 * the kernel mappings. This speeds up context switch immensely.
945 */
382ac6b3 946void guest_set_pte(struct lg_cpu *cpu,
ee3db0f2 947 unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
d7e28ffe 948{
68a644d7
RR
949 /* We don't let you remap the Switcher; we need it to get back! */
950 if (vaddr >= switcher_addr) {
951 kill_guest(cpu, "attempt to set pte into Switcher pages");
952 return;
953 }
954
2e04ef76
RR
955 /*
956 * Kernel mappings must be changed on all top levels. Slow, but doesn't
957 * happen often.
958 */
382ac6b3 959 if (vaddr >= cpu->lg->kernel_address) {
d7e28ffe 960 unsigned int i;
382ac6b3
GOC
961 for (i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++)
962 if (cpu->lg->pgdirs[i].pgdir)
179e0963 963 __guest_set_pte(cpu, i, vaddr, gpte);
d7e28ffe 964 } else {
bff672e6 965 /* Is this page table one we have a shadow for? */
382ac6b3
GOC
966 int pgdir = find_pgdir(cpu->lg, gpgdir);
967 if (pgdir != ARRAY_SIZE(cpu->lg->pgdirs))
bff672e6 968 /* If so, do the update. */
179e0963 969 __guest_set_pte(cpu, pgdir, vaddr, gpte);
d7e28ffe
RR
970 }
971}
972
bff672e6 973/*H:400
e1e72965 974 * (iii) Setting up a page table entry when the Guest tells us one has changed.
bff672e6
RR
975 *
976 * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
977 * with the other side of page tables while we're here: what happens when the
978 * Guest asks for a page table to be updated?
979 *
980 * We already saw that demand_page() will fill in the shadow page tables when
981 * needed, so we can simply remove shadow page table entries whenever the Guest
982 * tells us they've changed. When the Guest tries to use the new entry it will
983 * fault and demand_page() will fix it up.
984 *
fd589a8f 985 * So with that in mind here's our code to update a (top-level) PGD entry:
bff672e6 986 */
ebe0ba84 987void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx)
d7e28ffe
RR
988{
989 int pgdir;
990
3412b6ae
RR
991 if (idx > PTRS_PER_PGD) {
992 kill_guest(&lg->cpus[0], "Attempt to set pgd %u/%u",
993 idx, PTRS_PER_PGD);
d7e28ffe 994 return;
3412b6ae 995 }
d7e28ffe 996
bff672e6 997 /* If they're talking about a page table we have a shadow for... */
ee3db0f2 998 pgdir = find_pgdir(lg, gpgdir);
3412b6ae 999 if (pgdir < ARRAY_SIZE(lg->pgdirs)) {
bff672e6 1000 /* ... throw it away. */
90603d15 1001 release_pgd(lg->pgdirs[pgdir].pgdir + idx);
3412b6ae
RR
1002 /* That might have been the Switcher mapping, remap it. */
1003 if (!allocate_switcher_mapping(&lg->cpus[0])) {
1004 kill_guest(&lg->cpus[0],
1005 "Cannot populate switcher mapping");
1006 }
f616fe4f 1007 lg->pgdirs[pgdir].last_host_cpu = -1;
3412b6ae 1008 }
d7e28ffe 1009}
a91d74a3 1010
acdd0b62 1011#ifdef CONFIG_X86_PAE
a91d74a3 1012/* For setting a mid-level, we just throw everything away. It's easy. */
acdd0b62
MZ
1013void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx)
1014{
1015 guest_pagetable_clear_all(&lg->cpus[0]);
1016}
1017#endif
d7e28ffe 1018
2e04ef76
RR
1019/*H:500
1020 * (vii) Setting up the page tables initially.
bff672e6 1021 *
5dea1c88
RR
1022 * When a Guest is first created, set initialize a shadow page table which
1023 * we will populate on future faults. The Guest doesn't have any actual
1024 * pagetables yet, so we set linear_pages to tell demand_page() to fake it
1025 * for the moment.
3412b6ae
RR
1026 *
1027 * We do need the Switcher to be mapped at all times, so we allocate that
1028 * part of the Guest page table here.
2e04ef76 1029 */
58a24566 1030int init_guest_pagetable(struct lguest *lg)
d7e28ffe 1031{
5dea1c88
RR
1032 struct lg_cpu *cpu = &lg->cpus[0];
1033 int allocated = 0;
58a24566 1034
5dea1c88
RR
1035 /* lg (and lg->cpus[]) starts zeroed: this allocates a new pgdir */
1036 cpu->cpu_pgd = new_pgdir(cpu, 0, &allocated);
1037 if (!allocated)
d7e28ffe 1038 return -ENOMEM;
a91d74a3 1039
5dea1c88
RR
1040 /* We start with a linear mapping until the initialize. */
1041 cpu->linear_pages = true;
3412b6ae
RR
1042
1043 /* Allocate the page tables for the Switcher. */
1044 if (!allocate_switcher_mapping(cpu)) {
1045 release_all_pagetables(lg);
1046 return -ENOMEM;
1047 }
1048
d7e28ffe
RR
1049 return 0;
1050}
1051
a91d74a3 1052/*H:508 When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
382ac6b3 1053void page_table_guest_data_init(struct lg_cpu *cpu)
47436aa4 1054{
c215a8b9
RR
1055 /*
1056 * We tell the Guest that it can't use the virtual addresses
1057 * used by the Switcher. This trick is equivalent to 4GB -
1058 * switcher_addr.
1059 */
1060 u32 top = ~switcher_addr + 1;
1061
47436aa4 1062 /* We get the kernel address: above this is all kernel memory. */
382ac6b3 1063 if (get_user(cpu->lg->kernel_address,
c215a8b9 1064 &cpu->lg->lguest_data->kernel_address)
2e04ef76 1065 /*
c215a8b9
RR
1066 * We tell the Guest that it can't use the top virtual
1067 * addresses (used by the Switcher).
2e04ef76 1068 */
c215a8b9 1069 || put_user(top, &cpu->lg->lguest_data->reserve_mem)) {
382ac6b3 1070 kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
5dea1c88
RR
1071 return;
1072 }
47436aa4 1073
2e04ef76
RR
1074 /*
1075 * In flush_user_mappings() we loop from 0 to
47436aa4 1076 * "pgd_index(lg->kernel_address)". This assumes it won't hit the
2e04ef76
RR
1077 * Switcher mappings, so check that now.
1078 */
68a644d7 1079 if (cpu->lg->kernel_address >= switcher_addr)
382ac6b3
GOC
1080 kill_guest(cpu, "bad kernel address %#lx",
1081 cpu->lg->kernel_address);
47436aa4
RR
1082}
1083
bff672e6 1084/* When a Guest dies, our cleanup is fairly simple. */
d7e28ffe
RR
1085void free_guest_pagetable(struct lguest *lg)
1086{
1087 unsigned int i;
1088
bff672e6 1089 /* Throw away all page table pages. */
d7e28ffe 1090 release_all_pagetables(lg);
bff672e6 1091 /* Now free the top levels: free_page() can handle 0 just fine. */
d7e28ffe
RR
1092 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
1093 free_page((long)lg->pgdirs[i].pgdir);
1094}
1095
6d0cda93
RR
1096/*H:481
1097 * This clears the Switcher mappings for cpu #i.
2e04ef76 1098 */
6d0cda93 1099static void remove_switcher_percpu_map(struct lg_cpu *cpu, unsigned int i)
d7e28ffe 1100{
6d0cda93
RR
1101 unsigned long base = switcher_addr + PAGE_SIZE + i * PAGE_SIZE*2;
1102 pte_t *pte;
d7e28ffe 1103
6d0cda93
RR
1104 /* Clear the mappings for both pages. */
1105 pte = find_spte(cpu, base, false, 0, 0);
1106 release_pte(*pte);
1107 set_pte(pte, __pte(0));
acdd0b62 1108
6d0cda93
RR
1109 pte = find_spte(cpu, base + PAGE_SIZE, false, 0, 0);
1110 release_pte(*pte);
1111 set_pte(pte, __pte(0));
d7e28ffe
RR
1112}
1113
2e04ef76
RR
1114/*H:480
1115 * (vi) Mapping the Switcher when the Guest is about to run.
bff672e6 1116 *
6d0cda93
RR
1117 * The Switcher and the two pages for this CPU need to be visible in the Guest
1118 * (and not the pages for other CPUs).
bff672e6 1119 *
6d0cda93
RR
1120 * The pages for the pagetables have all been allocated before: we just need
1121 * to make sure the actual PTEs are up-to-date for the CPU we're about to run
1122 * on.
2e04ef76 1123 */
0c78441c 1124void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
d7e28ffe 1125{
6d0cda93 1126 unsigned long base;
3412b6ae
RR
1127 struct page *percpu_switcher_page, *regs_page;
1128 pte_t *pte;
6d0cda93 1129 struct pgdir *pgdir = &cpu->lg->pgdirs[cpu->cpu_pgd];
d7e28ffe 1130
6d0cda93
RR
1131 /* Switcher page should always be mapped by now! */
1132 BUG_ON(!pgdir->switcher_mapped);
df29f43e 1133
6d0cda93
RR
1134 /*
1135 * Remember that we have two pages for each Host CPU, so we can run a
1136 * Guest on each CPU without them interfering. We need to make sure
1137 * those pages are mapped correctly in the Guest, but since we usually
1138 * run on the same CPU, we cache that, and only update the mappings
1139 * when we move.
1140 */
1141 if (pgdir->last_host_cpu == raw_smp_processor_id())
1142 return;
d7e28ffe 1143
6d0cda93
RR
1144 /* -1 means unknown so we remove everything. */
1145 if (pgdir->last_host_cpu == -1) {
1146 unsigned int i;
1147 for_each_possible_cpu(i)
1148 remove_switcher_percpu_map(cpu, i);
1149 } else {
1150 /* We know exactly what CPU mapping to remove. */
1151 remove_switcher_percpu_map(cpu, pgdir->last_host_cpu);
d7e28ffe
RR
1152 }
1153
2e04ef76 1154 /*
3412b6ae
RR
1155 * When we're running the Guest, we want the Guest's "regs" page to
1156 * appear where the first Switcher page for this CPU is. This is an
1157 * optimization: when the Switcher saves the Guest registers, it saves
1158 * them into the first page of this CPU's "struct lguest_pages": if we
1159 * make sure the Guest's register page is already mapped there, we
1160 * don't have to copy them out again.
2e04ef76 1161 */
3412b6ae
RR
1162 /* Find the shadow PTE for this regs page. */
1163 base = switcher_addr + PAGE_SIZE
1164 + raw_smp_processor_id() * sizeof(struct lguest_pages);
1165 pte = find_spte(cpu, base, false, 0, 0);
1166 regs_page = pfn_to_page(__pa(cpu->regs_page) >> PAGE_SHIFT);
1167 get_page(regs_page);
1168 set_pte(pte, mk_pte(regs_page, __pgprot(__PAGE_KERNEL & ~_PAGE_GLOBAL)));
df29f43e 1169
2e04ef76 1170 /*
3412b6ae
RR
1171 * We map the second page of the struct lguest_pages read-only in
1172 * the Guest: the IDT, GDT and other things it's not supposed to
1173 * change.
2e04ef76 1174 */
6d0cda93 1175 pte = find_spte(cpu, base + PAGE_SIZE, false, 0, 0);
3412b6ae
RR
1176 percpu_switcher_page
1177 = lg_switcher_pages[1 + raw_smp_processor_id()*2 + 1];
1178 get_page(percpu_switcher_page);
1179 set_pte(pte, mk_pte(percpu_switcher_page,
1180 __pgprot(__PAGE_KERNEL_RO & ~_PAGE_GLOBAL)));
6d0cda93
RR
1181
1182 pgdir->last_host_cpu = raw_smp_processor_id();
d7e28ffe
RR
1183}
1184
6d0cda93 1185/*H:490
2e04ef76 1186 * We've made it through the page table code. Perhaps our tired brains are
e1e72965
RR
1187 * still processing the details, or perhaps we're simply glad it's over.
1188 *
a6bd8e13
RR
1189 * If nothing else, note that all this complexity in juggling shadow page tables
1190 * in sync with the Guest's page tables is for one reason: for most Guests this
1191 * page table dance determines how bad performance will be. This is why Xen
1192 * uses exotic direct Guest pagetable manipulation, and why both Intel and AMD
1193 * have implemented shadow page table support directly into hardware.
e1e72965 1194 *
2e04ef76
RR
1195 * There is just one file remaining in the Host.
1196 */