]> git.ipfire.org Git - people/ms/linux.git/blame - fs/buffer.c
Merge tag 'soc-fixes-6.0-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[people/ms/linux.git] / fs / buffer.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8/*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20 */
21
1da177e4 22#include <linux/kernel.h>
f361bf4a 23#include <linux/sched/signal.h>
1da177e4
LT
24#include <linux/syscalls.h>
25#include <linux/fs.h>
ae259a9c 26#include <linux/iomap.h>
1da177e4
LT
27#include <linux/mm.h>
28#include <linux/percpu.h>
29#include <linux/slab.h>
16f7e0fe 30#include <linux/capability.h>
1da177e4
LT
31#include <linux/blkdev.h>
32#include <linux/file.h>
33#include <linux/quotaops.h>
34#include <linux/highmem.h>
630d9c47 35#include <linux/export.h>
bafc0dba 36#include <linux/backing-dev.h>
1da177e4
LT
37#include <linux/writeback.h>
38#include <linux/hash.h>
39#include <linux/suspend.h>
40#include <linux/buffer_head.h>
55e829af 41#include <linux/task_io_accounting_ops.h>
1da177e4 42#include <linux/bio.h>
1da177e4
LT
43#include <linux/cpu.h>
44#include <linux/bitops.h>
45#include <linux/mpage.h>
fb1c8f93 46#include <linux/bit_spinlock.h>
29f3ad7d 47#include <linux/pagevec.h>
f745c6f5 48#include <linux/sched/mm.h>
5305cb83 49#include <trace/events/block.h>
31fb992c 50#include <linux/fscrypt.h>
1da177e4 51
2b211dc0
BD
52#include "internal.h"
53
1da177e4 54static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
1420c4a5
BVA
55static int submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
56 struct writeback_control *wbc);
1da177e4
LT
57
58#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59
f0059afd
TH
60inline void touch_buffer(struct buffer_head *bh)
61{
5305cb83 62 trace_block_touch_buffer(bh);
f0059afd
TH
63 mark_page_accessed(bh->b_page);
64}
65EXPORT_SYMBOL(touch_buffer);
66
fc9b52cd 67void __lock_buffer(struct buffer_head *bh)
1da177e4 68{
74316201 69 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4
LT
70}
71EXPORT_SYMBOL(__lock_buffer);
72
fc9b52cd 73void unlock_buffer(struct buffer_head *bh)
1da177e4 74{
51b07fc3 75 clear_bit_unlock(BH_Lock, &bh->b_state);
4e857c58 76 smp_mb__after_atomic();
1da177e4
LT
77 wake_up_bit(&bh->b_state, BH_Lock);
78}
1fe72eaa 79EXPORT_SYMBOL(unlock_buffer);
1da177e4 80
b4597226 81/*
520f301c
MWO
82 * Returns if the folio has dirty or writeback buffers. If all the buffers
83 * are unlocked and clean then the folio_test_dirty information is stale. If
84 * any of the buffers are locked, it is assumed they are locked for IO.
b4597226 85 */
520f301c 86void buffer_check_dirty_writeback(struct folio *folio,
b4597226
MG
87 bool *dirty, bool *writeback)
88{
89 struct buffer_head *head, *bh;
90 *dirty = false;
91 *writeback = false;
92
520f301c 93 BUG_ON(!folio_test_locked(folio));
b4597226 94
520f301c
MWO
95 head = folio_buffers(folio);
96 if (!head)
b4597226
MG
97 return;
98
520f301c 99 if (folio_test_writeback(folio))
b4597226
MG
100 *writeback = true;
101
b4597226
MG
102 bh = head;
103 do {
104 if (buffer_locked(bh))
105 *writeback = true;
106
107 if (buffer_dirty(bh))
108 *dirty = true;
109
110 bh = bh->b_this_page;
111 } while (bh != head);
112}
113EXPORT_SYMBOL(buffer_check_dirty_writeback);
114
1da177e4
LT
115/*
116 * Block until a buffer comes unlocked. This doesn't stop it
117 * from becoming locked again - you have to lock it yourself
118 * if you want to preserve its state.
119 */
120void __wait_on_buffer(struct buffer_head * bh)
121{
74316201 122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4 123}
1fe72eaa 124EXPORT_SYMBOL(__wait_on_buffer);
1da177e4 125
b744c2ac 126static void buffer_io_error(struct buffer_head *bh, char *msg)
1da177e4 127{
432f16e6
RE
128 if (!test_bit(BH_Quiet, &bh->b_state))
129 printk_ratelimited(KERN_ERR
a1c6f057
DM
130 "Buffer I/O error on dev %pg, logical block %llu%s\n",
131 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
1da177e4
LT
132}
133
134/*
68671f35
DM
135 * End-of-IO handler helper function which does not touch the bh after
136 * unlocking it.
137 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138 * a race there is benign: unlock_buffer() only use the bh's address for
139 * hashing after unlocking the buffer, so it doesn't actually touch the bh
140 * itself.
1da177e4 141 */
68671f35 142static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
1da177e4
LT
143{
144 if (uptodate) {
145 set_buffer_uptodate(bh);
146 } else {
70246286 147 /* This happens, due to failed read-ahead attempts. */
1da177e4
LT
148 clear_buffer_uptodate(bh);
149 }
150 unlock_buffer(bh);
68671f35
DM
151}
152
153/*
154 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
155 * unlock the buffer. This is what ll_rw_block uses too.
156 */
157void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158{
159 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
160 put_bh(bh);
161}
1fe72eaa 162EXPORT_SYMBOL(end_buffer_read_sync);
1da177e4
LT
163
164void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165{
1da177e4
LT
166 if (uptodate) {
167 set_buffer_uptodate(bh);
168 } else {
432f16e6 169 buffer_io_error(bh, ", lost sync page write");
87354e5d 170 mark_buffer_write_io_error(bh);
1da177e4
LT
171 clear_buffer_uptodate(bh);
172 }
173 unlock_buffer(bh);
174 put_bh(bh);
175}
1fe72eaa 176EXPORT_SYMBOL(end_buffer_write_sync);
1da177e4 177
1da177e4
LT
178/*
179 * Various filesystems appear to want __find_get_block to be non-blocking.
180 * But it's the page lock which protects the buffers. To get around this,
181 * we get exclusion from try_to_free_buffers with the blockdev mapping's
182 * private_lock.
183 *
b93b0163 184 * Hack idea: for the blockdev mapping, private_lock contention
1da177e4 185 * may be quite high. This code could TryLock the page, and if that
b93b0163 186 * succeeds, there is no need to take private_lock.
1da177e4
LT
187 */
188static struct buffer_head *
385fd4c5 189__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
190{
191 struct inode *bd_inode = bdev->bd_inode;
192 struct address_space *bd_mapping = bd_inode->i_mapping;
193 struct buffer_head *ret = NULL;
194 pgoff_t index;
195 struct buffer_head *bh;
196 struct buffer_head *head;
197 struct page *page;
198 int all_mapped = 1;
43636c80 199 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
1da177e4 200
09cbfeaf 201 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
2457aec6 202 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
1da177e4
LT
203 if (!page)
204 goto out;
205
206 spin_lock(&bd_mapping->private_lock);
207 if (!page_has_buffers(page))
208 goto out_unlock;
209 head = page_buffers(page);
210 bh = head;
211 do {
97f76d3d
NK
212 if (!buffer_mapped(bh))
213 all_mapped = 0;
214 else if (bh->b_blocknr == block) {
1da177e4
LT
215 ret = bh;
216 get_bh(bh);
217 goto out_unlock;
218 }
1da177e4
LT
219 bh = bh->b_this_page;
220 } while (bh != head);
221
222 /* we might be here because some of the buffers on this page are
223 * not mapped. This is due to various races between
224 * file io on the block device and getblk. It gets dealt with
225 * elsewhere, don't buffer_error if we had some unmapped buffers
226 */
43636c80
TH
227 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228 if (all_mapped && __ratelimit(&last_warned)) {
229 printk("__find_get_block_slow() failed. block=%llu, "
230 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231 "device %pg blocksize: %d\n",
232 (unsigned long long)block,
233 (unsigned long long)bh->b_blocknr,
234 bh->b_state, bh->b_size, bdev,
235 1 << bd_inode->i_blkbits);
1da177e4
LT
236 }
237out_unlock:
238 spin_unlock(&bd_mapping->private_lock);
09cbfeaf 239 put_page(page);
1da177e4
LT
240out:
241 return ret;
242}
243
1da177e4
LT
244static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245{
1da177e4 246 unsigned long flags;
a3972203 247 struct buffer_head *first;
1da177e4
LT
248 struct buffer_head *tmp;
249 struct page *page;
250 int page_uptodate = 1;
251
252 BUG_ON(!buffer_async_read(bh));
253
254 page = bh->b_page;
255 if (uptodate) {
256 set_buffer_uptodate(bh);
257 } else {
258 clear_buffer_uptodate(bh);
432f16e6 259 buffer_io_error(bh, ", async page read");
1da177e4
LT
260 SetPageError(page);
261 }
262
263 /*
264 * Be _very_ careful from here on. Bad things can happen if
265 * two buffer heads end IO at almost the same time and both
266 * decide that the page is now completely done.
267 */
a3972203 268 first = page_buffers(page);
f1e67e35 269 spin_lock_irqsave(&first->b_uptodate_lock, flags);
1da177e4
LT
270 clear_buffer_async_read(bh);
271 unlock_buffer(bh);
272 tmp = bh;
273 do {
274 if (!buffer_uptodate(tmp))
275 page_uptodate = 0;
276 if (buffer_async_read(tmp)) {
277 BUG_ON(!buffer_locked(tmp));
278 goto still_busy;
279 }
280 tmp = tmp->b_this_page;
281 } while (tmp != bh);
f1e67e35 282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
1da177e4
LT
283
284 /*
6e8e79fc
MWO
285 * If all of the buffers are uptodate then we can set the page
286 * uptodate.
1da177e4 287 */
6e8e79fc 288 if (page_uptodate)
1da177e4
LT
289 SetPageUptodate(page);
290 unlock_page(page);
291 return;
292
293still_busy:
f1e67e35 294 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
1da177e4
LT
295 return;
296}
297
31fb992c
EB
298struct decrypt_bh_ctx {
299 struct work_struct work;
300 struct buffer_head *bh;
301};
302
303static void decrypt_bh(struct work_struct *work)
304{
305 struct decrypt_bh_ctx *ctx =
306 container_of(work, struct decrypt_bh_ctx, work);
307 struct buffer_head *bh = ctx->bh;
308 int err;
309
310 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
311 bh_offset(bh));
312 end_buffer_async_read(bh, err == 0);
313 kfree(ctx);
314}
315
316/*
2c69e205 317 * I/O completion handler for block_read_full_folio() - pages
31fb992c
EB
318 * which come unlocked at the end of I/O.
319 */
320static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
321{
322 /* Decrypt if needed */
4f74d15f
EB
323 if (uptodate &&
324 fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) {
31fb992c
EB
325 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
326
327 if (ctx) {
328 INIT_WORK(&ctx->work, decrypt_bh);
329 ctx->bh = bh;
330 fscrypt_enqueue_decrypt_work(&ctx->work);
331 return;
332 }
333 uptodate = 0;
334 }
335 end_buffer_async_read(bh, uptodate);
336}
337
1da177e4
LT
338/*
339 * Completion handler for block_write_full_page() - pages which are unlocked
340 * during I/O, and which have PageWriteback cleared upon I/O completion.
341 */
35c80d5f 342void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4 343{
1da177e4 344 unsigned long flags;
a3972203 345 struct buffer_head *first;
1da177e4
LT
346 struct buffer_head *tmp;
347 struct page *page;
348
349 BUG_ON(!buffer_async_write(bh));
350
351 page = bh->b_page;
352 if (uptodate) {
353 set_buffer_uptodate(bh);
354 } else {
432f16e6 355 buffer_io_error(bh, ", lost async page write");
87354e5d 356 mark_buffer_write_io_error(bh);
1da177e4
LT
357 clear_buffer_uptodate(bh);
358 SetPageError(page);
359 }
360
a3972203 361 first = page_buffers(page);
f1e67e35 362 spin_lock_irqsave(&first->b_uptodate_lock, flags);
a3972203 363
1da177e4
LT
364 clear_buffer_async_write(bh);
365 unlock_buffer(bh);
366 tmp = bh->b_this_page;
367 while (tmp != bh) {
368 if (buffer_async_write(tmp)) {
369 BUG_ON(!buffer_locked(tmp));
370 goto still_busy;
371 }
372 tmp = tmp->b_this_page;
373 }
f1e67e35 374 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
1da177e4
LT
375 end_page_writeback(page);
376 return;
377
378still_busy:
f1e67e35 379 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
1da177e4
LT
380 return;
381}
1fe72eaa 382EXPORT_SYMBOL(end_buffer_async_write);
1da177e4
LT
383
384/*
385 * If a page's buffers are under async readin (end_buffer_async_read
386 * completion) then there is a possibility that another thread of
387 * control could lock one of the buffers after it has completed
388 * but while some of the other buffers have not completed. This
389 * locked buffer would confuse end_buffer_async_read() into not unlocking
390 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
391 * that this buffer is not under async I/O.
392 *
393 * The page comes unlocked when it has no locked buffer_async buffers
394 * left.
395 *
396 * PageLocked prevents anyone starting new async I/O reads any of
397 * the buffers.
398 *
399 * PageWriteback is used to prevent simultaneous writeout of the same
400 * page.
401 *
402 * PageLocked prevents anyone from starting writeback of a page which is
403 * under read I/O (PageWriteback is only ever set against a locked page).
404 */
405static void mark_buffer_async_read(struct buffer_head *bh)
406{
31fb992c 407 bh->b_end_io = end_buffer_async_read_io;
1da177e4
LT
408 set_buffer_async_read(bh);
409}
410
1fe72eaa
HS
411static void mark_buffer_async_write_endio(struct buffer_head *bh,
412 bh_end_io_t *handler)
1da177e4 413{
35c80d5f 414 bh->b_end_io = handler;
1da177e4
LT
415 set_buffer_async_write(bh);
416}
35c80d5f
CM
417
418void mark_buffer_async_write(struct buffer_head *bh)
419{
420 mark_buffer_async_write_endio(bh, end_buffer_async_write);
421}
1da177e4
LT
422EXPORT_SYMBOL(mark_buffer_async_write);
423
424
425/*
426 * fs/buffer.c contains helper functions for buffer-backed address space's
427 * fsync functions. A common requirement for buffer-based filesystems is
428 * that certain data from the backing blockdev needs to be written out for
429 * a successful fsync(). For example, ext2 indirect blocks need to be
430 * written back and waited upon before fsync() returns.
431 *
432 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
433 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
434 * management of a list of dependent buffers at ->i_mapping->private_list.
435 *
436 * Locking is a little subtle: try_to_free_buffers() will remove buffers
437 * from their controlling inode's queue when they are being freed. But
438 * try_to_free_buffers() will be operating against the *blockdev* mapping
439 * at the time, not against the S_ISREG file which depends on those buffers.
440 * So the locking for private_list is via the private_lock in the address_space
441 * which backs the buffers. Which is different from the address_space
442 * against which the buffers are listed. So for a particular address_space,
443 * mapping->private_lock does *not* protect mapping->private_list! In fact,
444 * mapping->private_list will always be protected by the backing blockdev's
445 * ->private_lock.
446 *
447 * Which introduces a requirement: all buffers on an address_space's
448 * ->private_list must be from the same address_space: the blockdev's.
449 *
450 * address_spaces which do not place buffers at ->private_list via these
451 * utility functions are free to use private_lock and private_list for
452 * whatever they want. The only requirement is that list_empty(private_list)
453 * be true at clear_inode() time.
454 *
455 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
456 * filesystems should do that. invalidate_inode_buffers() should just go
457 * BUG_ON(!list_empty).
458 *
459 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
460 * take an address_space, not an inode. And it should be called
461 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
462 * queued up.
463 *
464 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
465 * list if it is already on a list. Because if the buffer is on a list,
466 * it *must* already be on the right one. If not, the filesystem is being
467 * silly. This will save a ton of locking. But first we have to ensure
468 * that buffers are taken *off* the old inode's list when they are freed
469 * (presumably in truncate). That requires careful auditing of all
470 * filesystems (do it inside bforget()). It could also be done by bringing
471 * b_inode back.
472 */
473
474/*
475 * The buffer's backing address_space's private_lock must be held
476 */
dbacefc9 477static void __remove_assoc_queue(struct buffer_head *bh)
1da177e4
LT
478{
479 list_del_init(&bh->b_assoc_buffers);
58ff407b 480 WARN_ON(!bh->b_assoc_map);
58ff407b 481 bh->b_assoc_map = NULL;
1da177e4
LT
482}
483
484int inode_has_buffers(struct inode *inode)
485{
486 return !list_empty(&inode->i_data.private_list);
487}
488
489/*
490 * osync is designed to support O_SYNC io. It waits synchronously for
491 * all already-submitted IO to complete, but does not queue any new
492 * writes to the disk.
493 *
494 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
495 * you dirty the buffers, and then use osync_inode_buffers to wait for
496 * completion. Any other dirty buffers which are not yet queued for
497 * write will not be flushed to disk by the osync.
498 */
499static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
500{
501 struct buffer_head *bh;
502 struct list_head *p;
503 int err = 0;
504
505 spin_lock(lock);
506repeat:
507 list_for_each_prev(p, list) {
508 bh = BH_ENTRY(p);
509 if (buffer_locked(bh)) {
510 get_bh(bh);
511 spin_unlock(lock);
512 wait_on_buffer(bh);
513 if (!buffer_uptodate(bh))
514 err = -EIO;
515 brelse(bh);
516 spin_lock(lock);
517 goto repeat;
518 }
519 }
520 spin_unlock(lock);
521 return err;
522}
523
08fdc8a0 524void emergency_thaw_bdev(struct super_block *sb)
c2d75438 525{
040f04bd 526 while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
a1c6f057 527 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
01a05b33 528}
c2d75438 529
1da177e4 530/**
78a4a50a 531 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
67be2dd1 532 * @mapping: the mapping which wants those buffers written
1da177e4
LT
533 *
534 * Starts I/O against the buffers at mapping->private_list, and waits upon
535 * that I/O.
536 *
67be2dd1
MW
537 * Basically, this is a convenience function for fsync().
538 * @mapping is a file or directory which needs those buffers to be written for
539 * a successful fsync().
1da177e4
LT
540 */
541int sync_mapping_buffers(struct address_space *mapping)
542{
252aa6f5 543 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
544
545 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
546 return 0;
547
548 return fsync_buffers_list(&buffer_mapping->private_lock,
549 &mapping->private_list);
550}
551EXPORT_SYMBOL(sync_mapping_buffers);
552
553/*
554 * Called when we've recently written block `bblock', and it is known that
555 * `bblock' was for a buffer_boundary() buffer. This means that the block at
556 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
557 * dirty, schedule it for IO. So that indirects merge nicely with their data.
558 */
559void write_boundary_block(struct block_device *bdev,
560 sector_t bblock, unsigned blocksize)
561{
562 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
563 if (bh) {
564 if (buffer_dirty(bh))
1420c4a5 565 ll_rw_block(REQ_OP_WRITE, 1, &bh);
1da177e4
LT
566 put_bh(bh);
567 }
568}
569
570void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
571{
572 struct address_space *mapping = inode->i_mapping;
573 struct address_space *buffer_mapping = bh->b_page->mapping;
574
575 mark_buffer_dirty(bh);
252aa6f5
RA
576 if (!mapping->private_data) {
577 mapping->private_data = buffer_mapping;
1da177e4 578 } else {
252aa6f5 579 BUG_ON(mapping->private_data != buffer_mapping);
1da177e4 580 }
535ee2fb 581 if (!bh->b_assoc_map) {
1da177e4
LT
582 spin_lock(&buffer_mapping->private_lock);
583 list_move_tail(&bh->b_assoc_buffers,
584 &mapping->private_list);
58ff407b 585 bh->b_assoc_map = mapping;
1da177e4
LT
586 spin_unlock(&buffer_mapping->private_lock);
587 }
588}
589EXPORT_SYMBOL(mark_buffer_dirty_inode);
590
591/*
592 * Add a page to the dirty page list.
593 *
594 * It is a sad fact of life that this function is called from several places
595 * deeply under spinlocking. It may not sleep.
596 *
597 * If the page has buffers, the uptodate buffers are set dirty, to preserve
598 * dirty-state coherency between the page and the buffers. It the page does
599 * not have buffers then when they are later attached they will all be set
600 * dirty.
601 *
602 * The buffers are dirtied before the page is dirtied. There's a small race
603 * window in which a writepage caller may see the page cleanness but not the
604 * buffer dirtiness. That's fine. If this code were to set the page dirty
605 * before the buffers, a concurrent writepage caller could clear the page dirty
606 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
607 * page on the dirty page list.
608 *
609 * We use private_lock to lock against try_to_free_buffers while using the
610 * page's buffer list. Also use this to protect against clean buffers being
611 * added to the page after it was set dirty.
612 *
613 * FIXME: may need to call ->reservepage here as well. That's rather up to the
614 * address_space though.
615 */
e621900a 616bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
1da177e4 617{
e621900a
MWO
618 struct buffer_head *head;
619 bool newly_dirty;
1da177e4
LT
620
621 spin_lock(&mapping->private_lock);
e621900a
MWO
622 head = folio_buffers(folio);
623 if (head) {
1da177e4
LT
624 struct buffer_head *bh = head;
625
626 do {
627 set_buffer_dirty(bh);
628 bh = bh->b_this_page;
629 } while (bh != head);
630 }
c4843a75 631 /*
bcfe06bf 632 * Lock out page's memcg migration to keep PageDirty
81f8c3a4 633 * synchronized with per-memcg dirty page counters.
c4843a75 634 */
e621900a
MWO
635 folio_memcg_lock(folio);
636 newly_dirty = !folio_test_set_dirty(folio);
1da177e4
LT
637 spin_unlock(&mapping->private_lock);
638
a8e7d49a 639 if (newly_dirty)
e621900a 640 __folio_mark_dirty(folio, mapping, 1);
c4843a75 641
e621900a 642 folio_memcg_unlock(folio);
c4843a75
GT
643
644 if (newly_dirty)
645 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
646
a8e7d49a 647 return newly_dirty;
1da177e4 648}
e621900a 649EXPORT_SYMBOL(block_dirty_folio);
1da177e4
LT
650
651/*
652 * Write out and wait upon a list of buffers.
653 *
654 * We have conflicting pressures: we want to make sure that all
655 * initially dirty buffers get waited on, but that any subsequently
656 * dirtied buffers don't. After all, we don't want fsync to last
657 * forever if somebody is actively writing to the file.
658 *
659 * Do this in two main stages: first we copy dirty buffers to a
660 * temporary inode list, queueing the writes as we go. Then we clean
661 * up, waiting for those writes to complete.
662 *
663 * During this second stage, any subsequent updates to the file may end
664 * up refiling the buffer on the original inode's dirty list again, so
665 * there is a chance we will end up with a buffer queued for write but
666 * not yet completed on that list. So, as a final cleanup we go through
667 * the osync code to catch these locked, dirty buffers without requeuing
668 * any newly dirty buffers for write.
669 */
670static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
671{
672 struct buffer_head *bh;
673 struct list_head tmp;
7eaceacc 674 struct address_space *mapping;
1da177e4 675 int err = 0, err2;
4ee2491e 676 struct blk_plug plug;
1da177e4
LT
677
678 INIT_LIST_HEAD(&tmp);
4ee2491e 679 blk_start_plug(&plug);
1da177e4
LT
680
681 spin_lock(lock);
682 while (!list_empty(list)) {
683 bh = BH_ENTRY(list->next);
535ee2fb 684 mapping = bh->b_assoc_map;
58ff407b 685 __remove_assoc_queue(bh);
535ee2fb
JK
686 /* Avoid race with mark_buffer_dirty_inode() which does
687 * a lockless check and we rely on seeing the dirty bit */
688 smp_mb();
1da177e4
LT
689 if (buffer_dirty(bh) || buffer_locked(bh)) {
690 list_add(&bh->b_assoc_buffers, &tmp);
535ee2fb 691 bh->b_assoc_map = mapping;
1da177e4
LT
692 if (buffer_dirty(bh)) {
693 get_bh(bh);
694 spin_unlock(lock);
695 /*
696 * Ensure any pending I/O completes so that
9cb569d6
CH
697 * write_dirty_buffer() actually writes the
698 * current contents - it is a noop if I/O is
699 * still in flight on potentially older
700 * contents.
1da177e4 701 */
70fd7614 702 write_dirty_buffer(bh, REQ_SYNC);
9cf6b720
JA
703
704 /*
705 * Kick off IO for the previous mapping. Note
706 * that we will not run the very last mapping,
707 * wait_on_buffer() will do that for us
708 * through sync_buffer().
709 */
1da177e4
LT
710 brelse(bh);
711 spin_lock(lock);
712 }
713 }
714 }
715
4ee2491e
JA
716 spin_unlock(lock);
717 blk_finish_plug(&plug);
718 spin_lock(lock);
719
1da177e4
LT
720 while (!list_empty(&tmp)) {
721 bh = BH_ENTRY(tmp.prev);
1da177e4 722 get_bh(bh);
535ee2fb
JK
723 mapping = bh->b_assoc_map;
724 __remove_assoc_queue(bh);
725 /* Avoid race with mark_buffer_dirty_inode() which does
726 * a lockless check and we rely on seeing the dirty bit */
727 smp_mb();
728 if (buffer_dirty(bh)) {
729 list_add(&bh->b_assoc_buffers,
e3892296 730 &mapping->private_list);
535ee2fb
JK
731 bh->b_assoc_map = mapping;
732 }
1da177e4
LT
733 spin_unlock(lock);
734 wait_on_buffer(bh);
735 if (!buffer_uptodate(bh))
736 err = -EIO;
737 brelse(bh);
738 spin_lock(lock);
739 }
740
741 spin_unlock(lock);
742 err2 = osync_buffers_list(lock, list);
743 if (err)
744 return err;
745 else
746 return err2;
747}
748
749/*
750 * Invalidate any and all dirty buffers on a given inode. We are
751 * probably unmounting the fs, but that doesn't mean we have already
752 * done a sync(). Just drop the buffers from the inode list.
753 *
754 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
755 * assumes that all the buffers are against the blockdev. Not true
756 * for reiserfs.
757 */
758void invalidate_inode_buffers(struct inode *inode)
759{
760 if (inode_has_buffers(inode)) {
761 struct address_space *mapping = &inode->i_data;
762 struct list_head *list = &mapping->private_list;
252aa6f5 763 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
764
765 spin_lock(&buffer_mapping->private_lock);
766 while (!list_empty(list))
767 __remove_assoc_queue(BH_ENTRY(list->next));
768 spin_unlock(&buffer_mapping->private_lock);
769 }
770}
52b19ac9 771EXPORT_SYMBOL(invalidate_inode_buffers);
1da177e4
LT
772
773/*
774 * Remove any clean buffers from the inode's buffer list. This is called
775 * when we're trying to free the inode itself. Those buffers can pin it.
776 *
777 * Returns true if all buffers were removed.
778 */
779int remove_inode_buffers(struct inode *inode)
780{
781 int ret = 1;
782
783 if (inode_has_buffers(inode)) {
784 struct address_space *mapping = &inode->i_data;
785 struct list_head *list = &mapping->private_list;
252aa6f5 786 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
787
788 spin_lock(&buffer_mapping->private_lock);
789 while (!list_empty(list)) {
790 struct buffer_head *bh = BH_ENTRY(list->next);
791 if (buffer_dirty(bh)) {
792 ret = 0;
793 break;
794 }
795 __remove_assoc_queue(bh);
796 }
797 spin_unlock(&buffer_mapping->private_lock);
798 }
799 return ret;
800}
801
802/*
803 * Create the appropriate buffers when given a page for data area and
804 * the size of each buffer.. Use the bh->b_this_page linked list to
805 * follow the buffers created. Return NULL if unable to create more
806 * buffers.
807 *
808 * The retry flag is used to differentiate async IO (paging, swapping)
809 * which may not fail from ordinary buffer allocations.
810 */
811struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
640ab98f 812 bool retry)
1da177e4
LT
813{
814 struct buffer_head *bh, *head;
f745c6f5 815 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
1da177e4 816 long offset;
b87d8cef 817 struct mem_cgroup *memcg, *old_memcg;
1da177e4 818
640ab98f
JA
819 if (retry)
820 gfp |= __GFP_NOFAIL;
821
6eeb104e
JW
822 /* The page lock pins the memcg */
823 memcg = page_memcg(page);
b87d8cef 824 old_memcg = set_active_memcg(memcg);
f745c6f5 825
1da177e4
LT
826 head = NULL;
827 offset = PAGE_SIZE;
828 while ((offset -= size) >= 0) {
640ab98f 829 bh = alloc_buffer_head(gfp);
1da177e4
LT
830 if (!bh)
831 goto no_grow;
832
1da177e4
LT
833 bh->b_this_page = head;
834 bh->b_blocknr = -1;
835 head = bh;
836
1da177e4
LT
837 bh->b_size = size;
838
839 /* Link the buffer to its page */
840 set_bh_page(bh, page, offset);
1da177e4 841 }
f745c6f5 842out:
b87d8cef 843 set_active_memcg(old_memcg);
1da177e4
LT
844 return head;
845/*
846 * In case anything failed, we just free everything we got.
847 */
848no_grow:
849 if (head) {
850 do {
851 bh = head;
852 head = head->b_this_page;
853 free_buffer_head(bh);
854 } while (head);
855 }
856
f745c6f5 857 goto out;
1da177e4
LT
858}
859EXPORT_SYMBOL_GPL(alloc_page_buffers);
860
861static inline void
862link_dev_buffers(struct page *page, struct buffer_head *head)
863{
864 struct buffer_head *bh, *tail;
865
866 bh = head;
867 do {
868 tail = bh;
869 bh = bh->b_this_page;
870 } while (bh);
871 tail->b_this_page = head;
45dcfc27 872 attach_page_private(page, head);
1da177e4
LT
873}
874
bbec0270
LT
875static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
876{
877 sector_t retval = ~((sector_t)0);
b86058f9 878 loff_t sz = bdev_nr_bytes(bdev);
bbec0270
LT
879
880 if (sz) {
881 unsigned int sizebits = blksize_bits(size);
882 retval = (sz >> sizebits);
883 }
884 return retval;
885}
886
1da177e4
LT
887/*
888 * Initialise the state of a blockdev page's buffers.
889 */
676ce6d5 890static sector_t
1da177e4
LT
891init_page_buffers(struct page *page, struct block_device *bdev,
892 sector_t block, int size)
893{
894 struct buffer_head *head = page_buffers(page);
895 struct buffer_head *bh = head;
896 int uptodate = PageUptodate(page);
bcd1d063 897 sector_t end_block = blkdev_max_block(bdev, size);
1da177e4
LT
898
899 do {
900 if (!buffer_mapped(bh)) {
01950a34
EB
901 bh->b_end_io = NULL;
902 bh->b_private = NULL;
1da177e4
LT
903 bh->b_bdev = bdev;
904 bh->b_blocknr = block;
905 if (uptodate)
906 set_buffer_uptodate(bh);
080399aa
JM
907 if (block < end_block)
908 set_buffer_mapped(bh);
1da177e4
LT
909 }
910 block++;
911 bh = bh->b_this_page;
912 } while (bh != head);
676ce6d5
HD
913
914 /*
915 * Caller needs to validate requested block against end of device.
916 */
917 return end_block;
1da177e4
LT
918}
919
920/*
921 * Create the page-cache page that contains the requested block.
922 *
676ce6d5 923 * This is used purely for blockdev mappings.
1da177e4 924 */
676ce6d5 925static int
1da177e4 926grow_dev_page(struct block_device *bdev, sector_t block,
3b5e6454 927 pgoff_t index, int size, int sizebits, gfp_t gfp)
1da177e4
LT
928{
929 struct inode *inode = bdev->bd_inode;
930 struct page *page;
931 struct buffer_head *bh;
676ce6d5 932 sector_t end_block;
c4b4c2a7 933 int ret = 0;
84235de3 934 gfp_t gfp_mask;
1da177e4 935
c62d2555 936 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
3b5e6454 937
84235de3
JW
938 /*
939 * XXX: __getblk_slow() can not really deal with failure and
940 * will endlessly loop on improvised global reclaim. Prefer
941 * looping in the allocator rather than here, at least that
942 * code knows what it's doing.
943 */
944 gfp_mask |= __GFP_NOFAIL;
945
946 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1da177e4 947
e827f923 948 BUG_ON(!PageLocked(page));
1da177e4
LT
949
950 if (page_has_buffers(page)) {
951 bh = page_buffers(page);
952 if (bh->b_size == size) {
676ce6d5 953 end_block = init_page_buffers(page, bdev,
f2d5a944
AA
954 (sector_t)index << sizebits,
955 size);
676ce6d5 956 goto done;
1da177e4 957 }
68189fef 958 if (!try_to_free_buffers(page_folio(page)))
1da177e4
LT
959 goto failed;
960 }
961
962 /*
963 * Allocate some buffers for this page
964 */
94dc24c0 965 bh = alloc_page_buffers(page, size, true);
1da177e4
LT
966
967 /*
968 * Link the page to the buffers and initialise them. Take the
969 * lock to be atomic wrt __find_get_block(), which does not
970 * run under the page lock.
971 */
972 spin_lock(&inode->i_mapping->private_lock);
973 link_dev_buffers(page, bh);
f2d5a944
AA
974 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
975 size);
1da177e4 976 spin_unlock(&inode->i_mapping->private_lock);
676ce6d5
HD
977done:
978 ret = (block < end_block) ? 1 : -ENXIO;
1da177e4 979failed:
1da177e4 980 unlock_page(page);
09cbfeaf 981 put_page(page);
676ce6d5 982 return ret;
1da177e4
LT
983}
984
985/*
986 * Create buffers for the specified block device block's page. If
987 * that page was dirty, the buffers are set dirty also.
1da177e4 988 */
858119e1 989static int
3b5e6454 990grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1da177e4 991{
1da177e4
LT
992 pgoff_t index;
993 int sizebits;
994
90432e60 995 sizebits = PAGE_SHIFT - __ffs(size);
1da177e4 996 index = block >> sizebits;
1da177e4 997
e5657933
AM
998 /*
999 * Check for a block which wants to lie outside our maximum possible
1000 * pagecache index. (this comparison is done using sector_t types).
1001 */
1002 if (unlikely(index != block >> sizebits)) {
e5657933 1003 printk(KERN_ERR "%s: requested out-of-range block %llu for "
a1c6f057 1004 "device %pg\n",
8e24eea7 1005 __func__, (unsigned long long)block,
a1c6f057 1006 bdev);
e5657933
AM
1007 return -EIO;
1008 }
676ce6d5 1009
1da177e4 1010 /* Create a page with the proper size buffers.. */
3b5e6454 1011 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1da177e4
LT
1012}
1013
0026ba40 1014static struct buffer_head *
3b5e6454
GK
1015__getblk_slow(struct block_device *bdev, sector_t block,
1016 unsigned size, gfp_t gfp)
1da177e4
LT
1017{
1018 /* Size must be multiple of hard sectorsize */
e1defc4f 1019 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1da177e4
LT
1020 (size < 512 || size > PAGE_SIZE))) {
1021 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1022 size);
e1defc4f
MP
1023 printk(KERN_ERR "logical block size: %d\n",
1024 bdev_logical_block_size(bdev));
1da177e4
LT
1025
1026 dump_stack();
1027 return NULL;
1028 }
1029
676ce6d5
HD
1030 for (;;) {
1031 struct buffer_head *bh;
1032 int ret;
1da177e4
LT
1033
1034 bh = __find_get_block(bdev, block, size);
1035 if (bh)
1036 return bh;
676ce6d5 1037
3b5e6454 1038 ret = grow_buffers(bdev, block, size, gfp);
676ce6d5
HD
1039 if (ret < 0)
1040 return NULL;
1da177e4
LT
1041 }
1042}
1043
1044/*
1045 * The relationship between dirty buffers and dirty pages:
1046 *
1047 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
ec82e1c1 1048 * the page is tagged dirty in the page cache.
1da177e4
LT
1049 *
1050 * At all times, the dirtiness of the buffers represents the dirtiness of
1051 * subsections of the page. If the page has buffers, the page dirty bit is
1052 * merely a hint about the true dirty state.
1053 *
1054 * When a page is set dirty in its entirety, all its buffers are marked dirty
1055 * (if the page has buffers).
1056 *
1057 * When a buffer is marked dirty, its page is dirtied, but the page's other
1058 * buffers are not.
1059 *
1060 * Also. When blockdev buffers are explicitly read with bread(), they
1061 * individually become uptodate. But their backing page remains not
1062 * uptodate - even if all of its buffers are uptodate. A subsequent
2c69e205
MWO
1063 * block_read_full_folio() against that folio will discover all the uptodate
1064 * buffers, will set the folio uptodate and will perform no I/O.
1da177e4
LT
1065 */
1066
1067/**
1068 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1069 * @bh: the buffer_head to mark dirty
1da177e4 1070 *
ec82e1c1
MW
1071 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1072 * its backing page dirty, then tag the page as dirty in the page cache
1073 * and then attach the address_space's inode to its superblock's dirty
1da177e4
LT
1074 * inode list.
1075 *
1076 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
b93b0163 1077 * i_pages lock and mapping->host->i_lock.
1da177e4 1078 */
fc9b52cd 1079void mark_buffer_dirty(struct buffer_head *bh)
1da177e4 1080{
787d2214 1081 WARN_ON_ONCE(!buffer_uptodate(bh));
1be62dc1 1082
5305cb83
TH
1083 trace_block_dirty_buffer(bh);
1084
1be62dc1
LT
1085 /*
1086 * Very *carefully* optimize the it-is-already-dirty case.
1087 *
1088 * Don't let the final "is it dirty" escape to before we
1089 * perhaps modified the buffer.
1090 */
1091 if (buffer_dirty(bh)) {
1092 smp_mb();
1093 if (buffer_dirty(bh))
1094 return;
1095 }
1096
a8e7d49a
LT
1097 if (!test_set_buffer_dirty(bh)) {
1098 struct page *page = bh->b_page;
c4843a75 1099 struct address_space *mapping = NULL;
c4843a75 1100
62cccb8c 1101 lock_page_memcg(page);
8e9d78ed 1102 if (!TestSetPageDirty(page)) {
c4843a75 1103 mapping = page_mapping(page);
8e9d78ed 1104 if (mapping)
62cccb8c 1105 __set_page_dirty(page, mapping, 0);
8e9d78ed 1106 }
62cccb8c 1107 unlock_page_memcg(page);
c4843a75
GT
1108 if (mapping)
1109 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
a8e7d49a 1110 }
1da177e4 1111}
1fe72eaa 1112EXPORT_SYMBOL(mark_buffer_dirty);
1da177e4 1113
87354e5d
JL
1114void mark_buffer_write_io_error(struct buffer_head *bh)
1115{
485e9605
JL
1116 struct super_block *sb;
1117
87354e5d
JL
1118 set_buffer_write_io_error(bh);
1119 /* FIXME: do we need to set this in both places? */
1120 if (bh->b_page && bh->b_page->mapping)
1121 mapping_set_error(bh->b_page->mapping, -EIO);
1122 if (bh->b_assoc_map)
1123 mapping_set_error(bh->b_assoc_map, -EIO);
485e9605
JL
1124 rcu_read_lock();
1125 sb = READ_ONCE(bh->b_bdev->bd_super);
1126 if (sb)
1127 errseq_set(&sb->s_wb_err, -EIO);
1128 rcu_read_unlock();
87354e5d
JL
1129}
1130EXPORT_SYMBOL(mark_buffer_write_io_error);
1131
1da177e4
LT
1132/*
1133 * Decrement a buffer_head's reference count. If all buffers against a page
1134 * have zero reference count, are clean and unlocked, and if the page is clean
1135 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1136 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1137 * a page but it ends up not being freed, and buffers may later be reattached).
1138 */
1139void __brelse(struct buffer_head * buf)
1140{
1141 if (atomic_read(&buf->b_count)) {
1142 put_bh(buf);
1143 return;
1144 }
5c752ad9 1145 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1da177e4 1146}
1fe72eaa 1147EXPORT_SYMBOL(__brelse);
1da177e4
LT
1148
1149/*
1150 * bforget() is like brelse(), except it discards any
1151 * potentially dirty data.
1152 */
1153void __bforget(struct buffer_head *bh)
1154{
1155 clear_buffer_dirty(bh);
535ee2fb 1156 if (bh->b_assoc_map) {
1da177e4
LT
1157 struct address_space *buffer_mapping = bh->b_page->mapping;
1158
1159 spin_lock(&buffer_mapping->private_lock);
1160 list_del_init(&bh->b_assoc_buffers);
58ff407b 1161 bh->b_assoc_map = NULL;
1da177e4
LT
1162 spin_unlock(&buffer_mapping->private_lock);
1163 }
1164 __brelse(bh);
1165}
1fe72eaa 1166EXPORT_SYMBOL(__bforget);
1da177e4
LT
1167
1168static struct buffer_head *__bread_slow(struct buffer_head *bh)
1169{
1170 lock_buffer(bh);
1171 if (buffer_uptodate(bh)) {
1172 unlock_buffer(bh);
1173 return bh;
1174 } else {
1175 get_bh(bh);
1176 bh->b_end_io = end_buffer_read_sync;
1420c4a5 1177 submit_bh(REQ_OP_READ, bh);
1da177e4
LT
1178 wait_on_buffer(bh);
1179 if (buffer_uptodate(bh))
1180 return bh;
1181 }
1182 brelse(bh);
1183 return NULL;
1184}
1185
1186/*
1187 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1188 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1189 * refcount elevated by one when they're in an LRU. A buffer can only appear
1190 * once in a particular CPU's LRU. A single buffer can be present in multiple
1191 * CPU's LRUs at the same time.
1192 *
1193 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1194 * sb_find_get_block().
1195 *
1196 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1197 * a local interrupt disable for that.
1198 */
1199
86cf78d7 1200#define BH_LRU_SIZE 16
1da177e4
LT
1201
1202struct bh_lru {
1203 struct buffer_head *bhs[BH_LRU_SIZE];
1204};
1205
1206static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1207
1208#ifdef CONFIG_SMP
1209#define bh_lru_lock() local_irq_disable()
1210#define bh_lru_unlock() local_irq_enable()
1211#else
1212#define bh_lru_lock() preempt_disable()
1213#define bh_lru_unlock() preempt_enable()
1214#endif
1215
1216static inline void check_irqs_on(void)
1217{
1218#ifdef irqs_disabled
1219 BUG_ON(irqs_disabled());
1220#endif
1221}
1222
1223/*
241f01fb
EB
1224 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1225 * inserted at the front, and the buffer_head at the back if any is evicted.
1226 * Or, if already in the LRU it is moved to the front.
1da177e4
LT
1227 */
1228static void bh_lru_install(struct buffer_head *bh)
1229{
241f01fb
EB
1230 struct buffer_head *evictee = bh;
1231 struct bh_lru *b;
1232 int i;
1da177e4
LT
1233
1234 check_irqs_on();
c0226eb8
MK
1235 bh_lru_lock();
1236
8cc621d2
MK
1237 /*
1238 * the refcount of buffer_head in bh_lru prevents dropping the
1239 * attached page(i.e., try_to_free_buffers) so it could cause
1240 * failing page migration.
1241 * Skip putting upcoming bh into bh_lru until migration is done.
1242 */
c0226eb8
MK
1243 if (lru_cache_disabled()) {
1244 bh_lru_unlock();
8cc621d2 1245 return;
c0226eb8 1246 }
1da177e4 1247
241f01fb
EB
1248 b = this_cpu_ptr(&bh_lrus);
1249 for (i = 0; i < BH_LRU_SIZE; i++) {
1250 swap(evictee, b->bhs[i]);
1251 if (evictee == bh) {
1252 bh_lru_unlock();
1253 return;
1da177e4 1254 }
1da177e4 1255 }
1da177e4 1256
241f01fb
EB
1257 get_bh(bh);
1258 bh_lru_unlock();
1259 brelse(evictee);
1da177e4
LT
1260}
1261
1262/*
1263 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1264 */
858119e1 1265static struct buffer_head *
3991d3bd 1266lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1267{
1268 struct buffer_head *ret = NULL;
3991d3bd 1269 unsigned int i;
1da177e4
LT
1270
1271 check_irqs_on();
1272 bh_lru_lock();
1da177e4 1273 for (i = 0; i < BH_LRU_SIZE; i++) {
c7b92516 1274 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1da177e4 1275
9470dd5d
ZB
1276 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1277 bh->b_size == size) {
1da177e4
LT
1278 if (i) {
1279 while (i) {
c7b92516
CL
1280 __this_cpu_write(bh_lrus.bhs[i],
1281 __this_cpu_read(bh_lrus.bhs[i - 1]));
1da177e4
LT
1282 i--;
1283 }
c7b92516 1284 __this_cpu_write(bh_lrus.bhs[0], bh);
1da177e4
LT
1285 }
1286 get_bh(bh);
1287 ret = bh;
1288 break;
1289 }
1290 }
1291 bh_lru_unlock();
1292 return ret;
1293}
1294
1295/*
1296 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1297 * it in the LRU and mark it as accessed. If it is not present then return
1298 * NULL
1299 */
1300struct buffer_head *
3991d3bd 1301__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1302{
1303 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1304
1305 if (bh == NULL) {
2457aec6 1306 /* __find_get_block_slow will mark the page accessed */
385fd4c5 1307 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1308 if (bh)
1309 bh_lru_install(bh);
2457aec6 1310 } else
1da177e4 1311 touch_buffer(bh);
2457aec6 1312
1da177e4
LT
1313 return bh;
1314}
1315EXPORT_SYMBOL(__find_get_block);
1316
1317/*
3b5e6454 1318 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1da177e4
LT
1319 * which corresponds to the passed block_device, block and size. The
1320 * returned buffer has its reference count incremented.
1321 *
3b5e6454
GK
1322 * __getblk_gfp() will lock up the machine if grow_dev_page's
1323 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1da177e4
LT
1324 */
1325struct buffer_head *
3b5e6454
GK
1326__getblk_gfp(struct block_device *bdev, sector_t block,
1327 unsigned size, gfp_t gfp)
1da177e4
LT
1328{
1329 struct buffer_head *bh = __find_get_block(bdev, block, size);
1330
1331 might_sleep();
1332 if (bh == NULL)
3b5e6454 1333 bh = __getblk_slow(bdev, block, size, gfp);
1da177e4
LT
1334 return bh;
1335}
3b5e6454 1336EXPORT_SYMBOL(__getblk_gfp);
1da177e4
LT
1337
1338/*
1339 * Do async read-ahead on a buffer..
1340 */
3991d3bd 1341void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1342{
1343 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5 1344 if (likely(bh)) {
1420c4a5 1345 ll_rw_block(REQ_OP_READ | REQ_RAHEAD, 1, &bh);
a3e713b5
AM
1346 brelse(bh);
1347 }
1da177e4
LT
1348}
1349EXPORT_SYMBOL(__breadahead);
1350
d87f6392
RG
1351void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1352 gfp_t gfp)
1353{
1354 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1355 if (likely(bh)) {
1420c4a5 1356 ll_rw_block(REQ_OP_READ | REQ_RAHEAD, 1, &bh);
d87f6392
RG
1357 brelse(bh);
1358 }
1359}
1360EXPORT_SYMBOL(__breadahead_gfp);
1361
1da177e4 1362/**
3b5e6454 1363 * __bread_gfp() - reads a specified block and returns the bh
67be2dd1 1364 * @bdev: the block_device to read from
1da177e4
LT
1365 * @block: number of block
1366 * @size: size (in bytes) to read
3b5e6454
GK
1367 * @gfp: page allocation flag
1368 *
1da177e4 1369 * Reads a specified block, and returns buffer head that contains it.
3b5e6454
GK
1370 * The page cache can be allocated from non-movable area
1371 * not to prevent page migration if you set gfp to zero.
1da177e4
LT
1372 * It returns NULL if the block was unreadable.
1373 */
1374struct buffer_head *
3b5e6454
GK
1375__bread_gfp(struct block_device *bdev, sector_t block,
1376 unsigned size, gfp_t gfp)
1da177e4 1377{
3b5e6454 1378 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1da177e4 1379
a3e713b5 1380 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1381 bh = __bread_slow(bh);
1382 return bh;
1383}
3b5e6454 1384EXPORT_SYMBOL(__bread_gfp);
1da177e4 1385
8cc621d2
MK
1386static void __invalidate_bh_lrus(struct bh_lru *b)
1387{
1388 int i;
1389
1390 for (i = 0; i < BH_LRU_SIZE; i++) {
1391 brelse(b->bhs[i]);
1392 b->bhs[i] = NULL;
1393 }
1394}
1da177e4
LT
1395/*
1396 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1397 * This doesn't race because it runs in each cpu either in irq
1398 * or with preempt disabled.
1399 */
1400static void invalidate_bh_lru(void *arg)
1401{
1402 struct bh_lru *b = &get_cpu_var(bh_lrus);
1da177e4 1403
8cc621d2 1404 __invalidate_bh_lrus(b);
1da177e4
LT
1405 put_cpu_var(bh_lrus);
1406}
42be35d0 1407
8cc621d2 1408bool has_bh_in_lru(int cpu, void *dummy)
42be35d0
GBY
1409{
1410 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1411 int i;
1da177e4 1412
42be35d0
GBY
1413 for (i = 0; i < BH_LRU_SIZE; i++) {
1414 if (b->bhs[i])
1d706679 1415 return true;
42be35d0
GBY
1416 }
1417
1d706679 1418 return false;
42be35d0
GBY
1419}
1420
f9a14399 1421void invalidate_bh_lrus(void)
1da177e4 1422{
cb923159 1423 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1da177e4 1424}
9db5579b 1425EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1da177e4 1426
243418e3
MK
1427/*
1428 * It's called from workqueue context so we need a bh_lru_lock to close
1429 * the race with preemption/irq.
1430 */
1431void invalidate_bh_lrus_cpu(void)
8cc621d2
MK
1432{
1433 struct bh_lru *b;
1434
1435 bh_lru_lock();
243418e3 1436 b = this_cpu_ptr(&bh_lrus);
8cc621d2
MK
1437 __invalidate_bh_lrus(b);
1438 bh_lru_unlock();
1439}
1440
1da177e4
LT
1441void set_bh_page(struct buffer_head *bh,
1442 struct page *page, unsigned long offset)
1443{
1444 bh->b_page = page;
e827f923 1445 BUG_ON(offset >= PAGE_SIZE);
1da177e4
LT
1446 if (PageHighMem(page))
1447 /*
1448 * This catches illegal uses and preserves the offset:
1449 */
1450 bh->b_data = (char *)(0 + offset);
1451 else
1452 bh->b_data = page_address(page) + offset;
1453}
1454EXPORT_SYMBOL(set_bh_page);
1455
1456/*
1457 * Called when truncating a buffer on a page completely.
1458 */
e7470ee8
MG
1459
1460/* Bits that are cleared during an invalidate */
1461#define BUFFER_FLAGS_DISCARD \
1462 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1463 1 << BH_Delay | 1 << BH_Unwritten)
1464
858119e1 1465static void discard_buffer(struct buffer_head * bh)
1da177e4 1466{
e7470ee8
MG
1467 unsigned long b_state, b_state_old;
1468
1da177e4
LT
1469 lock_buffer(bh);
1470 clear_buffer_dirty(bh);
1471 bh->b_bdev = NULL;
e7470ee8
MG
1472 b_state = bh->b_state;
1473 for (;;) {
1474 b_state_old = cmpxchg(&bh->b_state, b_state,
1475 (b_state & ~BUFFER_FLAGS_DISCARD));
1476 if (b_state_old == b_state)
1477 break;
1478 b_state = b_state_old;
1479 }
1da177e4
LT
1480 unlock_buffer(bh);
1481}
1482
1da177e4 1483/**
7ba13abb
MWO
1484 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1485 * @folio: The folio which is affected.
d47992f8
LC
1486 * @offset: start of the range to invalidate
1487 * @length: length of the range to invalidate
1da177e4 1488 *
7ba13abb 1489 * block_invalidate_folio() is called when all or part of the folio has been
814e1d25 1490 * invalidated by a truncate operation.
1da177e4 1491 *
7ba13abb 1492 * block_invalidate_folio() does not have to release all buffers, but it must
1da177e4
LT
1493 * ensure that no dirty buffer is left outside @offset and that no I/O
1494 * is underway against any of the blocks which are outside the truncation
1495 * point. Because the caller is about to free (and possibly reuse) those
1496 * blocks on-disk.
1497 */
7ba13abb 1498void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1da177e4
LT
1499{
1500 struct buffer_head *head, *bh, *next;
7ba13abb
MWO
1501 size_t curr_off = 0;
1502 size_t stop = length + offset;
1da177e4 1503
7ba13abb 1504 BUG_ON(!folio_test_locked(folio));
1da177e4 1505
d47992f8
LC
1506 /*
1507 * Check for overflow
1508 */
7ba13abb
MWO
1509 BUG_ON(stop > folio_size(folio) || stop < length);
1510
1511 head = folio_buffers(folio);
1512 if (!head)
1513 return;
d47992f8 1514
1da177e4
LT
1515 bh = head;
1516 do {
7ba13abb 1517 size_t next_off = curr_off + bh->b_size;
1da177e4
LT
1518 next = bh->b_this_page;
1519
d47992f8
LC
1520 /*
1521 * Are we still fully in range ?
1522 */
1523 if (next_off > stop)
1524 goto out;
1525
1da177e4
LT
1526 /*
1527 * is this block fully invalidated?
1528 */
1529 if (offset <= curr_off)
1530 discard_buffer(bh);
1531 curr_off = next_off;
1532 bh = next;
1533 } while (bh != head);
1534
1535 /*
7ba13abb 1536 * We release buffers only if the entire folio is being invalidated.
1da177e4
LT
1537 * The get_block cached value has been unconditionally invalidated,
1538 * so real IO is not possible anymore.
1539 */
7ba13abb
MWO
1540 if (length == folio_size(folio))
1541 filemap_release_folio(folio, 0);
1da177e4 1542out:
2ff28e22 1543 return;
1da177e4 1544}
7ba13abb 1545EXPORT_SYMBOL(block_invalidate_folio);
1da177e4 1546
d47992f8 1547
1da177e4
LT
1548/*
1549 * We attach and possibly dirty the buffers atomically wrt
e621900a 1550 * block_dirty_folio() via private_lock. try_to_free_buffers
1da177e4
LT
1551 * is already excluded via the page lock.
1552 */
1553void create_empty_buffers(struct page *page,
1554 unsigned long blocksize, unsigned long b_state)
1555{
1556 struct buffer_head *bh, *head, *tail;
1557
640ab98f 1558 head = alloc_page_buffers(page, blocksize, true);
1da177e4
LT
1559 bh = head;
1560 do {
1561 bh->b_state |= b_state;
1562 tail = bh;
1563 bh = bh->b_this_page;
1564 } while (bh);
1565 tail->b_this_page = head;
1566
1567 spin_lock(&page->mapping->private_lock);
1568 if (PageUptodate(page) || PageDirty(page)) {
1569 bh = head;
1570 do {
1571 if (PageDirty(page))
1572 set_buffer_dirty(bh);
1573 if (PageUptodate(page))
1574 set_buffer_uptodate(bh);
1575 bh = bh->b_this_page;
1576 } while (bh != head);
1577 }
45dcfc27 1578 attach_page_private(page, head);
1da177e4
LT
1579 spin_unlock(&page->mapping->private_lock);
1580}
1581EXPORT_SYMBOL(create_empty_buffers);
1582
29f3ad7d
JK
1583/**
1584 * clean_bdev_aliases: clean a range of buffers in block device
1585 * @bdev: Block device to clean buffers in
1586 * @block: Start of a range of blocks to clean
1587 * @len: Number of blocks to clean
1da177e4 1588 *
29f3ad7d
JK
1589 * We are taking a range of blocks for data and we don't want writeback of any
1590 * buffer-cache aliases starting from return from this function and until the
1591 * moment when something will explicitly mark the buffer dirty (hopefully that
1592 * will not happen until we will free that block ;-) We don't even need to mark
1593 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1594 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1595 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1596 * would confuse anyone who might pick it with bread() afterwards...
1597 *
1598 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1599 * writeout I/O going on against recently-freed buffers. We don't wait on that
1600 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1601 * need to. That happens here.
1da177e4 1602 */
29f3ad7d 1603void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1da177e4 1604{
29f3ad7d
JK
1605 struct inode *bd_inode = bdev->bd_inode;
1606 struct address_space *bd_mapping = bd_inode->i_mapping;
9e0b6f31 1607 struct folio_batch fbatch;
29f3ad7d
JK
1608 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1609 pgoff_t end;
c10f778d 1610 int i, count;
29f3ad7d
JK
1611 struct buffer_head *bh;
1612 struct buffer_head *head;
1da177e4 1613
29f3ad7d 1614 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
9e0b6f31
MWO
1615 folio_batch_init(&fbatch);
1616 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1617 count = folio_batch_count(&fbatch);
c10f778d 1618 for (i = 0; i < count; i++) {
9e0b6f31 1619 struct folio *folio = fbatch.folios[i];
1da177e4 1620
9e0b6f31 1621 if (!folio_buffers(folio))
29f3ad7d
JK
1622 continue;
1623 /*
9e0b6f31 1624 * We use folio lock instead of bd_mapping->private_lock
29f3ad7d
JK
1625 * to pin buffers here since we can afford to sleep and
1626 * it scales better than a global spinlock lock.
1627 */
9e0b6f31
MWO
1628 folio_lock(folio);
1629 /* Recheck when the folio is locked which pins bhs */
1630 head = folio_buffers(folio);
1631 if (!head)
29f3ad7d 1632 goto unlock_page;
29f3ad7d
JK
1633 bh = head;
1634 do {
6c006a9d 1635 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
29f3ad7d
JK
1636 goto next;
1637 if (bh->b_blocknr >= block + len)
1638 break;
1639 clear_buffer_dirty(bh);
1640 wait_on_buffer(bh);
1641 clear_buffer_req(bh);
1642next:
1643 bh = bh->b_this_page;
1644 } while (bh != head);
1645unlock_page:
9e0b6f31 1646 folio_unlock(folio);
29f3ad7d 1647 }
9e0b6f31 1648 folio_batch_release(&fbatch);
29f3ad7d 1649 cond_resched();
c10f778d
JK
1650 /* End of range already reached? */
1651 if (index > end || !index)
1652 break;
1da177e4
LT
1653 }
1654}
29f3ad7d 1655EXPORT_SYMBOL(clean_bdev_aliases);
1da177e4 1656
45bce8f3
LT
1657/*
1658 * Size is a power-of-two in the range 512..PAGE_SIZE,
1659 * and the case we care about most is PAGE_SIZE.
1660 *
1661 * So this *could* possibly be written with those
1662 * constraints in mind (relevant mostly if some
1663 * architecture has a slow bit-scan instruction)
1664 */
1665static inline int block_size_bits(unsigned int blocksize)
1666{
1667 return ilog2(blocksize);
1668}
1669
1670static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1671{
1672 BUG_ON(!PageLocked(page));
1673
1674 if (!page_has_buffers(page))
6aa7de05
MR
1675 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1676 b_state);
45bce8f3
LT
1677 return page_buffers(page);
1678}
1679
1da177e4
LT
1680/*
1681 * NOTE! All mapped/uptodate combinations are valid:
1682 *
1683 * Mapped Uptodate Meaning
1684 *
1685 * No No "unknown" - must do get_block()
1686 * No Yes "hole" - zero-filled
1687 * Yes No "allocated" - allocated on disk, not read in
1688 * Yes Yes "valid" - allocated and up-to-date in memory.
1689 *
1690 * "Dirty" is valid only with the last case (mapped+uptodate).
1691 */
1692
1693/*
1694 * While block_write_full_page is writing back the dirty buffers under
1695 * the page lock, whoever dirtied the buffers may decide to clean them
1696 * again at any time. We handle that by only looking at the buffer
1697 * state inside lock_buffer().
1698 *
1699 * If block_write_full_page() is called for regular writeback
1700 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1701 * locked buffer. This only can happen if someone has written the buffer
1702 * directly, with submit_bh(). At the address_space level PageWriteback
1703 * prevents this contention from occurring.
6e34eedd
TT
1704 *
1705 * If block_write_full_page() is called with wbc->sync_mode ==
70fd7614 1706 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
721a9602 1707 * causes the writes to be flagged as synchronous writes.
1da177e4 1708 */
b4bba389 1709int __block_write_full_page(struct inode *inode, struct page *page,
35c80d5f
CM
1710 get_block_t *get_block, struct writeback_control *wbc,
1711 bh_end_io_t *handler)
1da177e4
LT
1712{
1713 int err;
1714 sector_t block;
1715 sector_t last_block;
f0fbd5fc 1716 struct buffer_head *bh, *head;
45bce8f3 1717 unsigned int blocksize, bbits;
1da177e4 1718 int nr_underway = 0;
3ae72869 1719 blk_opf_t write_flags = wbc_to_write_flags(wbc);
1da177e4 1720
45bce8f3 1721 head = create_page_buffers(page, inode,
1da177e4 1722 (1 << BH_Dirty)|(1 << BH_Uptodate));
1da177e4
LT
1723
1724 /*
e621900a 1725 * Be very careful. We have no exclusion from block_dirty_folio
1da177e4
LT
1726 * here, and the (potentially unmapped) buffers may become dirty at
1727 * any time. If a buffer becomes dirty here after we've inspected it
1728 * then we just miss that fact, and the page stays dirty.
1729 *
e621900a 1730 * Buffers outside i_size may be dirtied by block_dirty_folio;
1da177e4
LT
1731 * handle that here by just cleaning them.
1732 */
1733
1da177e4 1734 bh = head;
45bce8f3
LT
1735 blocksize = bh->b_size;
1736 bbits = block_size_bits(blocksize);
1737
09cbfeaf 1738 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
45bce8f3 1739 last_block = (i_size_read(inode) - 1) >> bbits;
1da177e4
LT
1740
1741 /*
1742 * Get all the dirty buffers mapped to disk addresses and
1743 * handle any aliases from the underlying blockdev's mapping.
1744 */
1745 do {
1746 if (block > last_block) {
1747 /*
1748 * mapped buffers outside i_size will occur, because
1749 * this page can be outside i_size when there is a
1750 * truncate in progress.
1751 */
1752 /*
1753 * The buffer was zeroed by block_write_full_page()
1754 */
1755 clear_buffer_dirty(bh);
1756 set_buffer_uptodate(bh);
29a814d2
AT
1757 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1758 buffer_dirty(bh)) {
b0cf2321 1759 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1760 err = get_block(inode, block, bh, 1);
1761 if (err)
1762 goto recover;
29a814d2 1763 clear_buffer_delay(bh);
1da177e4
LT
1764 if (buffer_new(bh)) {
1765 /* blockdev mappings never come here */
1766 clear_buffer_new(bh);
e64855c6 1767 clean_bdev_bh_alias(bh);
1da177e4
LT
1768 }
1769 }
1770 bh = bh->b_this_page;
1771 block++;
1772 } while (bh != head);
1773
1774 do {
1da177e4
LT
1775 if (!buffer_mapped(bh))
1776 continue;
1777 /*
1778 * If it's a fully non-blocking write attempt and we cannot
1779 * lock the buffer then redirty the page. Note that this can
5b0830cb
JA
1780 * potentially cause a busy-wait loop from writeback threads
1781 * and kswapd activity, but those code paths have their own
1782 * higher-level throttling.
1da177e4 1783 */
1b430bee 1784 if (wbc->sync_mode != WB_SYNC_NONE) {
1da177e4 1785 lock_buffer(bh);
ca5de404 1786 } else if (!trylock_buffer(bh)) {
1da177e4
LT
1787 redirty_page_for_writepage(wbc, page);
1788 continue;
1789 }
1790 if (test_clear_buffer_dirty(bh)) {
35c80d5f 1791 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1792 } else {
1793 unlock_buffer(bh);
1794 }
1795 } while ((bh = bh->b_this_page) != head);
1796
1797 /*
1798 * The page and its buffers are protected by PageWriteback(), so we can
1799 * drop the bh refcounts early.
1800 */
1801 BUG_ON(PageWriteback(page));
1802 set_page_writeback(page);
1da177e4
LT
1803
1804 do {
1805 struct buffer_head *next = bh->b_this_page;
1806 if (buffer_async_write(bh)) {
1420c4a5 1807 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1da177e4
LT
1808 nr_underway++;
1809 }
1da177e4
LT
1810 bh = next;
1811 } while (bh != head);
05937baa 1812 unlock_page(page);
1da177e4
LT
1813
1814 err = 0;
1815done:
1816 if (nr_underway == 0) {
1817 /*
1818 * The page was marked dirty, but the buffers were
1819 * clean. Someone wrote them back by hand with
1820 * ll_rw_block/submit_bh. A rare case.
1821 */
1da177e4 1822 end_page_writeback(page);
3d67f2d7 1823
1da177e4
LT
1824 /*
1825 * The page and buffer_heads can be released at any time from
1826 * here on.
1827 */
1da177e4
LT
1828 }
1829 return err;
1830
1831recover:
1832 /*
1833 * ENOSPC, or some other error. We may already have added some
1834 * blocks to the file, so we need to write these out to avoid
1835 * exposing stale data.
1836 * The page is currently locked and not marked for writeback
1837 */
1838 bh = head;
1839 /* Recovery: lock and submit the mapped buffers */
1840 do {
29a814d2
AT
1841 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1842 !buffer_delay(bh)) {
1da177e4 1843 lock_buffer(bh);
35c80d5f 1844 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1845 } else {
1846 /*
1847 * The buffer may have been set dirty during
1848 * attachment to a dirty page.
1849 */
1850 clear_buffer_dirty(bh);
1851 }
1852 } while ((bh = bh->b_this_page) != head);
1853 SetPageError(page);
1854 BUG_ON(PageWriteback(page));
7e4c3690 1855 mapping_set_error(page->mapping, err);
1da177e4 1856 set_page_writeback(page);
1da177e4
LT
1857 do {
1858 struct buffer_head *next = bh->b_this_page;
1859 if (buffer_async_write(bh)) {
1860 clear_buffer_dirty(bh);
1420c4a5 1861 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1da177e4
LT
1862 nr_underway++;
1863 }
1da177e4
LT
1864 bh = next;
1865 } while (bh != head);
ffda9d30 1866 unlock_page(page);
1da177e4
LT
1867 goto done;
1868}
b4bba389 1869EXPORT_SYMBOL(__block_write_full_page);
1da177e4 1870
afddba49
NP
1871/*
1872 * If a page has any new buffers, zero them out here, and mark them uptodate
1873 * and dirty so they'll be written out (in order to prevent uninitialised
1874 * block data from leaking). And clear the new bit.
1875 */
1876void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1877{
1878 unsigned int block_start, block_end;
1879 struct buffer_head *head, *bh;
1880
1881 BUG_ON(!PageLocked(page));
1882 if (!page_has_buffers(page))
1883 return;
1884
1885 bh = head = page_buffers(page);
1886 block_start = 0;
1887 do {
1888 block_end = block_start + bh->b_size;
1889
1890 if (buffer_new(bh)) {
1891 if (block_end > from && block_start < to) {
1892 if (!PageUptodate(page)) {
1893 unsigned start, size;
1894
1895 start = max(from, block_start);
1896 size = min(to, block_end) - start;
1897
eebd2aa3 1898 zero_user(page, start, size);
afddba49
NP
1899 set_buffer_uptodate(bh);
1900 }
1901
1902 clear_buffer_new(bh);
1903 mark_buffer_dirty(bh);
1904 }
1905 }
1906
1907 block_start = block_end;
1908 bh = bh->b_this_page;
1909 } while (bh != head);
1910}
1911EXPORT_SYMBOL(page_zero_new_buffers);
1912
ae259a9c
CH
1913static void
1914iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
6d49cc85 1915 const struct iomap *iomap)
ae259a9c
CH
1916{
1917 loff_t offset = block << inode->i_blkbits;
1918
1919 bh->b_bdev = iomap->bdev;
1920
1921 /*
1922 * Block points to offset in file we need to map, iomap contains
1923 * the offset at which the map starts. If the map ends before the
1924 * current block, then do not map the buffer and let the caller
1925 * handle it.
1926 */
1927 BUG_ON(offset >= iomap->offset + iomap->length);
1928
1929 switch (iomap->type) {
1930 case IOMAP_HOLE:
1931 /*
1932 * If the buffer is not up to date or beyond the current EOF,
1933 * we need to mark it as new to ensure sub-block zeroing is
1934 * executed if necessary.
1935 */
1936 if (!buffer_uptodate(bh) ||
1937 (offset >= i_size_read(inode)))
1938 set_buffer_new(bh);
1939 break;
1940 case IOMAP_DELALLOC:
1941 if (!buffer_uptodate(bh) ||
1942 (offset >= i_size_read(inode)))
1943 set_buffer_new(bh);
1944 set_buffer_uptodate(bh);
1945 set_buffer_mapped(bh);
1946 set_buffer_delay(bh);
1947 break;
1948 case IOMAP_UNWRITTEN:
1949 /*
3d7b6b21
AG
1950 * For unwritten regions, we always need to ensure that regions
1951 * in the block we are not writing to are zeroed. Mark the
1952 * buffer as new to ensure this.
ae259a9c
CH
1953 */
1954 set_buffer_new(bh);
1955 set_buffer_unwritten(bh);
df561f66 1956 fallthrough;
ae259a9c 1957 case IOMAP_MAPPED:
3d7b6b21
AG
1958 if ((iomap->flags & IOMAP_F_NEW) ||
1959 offset >= i_size_read(inode))
ae259a9c 1960 set_buffer_new(bh);
19fe5f64
AG
1961 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1962 inode->i_blkbits;
ae259a9c
CH
1963 set_buffer_mapped(bh);
1964 break;
1965 }
1966}
1967
d1bd0b4e 1968int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
6d49cc85 1969 get_block_t *get_block, const struct iomap *iomap)
1da177e4 1970{
09cbfeaf 1971 unsigned from = pos & (PAGE_SIZE - 1);
ebdec241 1972 unsigned to = from + len;
d1bd0b4e 1973 struct inode *inode = folio->mapping->host;
1da177e4
LT
1974 unsigned block_start, block_end;
1975 sector_t block;
1976 int err = 0;
1977 unsigned blocksize, bbits;
1978 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1979
d1bd0b4e 1980 BUG_ON(!folio_test_locked(folio));
09cbfeaf
KS
1981 BUG_ON(from > PAGE_SIZE);
1982 BUG_ON(to > PAGE_SIZE);
1da177e4
LT
1983 BUG_ON(from > to);
1984
d1bd0b4e 1985 head = create_page_buffers(&folio->page, inode, 0);
45bce8f3
LT
1986 blocksize = head->b_size;
1987 bbits = block_size_bits(blocksize);
1da177e4 1988
d1bd0b4e 1989 block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1da177e4
LT
1990
1991 for(bh = head, block_start = 0; bh != head || !block_start;
1992 block++, block_start=block_end, bh = bh->b_this_page) {
1993 block_end = block_start + blocksize;
1994 if (block_end <= from || block_start >= to) {
d1bd0b4e 1995 if (folio_test_uptodate(folio)) {
1da177e4
LT
1996 if (!buffer_uptodate(bh))
1997 set_buffer_uptodate(bh);
1998 }
1999 continue;
2000 }
2001 if (buffer_new(bh))
2002 clear_buffer_new(bh);
2003 if (!buffer_mapped(bh)) {
b0cf2321 2004 WARN_ON(bh->b_size != blocksize);
ae259a9c
CH
2005 if (get_block) {
2006 err = get_block(inode, block, bh, 1);
2007 if (err)
2008 break;
2009 } else {
2010 iomap_to_bh(inode, block, bh, iomap);
2011 }
2012
1da177e4 2013 if (buffer_new(bh)) {
e64855c6 2014 clean_bdev_bh_alias(bh);
d1bd0b4e 2015 if (folio_test_uptodate(folio)) {
637aff46 2016 clear_buffer_new(bh);
1da177e4 2017 set_buffer_uptodate(bh);
637aff46 2018 mark_buffer_dirty(bh);
1da177e4
LT
2019 continue;
2020 }
eebd2aa3 2021 if (block_end > to || block_start < from)
d1bd0b4e 2022 folio_zero_segments(folio,
eebd2aa3
CL
2023 to, block_end,
2024 block_start, from);
1da177e4
LT
2025 continue;
2026 }
2027 }
d1bd0b4e 2028 if (folio_test_uptodate(folio)) {
1da177e4
LT
2029 if (!buffer_uptodate(bh))
2030 set_buffer_uptodate(bh);
2031 continue;
2032 }
2033 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 2034 !buffer_unwritten(bh) &&
1da177e4 2035 (block_start < from || block_end > to)) {
1420c4a5 2036 ll_rw_block(REQ_OP_READ, 1, &bh);
1da177e4
LT
2037 *wait_bh++=bh;
2038 }
2039 }
2040 /*
2041 * If we issued read requests - let them complete.
2042 */
2043 while(wait_bh > wait) {
2044 wait_on_buffer(*--wait_bh);
2045 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 2046 err = -EIO;
1da177e4 2047 }
f9f07b6c 2048 if (unlikely(err))
d1bd0b4e 2049 page_zero_new_buffers(&folio->page, from, to);
1da177e4
LT
2050 return err;
2051}
ae259a9c
CH
2052
2053int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2054 get_block_t *get_block)
2055{
d1bd0b4e
MWO
2056 return __block_write_begin_int(page_folio(page), pos, len, get_block,
2057 NULL);
ae259a9c 2058}
ebdec241 2059EXPORT_SYMBOL(__block_write_begin);
1da177e4
LT
2060
2061static int __block_commit_write(struct inode *inode, struct page *page,
2062 unsigned from, unsigned to)
2063{
2064 unsigned block_start, block_end;
2065 int partial = 0;
2066 unsigned blocksize;
2067 struct buffer_head *bh, *head;
2068
45bce8f3
LT
2069 bh = head = page_buffers(page);
2070 blocksize = bh->b_size;
1da177e4 2071
45bce8f3
LT
2072 block_start = 0;
2073 do {
1da177e4
LT
2074 block_end = block_start + blocksize;
2075 if (block_end <= from || block_start >= to) {
2076 if (!buffer_uptodate(bh))
2077 partial = 1;
2078 } else {
2079 set_buffer_uptodate(bh);
2080 mark_buffer_dirty(bh);
2081 }
4ebd3aec
YG
2082 if (buffer_new(bh))
2083 clear_buffer_new(bh);
45bce8f3
LT
2084
2085 block_start = block_end;
2086 bh = bh->b_this_page;
2087 } while (bh != head);
1da177e4
LT
2088
2089 /*
2090 * If this is a partial write which happened to make all buffers
2c69e205 2091 * uptodate then we can optimize away a bogus read_folio() for
1da177e4
LT
2092 * the next read(). Here we 'discover' whether the page went
2093 * uptodate as a result of this (potentially partial) write.
2094 */
2095 if (!partial)
2096 SetPageUptodate(page);
2097 return 0;
2098}
2099
afddba49 2100/*
155130a4
CH
2101 * block_write_begin takes care of the basic task of block allocation and
2102 * bringing partial write blocks uptodate first.
2103 *
7bb46a67 2104 * The filesystem needs to handle block truncation upon failure.
afddba49 2105 */
155130a4 2106int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
b3992d1e 2107 struct page **pagep, get_block_t *get_block)
afddba49 2108{
09cbfeaf 2109 pgoff_t index = pos >> PAGE_SHIFT;
afddba49 2110 struct page *page;
6e1db88d 2111 int status;
afddba49 2112
b7446e7c 2113 page = grab_cache_page_write_begin(mapping, index);
6e1db88d
CH
2114 if (!page)
2115 return -ENOMEM;
afddba49 2116
6e1db88d 2117 status = __block_write_begin(page, pos, len, get_block);
afddba49 2118 if (unlikely(status)) {
6e1db88d 2119 unlock_page(page);
09cbfeaf 2120 put_page(page);
6e1db88d 2121 page = NULL;
afddba49
NP
2122 }
2123
6e1db88d 2124 *pagep = page;
afddba49
NP
2125 return status;
2126}
2127EXPORT_SYMBOL(block_write_begin);
2128
2129int block_write_end(struct file *file, struct address_space *mapping,
2130 loff_t pos, unsigned len, unsigned copied,
2131 struct page *page, void *fsdata)
2132{
2133 struct inode *inode = mapping->host;
2134 unsigned start;
2135
09cbfeaf 2136 start = pos & (PAGE_SIZE - 1);
afddba49
NP
2137
2138 if (unlikely(copied < len)) {
2139 /*
2c69e205
MWO
2140 * The buffers that were written will now be uptodate, so
2141 * we don't have to worry about a read_folio reading them
2142 * and overwriting a partial write. However if we have
2143 * encountered a short write and only partially written
2144 * into a buffer, it will not be marked uptodate, so a
2145 * read_folio might come in and destroy our partial write.
afddba49
NP
2146 *
2147 * Do the simplest thing, and just treat any short write to a
2148 * non uptodate page as a zero-length write, and force the
2149 * caller to redo the whole thing.
2150 */
2151 if (!PageUptodate(page))
2152 copied = 0;
2153
2154 page_zero_new_buffers(page, start+copied, start+len);
2155 }
2156 flush_dcache_page(page);
2157
2158 /* This could be a short (even 0-length) commit */
2159 __block_commit_write(inode, page, start, start+copied);
2160
2161 return copied;
2162}
2163EXPORT_SYMBOL(block_write_end);
2164
2165int generic_write_end(struct file *file, struct address_space *mapping,
2166 loff_t pos, unsigned len, unsigned copied,
2167 struct page *page, void *fsdata)
2168{
8af54f29
CH
2169 struct inode *inode = mapping->host;
2170 loff_t old_size = inode->i_size;
2171 bool i_size_changed = false;
2172
afddba49 2173 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
8af54f29
CH
2174
2175 /*
2176 * No need to use i_size_read() here, the i_size cannot change under us
2177 * because we hold i_rwsem.
2178 *
2179 * But it's important to update i_size while still holding page lock:
2180 * page writeout could otherwise come in and zero beyond i_size.
2181 */
2182 if (pos + copied > inode->i_size) {
2183 i_size_write(inode, pos + copied);
2184 i_size_changed = true;
2185 }
2186
2187 unlock_page(page);
7a77dad7 2188 put_page(page);
8af54f29
CH
2189
2190 if (old_size < pos)
2191 pagecache_isize_extended(inode, old_size, pos);
2192 /*
2193 * Don't mark the inode dirty under page lock. First, it unnecessarily
2194 * makes the holding time of page lock longer. Second, it forces lock
2195 * ordering of page lock and transaction start for journaling
2196 * filesystems.
2197 */
2198 if (i_size_changed)
2199 mark_inode_dirty(inode);
26ddb1f4 2200 return copied;
afddba49
NP
2201}
2202EXPORT_SYMBOL(generic_write_end);
2203
8ab22b9a 2204/*
2e7e80f7 2205 * block_is_partially_uptodate checks whether buffers within a folio are
8ab22b9a
HH
2206 * uptodate or not.
2207 *
2e7e80f7
MWO
2208 * Returns true if all buffers which correspond to the specified part
2209 * of the folio are uptodate.
8ab22b9a 2210 */
2e7e80f7 2211bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
8ab22b9a 2212{
8ab22b9a
HH
2213 unsigned block_start, block_end, blocksize;
2214 unsigned to;
2215 struct buffer_head *bh, *head;
2e7e80f7 2216 bool ret = true;
8ab22b9a 2217
2e7e80f7
MWO
2218 head = folio_buffers(folio);
2219 if (!head)
2220 return false;
45bce8f3 2221 blocksize = head->b_size;
2e7e80f7 2222 to = min_t(unsigned, folio_size(folio) - from, count);
8ab22b9a 2223 to = from + to;
2e7e80f7
MWO
2224 if (from < blocksize && to > folio_size(folio) - blocksize)
2225 return false;
8ab22b9a 2226
8ab22b9a
HH
2227 bh = head;
2228 block_start = 0;
2229 do {
2230 block_end = block_start + blocksize;
2231 if (block_end > from && block_start < to) {
2232 if (!buffer_uptodate(bh)) {
2e7e80f7 2233 ret = false;
8ab22b9a
HH
2234 break;
2235 }
2236 if (block_end >= to)
2237 break;
2238 }
2239 block_start = block_end;
2240 bh = bh->b_this_page;
2241 } while (bh != head);
2242
2243 return ret;
2244}
2245EXPORT_SYMBOL(block_is_partially_uptodate);
2246
1da177e4 2247/*
2c69e205 2248 * Generic "read_folio" function for block devices that have the normal
1da177e4 2249 * get_block functionality. This is most of the block device filesystems.
2c69e205 2250 * Reads the folio asynchronously --- the unlock_buffer() and
1da177e4 2251 * set/clear_buffer_uptodate() functions propagate buffer state into the
2c69e205 2252 * folio once IO has completed.
1da177e4 2253 */
2c69e205 2254int block_read_full_folio(struct folio *folio, get_block_t *get_block)
1da177e4 2255{
2c69e205 2256 struct inode *inode = folio->mapping->host;
1da177e4
LT
2257 sector_t iblock, lblock;
2258 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
45bce8f3 2259 unsigned int blocksize, bbits;
1da177e4
LT
2260 int nr, i;
2261 int fully_mapped = 1;
b7a6eb22 2262 bool page_error = false;
1da177e4 2263
2c69e205
MWO
2264 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2265
2266 head = create_page_buffers(&folio->page, inode, 0);
45bce8f3
LT
2267 blocksize = head->b_size;
2268 bbits = block_size_bits(blocksize);
1da177e4 2269
2c69e205 2270 iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
45bce8f3 2271 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
1da177e4
LT
2272 bh = head;
2273 nr = 0;
2274 i = 0;
2275
2276 do {
2277 if (buffer_uptodate(bh))
2278 continue;
2279
2280 if (!buffer_mapped(bh)) {
c64610ba
AM
2281 int err = 0;
2282
1da177e4
LT
2283 fully_mapped = 0;
2284 if (iblock < lblock) {
b0cf2321 2285 WARN_ON(bh->b_size != blocksize);
c64610ba 2286 err = get_block(inode, iblock, bh, 0);
b7a6eb22 2287 if (err) {
2c69e205 2288 folio_set_error(folio);
b7a6eb22
MWO
2289 page_error = true;
2290 }
1da177e4
LT
2291 }
2292 if (!buffer_mapped(bh)) {
2c69e205
MWO
2293 folio_zero_range(folio, i * blocksize,
2294 blocksize);
c64610ba
AM
2295 if (!err)
2296 set_buffer_uptodate(bh);
1da177e4
LT
2297 continue;
2298 }
2299 /*
2300 * get_block() might have updated the buffer
2301 * synchronously
2302 */
2303 if (buffer_uptodate(bh))
2304 continue;
2305 }
2306 arr[nr++] = bh;
2307 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2308
2309 if (fully_mapped)
2c69e205 2310 folio_set_mappedtodisk(folio);
1da177e4
LT
2311
2312 if (!nr) {
2313 /*
2c69e205 2314 * All buffers are uptodate - we can set the folio uptodate
1da177e4
LT
2315 * as well. But not if get_block() returned an error.
2316 */
b7a6eb22 2317 if (!page_error)
2c69e205
MWO
2318 folio_mark_uptodate(folio);
2319 folio_unlock(folio);
1da177e4
LT
2320 return 0;
2321 }
2322
2323 /* Stage two: lock the buffers */
2324 for (i = 0; i < nr; i++) {
2325 bh = arr[i];
2326 lock_buffer(bh);
2327 mark_buffer_async_read(bh);
2328 }
2329
2330 /*
2331 * Stage 3: start the IO. Check for uptodateness
2332 * inside the buffer lock in case another process reading
2333 * the underlying blockdev brought it uptodate (the sct fix).
2334 */
2335 for (i = 0; i < nr; i++) {
2336 bh = arr[i];
2337 if (buffer_uptodate(bh))
2338 end_buffer_async_read(bh, 1);
2339 else
1420c4a5 2340 submit_bh(REQ_OP_READ, bh);
1da177e4
LT
2341 }
2342 return 0;
2343}
2c69e205 2344EXPORT_SYMBOL(block_read_full_folio);
1da177e4
LT
2345
2346/* utility function for filesystems that need to do work on expanding
89e10787 2347 * truncates. Uses filesystem pagecache writes to allow the filesystem to
1da177e4
LT
2348 * deal with the hole.
2349 */
89e10787 2350int generic_cont_expand_simple(struct inode *inode, loff_t size)
1da177e4
LT
2351{
2352 struct address_space *mapping = inode->i_mapping;
53b524b8 2353 const struct address_space_operations *aops = mapping->a_ops;
1da177e4 2354 struct page *page;
89e10787 2355 void *fsdata;
1da177e4
LT
2356 int err;
2357
c08d3b0e
NP
2358 err = inode_newsize_ok(inode, size);
2359 if (err)
1da177e4
LT
2360 goto out;
2361
53b524b8 2362 err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
89e10787 2363 if (err)
05eb0b51 2364 goto out;
05eb0b51 2365
53b524b8 2366 err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
89e10787 2367 BUG_ON(err > 0);
05eb0b51 2368
1da177e4
LT
2369out:
2370 return err;
2371}
1fe72eaa 2372EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4 2373
f1e3af72
AB
2374static int cont_expand_zero(struct file *file, struct address_space *mapping,
2375 loff_t pos, loff_t *bytes)
1da177e4 2376{
1da177e4 2377 struct inode *inode = mapping->host;
53b524b8 2378 const struct address_space_operations *aops = mapping->a_ops;
93407472 2379 unsigned int blocksize = i_blocksize(inode);
89e10787
NP
2380 struct page *page;
2381 void *fsdata;
2382 pgoff_t index, curidx;
2383 loff_t curpos;
2384 unsigned zerofrom, offset, len;
2385 int err = 0;
1da177e4 2386
09cbfeaf
KS
2387 index = pos >> PAGE_SHIFT;
2388 offset = pos & ~PAGE_MASK;
89e10787 2389
09cbfeaf
KS
2390 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2391 zerofrom = curpos & ~PAGE_MASK;
1da177e4
LT
2392 if (zerofrom & (blocksize-1)) {
2393 *bytes |= (blocksize-1);
2394 (*bytes)++;
2395 }
09cbfeaf 2396 len = PAGE_SIZE - zerofrom;
1da177e4 2397
53b524b8 2398 err = aops->write_begin(file, mapping, curpos, len,
c718a975 2399 &page, &fsdata);
89e10787
NP
2400 if (err)
2401 goto out;
eebd2aa3 2402 zero_user(page, zerofrom, len);
53b524b8 2403 err = aops->write_end(file, mapping, curpos, len, len,
89e10787
NP
2404 page, fsdata);
2405 if (err < 0)
2406 goto out;
2407 BUG_ON(err != len);
2408 err = 0;
061e9746
OH
2409
2410 balance_dirty_pages_ratelimited(mapping);
c2ca0fcd 2411
08d405c8 2412 if (fatal_signal_pending(current)) {
c2ca0fcd
MP
2413 err = -EINTR;
2414 goto out;
2415 }
89e10787 2416 }
1da177e4 2417
89e10787
NP
2418 /* page covers the boundary, find the boundary offset */
2419 if (index == curidx) {
09cbfeaf 2420 zerofrom = curpos & ~PAGE_MASK;
1da177e4 2421 /* if we will expand the thing last block will be filled */
89e10787
NP
2422 if (offset <= zerofrom) {
2423 goto out;
2424 }
2425 if (zerofrom & (blocksize-1)) {
1da177e4
LT
2426 *bytes |= (blocksize-1);
2427 (*bytes)++;
2428 }
89e10787 2429 len = offset - zerofrom;
1da177e4 2430
53b524b8 2431 err = aops->write_begin(file, mapping, curpos, len,
c718a975 2432 &page, &fsdata);
89e10787
NP
2433 if (err)
2434 goto out;
eebd2aa3 2435 zero_user(page, zerofrom, len);
53b524b8 2436 err = aops->write_end(file, mapping, curpos, len, len,
89e10787
NP
2437 page, fsdata);
2438 if (err < 0)
2439 goto out;
2440 BUG_ON(err != len);
2441 err = 0;
1da177e4 2442 }
89e10787
NP
2443out:
2444 return err;
2445}
2446
2447/*
2448 * For moronic filesystems that do not allow holes in file.
2449 * We may have to extend the file.
2450 */
282dc178 2451int cont_write_begin(struct file *file, struct address_space *mapping,
be3bbbc5 2452 loff_t pos, unsigned len,
89e10787
NP
2453 struct page **pagep, void **fsdata,
2454 get_block_t *get_block, loff_t *bytes)
2455{
2456 struct inode *inode = mapping->host;
93407472
FF
2457 unsigned int blocksize = i_blocksize(inode);
2458 unsigned int zerofrom;
89e10787
NP
2459 int err;
2460
2461 err = cont_expand_zero(file, mapping, pos, bytes);
2462 if (err)
155130a4 2463 return err;
89e10787 2464
09cbfeaf 2465 zerofrom = *bytes & ~PAGE_MASK;
89e10787
NP
2466 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2467 *bytes |= (blocksize-1);
2468 (*bytes)++;
1da177e4 2469 }
1da177e4 2470
b3992d1e 2471 return block_write_begin(mapping, pos, len, pagep, get_block);
1da177e4 2472}
1fe72eaa 2473EXPORT_SYMBOL(cont_write_begin);
1da177e4 2474
1da177e4
LT
2475int block_commit_write(struct page *page, unsigned from, unsigned to)
2476{
2477 struct inode *inode = page->mapping->host;
2478 __block_commit_write(inode,page,from,to);
2479 return 0;
2480}
1fe72eaa 2481EXPORT_SYMBOL(block_commit_write);
1da177e4 2482
54171690
DC
2483/*
2484 * block_page_mkwrite() is not allowed to change the file size as it gets
2485 * called from a page fault handler when a page is first dirtied. Hence we must
2486 * be careful to check for EOF conditions here. We set the page up correctly
2487 * for a written page which means we get ENOSPC checking when writing into
2488 * holes and correct delalloc and unwritten extent mapping on filesystems that
2489 * support these features.
2490 *
2491 * We are not allowed to take the i_mutex here so we have to play games to
2492 * protect against truncate races as the page could now be beyond EOF. Because
7bb46a67 2493 * truncate writes the inode size before removing pages, once we have the
54171690
DC
2494 * page lock we can determine safely if the page is beyond EOF. If it is not
2495 * beyond EOF, then the page is guaranteed safe against truncation until we
2496 * unlock the page.
ea13a864 2497 *
14da9200 2498 * Direct callers of this function should protect against filesystem freezing
5c500029 2499 * using sb_start_pagefault() - sb_end_pagefault() functions.
54171690 2500 */
5c500029 2501int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
24da4fab 2502 get_block_t get_block)
54171690 2503{
c2ec175c 2504 struct page *page = vmf->page;
496ad9aa 2505 struct inode *inode = file_inode(vma->vm_file);
54171690
DC
2506 unsigned long end;
2507 loff_t size;
24da4fab 2508 int ret;
54171690
DC
2509
2510 lock_page(page);
2511 size = i_size_read(inode);
2512 if ((page->mapping != inode->i_mapping) ||
18336338 2513 (page_offset(page) > size)) {
24da4fab
JK
2514 /* We overload EFAULT to mean page got truncated */
2515 ret = -EFAULT;
2516 goto out_unlock;
54171690
DC
2517 }
2518
2519 /* page is wholly or partially inside EOF */
09cbfeaf
KS
2520 if (((page->index + 1) << PAGE_SHIFT) > size)
2521 end = size & ~PAGE_MASK;
54171690 2522 else
09cbfeaf 2523 end = PAGE_SIZE;
54171690 2524
ebdec241 2525 ret = __block_write_begin(page, 0, end, get_block);
54171690
DC
2526 if (!ret)
2527 ret = block_commit_write(page, 0, end);
2528
24da4fab
JK
2529 if (unlikely(ret < 0))
2530 goto out_unlock;
ea13a864 2531 set_page_dirty(page);
1d1d1a76 2532 wait_for_stable_page(page);
24da4fab
JK
2533 return 0;
2534out_unlock:
2535 unlock_page(page);
54171690 2536 return ret;
24da4fab 2537}
1fe72eaa 2538EXPORT_SYMBOL(block_page_mkwrite);
1da177e4 2539
1da177e4
LT
2540int block_truncate_page(struct address_space *mapping,
2541 loff_t from, get_block_t *get_block)
2542{
09cbfeaf
KS
2543 pgoff_t index = from >> PAGE_SHIFT;
2544 unsigned offset = from & (PAGE_SIZE-1);
1da177e4 2545 unsigned blocksize;
54b21a79 2546 sector_t iblock;
1da177e4
LT
2547 unsigned length, pos;
2548 struct inode *inode = mapping->host;
2549 struct page *page;
2550 struct buffer_head *bh;
1da177e4
LT
2551 int err;
2552
93407472 2553 blocksize = i_blocksize(inode);
1da177e4
LT
2554 length = offset & (blocksize - 1);
2555
2556 /* Block boundary? Nothing to do */
2557 if (!length)
2558 return 0;
2559
2560 length = blocksize - length;
09cbfeaf 2561 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
1da177e4
LT
2562
2563 page = grab_cache_page(mapping, index);
2564 err = -ENOMEM;
2565 if (!page)
2566 goto out;
2567
2568 if (!page_has_buffers(page))
2569 create_empty_buffers(page, blocksize, 0);
2570
2571 /* Find the buffer that contains "offset" */
2572 bh = page_buffers(page);
2573 pos = blocksize;
2574 while (offset >= pos) {
2575 bh = bh->b_this_page;
2576 iblock++;
2577 pos += blocksize;
2578 }
2579
2580 err = 0;
2581 if (!buffer_mapped(bh)) {
b0cf2321 2582 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2583 err = get_block(inode, iblock, bh, 0);
2584 if (err)
2585 goto unlock;
2586 /* unmapped? It's a hole - nothing to do */
2587 if (!buffer_mapped(bh))
2588 goto unlock;
2589 }
2590
2591 /* Ok, it's mapped. Make sure it's up-to-date */
2592 if (PageUptodate(page))
2593 set_buffer_uptodate(bh);
2594
33a266dd 2595 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
1da177e4 2596 err = -EIO;
1420c4a5 2597 ll_rw_block(REQ_OP_READ, 1, &bh);
1da177e4
LT
2598 wait_on_buffer(bh);
2599 /* Uhhuh. Read error. Complain and punt. */
2600 if (!buffer_uptodate(bh))
2601 goto unlock;
2602 }
2603
eebd2aa3 2604 zero_user(page, offset, length);
1da177e4
LT
2605 mark_buffer_dirty(bh);
2606 err = 0;
2607
2608unlock:
2609 unlock_page(page);
09cbfeaf 2610 put_page(page);
1da177e4
LT
2611out:
2612 return err;
2613}
1fe72eaa 2614EXPORT_SYMBOL(block_truncate_page);
1da177e4
LT
2615
2616/*
2617 * The generic ->writepage function for buffer-backed address_spaces
2618 */
1b938c08
MW
2619int block_write_full_page(struct page *page, get_block_t *get_block,
2620 struct writeback_control *wbc)
1da177e4
LT
2621{
2622 struct inode * const inode = page->mapping->host;
2623 loff_t i_size = i_size_read(inode);
09cbfeaf 2624 const pgoff_t end_index = i_size >> PAGE_SHIFT;
1da177e4 2625 unsigned offset;
1da177e4
LT
2626
2627 /* Is the page fully inside i_size? */
2628 if (page->index < end_index)
35c80d5f 2629 return __block_write_full_page(inode, page, get_block, wbc,
1b938c08 2630 end_buffer_async_write);
1da177e4
LT
2631
2632 /* Is the page fully outside i_size? (truncate in progress) */
09cbfeaf 2633 offset = i_size & (PAGE_SIZE-1);
1da177e4 2634 if (page->index >= end_index+1 || !offset) {
1da177e4
LT
2635 unlock_page(page);
2636 return 0; /* don't care */
2637 }
2638
2639 /*
2640 * The page straddles i_size. It must be zeroed out on each and every
2a61aa40 2641 * writepage invocation because it may be mmapped. "A file is mapped
1da177e4
LT
2642 * in multiples of the page size. For a file that is not a multiple of
2643 * the page size, the remaining memory is zeroed when mapped, and
2644 * writes to that region are not written out to the file."
2645 */
09cbfeaf 2646 zero_user_segment(page, offset, PAGE_SIZE);
1b938c08
MW
2647 return __block_write_full_page(inode, page, get_block, wbc,
2648 end_buffer_async_write);
35c80d5f 2649}
1fe72eaa 2650EXPORT_SYMBOL(block_write_full_page);
35c80d5f 2651
1da177e4
LT
2652sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2653 get_block_t *get_block)
2654{
1da177e4 2655 struct inode *inode = mapping->host;
2a527d68
AP
2656 struct buffer_head tmp = {
2657 .b_size = i_blocksize(inode),
2658 };
2659
1da177e4
LT
2660 get_block(inode, block, &tmp, 0);
2661 return tmp.b_blocknr;
2662}
1fe72eaa 2663EXPORT_SYMBOL(generic_block_bmap);
1da177e4 2664
4246a0b6 2665static void end_bio_bh_io_sync(struct bio *bio)
1da177e4
LT
2666{
2667 struct buffer_head *bh = bio->bi_private;
2668
b7c44ed9 2669 if (unlikely(bio_flagged(bio, BIO_QUIET)))
08bafc03
KM
2670 set_bit(BH_Quiet, &bh->b_state);
2671
4e4cbee9 2672 bh->b_end_io(bh, !bio->bi_status);
1da177e4 2673 bio_put(bio);
1da177e4
LT
2674}
2675
1420c4a5
BVA
2676static int submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2677 struct writeback_control *wbc)
1da177e4 2678{
1420c4a5 2679 const enum req_op op = opf & REQ_OP_MASK;
1da177e4 2680 struct bio *bio;
1da177e4
LT
2681
2682 BUG_ON(!buffer_locked(bh));
2683 BUG_ON(!buffer_mapped(bh));
2684 BUG_ON(!bh->b_end_io);
8fb0e342
AK
2685 BUG_ON(buffer_delay(bh));
2686 BUG_ON(buffer_unwritten(bh));
1da177e4 2687
1da177e4 2688 /*
48fd4f93 2689 * Only clear out a write error when rewriting
1da177e4 2690 */
2a222ca9 2691 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
1da177e4
LT
2692 clear_buffer_write_io_error(bh);
2693
07888c66 2694 if (buffer_meta(bh))
1420c4a5 2695 opf |= REQ_META;
07888c66 2696 if (buffer_prio(bh))
1420c4a5 2697 opf |= REQ_PRIO;
07888c66 2698
1420c4a5 2699 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
1da177e4 2700
4f74d15f
EB
2701 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2702
4f024f37 2703 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
1da177e4 2704
6cf66b4c
KO
2705 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2706 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
1da177e4
LT
2707
2708 bio->bi_end_io = end_bio_bh_io_sync;
2709 bio->bi_private = bh;
2710
83c9c547
ML
2711 /* Take care of bh's that straddle the end of the device */
2712 guard_bio_eod(bio);
2713
fd42df30
DZ
2714 if (wbc) {
2715 wbc_init_bio(wbc, bio);
34e51a5e 2716 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
fd42df30
DZ
2717 }
2718
4e49ea4a 2719 submit_bio(bio);
f6454b04 2720 return 0;
1da177e4 2721}
bafc0dba 2722
1420c4a5 2723int submit_bh(blk_opf_t opf, struct buffer_head *bh)
bafc0dba 2724{
1420c4a5 2725 return submit_bh_wbc(opf, bh, NULL);
71368511 2726}
1fe72eaa 2727EXPORT_SYMBOL(submit_bh);
1da177e4
LT
2728
2729/**
2730 * ll_rw_block: low-level access to block devices (DEPRECATED)
f5454140 2731 * @opf: block layer request operation and flags.
1da177e4
LT
2732 * @nr: number of &struct buffer_heads in the array
2733 * @bhs: array of pointers to &struct buffer_head
2734 *
a7662236 2735 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
70246286 2736 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
f5454140 2737 * @opf contains flags modifying the detailed I/O behavior, most notably
70246286 2738 * %REQ_RAHEAD.
1da177e4
LT
2739 *
2740 * This function drops any buffer that it cannot get a lock on (with the
9cb569d6
CH
2741 * BH_Lock state bit), any buffer that appears to be clean when doing a write
2742 * request, and any buffer that appears to be up-to-date when doing read
2743 * request. Further it marks as clean buffers that are processed for
2744 * writing (the buffer cache won't assume that they are actually clean
2745 * until the buffer gets unlocked).
1da177e4
LT
2746 *
2747 * ll_rw_block sets b_end_io to simple completion handler that marks
e227867f 2748 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
1da177e4
LT
2749 * any waiters.
2750 *
2751 * All of the buffers must be for the same device, and must also be a
2752 * multiple of the current approved size for the device.
2753 */
1420c4a5 2754void ll_rw_block(const blk_opf_t opf, int nr, struct buffer_head *bhs[])
1da177e4 2755{
1420c4a5 2756 const enum req_op op = opf & REQ_OP_MASK;
1da177e4
LT
2757 int i;
2758
2759 for (i = 0; i < nr; i++) {
2760 struct buffer_head *bh = bhs[i];
2761
9cb569d6 2762 if (!trylock_buffer(bh))
1da177e4 2763 continue;
3ae72869 2764 if (op == REQ_OP_WRITE) {
1da177e4 2765 if (test_clear_buffer_dirty(bh)) {
76c3073a 2766 bh->b_end_io = end_buffer_write_sync;
e60e5c50 2767 get_bh(bh);
1420c4a5 2768 submit_bh(opf, bh);
1da177e4
LT
2769 continue;
2770 }
2771 } else {
1da177e4 2772 if (!buffer_uptodate(bh)) {
76c3073a 2773 bh->b_end_io = end_buffer_read_sync;
e60e5c50 2774 get_bh(bh);
1420c4a5 2775 submit_bh(opf, bh);
1da177e4
LT
2776 continue;
2777 }
2778 }
2779 unlock_buffer(bh);
1da177e4
LT
2780 }
2781}
1fe72eaa 2782EXPORT_SYMBOL(ll_rw_block);
1da177e4 2783
3ae72869 2784void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
9cb569d6
CH
2785{
2786 lock_buffer(bh);
2787 if (!test_clear_buffer_dirty(bh)) {
2788 unlock_buffer(bh);
2789 return;
2790 }
2791 bh->b_end_io = end_buffer_write_sync;
2792 get_bh(bh);
1420c4a5 2793 submit_bh(REQ_OP_WRITE | op_flags, bh);
9cb569d6
CH
2794}
2795EXPORT_SYMBOL(write_dirty_buffer);
2796
1da177e4
LT
2797/*
2798 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2799 * and then start new I/O and then wait upon it. The caller must have a ref on
2800 * the buffer_head.
2801 */
3ae72869 2802int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
1da177e4
LT
2803{
2804 int ret = 0;
2805
2806 WARN_ON(atomic_read(&bh->b_count) < 1);
2807 lock_buffer(bh);
2808 if (test_clear_buffer_dirty(bh)) {
377254b2
XT
2809 /*
2810 * The bh should be mapped, but it might not be if the
2811 * device was hot-removed. Not much we can do but fail the I/O.
2812 */
2813 if (!buffer_mapped(bh)) {
2814 unlock_buffer(bh);
2815 return -EIO;
2816 }
2817
1da177e4
LT
2818 get_bh(bh);
2819 bh->b_end_io = end_buffer_write_sync;
1420c4a5 2820 ret = submit_bh(REQ_OP_WRITE | op_flags, bh);
1da177e4 2821 wait_on_buffer(bh);
1da177e4
LT
2822 if (!ret && !buffer_uptodate(bh))
2823 ret = -EIO;
2824 } else {
2825 unlock_buffer(bh);
2826 }
2827 return ret;
2828}
87e99511
CH
2829EXPORT_SYMBOL(__sync_dirty_buffer);
2830
2831int sync_dirty_buffer(struct buffer_head *bh)
2832{
70fd7614 2833 return __sync_dirty_buffer(bh, REQ_SYNC);
87e99511 2834}
1fe72eaa 2835EXPORT_SYMBOL(sync_dirty_buffer);
1da177e4
LT
2836
2837/*
68189fef 2838 * try_to_free_buffers() checks if all the buffers on this particular folio
1da177e4
LT
2839 * are unused, and releases them if so.
2840 *
2841 * Exclusion against try_to_free_buffers may be obtained by either
68189fef 2842 * locking the folio or by holding its mapping's private_lock.
1da177e4 2843 *
68189fef
MWO
2844 * If the folio is dirty but all the buffers are clean then we need to
2845 * be sure to mark the folio clean as well. This is because the folio
1da177e4 2846 * may be against a block device, and a later reattachment of buffers
68189fef 2847 * to a dirty folio will set *all* buffers dirty. Which would corrupt
1da177e4
LT
2848 * filesystem data on the same device.
2849 *
68189fef
MWO
2850 * The same applies to regular filesystem folios: if all the buffers are
2851 * clean then we set the folio clean and proceed. To do that, we require
e621900a 2852 * total exclusion from block_dirty_folio(). That is obtained with
1da177e4
LT
2853 * private_lock.
2854 *
2855 * try_to_free_buffers() is non-blocking.
2856 */
2857static inline int buffer_busy(struct buffer_head *bh)
2858{
2859 return atomic_read(&bh->b_count) |
2860 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2861}
2862
64394763
MWO
2863static bool
2864drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
1da177e4 2865{
64394763 2866 struct buffer_head *head = folio_buffers(folio);
1da177e4
LT
2867 struct buffer_head *bh;
2868
2869 bh = head;
2870 do {
1da177e4
LT
2871 if (buffer_busy(bh))
2872 goto failed;
2873 bh = bh->b_this_page;
2874 } while (bh != head);
2875
2876 do {
2877 struct buffer_head *next = bh->b_this_page;
2878
535ee2fb 2879 if (bh->b_assoc_map)
1da177e4
LT
2880 __remove_assoc_queue(bh);
2881 bh = next;
2882 } while (bh != head);
2883 *buffers_to_free = head;
64394763
MWO
2884 folio_detach_private(folio);
2885 return true;
1da177e4 2886failed:
64394763 2887 return false;
1da177e4
LT
2888}
2889
68189fef 2890bool try_to_free_buffers(struct folio *folio)
1da177e4 2891{
68189fef 2892 struct address_space * const mapping = folio->mapping;
1da177e4 2893 struct buffer_head *buffers_to_free = NULL;
68189fef 2894 bool ret = 0;
1da177e4 2895
68189fef
MWO
2896 BUG_ON(!folio_test_locked(folio));
2897 if (folio_test_writeback(folio))
2898 return false;
1da177e4
LT
2899
2900 if (mapping == NULL) { /* can this still happen? */
64394763 2901 ret = drop_buffers(folio, &buffers_to_free);
1da177e4
LT
2902 goto out;
2903 }
2904
2905 spin_lock(&mapping->private_lock);
64394763 2906 ret = drop_buffers(folio, &buffers_to_free);
ecdfc978
LT
2907
2908 /*
2909 * If the filesystem writes its buffers by hand (eg ext3)
68189fef
MWO
2910 * then we can have clean buffers against a dirty folio. We
2911 * clean the folio here; otherwise the VM will never notice
ecdfc978
LT
2912 * that the filesystem did any IO at all.
2913 *
2914 * Also, during truncate, discard_buffer will have marked all
68189fef
MWO
2915 * the folio's buffers clean. We discover that here and clean
2916 * the folio also.
87df7241
NP
2917 *
2918 * private_lock must be held over this entire operation in order
e621900a 2919 * to synchronise against block_dirty_folio and prevent the
87df7241 2920 * dirty bit from being lost.
ecdfc978 2921 */
11f81bec 2922 if (ret)
68189fef 2923 folio_cancel_dirty(folio);
87df7241 2924 spin_unlock(&mapping->private_lock);
1da177e4
LT
2925out:
2926 if (buffers_to_free) {
2927 struct buffer_head *bh = buffers_to_free;
2928
2929 do {
2930 struct buffer_head *next = bh->b_this_page;
2931 free_buffer_head(bh);
2932 bh = next;
2933 } while (bh != buffers_to_free);
2934 }
2935 return ret;
2936}
2937EXPORT_SYMBOL(try_to_free_buffers);
2938
1da177e4
LT
2939/*
2940 * Buffer-head allocation
2941 */
a0a9b043 2942static struct kmem_cache *bh_cachep __read_mostly;
1da177e4
LT
2943
2944/*
2945 * Once the number of bh's in the machine exceeds this level, we start
2946 * stripping them in writeback.
2947 */
43be594a 2948static unsigned long max_buffer_heads;
1da177e4
LT
2949
2950int buffer_heads_over_limit;
2951
2952struct bh_accounting {
2953 int nr; /* Number of live bh's */
2954 int ratelimit; /* Limit cacheline bouncing */
2955};
2956
2957static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2958
2959static void recalc_bh_state(void)
2960{
2961 int i;
2962 int tot = 0;
2963
ee1be862 2964 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
1da177e4 2965 return;
c7b92516 2966 __this_cpu_write(bh_accounting.ratelimit, 0);
8a143426 2967 for_each_online_cpu(i)
1da177e4
LT
2968 tot += per_cpu(bh_accounting, i).nr;
2969 buffer_heads_over_limit = (tot > max_buffer_heads);
2970}
c7b92516 2971
dd0fc66f 2972struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 2973{
019b4d12 2974 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
1da177e4 2975 if (ret) {
a35afb83 2976 INIT_LIST_HEAD(&ret->b_assoc_buffers);
f1e67e35 2977 spin_lock_init(&ret->b_uptodate_lock);
c7b92516
CL
2978 preempt_disable();
2979 __this_cpu_inc(bh_accounting.nr);
1da177e4 2980 recalc_bh_state();
c7b92516 2981 preempt_enable();
1da177e4
LT
2982 }
2983 return ret;
2984}
2985EXPORT_SYMBOL(alloc_buffer_head);
2986
2987void free_buffer_head(struct buffer_head *bh)
2988{
2989 BUG_ON(!list_empty(&bh->b_assoc_buffers));
2990 kmem_cache_free(bh_cachep, bh);
c7b92516
CL
2991 preempt_disable();
2992 __this_cpu_dec(bh_accounting.nr);
1da177e4 2993 recalc_bh_state();
c7b92516 2994 preempt_enable();
1da177e4
LT
2995}
2996EXPORT_SYMBOL(free_buffer_head);
2997
fc4d24c9 2998static int buffer_exit_cpu_dead(unsigned int cpu)
1da177e4
LT
2999{
3000 int i;
3001 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3002
3003 for (i = 0; i < BH_LRU_SIZE; i++) {
3004 brelse(b->bhs[i]);
3005 b->bhs[i] = NULL;
3006 }
c7b92516 3007 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
8a143426 3008 per_cpu(bh_accounting, cpu).nr = 0;
fc4d24c9 3009 return 0;
1da177e4 3010}
1da177e4 3011
389d1b08 3012/**
a6b91919 3013 * bh_uptodate_or_lock - Test whether the buffer is uptodate
389d1b08
AK
3014 * @bh: struct buffer_head
3015 *
3016 * Return true if the buffer is up-to-date and false,
3017 * with the buffer locked, if not.
3018 */
3019int bh_uptodate_or_lock(struct buffer_head *bh)
3020{
3021 if (!buffer_uptodate(bh)) {
3022 lock_buffer(bh);
3023 if (!buffer_uptodate(bh))
3024 return 0;
3025 unlock_buffer(bh);
3026 }
3027 return 1;
3028}
3029EXPORT_SYMBOL(bh_uptodate_or_lock);
3030
3031/**
a6b91919 3032 * bh_submit_read - Submit a locked buffer for reading
389d1b08
AK
3033 * @bh: struct buffer_head
3034 *
3035 * Returns zero on success and -EIO on error.
3036 */
3037int bh_submit_read(struct buffer_head *bh)
3038{
3039 BUG_ON(!buffer_locked(bh));
3040
3041 if (buffer_uptodate(bh)) {
3042 unlock_buffer(bh);
3043 return 0;
3044 }
3045
3046 get_bh(bh);
3047 bh->b_end_io = end_buffer_read_sync;
1420c4a5 3048 submit_bh(REQ_OP_READ, bh);
389d1b08
AK
3049 wait_on_buffer(bh);
3050 if (buffer_uptodate(bh))
3051 return 0;
3052 return -EIO;
3053}
3054EXPORT_SYMBOL(bh_submit_read);
3055
1da177e4
LT
3056void __init buffer_init(void)
3057{
43be594a 3058 unsigned long nrpages;
fc4d24c9 3059 int ret;
1da177e4 3060
b98938c3
CL
3061 bh_cachep = kmem_cache_create("buffer_head",
3062 sizeof(struct buffer_head), 0,
3063 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3064 SLAB_MEM_SPREAD),
019b4d12 3065 NULL);
1da177e4
LT
3066
3067 /*
3068 * Limit the bh occupancy to 10% of ZONE_NORMAL
3069 */
3070 nrpages = (nr_free_buffer_pages() * 10) / 100;
3071 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
fc4d24c9
SAS
3072 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3073 NULL, buffer_exit_cpu_dead);
3074 WARN_ON(ret < 0);
1da177e4 3075}