]> git.ipfire.org Git - people/ms/linux.git/blame - fs/direct-io.c
nbd: don't set the device size until we're connected
[people/ms/linux.git] / fs / direct-io.c
CommitLineData
1da177e4
LT
1/*
2 * fs/direct-io.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * O_DIRECT
7 *
e1f8e874 8 * 04Jul2002 Andrew Morton
1da177e4
LT
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
e1f8e874 12 * 29Oct2002 Andrew Morton
1da177e4
LT
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
20 */
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/types.h>
25#include <linux/fs.h>
26#include <linux/mm.h>
27#include <linux/slab.h>
28#include <linux/highmem.h>
29#include <linux/pagemap.h>
98c4d57d 30#include <linux/task_io_accounting_ops.h>
1da177e4
LT
31#include <linux/bio.h>
32#include <linux/wait.h>
33#include <linux/err.h>
34#include <linux/blkdev.h>
35#include <linux/buffer_head.h>
36#include <linux/rwsem.h>
37#include <linux/uio.h>
60063497 38#include <linux/atomic.h>
65dd2aa9 39#include <linux/prefetch.h>
1da177e4
LT
40
41/*
42 * How many user pages to map in one call to get_user_pages(). This determines
cde1ecb3 43 * the size of a structure in the slab cache
1da177e4
LT
44 */
45#define DIO_PAGES 64
46
47/*
48 * This code generally works in units of "dio_blocks". A dio_block is
49 * somewhere between the hard sector size and the filesystem block size. it
50 * is determined on a per-invocation basis. When talking to the filesystem
51 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
52 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
53 * to bio_block quantities by shifting left by blkfactor.
54 *
55 * If blkfactor is zero then the user's request was aligned to the filesystem's
56 * blocksize.
1da177e4
LT
57 */
58
eb28be2b
AK
59/* dio_state only used in the submission path */
60
61struct dio_submit {
1da177e4 62 struct bio *bio; /* bio under assembly */
1da177e4
LT
63 unsigned blkbits; /* doesn't change */
64 unsigned blkfactor; /* When we're using an alignment which
65 is finer than the filesystem's soft
66 blocksize, this specifies how much
67 finer. blkfactor=2 means 1/4-block
68 alignment. Does not change */
69 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
70 been performed at the start of a
71 write */
72 int pages_in_io; /* approximate total IO pages */
1da177e4
LT
73 sector_t block_in_file; /* Current offset into the underlying
74 file in dio_block units. */
75 unsigned blocks_available; /* At block_in_file. changes */
0dc2bc49 76 int reap_counter; /* rate limit reaping */
1da177e4 77 sector_t final_block_in_request;/* doesn't change */
1da177e4 78 int boundary; /* prev block is at a boundary */
1d8fa7a2 79 get_block_t *get_block; /* block mapping function */
facd07b0 80 dio_submit_t *submit_io; /* IO submition function */
eb28be2b 81
facd07b0 82 loff_t logical_offset_in_bio; /* current first logical block in bio */
1da177e4
LT
83 sector_t final_block_in_bio; /* current final block in bio + 1 */
84 sector_t next_block_for_io; /* next block to be put under IO,
85 in dio_blocks units */
1da177e4
LT
86
87 /*
88 * Deferred addition of a page to the dio. These variables are
89 * private to dio_send_cur_page(), submit_page_section() and
90 * dio_bio_add_page().
91 */
92 struct page *cur_page; /* The page */
93 unsigned cur_page_offset; /* Offset into it, in bytes */
94 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
95 sector_t cur_page_block; /* Where it starts */
facd07b0 96 loff_t cur_page_fs_offset; /* Offset in file */
1da177e4 97
7b2c99d1 98 struct iov_iter *iter;
1da177e4
LT
99 /*
100 * Page queue. These variables belong to dio_refill_pages() and
101 * dio_get_page().
102 */
1da177e4
LT
103 unsigned head; /* next page to process */
104 unsigned tail; /* last valid page + 1 */
7b2c99d1 105 size_t from, to;
eb28be2b
AK
106};
107
108/* dio_state communicated between submission path and end_io */
109struct dio {
110 int flags; /* doesn't change */
8a4c1e42
MC
111 int op;
112 int op_flags;
15c4f638 113 blk_qc_t bio_cookie;
74d46992 114 struct gendisk *bio_disk;
0dc2bc49 115 struct inode *inode;
eb28be2b
AK
116 loff_t i_size; /* i_size when submitted */
117 dio_iodone_t *end_io; /* IO completion function */
eb28be2b 118
18772641 119 void *private; /* copy from map_bh.b_private */
eb28be2b
AK
120
121 /* BIO completion state */
122 spinlock_t bio_lock; /* protects BIO fields below */
0dc2bc49
AK
123 int page_errors; /* errno from get_user_pages() */
124 int is_async; /* is IO async ? */
7b7a8665 125 bool defer_completion; /* defer AIO completion to workqueue? */
53cbf3b1 126 bool should_dirty; /* if pages should be dirtied */
0dc2bc49 127 int io_error; /* IO error in completion path */
eb28be2b
AK
128 unsigned long refcount; /* direct_io_worker() and bios */
129 struct bio *bio_list; /* singly linked via bi_private */
130 struct task_struct *waiter; /* waiting task (NULL if none) */
131
132 /* AIO related stuff */
133 struct kiocb *iocb; /* kiocb */
eb28be2b
AK
134 ssize_t result; /* IO result */
135
23aee091
JM
136 /*
137 * pages[] (and any fields placed after it) are not zeroed out at
138 * allocation time. Don't add new fields after pages[] unless you
139 * wish that they not be zeroed.
140 */
7b7a8665
CH
141 union {
142 struct page *pages[DIO_PAGES]; /* page buffer */
143 struct work_struct complete_work;/* deferred AIO completion */
144 };
6e8267f5
AK
145} ____cacheline_aligned_in_smp;
146
147static struct kmem_cache *dio_cache __read_mostly;
1da177e4
LT
148
149/*
150 * How many pages are in the queue?
151 */
eb28be2b 152static inline unsigned dio_pages_present(struct dio_submit *sdio)
1da177e4 153{
eb28be2b 154 return sdio->tail - sdio->head;
1da177e4
LT
155}
156
157/*
158 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
159 */
ba253fbf 160static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
1da177e4 161{
7b2c99d1 162 ssize_t ret;
1da177e4 163
2c80929c 164 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
7b2c99d1 165 &sdio->from);
1da177e4 166
8a4c1e42 167 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
557ed1fa 168 struct page *page = ZERO_PAGE(0);
1da177e4
LT
169 /*
170 * A memory fault, but the filesystem has some outstanding
171 * mapped blocks. We need to use those blocks up to avoid
172 * leaking stale data in the file.
173 */
174 if (dio->page_errors == 0)
175 dio->page_errors = ret;
09cbfeaf 176 get_page(page);
b5810039 177 dio->pages[0] = page;
eb28be2b
AK
178 sdio->head = 0;
179 sdio->tail = 1;
7b2c99d1
AV
180 sdio->from = 0;
181 sdio->to = PAGE_SIZE;
182 return 0;
1da177e4
LT
183 }
184
185 if (ret >= 0) {
7b2c99d1
AV
186 iov_iter_advance(sdio->iter, ret);
187 ret += sdio->from;
eb28be2b 188 sdio->head = 0;
7b2c99d1
AV
189 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
190 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
191 return 0;
1da177e4 192 }
1da177e4
LT
193 return ret;
194}
195
196/*
197 * Get another userspace page. Returns an ERR_PTR on error. Pages are
198 * buffered inside the dio so that we can call get_user_pages() against a
199 * decent number of pages, less frequently. To provide nicer use of the
200 * L1 cache.
201 */
ba253fbf 202static inline struct page *dio_get_page(struct dio *dio,
6fcc5420 203 struct dio_submit *sdio)
1da177e4 204{
eb28be2b 205 if (dio_pages_present(sdio) == 0) {
1da177e4
LT
206 int ret;
207
eb28be2b 208 ret = dio_refill_pages(dio, sdio);
1da177e4
LT
209 if (ret)
210 return ERR_PTR(ret);
eb28be2b 211 BUG_ON(dio_pages_present(sdio) == 0);
1da177e4 212 }
6fcc5420 213 return dio->pages[sdio->head];
1da177e4
LT
214}
215
6d544bb4
ZB
216/**
217 * dio_complete() - called when all DIO BIO I/O has been completed
218 * @offset: the byte offset in the file of the completed operation
219 *
7b7a8665
CH
220 * This drops i_dio_count, lets interested parties know that a DIO operation
221 * has completed, and calculates the resulting return code for the operation.
6d544bb4
ZB
222 *
223 * It lets the filesystem know if it registered an interest earlier via
224 * get_block. Pass the private field of the map buffer_head so that
225 * filesystems can use it to hold additional state between get_block calls and
226 * dio_complete.
1da177e4 227 */
716b9bc0 228static ssize_t dio_complete(struct dio *dio, ssize_t ret, bool is_async)
1da177e4 229{
716b9bc0 230 loff_t offset = dio->iocb->ki_pos;
6d544bb4 231 ssize_t transferred = 0;
332391a9 232 int err;
6d544bb4 233
8459d86a
ZB
234 /*
235 * AIO submission can race with bio completion to get here while
236 * expecting to have the last io completed by bio completion.
237 * In that case -EIOCBQUEUED is in fact not an error we want
238 * to preserve through this call.
239 */
240 if (ret == -EIOCBQUEUED)
241 ret = 0;
242
6d544bb4
ZB
243 if (dio->result) {
244 transferred = dio->result;
245
246 /* Check for short read case */
8a4c1e42
MC
247 if ((dio->op == REQ_OP_READ) &&
248 ((offset + transferred) > dio->i_size))
6d544bb4 249 transferred = dio->i_size - offset;
4038acdb
AV
250 /* ignore EFAULT if some IO has been done */
251 if (unlikely(ret == -EFAULT) && transferred)
252 ret = 0;
6d544bb4
ZB
253 }
254
6d544bb4
ZB
255 if (ret == 0)
256 ret = dio->page_errors;
257 if (ret == 0)
258 ret = dio->io_error;
259 if (ret == 0)
260 ret = transferred;
261
332391a9
LC
262 /*
263 * Try again to invalidate clean pages which might have been cached by
264 * non-direct readahead, or faulted in by get_user_pages() if the source
265 * of the write was an mmap'ed region of the file we're writing. Either
266 * one is a pretty crazy thing to do, so we don't support it 100%. If
267 * this invalidation fails, tough, the write still worked...
268 */
269 if (ret > 0 && dio->op == REQ_OP_WRITE &&
270 dio->inode->i_mapping->nrpages) {
271 err = invalidate_inode_pages2_range(dio->inode->i_mapping,
272 offset >> PAGE_SHIFT,
273 (offset + ret - 1) >> PAGE_SHIFT);
274 WARN_ON_ONCE(err);
275 }
276
187372a3 277 if (dio->end_io) {
187372a3 278
e2592217 279 // XXX: ki_pos??
187372a3
CH
280 err = dio->end_io(dio->iocb, offset, ret, dio->private);
281 if (err)
282 ret = err;
283 }
7b7a8665 284
fe0f07d0
JA
285 if (!(dio->flags & DIO_SKIP_DIO_COUNT))
286 inode_dio_end(dio->inode);
287
02afc27f 288 if (is_async) {
e2592217
CH
289 /*
290 * generic_write_sync expects ki_pos to have been updated
291 * already, but the submission path only does this for
292 * synchronous I/O.
293 */
294 dio->iocb->ki_pos += transferred;
02afc27f 295
8a4c1e42 296 if (dio->op == REQ_OP_WRITE)
e2592217 297 ret = generic_write_sync(dio->iocb, transferred);
04b2fa9f 298 dio->iocb->ki_complete(dio->iocb, ret, 0);
02afc27f 299 }
40e2e973 300
7b7a8665 301 kmem_cache_free(dio_cache, dio);
6d544bb4 302 return ret;
1da177e4
LT
303}
304
7b7a8665
CH
305static void dio_aio_complete_work(struct work_struct *work)
306{
307 struct dio *dio = container_of(work, struct dio, complete_work);
308
716b9bc0 309 dio_complete(dio, 0, true);
7b7a8665
CH
310}
311
4e4cbee9 312static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
7b7a8665 313
1da177e4
LT
314/*
315 * Asynchronous IO callback.
316 */
4246a0b6 317static void dio_bio_end_aio(struct bio *bio)
1da177e4
LT
318{
319 struct dio *dio = bio->bi_private;
5eb6c7a2
ZB
320 unsigned long remaining;
321 unsigned long flags;
332391a9 322 bool defer_completion = false;
1da177e4 323
1da177e4
LT
324 /* cleanup the bio */
325 dio_bio_complete(dio, bio);
0273201e 326
5eb6c7a2
ZB
327 spin_lock_irqsave(&dio->bio_lock, flags);
328 remaining = --dio->refcount;
329 if (remaining == 1 && dio->waiter)
20258b2b 330 wake_up_process(dio->waiter);
5eb6c7a2 331 spin_unlock_irqrestore(&dio->bio_lock, flags);
20258b2b 332
8459d86a 333 if (remaining == 0) {
332391a9
LC
334 /*
335 * Defer completion when defer_completion is set or
336 * when the inode has pages mapped and this is AIO write.
337 * We need to invalidate those pages because there is a
338 * chance they contain stale data in the case buffered IO
339 * went in between AIO submission and completion into the
340 * same region.
341 */
342 if (dio->result)
343 defer_completion = dio->defer_completion ||
344 (dio->op == REQ_OP_WRITE &&
345 dio->inode->i_mapping->nrpages);
346 if (defer_completion) {
7b7a8665
CH
347 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
348 queue_work(dio->inode->i_sb->s_dio_done_wq,
349 &dio->complete_work);
350 } else {
716b9bc0 351 dio_complete(dio, 0, true);
7b7a8665 352 }
8459d86a 353 }
1da177e4
LT
354}
355
356/*
357 * The BIO completion handler simply queues the BIO up for the process-context
358 * handler.
359 *
360 * During I/O bi_private points at the dio. After I/O, bi_private is used to
361 * implement a singly-linked list of completed BIOs, at dio->bio_list.
362 */
4246a0b6 363static void dio_bio_end_io(struct bio *bio)
1da177e4
LT
364{
365 struct dio *dio = bio->bi_private;
366 unsigned long flags;
367
1da177e4
LT
368 spin_lock_irqsave(&dio->bio_lock, flags);
369 bio->bi_private = dio->bio_list;
370 dio->bio_list = bio;
5eb6c7a2 371 if (--dio->refcount == 1 && dio->waiter)
1da177e4
LT
372 wake_up_process(dio->waiter);
373 spin_unlock_irqrestore(&dio->bio_lock, flags);
1da177e4
LT
374}
375
facd07b0
JB
376/**
377 * dio_end_io - handle the end io action for the given bio
378 * @bio: The direct io bio thats being completed
facd07b0
JB
379 *
380 * This is meant to be called by any filesystem that uses their own dio_submit_t
381 * so that the DIO specific endio actions are dealt with after the filesystem
382 * has done it's completion work.
383 */
4055351c 384void dio_end_io(struct bio *bio)
facd07b0
JB
385{
386 struct dio *dio = bio->bi_private;
387
388 if (dio->is_async)
4246a0b6 389 dio_bio_end_aio(bio);
facd07b0 390 else
4246a0b6 391 dio_bio_end_io(bio);
facd07b0
JB
392}
393EXPORT_SYMBOL_GPL(dio_end_io);
394
ba253fbf 395static inline void
eb28be2b
AK
396dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
397 struct block_device *bdev,
398 sector_t first_sector, int nr_vecs)
1da177e4
LT
399{
400 struct bio *bio;
401
20d9600c
DD
402 /*
403 * bio_alloc() is guaranteed to return a bio when called with
71baba4b 404 * __GFP_RECLAIM and we request a valid number of vectors.
20d9600c 405 */
1da177e4 406 bio = bio_alloc(GFP_KERNEL, nr_vecs);
1da177e4 407
74d46992 408 bio_set_dev(bio, bdev);
4f024f37 409 bio->bi_iter.bi_sector = first_sector;
8a4c1e42 410 bio_set_op_attrs(bio, dio->op, dio->op_flags);
1da177e4
LT
411 if (dio->is_async)
412 bio->bi_end_io = dio_bio_end_aio;
413 else
414 bio->bi_end_io = dio_bio_end_io;
415
45d06cf7
JA
416 bio->bi_write_hint = dio->iocb->ki_hint;
417
eb28be2b
AK
418 sdio->bio = bio;
419 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
1da177e4
LT
420}
421
422/*
423 * In the AIO read case we speculatively dirty the pages before starting IO.
424 * During IO completion, any of these pages which happen to have been written
425 * back will be redirtied by bio_check_pages_dirty().
0273201e
ZB
426 *
427 * bios hold a dio reference between submit_bio and ->end_io.
1da177e4 428 */
ba253fbf 429static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
1da177e4 430{
eb28be2b 431 struct bio *bio = sdio->bio;
5eb6c7a2 432 unsigned long flags;
1da177e4
LT
433
434 bio->bi_private = dio;
5eb6c7a2
ZB
435
436 spin_lock_irqsave(&dio->bio_lock, flags);
437 dio->refcount++;
438 spin_unlock_irqrestore(&dio->bio_lock, flags);
439
8a4c1e42 440 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
1da177e4 441 bio_set_pages_dirty(bio);
5eb6c7a2 442
74d46992 443 dio->bio_disk = bio->bi_disk;
c1c53460 444
15c4f638 445 if (sdio->submit_io) {
8a4c1e42 446 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
15c4f638 447 dio->bio_cookie = BLK_QC_T_NONE;
c1c53460 448 } else
4e49ea4a 449 dio->bio_cookie = submit_bio(bio);
1da177e4 450
eb28be2b
AK
451 sdio->bio = NULL;
452 sdio->boundary = 0;
453 sdio->logical_offset_in_bio = 0;
1da177e4
LT
454}
455
456/*
457 * Release any resources in case of a failure
458 */
ba253fbf 459static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
1da177e4 460{
7b2c99d1 461 while (sdio->head < sdio->tail)
09cbfeaf 462 put_page(dio->pages[sdio->head++]);
1da177e4
LT
463}
464
465/*
0273201e
ZB
466 * Wait for the next BIO to complete. Remove it and return it. NULL is
467 * returned once all BIOs have been completed. This must only be called once
468 * all bios have been issued so that dio->refcount can only decrease. This
469 * requires that that the caller hold a reference on the dio.
1da177e4
LT
470 */
471static struct bio *dio_await_one(struct dio *dio)
472{
473 unsigned long flags;
0273201e 474 struct bio *bio = NULL;
1da177e4
LT
475
476 spin_lock_irqsave(&dio->bio_lock, flags);
5eb6c7a2
ZB
477
478 /*
479 * Wait as long as the list is empty and there are bios in flight. bio
480 * completion drops the count, maybe adds to the list, and wakes while
481 * holding the bio_lock so we don't need set_current_state()'s barrier
482 * and can call it after testing our condition.
483 */
484 while (dio->refcount > 1 && dio->bio_list == NULL) {
485 __set_current_state(TASK_UNINTERRUPTIBLE);
486 dio->waiter = current;
487 spin_unlock_irqrestore(&dio->bio_lock, flags);
c43c83a2 488 if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
74d46992 489 !blk_mq_poll(dio->bio_disk->queue, dio->bio_cookie))
15c4f638 490 io_schedule();
5eb6c7a2
ZB
491 /* wake up sets us TASK_RUNNING */
492 spin_lock_irqsave(&dio->bio_lock, flags);
493 dio->waiter = NULL;
1da177e4 494 }
0273201e
ZB
495 if (dio->bio_list) {
496 bio = dio->bio_list;
497 dio->bio_list = bio->bi_private;
498 }
1da177e4
LT
499 spin_unlock_irqrestore(&dio->bio_lock, flags);
500 return bio;
501}
502
503/*
504 * Process one completed BIO. No locks are held.
505 */
4e4cbee9 506static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
1da177e4 507{
cb34e057
KO
508 struct bio_vec *bvec;
509 unsigned i;
4e4cbee9 510 blk_status_t err = bio->bi_status;
1da177e4 511
03a07c92
GR
512 if (err) {
513 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
514 dio->io_error = -EAGAIN;
515 else
516 dio->io_error = -EIO;
517 }
1da177e4 518
8a4c1e42 519 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) {
7ddc971f 520 bio_check_pages_dirty(bio); /* transfers ownership */
1da177e4 521 } else {
cb34e057
KO
522 bio_for_each_segment_all(bvec, bio, i) {
523 struct page *page = bvec->bv_page;
1da177e4 524
8a4c1e42 525 if (dio->op == REQ_OP_READ && !PageCompound(page) &&
53cbf3b1 526 dio->should_dirty)
1da177e4 527 set_page_dirty_lock(page);
09cbfeaf 528 put_page(page);
1da177e4
LT
529 }
530 bio_put(bio);
531 }
9b81c842 532 return err;
1da177e4
LT
533}
534
535/*
0273201e
ZB
536 * Wait on and process all in-flight BIOs. This must only be called once
537 * all bios have been issued so that the refcount can only decrease.
538 * This just waits for all bios to make it through dio_bio_complete. IO
beb7dd86 539 * errors are propagated through dio->io_error and should be propagated via
0273201e 540 * dio_complete().
1da177e4 541 */
6d544bb4 542static void dio_await_completion(struct dio *dio)
1da177e4 543{
0273201e
ZB
544 struct bio *bio;
545 do {
546 bio = dio_await_one(dio);
547 if (bio)
548 dio_bio_complete(dio, bio);
549 } while (bio);
1da177e4
LT
550}
551
552/*
553 * A really large O_DIRECT read or write can generate a lot of BIOs. So
554 * to keep the memory consumption sane we periodically reap any completed BIOs
555 * during the BIO generation phase.
556 *
557 * This also helps to limit the peak amount of pinned userspace memory.
558 */
ba253fbf 559static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
1da177e4
LT
560{
561 int ret = 0;
562
eb28be2b 563 if (sdio->reap_counter++ >= 64) {
1da177e4
LT
564 while (dio->bio_list) {
565 unsigned long flags;
566 struct bio *bio;
567 int ret2;
568
569 spin_lock_irqsave(&dio->bio_lock, flags);
570 bio = dio->bio_list;
571 dio->bio_list = bio->bi_private;
572 spin_unlock_irqrestore(&dio->bio_lock, flags);
4e4cbee9 573 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
1da177e4
LT
574 if (ret == 0)
575 ret = ret2;
576 }
eb28be2b 577 sdio->reap_counter = 0;
1da177e4
LT
578 }
579 return ret;
580}
581
7b7a8665
CH
582/*
583 * Create workqueue for deferred direct IO completions. We allocate the
584 * workqueue when it's first needed. This avoids creating workqueue for
585 * filesystems that don't need it and also allows us to create the workqueue
586 * late enough so the we can include s_id in the name of the workqueue.
587 */
ec1b8260 588int sb_init_dio_done_wq(struct super_block *sb)
7b7a8665 589{
45150c43 590 struct workqueue_struct *old;
7b7a8665
CH
591 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
592 WQ_MEM_RECLAIM, 0,
593 sb->s_id);
594 if (!wq)
595 return -ENOMEM;
596 /*
597 * This has to be atomic as more DIOs can race to create the workqueue
598 */
45150c43 599 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
7b7a8665 600 /* Someone created workqueue before us? Free ours... */
45150c43 601 if (old)
7b7a8665
CH
602 destroy_workqueue(wq);
603 return 0;
604}
605
606static int dio_set_defer_completion(struct dio *dio)
607{
608 struct super_block *sb = dio->inode->i_sb;
609
610 if (dio->defer_completion)
611 return 0;
612 dio->defer_completion = true;
613 if (!sb->s_dio_done_wq)
614 return sb_init_dio_done_wq(sb);
615 return 0;
616}
617
1da177e4
LT
618/*
619 * Call into the fs to map some more disk blocks. We record the current number
eb28be2b 620 * of available blocks at sdio->blocks_available. These are in units of the
93407472 621 * fs blocksize, i_blocksize(inode).
1da177e4
LT
622 *
623 * The fs is allowed to map lots of blocks at once. If it wants to do that,
624 * it uses the passed inode-relative block number as the file offset, as usual.
625 *
1d8fa7a2 626 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
1da177e4
LT
627 * has remaining to do. The fs should not map more than this number of blocks.
628 *
629 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
630 * indicate how much contiguous disk space has been made available at
631 * bh->b_blocknr.
632 *
633 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
634 * This isn't very efficient...
635 *
636 * In the case of filesystem holes: the fs may return an arbitrarily-large
637 * hole by returning an appropriate value in b_size and by clearing
638 * buffer_mapped(). However the direct-io code will only process holes one
1d8fa7a2 639 * block at a time - it will repeatedly call get_block() as it walks the hole.
1da177e4 640 */
18772641
AK
641static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
642 struct buffer_head *map_bh)
1da177e4
LT
643{
644 int ret;
1da177e4 645 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
ae55e1aa 646 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
1da177e4 647 unsigned long fs_count; /* Number of filesystem-sized blocks */
1da177e4 648 int create;
ab73857e 649 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
1da177e4
LT
650
651 /*
652 * If there was a memory error and we've overwritten all the
653 * mapped blocks then we can now return that memory error
654 */
655 ret = dio->page_errors;
656 if (ret == 0) {
eb28be2b
AK
657 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
658 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
ae55e1aa
TM
659 fs_endblk = (sdio->final_block_in_request - 1) >>
660 sdio->blkfactor;
661 fs_count = fs_endblk - fs_startblk + 1;
1da177e4 662
3c674e74 663 map_bh->b_state = 0;
ab73857e 664 map_bh->b_size = fs_count << i_blkbits;
3c674e74 665
5fe878ae 666 /*
9ecd10b7
EG
667 * For writes that could fill holes inside i_size on a
668 * DIO_SKIP_HOLES filesystem we forbid block creations: only
669 * overwrites are permitted. We will return early to the caller
670 * once we see an unmapped buffer head returned, and the caller
671 * will fall back to buffered I/O.
5fe878ae
CH
672 *
673 * Otherwise the decision is left to the get_blocks method,
674 * which may decide to handle it or also return an unmapped
675 * buffer head.
676 */
8a4c1e42 677 create = dio->op == REQ_OP_WRITE;
5fe878ae 678 if (dio->flags & DIO_SKIP_HOLES) {
9ecd10b7
EG
679 if (fs_startblk <= ((i_size_read(dio->inode) - 1) >>
680 i_blkbits))
1da177e4 681 create = 0;
1da177e4 682 }
3c674e74 683
eb28be2b 684 ret = (*sdio->get_block)(dio->inode, fs_startblk,
1da177e4 685 map_bh, create);
18772641
AK
686
687 /* Store for completion */
688 dio->private = map_bh->b_private;
7b7a8665
CH
689
690 if (ret == 0 && buffer_defer_completion(map_bh))
691 ret = dio_set_defer_completion(dio);
1da177e4
LT
692 }
693 return ret;
694}
695
696/*
697 * There is no bio. Make one now.
698 */
ba253fbf
AK
699static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
700 sector_t start_sector, struct buffer_head *map_bh)
1da177e4
LT
701{
702 sector_t sector;
703 int ret, nr_pages;
704
eb28be2b 705 ret = dio_bio_reap(dio, sdio);
1da177e4
LT
706 if (ret)
707 goto out;
eb28be2b 708 sector = start_sector << (sdio->blkbits - 9);
b54ffb73 709 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
1da177e4 710 BUG_ON(nr_pages <= 0);
18772641 711 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
eb28be2b 712 sdio->boundary = 0;
1da177e4
LT
713out:
714 return ret;
715}
716
717/*
718 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
719 * that was successful then update final_block_in_bio and take a ref against
720 * the just-added page.
721 *
722 * Return zero on success. Non-zero means the caller needs to start a new BIO.
723 */
ba253fbf 724static inline int dio_bio_add_page(struct dio_submit *sdio)
1da177e4
LT
725{
726 int ret;
727
eb28be2b
AK
728 ret = bio_add_page(sdio->bio, sdio->cur_page,
729 sdio->cur_page_len, sdio->cur_page_offset);
730 if (ret == sdio->cur_page_len) {
1da177e4
LT
731 /*
732 * Decrement count only, if we are done with this page
733 */
eb28be2b
AK
734 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
735 sdio->pages_in_io--;
09cbfeaf 736 get_page(sdio->cur_page);
eb28be2b
AK
737 sdio->final_block_in_bio = sdio->cur_page_block +
738 (sdio->cur_page_len >> sdio->blkbits);
1da177e4
LT
739 ret = 0;
740 } else {
741 ret = 1;
742 }
743 return ret;
744}
745
746/*
747 * Put cur_page under IO. The section of cur_page which is described by
748 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
749 * starts on-disk at cur_page_block.
750 *
751 * We take a ref against the page here (on behalf of its presence in the bio).
752 *
753 * The caller of this function is responsible for removing cur_page from the
754 * dio, and for dropping the refcount which came from that presence.
755 */
ba253fbf
AK
756static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
757 struct buffer_head *map_bh)
1da177e4
LT
758{
759 int ret = 0;
760
eb28be2b
AK
761 if (sdio->bio) {
762 loff_t cur_offset = sdio->cur_page_fs_offset;
763 loff_t bio_next_offset = sdio->logical_offset_in_bio +
4f024f37 764 sdio->bio->bi_iter.bi_size;
c2c6ca41 765
1da177e4 766 /*
c2c6ca41
JB
767 * See whether this new request is contiguous with the old.
768 *
f0940cee
NK
769 * Btrfs cannot handle having logically non-contiguous requests
770 * submitted. For example if you have
c2c6ca41
JB
771 *
772 * Logical: [0-4095][HOLE][8192-12287]
f0940cee 773 * Physical: [0-4095] [4096-8191]
c2c6ca41
JB
774 *
775 * We cannot submit those pages together as one BIO. So if our
776 * current logical offset in the file does not equal what would
777 * be the next logical offset in the bio, submit the bio we
778 * have.
1da177e4 779 */
eb28be2b 780 if (sdio->final_block_in_bio != sdio->cur_page_block ||
c2c6ca41 781 cur_offset != bio_next_offset)
eb28be2b 782 dio_bio_submit(dio, sdio);
1da177e4
LT
783 }
784
eb28be2b 785 if (sdio->bio == NULL) {
18772641 786 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
1da177e4
LT
787 if (ret)
788 goto out;
789 }
790
eb28be2b
AK
791 if (dio_bio_add_page(sdio) != 0) {
792 dio_bio_submit(dio, sdio);
18772641 793 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
1da177e4 794 if (ret == 0) {
eb28be2b 795 ret = dio_bio_add_page(sdio);
1da177e4
LT
796 BUG_ON(ret != 0);
797 }
798 }
799out:
800 return ret;
801}
802
803/*
804 * An autonomous function to put a chunk of a page under deferred IO.
805 *
806 * The caller doesn't actually know (or care) whether this piece of page is in
807 * a BIO, or is under IO or whatever. We just take care of all possible
808 * situations here. The separation between the logic of do_direct_IO() and
809 * that of submit_page_section() is important for clarity. Please don't break.
810 *
811 * The chunk of page starts on-disk at blocknr.
812 *
813 * We perform deferred IO, by recording the last-submitted page inside our
814 * private part of the dio structure. If possible, we just expand the IO
815 * across that page here.
816 *
817 * If that doesn't work out then we put the old page into the bio and add this
818 * page to the dio instead.
819 */
ba253fbf 820static inline int
eb28be2b 821submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
18772641
AK
822 unsigned offset, unsigned len, sector_t blocknr,
823 struct buffer_head *map_bh)
1da177e4
LT
824{
825 int ret = 0;
826
8a4c1e42 827 if (dio->op == REQ_OP_WRITE) {
98c4d57d
AM
828 /*
829 * Read accounting is performed in submit_bio()
830 */
831 task_io_account_write(len);
832 }
833
1da177e4
LT
834 /*
835 * Can we just grow the current page's presence in the dio?
836 */
eb28be2b
AK
837 if (sdio->cur_page == page &&
838 sdio->cur_page_offset + sdio->cur_page_len == offset &&
839 sdio->cur_page_block +
840 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
841 sdio->cur_page_len += len;
1da177e4
LT
842 goto out;
843 }
844
845 /*
846 * If there's a deferred page already there then send it.
847 */
eb28be2b 848 if (sdio->cur_page) {
18772641 849 ret = dio_send_cur_page(dio, sdio, map_bh);
09cbfeaf 850 put_page(sdio->cur_page);
eb28be2b 851 sdio->cur_page = NULL;
1da177e4 852 if (ret)
b1058b98 853 return ret;
1da177e4
LT
854 }
855
09cbfeaf 856 get_page(page); /* It is in dio */
eb28be2b
AK
857 sdio->cur_page = page;
858 sdio->cur_page_offset = offset;
859 sdio->cur_page_len = len;
860 sdio->cur_page_block = blocknr;
861 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
1da177e4 862out:
b1058b98
JK
863 /*
864 * If sdio->boundary then we want to schedule the IO now to
865 * avoid metadata seeks.
866 */
867 if (sdio->boundary) {
868 ret = dio_send_cur_page(dio, sdio, map_bh);
869 dio_bio_submit(dio, sdio);
09cbfeaf 870 put_page(sdio->cur_page);
b1058b98
JK
871 sdio->cur_page = NULL;
872 }
1da177e4
LT
873 return ret;
874}
875
1da177e4
LT
876/*
877 * If we are not writing the entire block and get_block() allocated
878 * the block for us, we need to fill-in the unused portion of the
879 * block with zeros. This happens only if user-buffer, fileoffset or
880 * io length is not filesystem block-size multiple.
881 *
882 * `end' is zero if we're doing the start of the IO, 1 at the end of the
883 * IO.
884 */
ba253fbf
AK
885static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
886 int end, struct buffer_head *map_bh)
1da177e4
LT
887{
888 unsigned dio_blocks_per_fs_block;
889 unsigned this_chunk_blocks; /* In dio_blocks */
890 unsigned this_chunk_bytes;
891 struct page *page;
892
eb28be2b 893 sdio->start_zero_done = 1;
18772641 894 if (!sdio->blkfactor || !buffer_new(map_bh))
1da177e4
LT
895 return;
896
eb28be2b
AK
897 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
898 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
1da177e4
LT
899
900 if (!this_chunk_blocks)
901 return;
902
903 /*
904 * We need to zero out part of an fs block. It is either at the
905 * beginning or the end of the fs block.
906 */
907 if (end)
908 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
909
eb28be2b 910 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
1da177e4 911
557ed1fa 912 page = ZERO_PAGE(0);
eb28be2b 913 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
18772641 914 sdio->next_block_for_io, map_bh))
1da177e4
LT
915 return;
916
eb28be2b 917 sdio->next_block_for_io += this_chunk_blocks;
1da177e4
LT
918}
919
920/*
921 * Walk the user pages, and the file, mapping blocks to disk and generating
922 * a sequence of (page,offset,len,block) mappings. These mappings are injected
923 * into submit_page_section(), which takes care of the next stage of submission
924 *
925 * Direct IO against a blockdev is different from a file. Because we can
926 * happily perform page-sized but 512-byte aligned IOs. It is important that
927 * blockdev IO be able to have fine alignment and large sizes.
928 *
1d8fa7a2 929 * So what we do is to permit the ->get_block function to populate bh.b_size
1da177e4
LT
930 * with the size of IO which is permitted at this offset and this i_blkbits.
931 *
932 * For best results, the blockdev should be set up with 512-byte i_blkbits and
1d8fa7a2 933 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
1da177e4
LT
934 * fine alignment but still allows this function to work in PAGE_SIZE units.
935 */
18772641
AK
936static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
937 struct buffer_head *map_bh)
1da177e4 938{
eb28be2b 939 const unsigned blkbits = sdio->blkbits;
dd545b52 940 const unsigned i_blkbits = blkbits + sdio->blkfactor;
1da177e4
LT
941 int ret = 0;
942
eb28be2b 943 while (sdio->block_in_file < sdio->final_block_in_request) {
7b2c99d1
AV
944 struct page *page;
945 size_t from, to;
6fcc5420
BH
946
947 page = dio_get_page(dio, sdio);
1da177e4
LT
948 if (IS_ERR(page)) {
949 ret = PTR_ERR(page);
950 goto out;
951 }
6fcc5420
BH
952 from = sdio->head ? 0 : sdio->from;
953 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
954 sdio->head++;
1da177e4 955
7b2c99d1 956 while (from < to) {
1da177e4
LT
957 unsigned this_chunk_bytes; /* # of bytes mapped */
958 unsigned this_chunk_blocks; /* # of blocks */
959 unsigned u;
960
eb28be2b 961 if (sdio->blocks_available == 0) {
1da177e4
LT
962 /*
963 * Need to go and map some more disk
964 */
965 unsigned long blkmask;
966 unsigned long dio_remainder;
967
18772641 968 ret = get_more_blocks(dio, sdio, map_bh);
1da177e4 969 if (ret) {
09cbfeaf 970 put_page(page);
1da177e4
LT
971 goto out;
972 }
973 if (!buffer_mapped(map_bh))
974 goto do_holes;
975
eb28be2b 976 sdio->blocks_available =
f734c89c 977 map_bh->b_size >> blkbits;
eb28be2b
AK
978 sdio->next_block_for_io =
979 map_bh->b_blocknr << sdio->blkfactor;
f734c89c
JK
980 if (buffer_new(map_bh)) {
981 clean_bdev_aliases(
982 map_bh->b_bdev,
983 map_bh->b_blocknr,
dd545b52 984 map_bh->b_size >> i_blkbits);
f734c89c 985 }
1da177e4 986
eb28be2b 987 if (!sdio->blkfactor)
1da177e4
LT
988 goto do_holes;
989
eb28be2b
AK
990 blkmask = (1 << sdio->blkfactor) - 1;
991 dio_remainder = (sdio->block_in_file & blkmask);
1da177e4
LT
992
993 /*
994 * If we are at the start of IO and that IO
995 * starts partway into a fs-block,
996 * dio_remainder will be non-zero. If the IO
997 * is a read then we can simply advance the IO
998 * cursor to the first block which is to be
999 * read. But if the IO is a write and the
1000 * block was newly allocated we cannot do that;
1001 * the start of the fs block must be zeroed out
1002 * on-disk
1003 */
1004 if (!buffer_new(map_bh))
eb28be2b
AK
1005 sdio->next_block_for_io += dio_remainder;
1006 sdio->blocks_available -= dio_remainder;
1da177e4
LT
1007 }
1008do_holes:
1009 /* Handle holes */
1010 if (!buffer_mapped(map_bh)) {
35dc8161 1011 loff_t i_size_aligned;
1da177e4
LT
1012
1013 /* AKPM: eargh, -ENOTBLK is a hack */
8a4c1e42 1014 if (dio->op == REQ_OP_WRITE) {
09cbfeaf 1015 put_page(page);
1da177e4
LT
1016 return -ENOTBLK;
1017 }
1018
35dc8161
JM
1019 /*
1020 * Be sure to account for a partial block as the
1021 * last block in the file
1022 */
1023 i_size_aligned = ALIGN(i_size_read(dio->inode),
1024 1 << blkbits);
eb28be2b 1025 if (sdio->block_in_file >=
35dc8161 1026 i_size_aligned >> blkbits) {
1da177e4 1027 /* We hit eof */
09cbfeaf 1028 put_page(page);
1da177e4
LT
1029 goto out;
1030 }
7b2c99d1 1031 zero_user(page, from, 1 << blkbits);
eb28be2b 1032 sdio->block_in_file++;
7b2c99d1 1033 from += 1 << blkbits;
3320c60b 1034 dio->result += 1 << blkbits;
1da177e4
LT
1035 goto next_block;
1036 }
1037
1038 /*
1039 * If we're performing IO which has an alignment which
1040 * is finer than the underlying fs, go check to see if
1041 * we must zero out the start of this block.
1042 */
eb28be2b 1043 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
18772641 1044 dio_zero_block(dio, sdio, 0, map_bh);
1da177e4
LT
1045
1046 /*
1047 * Work out, in this_chunk_blocks, how much disk we
1048 * can add to this page
1049 */
eb28be2b 1050 this_chunk_blocks = sdio->blocks_available;
7b2c99d1 1051 u = (to - from) >> blkbits;
1da177e4
LT
1052 if (this_chunk_blocks > u)
1053 this_chunk_blocks = u;
eb28be2b 1054 u = sdio->final_block_in_request - sdio->block_in_file;
1da177e4
LT
1055 if (this_chunk_blocks > u)
1056 this_chunk_blocks = u;
1057 this_chunk_bytes = this_chunk_blocks << blkbits;
1058 BUG_ON(this_chunk_bytes == 0);
1059
092c8d46
JK
1060 if (this_chunk_blocks == sdio->blocks_available)
1061 sdio->boundary = buffer_boundary(map_bh);
eb28be2b 1062 ret = submit_page_section(dio, sdio, page,
7b2c99d1 1063 from,
eb28be2b 1064 this_chunk_bytes,
18772641
AK
1065 sdio->next_block_for_io,
1066 map_bh);
1da177e4 1067 if (ret) {
09cbfeaf 1068 put_page(page);
1da177e4
LT
1069 goto out;
1070 }
eb28be2b 1071 sdio->next_block_for_io += this_chunk_blocks;
1da177e4 1072
eb28be2b 1073 sdio->block_in_file += this_chunk_blocks;
7b2c99d1
AV
1074 from += this_chunk_bytes;
1075 dio->result += this_chunk_bytes;
eb28be2b 1076 sdio->blocks_available -= this_chunk_blocks;
1da177e4 1077next_block:
eb28be2b
AK
1078 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1079 if (sdio->block_in_file == sdio->final_block_in_request)
1da177e4
LT
1080 break;
1081 }
1082
1083 /* Drop the ref which was taken in get_user_pages() */
09cbfeaf 1084 put_page(page);
1da177e4
LT
1085 }
1086out:
1087 return ret;
1088}
1089
847cc637 1090static inline int drop_refcount(struct dio *dio)
1da177e4 1091{
847cc637 1092 int ret2;
5eb6c7a2 1093 unsigned long flags;
1da177e4 1094
8459d86a
ZB
1095 /*
1096 * Sync will always be dropping the final ref and completing the
5eb6c7a2
ZB
1097 * operation. AIO can if it was a broken operation described above or
1098 * in fact if all the bios race to complete before we get here. In
1099 * that case dio_complete() translates the EIOCBQUEUED into the proper
04b2fa9f 1100 * return code that the caller will hand to ->complete().
5eb6c7a2
ZB
1101 *
1102 * This is managed by the bio_lock instead of being an atomic_t so that
1103 * completion paths can drop their ref and use the remaining count to
1104 * decide to wake the submission path atomically.
8459d86a 1105 */
5eb6c7a2
ZB
1106 spin_lock_irqsave(&dio->bio_lock, flags);
1107 ret2 = --dio->refcount;
1108 spin_unlock_irqrestore(&dio->bio_lock, flags);
847cc637 1109 return ret2;
1da177e4
LT
1110}
1111
eafdc7d1
CH
1112/*
1113 * This is a library function for use by filesystem drivers.
1114 *
1115 * The locking rules are governed by the flags parameter:
1116 * - if the flags value contains DIO_LOCKING we use a fancy locking
1117 * scheme for dumb filesystems.
1118 * For writes this function is called under i_mutex and returns with
1119 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1120 * taken and dropped again before returning.
eafdc7d1
CH
1121 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1122 * internal locking but rather rely on the filesystem to synchronize
1123 * direct I/O reads/writes versus each other and truncate.
df2d6f26
CH
1124 *
1125 * To help with locking against truncate we incremented the i_dio_count
1126 * counter before starting direct I/O, and decrement it once we are done.
1127 * Truncate can wait for it to reach zero to provide exclusion. It is
1128 * expected that filesystem provide exclusion between new direct I/O
1129 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1130 * but other filesystems need to take care of this on their own.
ba253fbf
AK
1131 *
1132 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1133 * is always inlined. Otherwise gcc is unable to split the structure into
1134 * individual fields and will generate much worse code. This is important
1135 * for the whole file.
eafdc7d1 1136 */
65dd2aa9 1137static inline ssize_t
17f8c842
OS
1138do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1139 struct block_device *bdev, struct iov_iter *iter,
c8b8e32d 1140 get_block_t get_block, dio_iodone_t end_io,
17f8c842 1141 dio_submit_t submit_io, int flags)
1da177e4 1142{
ab73857e
LT
1143 unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1144 unsigned blkbits = i_blkbits;
1da177e4
LT
1145 unsigned blocksize_mask = (1 << blkbits) - 1;
1146 ssize_t retval = -EINVAL;
af436472 1147 size_t count = iov_iter_count(iter);
c8b8e32d 1148 loff_t offset = iocb->ki_pos;
af436472 1149 loff_t end = offset + count;
1da177e4 1150 struct dio *dio;
eb28be2b 1151 struct dio_submit sdio = { 0, };
847cc637 1152 struct buffer_head map_bh = { 0, };
647d1e4c 1153 struct blk_plug plug;
886a3911 1154 unsigned long align = offset | iov_iter_alignment(iter);
1da177e4 1155
65dd2aa9
AK
1156 /*
1157 * Avoid references to bdev if not absolutely needed to give
1158 * the early prefetch in the caller enough time.
1159 */
1da177e4 1160
886a3911 1161 if (align & blocksize_mask) {
1da177e4 1162 if (bdev)
65dd2aa9 1163 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1da177e4 1164 blocksize_mask = (1 << blkbits) - 1;
886a3911 1165 if (align & blocksize_mask)
1da177e4
LT
1166 goto out;
1167 }
1168
f9b5570d 1169 /* watch out for a 0 len io from a tricksy fs */
17f8c842 1170 if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
f9b5570d
CH
1171 return 0;
1172
6e8267f5 1173 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1da177e4
LT
1174 retval = -ENOMEM;
1175 if (!dio)
1176 goto out;
23aee091
JM
1177 /*
1178 * Believe it or not, zeroing out the page array caused a .5%
1179 * performance regression in a database benchmark. So, we take
1180 * care to only zero out what's needed.
1181 */
1182 memset(dio, 0, offsetof(struct dio, pages));
1da177e4 1183
5fe878ae
CH
1184 dio->flags = flags;
1185 if (dio->flags & DIO_LOCKING) {
17f8c842 1186 if (iov_iter_rw(iter) == READ) {
5fe878ae
CH
1187 struct address_space *mapping =
1188 iocb->ki_filp->f_mapping;
1da177e4 1189
5fe878ae 1190 /* will be released by direct_io_worker */
5955102c 1191 inode_lock(inode);
1da177e4
LT
1192
1193 retval = filemap_write_and_wait_range(mapping, offset,
1194 end - 1);
1195 if (retval) {
5955102c 1196 inode_unlock(inode);
6e8267f5 1197 kmem_cache_free(dio_cache, dio);
1da177e4
LT
1198 goto out;
1199 }
1da177e4 1200 }
1da177e4
LT
1201 }
1202
74cedf9b
JK
1203 /* Once we sampled i_size check for reads beyond EOF */
1204 dio->i_size = i_size_read(inode);
1205 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1206 if (dio->flags & DIO_LOCKING)
5955102c 1207 inode_unlock(inode);
74cedf9b 1208 kmem_cache_free(dio_cache, dio);
2d4594ac 1209 retval = 0;
74cedf9b
JK
1210 goto out;
1211 }
1212
1da177e4 1213 /*
60392573
CH
1214 * For file extending writes updating i_size before data writeouts
1215 * complete can expose uninitialized blocks in dumb filesystems.
1216 * In that case we need to wait for I/O completion even if asked
1217 * for an asynchronous write.
1da177e4 1218 */
60392573
CH
1219 if (is_sync_kiocb(iocb))
1220 dio->is_async = false;
1221 else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
17f8c842 1222 iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
60392573
CH
1223 dio->is_async = false;
1224 else
1225 dio->is_async = true;
1226
847cc637 1227 dio->inode = inode;
8a4c1e42
MC
1228 if (iov_iter_rw(iter) == WRITE) {
1229 dio->op = REQ_OP_WRITE;
70fd7614 1230 dio->op_flags = REQ_SYNC | REQ_IDLE;
03a07c92
GR
1231 if (iocb->ki_flags & IOCB_NOWAIT)
1232 dio->op_flags |= REQ_NOWAIT;
8a4c1e42
MC
1233 } else {
1234 dio->op = REQ_OP_READ;
1235 }
02afc27f
CH
1236
1237 /*
1238 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1239 * so that we can call ->fsync.
1240 */
332391a9
LC
1241 if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1242 retval = 0;
1243 if ((iocb->ki_filp->f_flags & O_DSYNC) ||
1244 IS_SYNC(iocb->ki_filp->f_mapping->host))
1245 retval = dio_set_defer_completion(dio);
1246 else if (!dio->inode->i_sb->s_dio_done_wq) {
1247 /*
1248 * In case of AIO write racing with buffered read we
1249 * need to defer completion. We can't decide this now,
1250 * however the workqueue needs to be initialized here.
1251 */
1252 retval = sb_init_dio_done_wq(dio->inode->i_sb);
1253 }
02afc27f
CH
1254 if (retval) {
1255 /*
1256 * We grab i_mutex only for reads so we don't have
1257 * to release it here
1258 */
1259 kmem_cache_free(dio_cache, dio);
1260 goto out;
1261 }
1262 }
1263
1264 /*
1265 * Will be decremented at I/O completion time.
1266 */
fe0f07d0
JA
1267 if (!(dio->flags & DIO_SKIP_DIO_COUNT))
1268 inode_dio_begin(inode);
02afc27f
CH
1269
1270 retval = 0;
847cc637 1271 sdio.blkbits = blkbits;
ab73857e 1272 sdio.blkfactor = i_blkbits - blkbits;
847cc637
AK
1273 sdio.block_in_file = offset >> blkbits;
1274
1275 sdio.get_block = get_block;
1276 dio->end_io = end_io;
1277 sdio.submit_io = submit_io;
1278 sdio.final_block_in_bio = -1;
1279 sdio.next_block_for_io = -1;
1280
1281 dio->iocb = iocb;
847cc637
AK
1282
1283 spin_lock_init(&dio->bio_lock);
1284 dio->refcount = 1;
1285
53cbf3b1 1286 dio->should_dirty = (iter->type == ITER_IOVEC);
7b2c99d1
AV
1287 sdio.iter = iter;
1288 sdio.final_block_in_request =
1289 (offset + iov_iter_count(iter)) >> blkbits;
1290
847cc637
AK
1291 /*
1292 * In case of non-aligned buffers, we may need 2 more
1293 * pages since we need to zero out first and last block.
1294 */
1295 if (unlikely(sdio.blkfactor))
1296 sdio.pages_in_io = 2;
1297
f67da30c 1298 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
847cc637 1299
647d1e4c
FW
1300 blk_start_plug(&plug);
1301
7b2c99d1
AV
1302 retval = do_direct_IO(dio, &sdio, &map_bh);
1303 if (retval)
1304 dio_cleanup(dio, &sdio);
847cc637
AK
1305
1306 if (retval == -ENOTBLK) {
1307 /*
1308 * The remaining part of the request will be
1309 * be handled by buffered I/O when we return
1310 */
1311 retval = 0;
1312 }
1313 /*
1314 * There may be some unwritten disk at the end of a part-written
1315 * fs-block-sized block. Go zero that now.
1316 */
1317 dio_zero_block(dio, &sdio, 1, &map_bh);
1318
1319 if (sdio.cur_page) {
1320 ssize_t ret2;
1321
1322 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1323 if (retval == 0)
1324 retval = ret2;
09cbfeaf 1325 put_page(sdio.cur_page);
847cc637
AK
1326 sdio.cur_page = NULL;
1327 }
1328 if (sdio.bio)
1329 dio_bio_submit(dio, &sdio);
1330
647d1e4c
FW
1331 blk_finish_plug(&plug);
1332
847cc637
AK
1333 /*
1334 * It is possible that, we return short IO due to end of file.
1335 * In that case, we need to release all the pages we got hold on.
1336 */
1337 dio_cleanup(dio, &sdio);
1338
1339 /*
1340 * All block lookups have been performed. For READ requests
1341 * we can let i_mutex go now that its achieved its purpose
1342 * of protecting us from looking up uninitialized blocks.
1343 */
17f8c842 1344 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
5955102c 1345 inode_unlock(dio->inode);
847cc637
AK
1346
1347 /*
1348 * The only time we want to leave bios in flight is when a successful
1349 * partial aio read or full aio write have been setup. In that case
1350 * bio completion will call aio_complete. The only time it's safe to
1351 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1352 * This had *better* be the only place that raises -EIOCBQUEUED.
1353 */
1354 BUG_ON(retval == -EIOCBQUEUED);
1355 if (dio->is_async && retval == 0 && dio->result &&
17f8c842 1356 (iov_iter_rw(iter) == READ || dio->result == count))
847cc637 1357 retval = -EIOCBQUEUED;
af436472 1358 else
847cc637
AK
1359 dio_await_completion(dio);
1360
1361 if (drop_refcount(dio) == 0) {
716b9bc0 1362 retval = dio_complete(dio, retval, false);
847cc637
AK
1363 } else
1364 BUG_ON(retval != -EIOCBQUEUED);
1da177e4 1365
7bb46a67
NP
1366out:
1367 return retval;
1368}
65dd2aa9 1369
17f8c842
OS
1370ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1371 struct block_device *bdev, struct iov_iter *iter,
c8b8e32d 1372 get_block_t get_block,
17f8c842
OS
1373 dio_iodone_t end_io, dio_submit_t submit_io,
1374 int flags)
65dd2aa9
AK
1375{
1376 /*
1377 * The block device state is needed in the end to finally
1378 * submit everything. Since it's likely to be cache cold
1379 * prefetch it here as first thing to hide some of the
1380 * latency.
1381 *
1382 * Attempt to prefetch the pieces we likely need later.
1383 */
1384 prefetch(&bdev->bd_disk->part_tbl);
1385 prefetch(bdev->bd_queue);
1386 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1387
c8b8e32d 1388 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
17f8c842 1389 end_io, submit_io, flags);
65dd2aa9
AK
1390}
1391
1da177e4 1392EXPORT_SYMBOL(__blockdev_direct_IO);
6e8267f5
AK
1393
1394static __init int dio_init(void)
1395{
1396 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1397 return 0;
1398}
1399module_init(dio_init)