]> git.ipfire.org Git - people/ms/linux.git/blame - fs/eventpoll.c
kselftests: introduce new epoll60 testcase for catching lost wakeups
[people/ms/linux.git] / fs / eventpoll.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
5071f97e
DL
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
1da177e4 5 *
1da177e4 6 * Davide Libenzi <davidel@xmailserver.org>
1da177e4
LT
7 */
8
1da177e4
LT
9#include <linux/init.h>
10#include <linux/kernel.h>
174cd4b1 11#include <linux/sched/signal.h>
1da177e4
LT
12#include <linux/fs.h>
13#include <linux/file.h>
14#include <linux/signal.h>
15#include <linux/errno.h>
16#include <linux/mm.h>
17#include <linux/slab.h>
18#include <linux/poll.h>
1da177e4
LT
19#include <linux/string.h>
20#include <linux/list.h>
21#include <linux/hash.h>
22#include <linux/spinlock.h>
23#include <linux/syscalls.h>
1da177e4
LT
24#include <linux/rbtree.h>
25#include <linux/wait.h>
26#include <linux/eventpoll.h>
27#include <linux/mount.h>
28#include <linux/bitops.h>
144efe3e 29#include <linux/mutex.h>
da66f7cb 30#include <linux/anon_inodes.h>
4d7e30d9 31#include <linux/device.h>
7c0f6ba6 32#include <linux/uaccess.h>
1da177e4
LT
33#include <asm/io.h>
34#include <asm/mman.h>
60063497 35#include <linux/atomic.h>
138d22b5
CG
36#include <linux/proc_fs.h>
37#include <linux/seq_file.h>
35280bd4 38#include <linux/compat.h>
ae10b2b4 39#include <linux/rculist.h>
bf3b9f63 40#include <net/busy_poll.h>
1da177e4 41
1da177e4
LT
42/*
43 * LOCKING:
44 * There are three level of locking required by epoll :
45 *
144efe3e 46 * 1) epmutex (mutex)
c7ea7630 47 * 2) ep->mtx (mutex)
a218cc49 48 * 3) ep->lock (rwlock)
1da177e4
LT
49 *
50 * The acquire order is the one listed above, from 1 to 3.
a218cc49 51 * We need a rwlock (ep->lock) because we manipulate objects
1da177e4
LT
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
d47de16c
DL
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
61 * and ep_free().
62 * This mutex is acquired by ep_free() during the epoll file
1da177e4
LT
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
bf6a41db 65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
22bacca4
DL
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
72 * going to.
d8805e63
NE
73 * It is necessary to acquire multiple "ep->mtx"es at once in the
74 * case when one epoll fd is added to another. In this case, we
75 * always acquire the locks in the order of nesting (i.e. after
76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77 * before e2->mtx). Since we disallow cycles of epoll file
78 * descriptors, this ensures that the mutexes are well-ordered. In
79 * order to communicate this nesting to lockdep, when walking a tree
80 * of epoll file descriptors, we use the current recursion depth as
81 * the lockdep subkey.
d47de16c 82 * It is possible to drop the "ep->mtx" and to use the global
a218cc49 83 * mutex "epmutex" (together with "ep->lock") to have it working,
d47de16c 84 * but having "ep->mtx" will make the interface more scalable.
144efe3e 85 * Events that require holding "epmutex" are very rare, while for
d47de16c
DL
86 * normal operations the epoll private "ep->mtx" will guarantee
87 * a better scalability.
1da177e4
LT
88 */
89
1da177e4 90/* Epoll private bits inside the event mask */
df0108c5 91#define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
1da177e4 92
a9a08845 93#define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
b6a515c8 94
a9a08845 95#define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
b6a515c8
JB
96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
97
5071f97e
DL
98/* Maximum number of nesting allowed inside epoll sets */
99#define EP_MAX_NESTS 4
1da177e4 100
b611967d
DL
101#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102
d47de16c
DL
103#define EP_UNACTIVE_PTR ((void *) -1L)
104
7ef9964e
DL
105#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106
1da177e4
LT
107struct epoll_filefd {
108 struct file *file;
109 int fd;
39732ca5 110} __packed;
1da177e4
LT
111
112/*
5071f97e
DL
113 * Structure used to track possible nested calls, for too deep recursions
114 * and loop cycles.
1da177e4 115 */
5071f97e 116struct nested_call_node {
1da177e4 117 struct list_head llink;
5071f97e 118 void *cookie;
3fe4a975 119 void *ctx;
1da177e4
LT
120};
121
122/*
5071f97e
DL
123 * This structure is used as collector for nested calls, to check for
124 * maximum recursion dept and loop cycles.
1da177e4 125 */
5071f97e
DL
126struct nested_calls {
127 struct list_head tasks_call_list;
1da177e4
LT
128 spinlock_t lock;
129};
130
d47de16c
DL
131/*
132 * Each file descriptor added to the eventpoll interface will
133 * have an entry of this type linked to the "rbr" RB tree.
39732ca5
EW
134 * Avoid increasing the size of this struct, there can be many thousands
135 * of these on a server and we do not want this to take another cache line.
d47de16c
DL
136 */
137struct epitem {
ae10b2b4
JB
138 union {
139 /* RB tree node links this structure to the eventpoll RB tree */
140 struct rb_node rbn;
141 /* Used to free the struct epitem */
142 struct rcu_head rcu;
143 };
d47de16c
DL
144
145 /* List header used to link this structure to the eventpoll ready list */
146 struct list_head rdllink;
147
c7ea7630
DL
148 /*
149 * Works together "struct eventpoll"->ovflist in keeping the
150 * single linked chain of items.
151 */
152 struct epitem *next;
153
d47de16c
DL
154 /* The file descriptor information this item refers to */
155 struct epoll_filefd ffd;
156
157 /* Number of active wait queue attached to poll operations */
158 int nwait;
159
160 /* List containing poll wait queues */
161 struct list_head pwqlist;
162
163 /* The "container" of this item */
164 struct eventpoll *ep;
165
d47de16c
DL
166 /* List header used to link this item to the "struct file" items list */
167 struct list_head fllink;
168
4d7e30d9 169 /* wakeup_source used when EPOLLWAKEUP is set */
eea1d585 170 struct wakeup_source __rcu *ws;
4d7e30d9 171
c7ea7630
DL
172 /* The structure that describe the interested events and the source fd */
173 struct epoll_event event;
d47de16c
DL
174};
175
1da177e4
LT
176/*
177 * This structure is stored inside the "private_data" member of the file
bf6a41db 178 * structure and represents the main data structure for the eventpoll
1da177e4
LT
179 * interface.
180 */
181struct eventpoll {
1da177e4 182 /*
d47de16c
DL
183 * This mutex is used to ensure that files are not removed
184 * while epoll is using them. This is held during the event
185 * collection loop, the file cleanup path, the epoll file exit
186 * code and the ctl operations.
1da177e4 187 */
d47de16c 188 struct mutex mtx;
1da177e4
LT
189
190 /* Wait queue used by sys_epoll_wait() */
191 wait_queue_head_t wq;
192
193 /* Wait queue used by file->poll() */
194 wait_queue_head_t poll_wait;
195
196 /* List of ready file descriptors */
197 struct list_head rdllist;
198
a218cc49
RP
199 /* Lock which protects rdllist and ovflist */
200 rwlock_t lock;
201
67647d0f 202 /* RB tree root used to store monitored fd structs */
b2ac2ea6 203 struct rb_root_cached rbr;
d47de16c
DL
204
205 /*
206 * This is a single linked list that chains all the "struct epitem" that
25985edc 207 * happened while transferring ready events to userspace w/out
a218cc49 208 * holding ->lock.
d47de16c
DL
209 */
210 struct epitem *ovflist;
7ef9964e 211
4d7e30d9
AH
212 /* wakeup_source used when ep_scan_ready_list is running */
213 struct wakeup_source *ws;
214
7ef9964e
DL
215 /* The user that created the eventpoll descriptor */
216 struct user_struct *user;
28d82dc1
JB
217
218 struct file *file;
219
220 /* used to optimize loop detection check */
28d82dc1 221 struct list_head visited_list_link;
efcdd350 222 int visited;
bf3b9f63
SS
223
224#ifdef CONFIG_NET_RX_BUSY_POLL
225 /* used to track busy poll napi_id */
226 unsigned int napi_id;
227#endif
efcdd350
JB
228
229#ifdef CONFIG_DEBUG_LOCK_ALLOC
230 /* tracks wakeup nests for lockdep validation */
231 u8 nests;
232#endif
1da177e4
LT
233};
234
235/* Wait structure used by the poll hooks */
236struct eppoll_entry {
237 /* List header used to link this structure to the "struct epitem" */
238 struct list_head llink;
239
240 /* The "base" pointer is set to the container "struct epitem" */
4f0989db 241 struct epitem *base;
1da177e4
LT
242
243 /*
244 * Wait queue item that will be linked to the target file wait
245 * queue head.
246 */
ac6424b9 247 wait_queue_entry_t wait;
1da177e4
LT
248
249 /* The wait queue head that linked the "wait" wait queue item */
250 wait_queue_head_t *whead;
251};
252
1da177e4
LT
253/* Wrapper struct used by poll queueing */
254struct ep_pqueue {
255 poll_table pt;
256 struct epitem *epi;
257};
258
5071f97e
DL
259/* Used by the ep_send_events() function as callback private data */
260struct ep_send_events_data {
261 int maxevents;
262 struct epoll_event __user *events;
d7ebbe46 263 int res;
5071f97e
DL
264};
265
7ef9964e
DL
266/*
267 * Configuration options available inside /proc/sys/fs/epoll/
268 */
7ef9964e 269/* Maximum number of epoll watched descriptors, per user */
52bd19f7 270static long max_user_watches __read_mostly;
7ef9964e 271
1da177e4 272/*
d47de16c 273 * This mutex is used to serialize ep_free() and eventpoll_release_file().
1da177e4 274 */
7ef9964e 275static DEFINE_MUTEX(epmutex);
1da177e4 276
22bacca4
DL
277/* Used to check for epoll file descriptor inclusion loops */
278static struct nested_calls poll_loop_ncalls;
279
1da177e4 280/* Slab cache used to allocate "struct epitem" */
e18b890b 281static struct kmem_cache *epi_cache __read_mostly;
1da177e4
LT
282
283/* Slab cache used to allocate "struct eppoll_entry" */
e18b890b 284static struct kmem_cache *pwq_cache __read_mostly;
1da177e4 285
28d82dc1
JB
286/* Visited nodes during ep_loop_check(), so we can unset them when we finish */
287static LIST_HEAD(visited_list);
288
289/*
290 * List of files with newly added links, where we may need to limit the number
291 * of emanating paths. Protected by the epmutex.
292 */
293static LIST_HEAD(tfile_check_list);
294
7ef9964e
DL
295#ifdef CONFIG_SYSCTL
296
297#include <linux/sysctl.h>
298
eec4844f 299static long long_zero;
52bd19f7 300static long long_max = LONG_MAX;
7ef9964e 301
1f7e0616 302struct ctl_table epoll_table[] = {
7ef9964e
DL
303 {
304 .procname = "max_user_watches",
305 .data = &max_user_watches,
52bd19f7 306 .maxlen = sizeof(max_user_watches),
7ef9964e 307 .mode = 0644,
52bd19f7 308 .proc_handler = proc_doulongvec_minmax,
eec4844f 309 .extra1 = &long_zero,
52bd19f7 310 .extra2 = &long_max,
7ef9964e 311 },
ab09203e 312 { }
7ef9964e
DL
313};
314#endif /* CONFIG_SYSCTL */
315
28d82dc1
JB
316static const struct file_operations eventpoll_fops;
317
318static inline int is_file_epoll(struct file *f)
319{
320 return f->f_op == &eventpoll_fops;
321}
b030a4dd 322
67647d0f 323/* Setup the structure that is used as key for the RB tree */
b030a4dd
PE
324static inline void ep_set_ffd(struct epoll_filefd *ffd,
325 struct file *file, int fd)
326{
327 ffd->file = file;
328 ffd->fd = fd;
329}
330
67647d0f 331/* Compare RB tree keys */
b030a4dd
PE
332static inline int ep_cmp_ffd(struct epoll_filefd *p1,
333 struct epoll_filefd *p2)
334{
335 return (p1->file > p2->file ? +1:
336 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
337}
338
b030a4dd 339/* Tells us if the item is currently linked */
992991c0 340static inline int ep_is_linked(struct epitem *epi)
b030a4dd 341{
992991c0 342 return !list_empty(&epi->rdllink);
b030a4dd
PE
343}
344
ac6424b9 345static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
971316f0
ON
346{
347 return container_of(p, struct eppoll_entry, wait);
348}
349
b030a4dd 350/* Get the "struct epitem" from a wait queue pointer */
ac6424b9 351static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
b030a4dd
PE
352{
353 return container_of(p, struct eppoll_entry, wait)->base;
354}
355
356/* Get the "struct epitem" from an epoll queue wrapper */
cdac75e6 357static inline struct epitem *ep_item_from_epqueue(poll_table *p)
b030a4dd
PE
358{
359 return container_of(p, struct ep_pqueue, pt)->epi;
360}
361
1da177e4 362/* Initialize the poll safe wake up structure */
5071f97e 363static void ep_nested_calls_init(struct nested_calls *ncalls)
1da177e4 364{
5071f97e
DL
365 INIT_LIST_HEAD(&ncalls->tasks_call_list);
366 spin_lock_init(&ncalls->lock);
1da177e4
LT
367}
368
3fb0e584
DL
369/**
370 * ep_events_available - Checks if ready events might be available.
371 *
372 * @ep: Pointer to the eventpoll context.
373 *
374 * Returns: Returns a value different than zero if ready events are available,
375 * or zero otherwise.
376 */
377static inline int ep_events_available(struct eventpoll *ep)
378{
c5a282e9
DB
379 return !list_empty_careful(&ep->rdllist) ||
380 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
3fb0e584
DL
381}
382
bf3b9f63
SS
383#ifdef CONFIG_NET_RX_BUSY_POLL
384static bool ep_busy_loop_end(void *p, unsigned long start_time)
385{
386 struct eventpoll *ep = p;
387
388 return ep_events_available(ep) || busy_loop_timeout(start_time);
389}
bf3b9f63
SS
390
391/*
392 * Busy poll if globally on and supporting sockets found && no events,
393 * busy loop will return if need_resched or ep_events_available.
394 *
395 * we must do our busy polling with irqs enabled
396 */
397static void ep_busy_loop(struct eventpoll *ep, int nonblock)
398{
bf3b9f63
SS
399 unsigned int napi_id = READ_ONCE(ep->napi_id);
400
401 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
402 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
bf3b9f63
SS
403}
404
405static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
406{
bf3b9f63
SS
407 if (ep->napi_id)
408 ep->napi_id = 0;
bf3b9f63
SS
409}
410
411/*
412 * Set epoll busy poll NAPI ID from sk.
413 */
414static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
415{
bf3b9f63
SS
416 struct eventpoll *ep;
417 unsigned int napi_id;
418 struct socket *sock;
419 struct sock *sk;
420 int err;
421
422 if (!net_busy_loop_on())
423 return;
424
425 sock = sock_from_file(epi->ffd.file, &err);
426 if (!sock)
427 return;
428
429 sk = sock->sk;
430 if (!sk)
431 return;
432
433 napi_id = READ_ONCE(sk->sk_napi_id);
434 ep = epi->ep;
435
436 /* Non-NAPI IDs can be rejected
437 * or
438 * Nothing to do if we already have this ID
439 */
440 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
441 return;
442
443 /* record NAPI ID for use in next busy poll */
444 ep->napi_id = napi_id;
bf3b9f63
SS
445}
446
514056d5
DB
447#else
448
449static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
450{
451}
452
453static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
454{
455}
456
457static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
458{
459}
460
461#endif /* CONFIG_NET_RX_BUSY_POLL */
462
5071f97e
DL
463/**
464 * ep_call_nested - Perform a bound (possibly) nested call, by checking
465 * that the recursion limit is not exceeded, and that
466 * the same nested call (by the meaning of same cookie) is
467 * no re-entered.
468 *
469 * @ncalls: Pointer to the nested_calls structure to be used for this call.
5071f97e
DL
470 * @nproc: Nested call core function pointer.
471 * @priv: Opaque data to be passed to the @nproc callback.
472 * @cookie: Cookie to be used to identify this nested call.
3fe4a975 473 * @ctx: This instance context.
5071f97e
DL
474 *
475 * Returns: Returns the code returned by the @nproc callback, or -1 if
476 * the maximum recursion limit has been exceeded.
1da177e4 477 */
74bdc129 478static int ep_call_nested(struct nested_calls *ncalls,
5071f97e 479 int (*nproc)(void *, void *, int), void *priv,
3fe4a975 480 void *cookie, void *ctx)
1da177e4 481{
5071f97e 482 int error, call_nests = 0;
1da177e4 483 unsigned long flags;
5071f97e
DL
484 struct list_head *lsthead = &ncalls->tasks_call_list;
485 struct nested_call_node *tncur;
486 struct nested_call_node tnode;
1da177e4 487
5071f97e 488 spin_lock_irqsave(&ncalls->lock, flags);
1da177e4 489
5071f97e
DL
490 /*
491 * Try to see if the current task is already inside this wakeup call.
492 * We use a list here, since the population inside this set is always
493 * very much limited.
494 */
b70c3940 495 list_for_each_entry(tncur, lsthead, llink) {
3fe4a975 496 if (tncur->ctx == ctx &&
74bdc129 497 (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) {
1da177e4
LT
498 /*
499 * Ops ... loop detected or maximum nest level reached.
500 * We abort this wake by breaking the cycle itself.
501 */
abff55ce
TB
502 error = -1;
503 goto out_unlock;
1da177e4
LT
504 }
505 }
506
5071f97e 507 /* Add the current task and cookie to the list */
3fe4a975 508 tnode.ctx = ctx;
5071f97e 509 tnode.cookie = cookie;
1da177e4
LT
510 list_add(&tnode.llink, lsthead);
511
5071f97e 512 spin_unlock_irqrestore(&ncalls->lock, flags);
1da177e4 513
5071f97e
DL
514 /* Call the nested function */
515 error = (*nproc)(priv, cookie, call_nests);
1da177e4
LT
516
517 /* Remove the current task from the list */
5071f97e 518 spin_lock_irqsave(&ncalls->lock, flags);
1da177e4 519 list_del(&tnode.llink);
3fe4a975 520out_unlock:
5071f97e
DL
521 spin_unlock_irqrestore(&ncalls->lock, flags);
522
523 return error;
524}
525
02edc6fc
SR
526/*
527 * As described in commit 0ccf831cb lockdep: annotate epoll
528 * the use of wait queues used by epoll is done in a very controlled
529 * manner. Wake ups can nest inside each other, but are never done
530 * with the same locking. For example:
531 *
532 * dfd = socket(...);
533 * efd1 = epoll_create();
534 * efd2 = epoll_create();
535 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
536 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
537 *
538 * When a packet arrives to the device underneath "dfd", the net code will
539 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
540 * callback wakeup entry on that queue, and the wake_up() performed by the
541 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
542 * (efd1) notices that it may have some event ready, so it needs to wake up
543 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
544 * that ends up in another wake_up(), after having checked about the
545 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
546 * avoid stack blasting.
547 *
548 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
549 * this special case of epoll.
550 */
2dfa4eea 551#ifdef CONFIG_DEBUG_LOCK_ALLOC
57a173bd 552
efcdd350 553static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
5071f97e 554{
efcdd350 555 struct eventpoll *ep_src;
f6520c52 556 unsigned long flags;
efcdd350
JB
557 u8 nests = 0;
558
559 /*
560 * To set the subclass or nesting level for spin_lock_irqsave_nested()
561 * it might be natural to create a per-cpu nest count. However, since
562 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
563 * schedule() in the -rt kernel, the per-cpu variable are no longer
564 * protected. Thus, we are introducing a per eventpoll nest field.
565 * If we are not being call from ep_poll_callback(), epi is NULL and
566 * we are at the first level of nesting, 0. Otherwise, we are being
567 * called from ep_poll_callback() and if a previous wakeup source is
568 * not an epoll file itself, we are at depth 1 since the wakeup source
569 * is depth 0. If the wakeup source is a previous epoll file in the
570 * wakeup chain then we use its nests value and record ours as
571 * nests + 1. The previous epoll file nests value is stable since its
572 * already holding its own poll_wait.lock.
573 */
574 if (epi) {
575 if ((is_file_epoll(epi->ffd.file))) {
576 ep_src = epi->ffd.file->private_data;
577 nests = ep_src->nests;
578 } else {
579 nests = 1;
580 }
581 }
582 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
583 ep->nests = nests + 1;
584 wake_up_locked_poll(&ep->poll_wait, EPOLLIN);
585 ep->nests = 0;
586 spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
1da177e4
LT
587}
588
57a173bd
JB
589#else
590
efcdd350 591static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
57a173bd 592{
efcdd350 593 wake_up_poll(&ep->poll_wait, EPOLLIN);
57a173bd
JB
594}
595
596#endif
597
971316f0
ON
598static void ep_remove_wait_queue(struct eppoll_entry *pwq)
599{
600 wait_queue_head_t *whead;
601
602 rcu_read_lock();
138e4ad6
ON
603 /*
604 * If it is cleared by POLLFREE, it should be rcu-safe.
605 * If we read NULL we need a barrier paired with
606 * smp_store_release() in ep_poll_callback(), otherwise
607 * we rely on whead->lock.
608 */
609 whead = smp_load_acquire(&pwq->whead);
971316f0
ON
610 if (whead)
611 remove_wait_queue(whead, &pwq->wait);
612 rcu_read_unlock();
613}
614
1da177e4 615/*
d1bc90dd
TB
616 * This function unregisters poll callbacks from the associated file
617 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
618 * ep_free).
1da177e4 619 */
7699acd1 620static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
1da177e4 621{
7699acd1
DL
622 struct list_head *lsthead = &epi->pwqlist;
623 struct eppoll_entry *pwq;
1da177e4 624
d1bc90dd
TB
625 while (!list_empty(lsthead)) {
626 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
1da177e4 627
d1bc90dd 628 list_del(&pwq->llink);
971316f0 629 ep_remove_wait_queue(pwq);
d1bc90dd 630 kmem_cache_free(pwq_cache, pwq);
1da177e4 631 }
1da177e4
LT
632}
633
eea1d585
EW
634/* call only when ep->mtx is held */
635static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
636{
637 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
638}
639
640/* call only when ep->mtx is held */
641static inline void ep_pm_stay_awake(struct epitem *epi)
642{
643 struct wakeup_source *ws = ep_wakeup_source(epi);
644
645 if (ws)
646 __pm_stay_awake(ws);
647}
648
649static inline bool ep_has_wakeup_source(struct epitem *epi)
650{
651 return rcu_access_pointer(epi->ws) ? true : false;
652}
653
654/* call when ep->mtx cannot be held (ep_poll_callback) */
655static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
656{
657 struct wakeup_source *ws;
658
659 rcu_read_lock();
660 ws = rcu_dereference(epi->ws);
661 if (ws)
662 __pm_stay_awake(ws);
663 rcu_read_unlock();
664}
665
5071f97e
DL
666/**
667 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
668 * the scan code, to call f_op->poll(). Also allows for
669 * O(NumReady) performance.
670 *
671 * @ep: Pointer to the epoll private data structure.
672 * @sproc: Pointer to the scan callback.
673 * @priv: Private opaque data passed to the @sproc callback.
d8805e63 674 * @depth: The current depth of recursive f_op->poll calls.
67347fe4 675 * @ep_locked: caller already holds ep->mtx
5071f97e
DL
676 *
677 * Returns: The same integer error code returned by the @sproc callback.
678 */
d85e2aa2
AV
679static __poll_t ep_scan_ready_list(struct eventpoll *ep,
680 __poll_t (*sproc)(struct eventpoll *,
5071f97e 681 struct list_head *, void *),
67347fe4 682 void *priv, int depth, bool ep_locked)
5071f97e 683{
d85e2aa2 684 __poll_t res;
5071f97e 685 struct epitem *epi, *nepi;
296e236e 686 LIST_HEAD(txlist);
5071f97e 687
92e64178
DB
688 lockdep_assert_irqs_enabled();
689
5071f97e
DL
690 /*
691 * We need to lock this because we could be hit by
e057e15f 692 * eventpoll_release_file() and epoll_ctl().
5071f97e 693 */
67347fe4
JB
694
695 if (!ep_locked)
696 mutex_lock_nested(&ep->mtx, depth);
5071f97e
DL
697
698 /*
699 * Steal the ready list, and re-init the original one to the
700 * empty list. Also, set ep->ovflist to NULL so that events
701 * happening while looping w/out locks, are not lost. We cannot
702 * have the poll callback to queue directly on ep->rdllist,
703 * because we want the "sproc" callback to be able to do it
704 * in a lockless way.
705 */
a218cc49 706 write_lock_irq(&ep->lock);
296e236e 707 list_splice_init(&ep->rdllist, &txlist);
c5a282e9 708 WRITE_ONCE(ep->ovflist, NULL);
a218cc49 709 write_unlock_irq(&ep->lock);
5071f97e
DL
710
711 /*
712 * Now call the callback function.
713 */
d85e2aa2 714 res = (*sproc)(ep, &txlist, priv);
5071f97e 715
a218cc49 716 write_lock_irq(&ep->lock);
5071f97e
DL
717 /*
718 * During the time we spent inside the "sproc" callback, some
719 * other events might have been queued by the poll callback.
720 * We re-insert them inside the main ready-list here.
721 */
c5a282e9 722 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
5071f97e
DL
723 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
724 /*
725 * We need to check if the item is already in the list.
726 * During the "sproc" callback execution time, items are
727 * queued into ->ovflist but the "txlist" might already
728 * contain them, and the list_splice() below takes care of them.
729 */
992991c0 730 if (!ep_is_linked(epi)) {
c141175d
RP
731 /*
732 * ->ovflist is LIFO, so we have to reverse it in order
733 * to keep in FIFO.
734 */
735 list_add(&epi->rdllink, &ep->rdllist);
eea1d585 736 ep_pm_stay_awake(epi);
4d7e30d9 737 }
5071f97e
DL
738 }
739 /*
740 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
741 * releasing the lock, events will be queued in the normal way inside
742 * ep->rdllist.
743 */
c5a282e9 744 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
5071f97e
DL
745
746 /*
747 * Quickly re-inject items left on "txlist".
748 */
749 list_splice(&txlist, &ep->rdllist);
4d7e30d9 750 __pm_relax(ep->ws);
a218cc49 751 write_unlock_irq(&ep->lock);
5071f97e 752
67347fe4
JB
753 if (!ep_locked)
754 mutex_unlock(&ep->mtx);
5071f97e 755
d85e2aa2 756 return res;
5071f97e
DL
757}
758
ae10b2b4
JB
759static void epi_rcu_free(struct rcu_head *head)
760{
761 struct epitem *epi = container_of(head, struct epitem, rcu);
762 kmem_cache_free(epi_cache, epi);
763}
764
7699acd1
DL
765/*
766 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
c7ea7630 767 * all the associated resources. Must be called with "mtx" held.
7699acd1
DL
768 */
769static int ep_remove(struct eventpoll *ep, struct epitem *epi)
770{
7699acd1 771 struct file *file = epi->ffd.file;
1da177e4 772
92e64178
DB
773 lockdep_assert_irqs_enabled();
774
1da177e4 775 /*
ee8ef0a4 776 * Removes poll wait queue hooks.
1da177e4 777 */
7699acd1 778 ep_unregister_pollwait(ep, epi);
1da177e4 779
7699acd1 780 /* Remove the current item from the list of epoll hooks */
68499914 781 spin_lock(&file->f_lock);
ae10b2b4 782 list_del_rcu(&epi->fllink);
68499914 783 spin_unlock(&file->f_lock);
1da177e4 784
b2ac2ea6 785 rb_erase_cached(&epi->rbn, &ep->rbr);
1da177e4 786
a218cc49 787 write_lock_irq(&ep->lock);
992991c0 788 if (ep_is_linked(epi))
c7ea7630 789 list_del_init(&epi->rdllink);
a218cc49 790 write_unlock_irq(&ep->lock);
1da177e4 791
eea1d585 792 wakeup_source_unregister(ep_wakeup_source(epi));
ae10b2b4
JB
793 /*
794 * At this point it is safe to free the eventpoll item. Use the union
795 * field epi->rcu, since we are trying to minimize the size of
796 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
797 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
798 * use of the rbn field.
799 */
800 call_rcu(&epi->rcu, epi_rcu_free);
1da177e4 801
52bd19f7 802 atomic_long_dec(&ep->user->epoll_watches);
7ef9964e 803
c7ea7630 804 return 0;
1da177e4
LT
805}
806
7699acd1 807static void ep_free(struct eventpoll *ep)
1da177e4 808{
7699acd1
DL
809 struct rb_node *rbp;
810 struct epitem *epi;
1da177e4 811
7699acd1
DL
812 /* We need to release all tasks waiting for these file */
813 if (waitqueue_active(&ep->poll_wait))
efcdd350 814 ep_poll_safewake(ep, NULL);
1da177e4 815
7699acd1
DL
816 /*
817 * We need to lock this because we could be hit by
818 * eventpoll_release_file() while we're freeing the "struct eventpoll".
d47de16c 819 * We do not need to hold "ep->mtx" here because the epoll file
7699acd1
DL
820 * is on the way to be removed and no one has references to it
821 * anymore. The only hit might come from eventpoll_release_file() but
25985edc 822 * holding "epmutex" is sufficient here.
7699acd1
DL
823 */
824 mutex_lock(&epmutex);
1da177e4
LT
825
826 /*
7699acd1 827 * Walks through the whole tree by unregistering poll callbacks.
1da177e4 828 */
b2ac2ea6 829 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
7699acd1
DL
830 epi = rb_entry(rbp, struct epitem, rbn);
831
832 ep_unregister_pollwait(ep, epi);
91cf5ab6 833 cond_resched();
7699acd1 834 }
1da177e4
LT
835
836 /*
7699acd1
DL
837 * Walks through the whole tree by freeing each "struct epitem". At this
838 * point we are sure no poll callbacks will be lingering around, and also by
d47de16c 839 * holding "epmutex" we can be sure that no file cleanup code will hit
a218cc49 840 * us during this operation. So we can avoid the lock on "ep->lock".
ddf676c3
EW
841 * We do not need to lock ep->mtx, either, we only do it to prevent
842 * a lockdep warning.
1da177e4 843 */
ddf676c3 844 mutex_lock(&ep->mtx);
b2ac2ea6 845 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
7699acd1
DL
846 epi = rb_entry(rbp, struct epitem, rbn);
847 ep_remove(ep, epi);
91cf5ab6 848 cond_resched();
7699acd1 849 }
ddf676c3 850 mutex_unlock(&ep->mtx);
1da177e4 851
7699acd1 852 mutex_unlock(&epmutex);
d47de16c 853 mutex_destroy(&ep->mtx);
7ef9964e 854 free_uid(ep->user);
4d7e30d9 855 wakeup_source_unregister(ep->ws);
f0ee9aab 856 kfree(ep);
7699acd1 857}
1da177e4 858
7699acd1
DL
859static int ep_eventpoll_release(struct inode *inode, struct file *file)
860{
861 struct eventpoll *ep = file->private_data;
1da177e4 862
f0ee9aab 863 if (ep)
7699acd1 864 ep_free(ep);
7699acd1 865
7699acd1 866 return 0;
1da177e4
LT
867}
868
d85e2aa2 869static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
37b5e521
JB
870 void *priv);
871static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
872 poll_table *pt);
873
874/*
875 * Differs from ep_eventpoll_poll() in that internal callers already have
876 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
877 * is correctly annotated.
878 */
d85e2aa2 879static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
bec1a502 880 int depth)
450d89ec 881{
37b5e521
JB
882 struct eventpoll *ep;
883 bool locked;
884
450d89ec 885 pt->_key = epi->event.events;
37b5e521 886 if (!is_file_epoll(epi->ffd.file))
9965ed17 887 return vfs_poll(epi->ffd.file, pt) & epi->event.events;
450d89ec 888
37b5e521
JB
889 ep = epi->ffd.file->private_data;
890 poll_wait(epi->ffd.file, &ep->poll_wait, pt);
891 locked = pt && (pt->_qproc == ep_ptable_queue_proc);
450d89ec 892
37b5e521
JB
893 return ep_scan_ready_list(epi->ffd.file->private_data,
894 ep_read_events_proc, &depth, depth,
895 locked) & epi->event.events;
450d89ec
EW
896}
897
d85e2aa2 898static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
296e236e 899 void *priv)
5071f97e
DL
900{
901 struct epitem *epi, *tmp;
626cf236 902 poll_table pt;
37b5e521 903 int depth = *(int *)priv;
5071f97e 904
626cf236 905 init_poll_funcptr(&pt, NULL);
37b5e521 906 depth++;
450d89ec 907
5071f97e 908 list_for_each_entry_safe(epi, tmp, head, rdllink) {
37b5e521 909 if (ep_item_poll(epi, &pt, depth)) {
a9a08845 910 return EPOLLIN | EPOLLRDNORM;
37b5e521 911 } else {
5071f97e
DL
912 /*
913 * Item has been dropped into the ready list by the poll
914 * callback, but it's not actually ready, as far as
915 * caller requested events goes. We can remove it here.
916 */
eea1d585 917 __pm_relax(ep_wakeup_source(epi));
5071f97e 918 list_del_init(&epi->rdllink);
296e236e 919 }
5071f97e
DL
920 }
921
922 return 0;
923}
924
a11e1d43 925static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
11c5ad0e
BN
926{
927 struct eventpoll *ep = file->private_data;
928 int depth = 0;
7699acd1 929
a11e1d43
LT
930 /* Insert inside our poll wait queue */
931 poll_wait(file, &ep->poll_wait, wait);
932
5071f97e
DL
933 /*
934 * Proceed to find out if wanted events are really available inside
37b5e521 935 * the ready list.
5071f97e 936 */
37b5e521
JB
937 return ep_scan_ready_list(ep, ep_read_events_proc,
938 &depth, depth, false);
7699acd1
DL
939}
940
138d22b5 941#ifdef CONFIG_PROC_FS
a3816ab0 942static void ep_show_fdinfo(struct seq_file *m, struct file *f)
138d22b5
CG
943{
944 struct eventpoll *ep = f->private_data;
945 struct rb_node *rbp;
138d22b5
CG
946
947 mutex_lock(&ep->mtx);
b2ac2ea6 948 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
138d22b5 949 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
77493f04 950 struct inode *inode = file_inode(epi->ffd.file);
138d22b5 951
77493f04
CG
952 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
953 " pos:%lli ino:%lx sdev:%x\n",
a3816ab0 954 epi->ffd.fd, epi->event.events,
77493f04
CG
955 (long long)epi->event.data,
956 (long long)epi->ffd.file->f_pos,
957 inode->i_ino, inode->i_sb->s_dev);
a3816ab0 958 if (seq_has_overflowed(m))
138d22b5
CG
959 break;
960 }
961 mutex_unlock(&ep->mtx);
138d22b5
CG
962}
963#endif
964
7699acd1
DL
965/* File callbacks that implement the eventpoll file behaviour */
966static const struct file_operations eventpoll_fops = {
138d22b5
CG
967#ifdef CONFIG_PROC_FS
968 .show_fdinfo = ep_show_fdinfo,
969#endif
7699acd1 970 .release = ep_eventpoll_release,
a11e1d43 971 .poll = ep_eventpoll_poll,
6038f373 972 .llseek = noop_llseek,
7699acd1
DL
973};
974
b611967d 975/*
7699acd1
DL
976 * This is called from eventpoll_release() to unlink files from the eventpoll
977 * interface. We need to have this facility to cleanup correctly files that are
978 * closed without being removed from the eventpoll interface.
b611967d 979 */
7699acd1 980void eventpoll_release_file(struct file *file)
b611967d 981{
7699acd1 982 struct eventpoll *ep;
ebe06187 983 struct epitem *epi, *next;
b611967d
DL
984
985 /*
68499914 986 * We don't want to get "file->f_lock" because it is not
7699acd1 987 * necessary. It is not necessary because we're in the "struct file"
25985edc 988 * cleanup path, and this means that no one is using this file anymore.
5071f97e 989 * So, for example, epoll_ctl() cannot hit here since if we reach this
67647d0f 990 * point, the file counter already went to zero and fget() would fail.
d47de16c 991 * The only hit might come from ep_free() but by holding the mutex
7699acd1 992 * will correctly serialize the operation. We do need to acquire
d47de16c 993 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
7699acd1 994 * from anywhere but ep_free().
68499914
JC
995 *
996 * Besides, ep_remove() acquires the lock, so we can't hold it here.
b611967d 997 */
7699acd1 998 mutex_lock(&epmutex);
ebe06187 999 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
7699acd1 1000 ep = epi->ep;
d8805e63 1001 mutex_lock_nested(&ep->mtx, 0);
7699acd1 1002 ep_remove(ep, epi);
d47de16c 1003 mutex_unlock(&ep->mtx);
b611967d 1004 }
7699acd1 1005 mutex_unlock(&epmutex);
b611967d
DL
1006}
1007
53d2be79 1008static int ep_alloc(struct eventpoll **pep)
1da177e4 1009{
7ef9964e
DL
1010 int error;
1011 struct user_struct *user;
1012 struct eventpoll *ep;
1da177e4 1013
7ef9964e 1014 user = get_current_user();
7ef9964e
DL
1015 error = -ENOMEM;
1016 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1017 if (unlikely(!ep))
1018 goto free_uid;
1da177e4 1019
d47de16c 1020 mutex_init(&ep->mtx);
a218cc49 1021 rwlock_init(&ep->lock);
1da177e4
LT
1022 init_waitqueue_head(&ep->wq);
1023 init_waitqueue_head(&ep->poll_wait);
1024 INIT_LIST_HEAD(&ep->rdllist);
b2ac2ea6 1025 ep->rbr = RB_ROOT_CACHED;
d47de16c 1026 ep->ovflist = EP_UNACTIVE_PTR;
7ef9964e 1027 ep->user = user;
1da177e4 1028
53d2be79 1029 *pep = ep;
1da177e4 1030
1da177e4 1031 return 0;
7ef9964e
DL
1032
1033free_uid:
1034 free_uid(user);
1035 return error;
1da177e4
LT
1036}
1037
1da177e4 1038/*
c7ea7630
DL
1039 * Search the file inside the eventpoll tree. The RB tree operations
1040 * are protected by the "mtx" mutex, and ep_find() must be called with
1041 * "mtx" held.
1da177e4
LT
1042 */
1043static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1044{
1045 int kcmp;
1da177e4
LT
1046 struct rb_node *rbp;
1047 struct epitem *epi, *epir = NULL;
1048 struct epoll_filefd ffd;
1049
b030a4dd 1050 ep_set_ffd(&ffd, file, fd);
b2ac2ea6 1051 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1da177e4 1052 epi = rb_entry(rbp, struct epitem, rbn);
b030a4dd 1053 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1da177e4
LT
1054 if (kcmp > 0)
1055 rbp = rbp->rb_right;
1056 else if (kcmp < 0)
1057 rbp = rbp->rb_left;
1058 else {
1da177e4
LT
1059 epir = epi;
1060 break;
1061 }
1062 }
1da177e4 1063
1da177e4
LT
1064 return epir;
1065}
1066
92ef6da3 1067#ifdef CONFIG_CHECKPOINT_RESTORE
0791e364
CG
1068static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1069{
1070 struct rb_node *rbp;
1071 struct epitem *epi;
1072
b2ac2ea6 1073 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
0791e364
CG
1074 epi = rb_entry(rbp, struct epitem, rbn);
1075 if (epi->ffd.fd == tfd) {
1076 if (toff == 0)
1077 return epi;
1078 else
1079 toff--;
1080 }
1081 cond_resched();
1082 }
1083
1084 return NULL;
1085}
1086
1087struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1088 unsigned long toff)
1089{
1090 struct file *file_raw;
1091 struct eventpoll *ep;
1092 struct epitem *epi;
1093
1094 if (!is_file_epoll(file))
1095 return ERR_PTR(-EINVAL);
1096
1097 ep = file->private_data;
1098
1099 mutex_lock(&ep->mtx);
1100 epi = ep_find_tfd(ep, tfd, toff);
1101 if (epi)
1102 file_raw = epi->ffd.file;
1103 else
1104 file_raw = ERR_PTR(-ENOENT);
1105 mutex_unlock(&ep->mtx);
1106
1107 return file_raw;
1108}
92ef6da3 1109#endif /* CONFIG_CHECKPOINT_RESTORE */
0791e364 1110
a218cc49
RP
1111/**
1112 * Adds a new entry to the tail of the list in a lockless way, i.e.
1113 * multiple CPUs are allowed to call this function concurrently.
1114 *
1115 * Beware: it is necessary to prevent any other modifications of the
1116 * existing list until all changes are completed, in other words
1117 * concurrent list_add_tail_lockless() calls should be protected
1118 * with a read lock, where write lock acts as a barrier which
1119 * makes sure all list_add_tail_lockless() calls are fully
1120 * completed.
1121 *
1122 * Also an element can be locklessly added to the list only in one
1123 * direction i.e. either to the tail either to the head, otherwise
1124 * concurrent access will corrupt the list.
1125 *
1126 * Returns %false if element has been already added to the list, %true
1127 * otherwise.
1128 */
1129static inline bool list_add_tail_lockless(struct list_head *new,
1130 struct list_head *head)
1131{
1132 struct list_head *prev;
1133
1134 /*
1135 * This is simple 'new->next = head' operation, but cmpxchg()
1136 * is used in order to detect that same element has been just
1137 * added to the list from another CPU: the winner observes
1138 * new->next == new.
1139 */
1140 if (cmpxchg(&new->next, new, head) != new)
1141 return false;
1142
1143 /*
1144 * Initially ->next of a new element must be updated with the head
1145 * (we are inserting to the tail) and only then pointers are atomically
1146 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1147 * updated before pointers are actually swapped and pointers are
1148 * swapped before prev->next is updated.
1149 */
1150
1151 prev = xchg(&head->prev, new);
1152
1153 /*
1154 * It is safe to modify prev->next and new->prev, because a new element
1155 * is added only to the tail and new->next is updated before XCHG.
1156 */
1157
1158 prev->next = new;
1159 new->prev = prev;
1160
1161 return true;
1162}
1163
1164/**
1165 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1166 * i.e. multiple CPUs are allowed to call this function concurrently.
1167 *
1168 * Returns %false if epi element has been already chained, %true otherwise.
1169 */
1170static inline bool chain_epi_lockless(struct epitem *epi)
1171{
1172 struct eventpoll *ep = epi->ep;
1173
0c54a6a4
KK
1174 /* Fast preliminary check */
1175 if (epi->next != EP_UNACTIVE_PTR)
1176 return false;
1177
a218cc49
RP
1178 /* Check that the same epi has not been just chained from another CPU */
1179 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1180 return false;
1181
1182 /* Atomically exchange tail */
1183 epi->next = xchg(&ep->ovflist, epi);
1184
1185 return true;
1186}
1187
1da177e4 1188/*
7699acd1 1189 * This is the callback that is passed to the wait queue wakeup
bf6a41db 1190 * mechanism. It is called by the stored file descriptors when they
7699acd1 1191 * have events to report.
a218cc49
RP
1192 *
1193 * This callback takes a read lock in order not to content with concurrent
1194 * events from another file descriptors, thus all modifications to ->rdllist
1195 * or ->ovflist are lockless. Read lock is paired with the write lock from
1196 * ep_scan_ready_list(), which stops all list modifications and guarantees
1197 * that lists state is seen correctly.
1198 *
1199 * Another thing worth to mention is that ep_poll_callback() can be called
1200 * concurrently for the same @epi from different CPUs if poll table was inited
1201 * with several wait queues entries. Plural wakeup from different CPUs of a
1202 * single wait queue is serialized by wq.lock, but the case when multiple wait
1203 * queues are used should be detected accordingly. This is detected using
1204 * cmpxchg() operation.
1da177e4 1205 */
ac6424b9 1206static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1da177e4 1207{
7699acd1 1208 int pwake = 0;
7699acd1
DL
1209 struct epitem *epi = ep_item_from_wait(wait);
1210 struct eventpoll *ep = epi->ep;
3ad6f93e 1211 __poll_t pollflags = key_to_poll(key);
a218cc49 1212 unsigned long flags;
df0108c5 1213 int ewake = 0;
1da177e4 1214
a218cc49 1215 read_lock_irqsave(&ep->lock, flags);
1da177e4 1216
bf3b9f63
SS
1217 ep_set_busy_poll_napi_id(epi);
1218
7699acd1
DL
1219 /*
1220 * If the event mask does not contain any poll(2) event, we consider the
1221 * descriptor to be disabled. This condition is likely the effect of the
1222 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1223 * until the next EPOLL_CTL_MOD will be issued.
1224 */
1225 if (!(epi->event.events & ~EP_PRIVATE_BITS))
d47de16c
DL
1226 goto out_unlock;
1227
2dfa4eea
DL
1228 /*
1229 * Check the events coming with the callback. At this stage, not
1230 * every device reports the events in the "key" parameter of the
1231 * callback. We need to be able to handle both cases here, hence the
1232 * test for "key" != NULL before the event match test.
1233 */
3ad6f93e 1234 if (pollflags && !(pollflags & epi->event.events))
2dfa4eea
DL
1235 goto out_unlock;
1236
d47de16c 1237 /*
bf6a41db 1238 * If we are transferring events to userspace, we can hold no locks
d47de16c 1239 * (because we're accessing user memory, and because of linux f_op->poll()
bf6a41db 1240 * semantics). All the events that happen during that period of time are
d47de16c
DL
1241 * chained in ep->ovflist and requeued later on.
1242 */
c5a282e9 1243 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
0c54a6a4
KK
1244 if (chain_epi_lockless(epi))
1245 ep_pm_stay_awake_rcu(epi);
1246 } else if (!ep_is_linked(epi)) {
1247 /* In the usual case, add event to ready list. */
1248 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
c3e320b6 1249 ep_pm_stay_awake_rcu(epi);
4d7e30d9 1250 }
7699acd1 1251
7699acd1
DL
1252 /*
1253 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1254 * wait list.
1255 */
df0108c5 1256 if (waitqueue_active(&ep->wq)) {
b6a515c8 1257 if ((epi->event.events & EPOLLEXCLUSIVE) &&
3ad6f93e
AV
1258 !(pollflags & POLLFREE)) {
1259 switch (pollflags & EPOLLINOUT_BITS) {
a9a08845
LT
1260 case EPOLLIN:
1261 if (epi->event.events & EPOLLIN)
b6a515c8
JB
1262 ewake = 1;
1263 break;
a9a08845
LT
1264 case EPOLLOUT:
1265 if (epi->event.events & EPOLLOUT)
b6a515c8
JB
1266 ewake = 1;
1267 break;
1268 case 0:
1269 ewake = 1;
1270 break;
1271 }
1272 }
a218cc49 1273 wake_up(&ep->wq);
df0108c5 1274 }
7699acd1
DL
1275 if (waitqueue_active(&ep->poll_wait))
1276 pwake++;
1277
d47de16c 1278out_unlock:
a218cc49 1279 read_unlock_irqrestore(&ep->lock, flags);
1da177e4 1280
7699acd1
DL
1281 /* We have to call this outside the lock */
1282 if (pwake)
efcdd350 1283 ep_poll_safewake(ep, epi);
7699acd1 1284
138e4ad6
ON
1285 if (!(epi->event.events & EPOLLEXCLUSIVE))
1286 ewake = 1;
1287
3ad6f93e 1288 if (pollflags & POLLFREE) {
138e4ad6
ON
1289 /*
1290 * If we race with ep_remove_wait_queue() it can miss
1291 * ->whead = NULL and do another remove_wait_queue() after
1292 * us, so we can't use __remove_wait_queue().
1293 */
1294 list_del_init(&wait->entry);
1295 /*
1296 * ->whead != NULL protects us from the race with ep_free()
1297 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1298 * held by the caller. Once we nullify it, nothing protects
1299 * ep/epi or even wait.
1300 */
1301 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1302 }
df0108c5 1303
138e4ad6 1304 return ewake;
7699acd1 1305}
1da177e4
LT
1306
1307/*
1308 * This is the callback that is used to add our wait queue to the
1309 * target file wakeup lists.
1310 */
1311static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1312 poll_table *pt)
1313{
b030a4dd 1314 struct epitem *epi = ep_item_from_epqueue(pt);
1da177e4
LT
1315 struct eppoll_entry *pwq;
1316
e94b1766 1317 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1da177e4
LT
1318 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1319 pwq->whead = whead;
1320 pwq->base = epi;
df0108c5
JB
1321 if (epi->event.events & EPOLLEXCLUSIVE)
1322 add_wait_queue_exclusive(whead, &pwq->wait);
1323 else
1324 add_wait_queue(whead, &pwq->wait);
1da177e4
LT
1325 list_add_tail(&pwq->llink, &epi->pwqlist);
1326 epi->nwait++;
296e236e 1327 } else {
1da177e4
LT
1328 /* We have to signal that an error occurred */
1329 epi->nwait = -1;
296e236e 1330 }
1da177e4
LT
1331}
1332
1da177e4
LT
1333static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1334{
1335 int kcmp;
b2ac2ea6 1336 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1da177e4 1337 struct epitem *epic;
b2ac2ea6 1338 bool leftmost = true;
1da177e4
LT
1339
1340 while (*p) {
1341 parent = *p;
1342 epic = rb_entry(parent, struct epitem, rbn);
b030a4dd 1343 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
b2ac2ea6 1344 if (kcmp > 0) {
1da177e4 1345 p = &parent->rb_right;
b2ac2ea6
DB
1346 leftmost = false;
1347 } else
1da177e4
LT
1348 p = &parent->rb_left;
1349 }
1350 rb_link_node(&epi->rbn, parent, p);
b2ac2ea6 1351 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1da177e4
LT
1352}
1353
a80a6b85
AM
1354
1355
28d82dc1
JB
1356#define PATH_ARR_SIZE 5
1357/*
1358 * These are the number paths of length 1 to 5, that we are allowing to emanate
1359 * from a single file of interest. For example, we allow 1000 paths of length
1360 * 1, to emanate from each file of interest. This essentially represents the
1361 * potential wakeup paths, which need to be limited in order to avoid massive
1362 * uncontrolled wakeup storms. The common use case should be a single ep which
1363 * is connected to n file sources. In this case each file source has 1 path
1364 * of length 1. Thus, the numbers below should be more than sufficient. These
1365 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1366 * and delete can't add additional paths. Protected by the epmutex.
1367 */
1368static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1369static int path_count[PATH_ARR_SIZE];
1370
1371static int path_count_inc(int nests)
1372{
93dc6107
JB
1373 /* Allow an arbitrary number of depth 1 paths */
1374 if (nests == 0)
1375 return 0;
1376
28d82dc1
JB
1377 if (++path_count[nests] > path_limits[nests])
1378 return -1;
1379 return 0;
1380}
1381
1382static void path_count_init(void)
1383{
1384 int i;
1385
1386 for (i = 0; i < PATH_ARR_SIZE; i++)
1387 path_count[i] = 0;
1388}
1389
1390static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1391{
1392 int error = 0;
1393 struct file *file = priv;
1394 struct file *child_file;
1395 struct epitem *epi;
1396
ae10b2b4
JB
1397 /* CTL_DEL can remove links here, but that can't increase our count */
1398 rcu_read_lock();
1399 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
28d82dc1
JB
1400 child_file = epi->ep->file;
1401 if (is_file_epoll(child_file)) {
1402 if (list_empty(&child_file->f_ep_links)) {
1403 if (path_count_inc(call_nests)) {
1404 error = -1;
1405 break;
1406 }
1407 } else {
1408 error = ep_call_nested(&poll_loop_ncalls,
28d82dc1
JB
1409 reverse_path_check_proc,
1410 child_file, child_file,
1411 current);
1412 }
1413 if (error != 0)
1414 break;
1415 } else {
1416 printk(KERN_ERR "reverse_path_check_proc: "
1417 "file is not an ep!\n");
1418 }
1419 }
ae10b2b4 1420 rcu_read_unlock();
28d82dc1
JB
1421 return error;
1422}
1423
1424/**
1425 * reverse_path_check - The tfile_check_list is list of file *, which have
1426 * links that are proposed to be newly added. We need to
1427 * make sure that those added links don't add too many
1428 * paths such that we will spend all our time waking up
1429 * eventpoll objects.
1430 *
1431 * Returns: Returns zero if the proposed links don't create too many paths,
1432 * -1 otherwise.
1433 */
1434static int reverse_path_check(void)
1435{
28d82dc1
JB
1436 int error = 0;
1437 struct file *current_file;
1438
1439 /* let's call this for all tfiles */
1440 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
28d82dc1 1441 path_count_init();
74bdc129 1442 error = ep_call_nested(&poll_loop_ncalls,
28d82dc1
JB
1443 reverse_path_check_proc, current_file,
1444 current_file, current);
1445 if (error)
1446 break;
1447 }
1448 return error;
1449}
1450
4d7e30d9
AH
1451static int ep_create_wakeup_source(struct epitem *epi)
1452{
1453 const char *name;
eea1d585 1454 struct wakeup_source *ws;
4d7e30d9
AH
1455
1456 if (!epi->ep->ws) {
c8377adf 1457 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
4d7e30d9
AH
1458 if (!epi->ep->ws)
1459 return -ENOMEM;
1460 }
1461
1462 name = epi->ffd.file->f_path.dentry->d_name.name;
c8377adf 1463 ws = wakeup_source_register(NULL, name);
eea1d585
EW
1464
1465 if (!ws)
4d7e30d9 1466 return -ENOMEM;
eea1d585 1467 rcu_assign_pointer(epi->ws, ws);
4d7e30d9
AH
1468
1469 return 0;
1470}
1471
eea1d585
EW
1472/* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1473static noinline void ep_destroy_wakeup_source(struct epitem *epi)
4d7e30d9 1474{
eea1d585
EW
1475 struct wakeup_source *ws = ep_wakeup_source(epi);
1476
d6d67e72 1477 RCU_INIT_POINTER(epi->ws, NULL);
eea1d585
EW
1478
1479 /*
1480 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1481 * used internally by wakeup_source_remove, too (called by
1482 * wakeup_source_unregister), so we cannot use call_rcu
1483 */
1484 synchronize_rcu();
1485 wakeup_source_unregister(ws);
4d7e30d9
AH
1486}
1487
c7ea7630
DL
1488/*
1489 * Must be called with "mtx" held.
1490 */
bec1a502 1491static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
67347fe4 1492 struct file *tfile, int fd, int full_check)
1da177e4 1493{
d85e2aa2
AV
1494 int error, pwake = 0;
1495 __poll_t revents;
52bd19f7 1496 long user_watches;
1da177e4
LT
1497 struct epitem *epi;
1498 struct ep_pqueue epq;
1499
92e64178
DB
1500 lockdep_assert_irqs_enabled();
1501
52bd19f7
RH
1502 user_watches = atomic_long_read(&ep->user->epoll_watches);
1503 if (unlikely(user_watches >= max_user_watches))
7ef9964e 1504 return -ENOSPC;
e94b1766 1505 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
7ef9964e 1506 return -ENOMEM;
1da177e4
LT
1507
1508 /* Item initialization follow here ... */
1da177e4
LT
1509 INIT_LIST_HEAD(&epi->rdllink);
1510 INIT_LIST_HEAD(&epi->fllink);
1da177e4
LT
1511 INIT_LIST_HEAD(&epi->pwqlist);
1512 epi->ep = ep;
b030a4dd 1513 ep_set_ffd(&epi->ffd, tfile, fd);
1da177e4 1514 epi->event = *event;
1da177e4 1515 epi->nwait = 0;
d47de16c 1516 epi->next = EP_UNACTIVE_PTR;
4d7e30d9
AH
1517 if (epi->event.events & EPOLLWAKEUP) {
1518 error = ep_create_wakeup_source(epi);
1519 if (error)
1520 goto error_create_wakeup_source;
1521 } else {
eea1d585 1522 RCU_INIT_POINTER(epi->ws, NULL);
4d7e30d9 1523 }
1da177e4
LT
1524
1525 /* Initialize the poll table using the queue callback */
1526 epq.epi = epi;
1527 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1528
1529 /*
1530 * Attach the item to the poll hooks and get current event bits.
1531 * We can safely use the file* here because its usage count has
c7ea7630
DL
1532 * been increased by the caller of this function. Note that after
1533 * this operation completes, the poll callback can start hitting
1534 * the new item.
1da177e4 1535 */
37b5e521 1536 revents = ep_item_poll(epi, &epq.pt, 1);
1da177e4
LT
1537
1538 /*
1539 * We have to check if something went wrong during the poll wait queue
1540 * install process. Namely an allocation for a wait queue failed due
1541 * high memory pressure.
1542 */
7ef9964e 1543 error = -ENOMEM;
1da177e4 1544 if (epi->nwait < 0)
7699acd1 1545 goto error_unregister;
1da177e4
LT
1546
1547 /* Add the current item to the list of active epoll hook for this file */
68499914 1548 spin_lock(&tfile->f_lock);
ae10b2b4 1549 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
68499914 1550 spin_unlock(&tfile->f_lock);
1da177e4 1551
c7ea7630
DL
1552 /*
1553 * Add the current item to the RB tree. All RB tree operations are
1554 * protected by "mtx", and ep_insert() is called with "mtx" held.
1555 */
1da177e4
LT
1556 ep_rbtree_insert(ep, epi);
1557
28d82dc1
JB
1558 /* now check if we've created too many backpaths */
1559 error = -EINVAL;
67347fe4 1560 if (full_check && reverse_path_check())
28d82dc1
JB
1561 goto error_remove_epi;
1562
c7ea7630 1563 /* We have to drop the new item inside our item list to keep track of it */
a218cc49 1564 write_lock_irq(&ep->lock);
c7ea7630 1565
bf3b9f63
SS
1566 /* record NAPI ID of new item if present */
1567 ep_set_busy_poll_napi_id(epi);
1568
1da177e4 1569 /* If the file is already "ready" we drop it inside the ready list */
992991c0 1570 if (revents && !ep_is_linked(epi)) {
1da177e4 1571 list_add_tail(&epi->rdllink, &ep->rdllist);
eea1d585 1572 ep_pm_stay_awake(epi);
1da177e4
LT
1573
1574 /* Notify waiting tasks that events are available */
1575 if (waitqueue_active(&ep->wq))
a218cc49 1576 wake_up(&ep->wq);
1da177e4
LT
1577 if (waitqueue_active(&ep->poll_wait))
1578 pwake++;
1579 }
1580
a218cc49 1581 write_unlock_irq(&ep->lock);
1da177e4 1582
52bd19f7 1583 atomic_long_inc(&ep->user->epoll_watches);
7ef9964e 1584
1da177e4
LT
1585 /* We have to call this outside the lock */
1586 if (pwake)
efcdd350 1587 ep_poll_safewake(ep, NULL);
1da177e4 1588
1da177e4
LT
1589 return 0;
1590
28d82dc1
JB
1591error_remove_epi:
1592 spin_lock(&tfile->f_lock);
ae10b2b4 1593 list_del_rcu(&epi->fllink);
28d82dc1
JB
1594 spin_unlock(&tfile->f_lock);
1595
b2ac2ea6 1596 rb_erase_cached(&epi->rbn, &ep->rbr);
28d82dc1 1597
7699acd1 1598error_unregister:
1da177e4
LT
1599 ep_unregister_pollwait(ep, epi);
1600
1601 /*
1602 * We need to do this because an event could have been arrived on some
67647d0f
DL
1603 * allocated wait queue. Note that we don't care about the ep->ovflist
1604 * list, since that is used/cleaned only inside a section bound by "mtx".
1605 * And ep_insert() is called with "mtx" held.
1da177e4 1606 */
a218cc49 1607 write_lock_irq(&ep->lock);
992991c0 1608 if (ep_is_linked(epi))
6192bd53 1609 list_del_init(&epi->rdllink);
a218cc49 1610 write_unlock_irq(&ep->lock);
1da177e4 1611
eea1d585 1612 wakeup_source_unregister(ep_wakeup_source(epi));
4d7e30d9
AH
1613
1614error_create_wakeup_source:
b030a4dd 1615 kmem_cache_free(epi_cache, epi);
7ef9964e 1616
1da177e4
LT
1617 return error;
1618}
1619
1da177e4
LT
1620/*
1621 * Modify the interest event mask by dropping an event if the new mask
c7ea7630 1622 * has a match in the current file status. Must be called with "mtx" held.
1da177e4 1623 */
bec1a502
AV
1624static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1625 const struct epoll_event *event)
1da177e4
LT
1626{
1627 int pwake = 0;
626cf236
HV
1628 poll_table pt;
1629
92e64178
DB
1630 lockdep_assert_irqs_enabled();
1631
626cf236 1632 init_poll_funcptr(&pt, NULL);
1da177e4
LT
1633
1634 /*
e057e15f
TB
1635 * Set the new event interest mask before calling f_op->poll();
1636 * otherwise we might miss an event that happens between the
1637 * f_op->poll() call and the new event set registering.
1da177e4 1638 */
128dd175 1639 epi->event.events = event->events; /* need barrier below */
e057e15f 1640 epi->event.data = event->data; /* protected by mtx */
4d7e30d9 1641 if (epi->event.events & EPOLLWAKEUP) {
eea1d585 1642 if (!ep_has_wakeup_source(epi))
4d7e30d9 1643 ep_create_wakeup_source(epi);
eea1d585 1644 } else if (ep_has_wakeup_source(epi)) {
4d7e30d9
AH
1645 ep_destroy_wakeup_source(epi);
1646 }
1da177e4 1647
128dd175
EW
1648 /*
1649 * The following barrier has two effects:
1650 *
1651 * 1) Flush epi changes above to other CPUs. This ensures
1652 * we do not miss events from ep_poll_callback if an
1653 * event occurs immediately after we call f_op->poll().
a218cc49 1654 * We need this because we did not take ep->lock while
128dd175 1655 * changing epi above (but ep_poll_callback does take
a218cc49 1656 * ep->lock).
128dd175
EW
1657 *
1658 * 2) We also need to ensure we do not miss _past_ events
1659 * when calling f_op->poll(). This barrier also
1660 * pairs with the barrier in wq_has_sleeper (see
1661 * comments for wq_has_sleeper).
1662 *
1663 * This barrier will now guarantee ep_poll_callback or f_op->poll
1664 * (or both) will notice the readiness of an item.
1665 */
1666 smp_mb();
1667
1da177e4
LT
1668 /*
1669 * Get current event bits. We can safely use the file* here because
1670 * its usage count has been increased by the caller of this function.
c7ea7630 1671 * If the item is "hot" and it is not registered inside the ready
67647d0f 1672 * list, push it inside.
1da177e4 1673 */
69112736 1674 if (ep_item_poll(epi, &pt, 1)) {
a218cc49 1675 write_lock_irq(&ep->lock);
992991c0 1676 if (!ep_is_linked(epi)) {
c7ea7630 1677 list_add_tail(&epi->rdllink, &ep->rdllist);
eea1d585 1678 ep_pm_stay_awake(epi);
c7ea7630
DL
1679
1680 /* Notify waiting tasks that events are available */
1681 if (waitqueue_active(&ep->wq))
a218cc49 1682 wake_up(&ep->wq);
c7ea7630
DL
1683 if (waitqueue_active(&ep->poll_wait))
1684 pwake++;
7699acd1 1685 }
a218cc49 1686 write_unlock_irq(&ep->lock);
7699acd1 1687 }
1da177e4 1688
7699acd1
DL
1689 /* We have to call this outside the lock */
1690 if (pwake)
efcdd350 1691 ep_poll_safewake(ep, NULL);
1da177e4 1692
7699acd1 1693 return 0;
1da177e4
LT
1694}
1695
d85e2aa2 1696static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
296e236e 1697 void *priv)
1da177e4 1698{
5071f97e 1699 struct ep_send_events_data *esed = priv;
d85e2aa2 1700 __poll_t revents;
4e0982a0
DB
1701 struct epitem *epi, *tmp;
1702 struct epoll_event __user *uevent = esed->events;
eea1d585 1703 struct wakeup_source *ws;
626cf236
HV
1704 poll_table pt;
1705
1706 init_poll_funcptr(&pt, NULL);
4e0982a0 1707 esed->res = 0;
1da177e4 1708
296e236e 1709 /*
5071f97e
DL
1710 * We can loop without lock because we are passed a task private list.
1711 * Items cannot vanish during the loop because ep_scan_ready_list() is
1712 * holding "mtx" during this call.
296e236e 1713 */
21877e1a
DB
1714 lockdep_assert_held(&ep->mtx);
1715
4e0982a0
DB
1716 list_for_each_entry_safe(epi, tmp, head, rdllink) {
1717 if (esed->res >= esed->maxevents)
1718 break;
d47de16c 1719
4d7e30d9
AH
1720 /*
1721 * Activate ep->ws before deactivating epi->ws to prevent
1722 * triggering auto-suspend here (in case we reactive epi->ws
1723 * below).
1724 *
1725 * This could be rearranged to delay the deactivation of epi->ws
1726 * instead, but then epi->ws would temporarily be out of sync
1727 * with ep_is_linked().
1728 */
eea1d585
EW
1729 ws = ep_wakeup_source(epi);
1730 if (ws) {
1731 if (ws->active)
1732 __pm_stay_awake(ep->ws);
1733 __pm_relax(ws);
1734 }
1735
d47de16c 1736 list_del_init(&epi->rdllink);
1da177e4 1737
296e236e 1738 /*
5071f97e
DL
1739 * If the event mask intersect the caller-requested one,
1740 * deliver the event to userspace. Again, ep_scan_ready_list()
4e0982a0 1741 * is holding ep->mtx, so no operations coming from userspace
5071f97e 1742 * can change the item.
296e236e 1743 */
4e0982a0
DB
1744 revents = ep_item_poll(epi, &pt, 1);
1745 if (!revents)
1746 continue;
1747
1748 if (__put_user(revents, &uevent->events) ||
1749 __put_user(epi->event.data, &uevent->data)) {
1750 list_add(&epi->rdllink, head);
1751 ep_pm_stay_awake(epi);
1752 if (!esed->res)
1753 esed->res = -EFAULT;
1754 return 0;
1755 }
1756 esed->res++;
1757 uevent++;
1758 if (epi->event.events & EPOLLONESHOT)
1759 epi->event.events &= EP_PRIVATE_BITS;
1760 else if (!(epi->event.events & EPOLLET)) {
1761 /*
1762 * If this file has been added with Level
1763 * Trigger mode, we need to insert back inside
1764 * the ready list, so that the next call to
1765 * epoll_wait() will check again the events
1766 * availability. At this point, no one can insert
1767 * into ep->rdllist besides us. The epoll_ctl()
1768 * callers are locked out by
1769 * ep_scan_ready_list() holding "mtx" and the
1770 * poll callback will queue them in ep->ovflist.
1771 */
1772 list_add_tail(&epi->rdllink, &ep->rdllist);
1773 ep_pm_stay_awake(epi);
296e236e
DL
1774 }
1775 }
5071f97e 1776
d7ebbe46 1777 return 0;
5071f97e 1778}
d47de16c 1779
296e236e
DL
1780static int ep_send_events(struct eventpoll *ep,
1781 struct epoll_event __user *events, int maxevents)
5071f97e
DL
1782{
1783 struct ep_send_events_data esed;
1da177e4 1784
5071f97e
DL
1785 esed.maxevents = maxevents;
1786 esed.events = events;
6192bd53 1787
d7ebbe46
AV
1788 ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1789 return esed.res;
1da177e4
LT
1790}
1791
766b9f92 1792static inline struct timespec64 ep_set_mstimeout(long ms)
0781b909 1793{
766b9f92 1794 struct timespec64 now, ts = {
0781b909
ED
1795 .tv_sec = ms / MSEC_PER_SEC,
1796 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1797 };
1798
766b9f92
DD
1799 ktime_get_ts64(&now);
1800 return timespec64_add_safe(now, ts);
0781b909
ED
1801}
1802
f4d93ad7
SB
1803/**
1804 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1805 * event buffer.
1806 *
1807 * @ep: Pointer to the eventpoll context.
1808 * @events: Pointer to the userspace buffer where the ready events should be
1809 * stored.
1810 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1811 * @timeout: Maximum timeout for the ready events fetch operation, in
1812 * milliseconds. If the @timeout is zero, the function will not block,
1813 * while if the @timeout is less than zero, the function will block
1814 * until at least one event has been retrieved (or an error
1815 * occurred).
1816 *
1817 * Returns: Returns the number of ready events which have been fetched, or an
1818 * error code, in case of error.
1819 */
1da177e4
LT
1820static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1821 int maxevents, long timeout)
1822{
f4d93ad7 1823 int res = 0, eavail, timed_out = 0;
da8b44d5 1824 u64 slack = 0;
86c05179 1825 bool waiter = false;
ac6424b9 1826 wait_queue_entry_t wait;
95aac7b1
SB
1827 ktime_t expires, *to = NULL;
1828
679abf38
DB
1829 lockdep_assert_irqs_enabled();
1830
95aac7b1 1831 if (timeout > 0) {
766b9f92 1832 struct timespec64 end_time = ep_set_mstimeout(timeout);
0781b909 1833
95aac7b1
SB
1834 slack = select_estimate_accuracy(&end_time);
1835 to = &expires;
766b9f92 1836 *to = timespec64_to_ktime(end_time);
95aac7b1 1837 } else if (timeout == 0) {
f4d93ad7
SB
1838 /*
1839 * Avoid the unnecessary trip to the wait queue loop, if the
c5a282e9
DB
1840 * caller specified a non blocking operation. We still need
1841 * lock because we could race and not see an epi being added
1842 * to the ready list while in irq callback. Thus incorrectly
1843 * returning 0 back to userspace.
f4d93ad7 1844 */
95aac7b1 1845 timed_out = 1;
c5a282e9 1846
a218cc49 1847 write_lock_irq(&ep->lock);
c5a282e9 1848 eavail = ep_events_available(ep);
a218cc49 1849 write_unlock_irq(&ep->lock);
c5a282e9 1850
35cff1a6 1851 goto send_events;
95aac7b1 1852 }
1da177e4 1853
f4d93ad7 1854fetch_events:
bf3b9f63
SS
1855
1856 if (!ep_events_available(ep))
1857 ep_busy_loop(ep, timed_out);
1858
c5a282e9
DB
1859 eavail = ep_events_available(ep);
1860 if (eavail)
35cff1a6 1861 goto send_events;
1da177e4 1862
c5a282e9
DB
1863 /*
1864 * Busy poll timed out. Drop NAPI ID for now, we can add
1865 * it back in when we have moved a socket with a valid NAPI
1866 * ID onto the ready list.
1867 */
1868 ep_reset_busy_poll_napi_id(ep);
bf3b9f63 1869
c5a282e9 1870 /*
86c05179
DB
1871 * We don't have any available event to return to the caller. We need
1872 * to sleep here, and we will be woken by ep_poll_callback() when events
1873 * become available.
c5a282e9 1874 */
86c05179
DB
1875 if (!waiter) {
1876 waiter = true;
1da177e4 1877 init_waitqueue_entry(&wait, current);
1da177e4 1878
1b53734b 1879 write_lock_irq(&ep->lock);
86c05179 1880 __add_wait_queue_exclusive(&ep->wq, &wait);
1b53734b 1881 write_unlock_irq(&ep->lock);
86c05179 1882 }
1da177e4 1883
c5a282e9 1884 for (;;) {
bf3b9f63 1885 /*
c5a282e9
DB
1886 * We don't want to sleep if the ep_poll_callback() sends us
1887 * a wakeup in between. That's why we set the task state
1888 * to TASK_INTERRUPTIBLE before doing the checks.
bf3b9f63 1889 */
c5a282e9 1890 set_current_state(TASK_INTERRUPTIBLE);
1da177e4 1891 /*
c5a282e9
DB
1892 * Always short-circuit for fatal signals to allow
1893 * threads to make a timely exit without the chance of
1894 * finding more events available and fetching
1895 * repeatedly.
1da177e4 1896 */
c5a282e9
DB
1897 if (fatal_signal_pending(current)) {
1898 res = -EINTR;
1899 break;
1900 }
95aac7b1 1901
abc610e0
DB
1902 eavail = ep_events_available(ep);
1903 if (eavail)
c5a282e9
DB
1904 break;
1905 if (signal_pending(current)) {
1906 res = -EINTR;
1907 break;
1da177e4 1908 }
1da177e4 1909
abc610e0 1910 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) {
c5a282e9 1911 timed_out = 1;
abc610e0
DB
1912 break;
1913 }
1da177e4 1914 }
1da177e4 1915
c5a282e9 1916 __set_current_state(TASK_RUNNING);
1da177e4 1917
35cff1a6 1918send_events:
1da177e4
LT
1919 /*
1920 * Try to transfer events to user space. In case we get 0 events and
1921 * there's still timeout left over, we go trying again in search of
1922 * more luck.
1923 */
1924 if (!res && eavail &&
95aac7b1 1925 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
f4d93ad7 1926 goto fetch_events;
1da177e4 1927
86c05179 1928 if (waiter) {
1b53734b 1929 write_lock_irq(&ep->lock);
86c05179 1930 __remove_wait_queue(&ep->wq, &wait);
1b53734b 1931 write_unlock_irq(&ep->lock);
86c05179
DB
1932 }
1933
1da177e4
LT
1934 return res;
1935}
1936
22bacca4
DL
1937/**
1938 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1939 * API, to verify that adding an epoll file inside another
1940 * epoll structure, does not violate the constraints, in
1941 * terms of closed loops, or too deep chains (which can
1942 * result in excessive stack usage).
1943 *
1944 * @priv: Pointer to the epoll file to be currently checked.
1945 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1946 * data structure pointer.
1947 * @call_nests: Current dept of the @ep_call_nested() call stack.
1948 *
1949 * Returns: Returns zero if adding the epoll @file inside current epoll
1950 * structure @ep does not violate the constraints, or -1 otherwise.
1951 */
1952static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1953{
1954 int error = 0;
1955 struct file *file = priv;
1956 struct eventpoll *ep = file->private_data;
28d82dc1 1957 struct eventpoll *ep_tovisit;
22bacca4
DL
1958 struct rb_node *rbp;
1959 struct epitem *epi;
1960
d8805e63 1961 mutex_lock_nested(&ep->mtx, call_nests + 1);
28d82dc1
JB
1962 ep->visited = 1;
1963 list_add(&ep->visited_list_link, &visited_list);
b2ac2ea6 1964 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
22bacca4
DL
1965 epi = rb_entry(rbp, struct epitem, rbn);
1966 if (unlikely(is_file_epoll(epi->ffd.file))) {
28d82dc1
JB
1967 ep_tovisit = epi->ffd.file->private_data;
1968 if (ep_tovisit->visited)
1969 continue;
74bdc129 1970 error = ep_call_nested(&poll_loop_ncalls,
28d82dc1
JB
1971 ep_loop_check_proc, epi->ffd.file,
1972 ep_tovisit, current);
22bacca4
DL
1973 if (error != 0)
1974 break;
28d82dc1
JB
1975 } else {
1976 /*
1977 * If we've reached a file that is not associated with
1978 * an ep, then we need to check if the newly added
1979 * links are going to add too many wakeup paths. We do
1980 * this by adding it to the tfile_check_list, if it's
1981 * not already there, and calling reverse_path_check()
1982 * during ep_insert().
1983 */
1984 if (list_empty(&epi->ffd.file->f_tfile_llink))
1985 list_add(&epi->ffd.file->f_tfile_llink,
1986 &tfile_check_list);
22bacca4
DL
1987 }
1988 }
1989 mutex_unlock(&ep->mtx);
1990
1991 return error;
1992}
1993
1994/**
1995 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1996 * another epoll file (represented by @ep) does not create
1997 * closed loops or too deep chains.
1998 *
1999 * @ep: Pointer to the epoll private data structure.
2000 * @file: Pointer to the epoll file to be checked.
2001 *
2002 * Returns: Returns zero if adding the epoll @file inside current epoll
2003 * structure @ep does not violate the constraints, or -1 otherwise.
2004 */
2005static int ep_loop_check(struct eventpoll *ep, struct file *file)
2006{
28d82dc1
JB
2007 int ret;
2008 struct eventpoll *ep_cur, *ep_next;
2009
74bdc129 2010 ret = ep_call_nested(&poll_loop_ncalls,
22bacca4 2011 ep_loop_check_proc, file, ep, current);
28d82dc1
JB
2012 /* clear visited list */
2013 list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
2014 visited_list_link) {
2015 ep_cur->visited = 0;
2016 list_del(&ep_cur->visited_list_link);
2017 }
2018 return ret;
2019}
2020
2021static void clear_tfile_check_list(void)
2022{
2023 struct file *file;
2024
2025 /* first clear the tfile_check_list */
2026 while (!list_empty(&tfile_check_list)) {
2027 file = list_first_entry(&tfile_check_list, struct file,
2028 f_tfile_llink);
2029 list_del_init(&file->f_tfile_llink);
2030 }
2031 INIT_LIST_HEAD(&tfile_check_list);
22bacca4
DL
2032}
2033
7699acd1 2034/*
523723bb 2035 * Open an eventpoll file descriptor.
7699acd1 2036 */
791eb22e 2037static int do_epoll_create(int flags)
7699acd1 2038{
28d82dc1 2039 int error, fd;
bb57c3ed 2040 struct eventpoll *ep = NULL;
28d82dc1 2041 struct file *file;
7699acd1 2042
e38b36f3
UD
2043 /* Check the EPOLL_* constant for consistency. */
2044 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2045
296e236e
DL
2046 if (flags & ~EPOLL_CLOEXEC)
2047 return -EINVAL;
7699acd1 2048 /*
bb57c3ed 2049 * Create the internal data structure ("struct eventpoll").
7699acd1 2050 */
9fe5ad9c 2051 error = ep_alloc(&ep);
bb57c3ed
DL
2052 if (error < 0)
2053 return error;
7699acd1
DL
2054 /*
2055 * Creates all the items needed to setup an eventpoll file. That is,
2030a42c 2056 * a file structure and a free file descriptor.
7699acd1 2057 */
28d82dc1
JB
2058 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2059 if (fd < 0) {
2060 error = fd;
2061 goto out_free_ep;
2062 }
2063 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
628ff7c1 2064 O_RDWR | (flags & O_CLOEXEC));
28d82dc1
JB
2065 if (IS_ERR(file)) {
2066 error = PTR_ERR(file);
2067 goto out_free_fd;
2068 }
28d82dc1 2069 ep->file = file;
98022748 2070 fd_install(fd, file);
28d82dc1
JB
2071 return fd;
2072
2073out_free_fd:
2074 put_unused_fd(fd);
2075out_free_ep:
2076 ep_free(ep);
bb57c3ed 2077 return error;
7699acd1
DL
2078}
2079
791eb22e
DB
2080SYSCALL_DEFINE1(epoll_create1, int, flags)
2081{
2082 return do_epoll_create(flags);
2083}
2084
5a8a82b1 2085SYSCALL_DEFINE1(epoll_create, int, size)
a0998b50 2086{
bfe3891a 2087 if (size <= 0)
9fe5ad9c
UD
2088 return -EINVAL;
2089
791eb22e 2090 return do_epoll_create(0);
a0998b50
UD
2091}
2092
39220e8d
JA
2093static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2094 bool nonblock)
2095{
2096 if (!nonblock) {
2097 mutex_lock_nested(mutex, depth);
2098 return 0;
2099 }
2100 if (mutex_trylock(mutex))
2101 return 0;
2102 return -EAGAIN;
2103}
2104
2105int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2106 bool nonblock)
7699acd1
DL
2107{
2108 int error;
67347fe4 2109 int full_check = 0;
7e3fb584 2110 struct fd f, tf;
7699acd1
DL
2111 struct eventpoll *ep;
2112 struct epitem *epi;
67347fe4 2113 struct eventpoll *tep = NULL;
7699acd1 2114
7699acd1 2115 error = -EBADF;
7e3fb584
AV
2116 f = fdget(epfd);
2117 if (!f.file)
7699acd1
DL
2118 goto error_return;
2119
2120 /* Get the "struct file *" for the target file */
7e3fb584
AV
2121 tf = fdget(fd);
2122 if (!tf.file)
7699acd1
DL
2123 goto error_fput;
2124
2125 /* The target file descriptor must support poll */
2126 error = -EPERM;
9965ed17 2127 if (!file_can_poll(tf.file))
7699acd1
DL
2128 goto error_tgt_fput;
2129
4d7e30d9 2130 /* Check if EPOLLWAKEUP is allowed */
c680e41b 2131 if (ep_op_has_event(op))
58e41a44 2132 ep_take_care_of_epollwakeup(epds);
4d7e30d9 2133
7699acd1
DL
2134 /*
2135 * We have to check that the file structure underneath the file descriptor
2136 * the user passed to us _is_ an eventpoll file. And also we do not permit
2137 * adding an epoll file descriptor inside itself.
2138 */
2139 error = -EINVAL;
7e3fb584 2140 if (f.file == tf.file || !is_file_epoll(f.file))
7699acd1
DL
2141 goto error_tgt_fput;
2142
df0108c5
JB
2143 /*
2144 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2145 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2146 * Also, we do not currently supported nested exclusive wakeups.
2147 */
58e41a44 2148 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
b6a515c8
JB
2149 if (op == EPOLL_CTL_MOD)
2150 goto error_tgt_fput;
2151 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
58e41a44 2152 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
b6a515c8
JB
2153 goto error_tgt_fput;
2154 }
df0108c5 2155
7699acd1
DL
2156 /*
2157 * At this point it is safe to assume that the "private_data" contains
2158 * our own data structure.
2159 */
7e3fb584 2160 ep = f.file->private_data;
7699acd1 2161
22bacca4
DL
2162 /*
2163 * When we insert an epoll file descriptor, inside another epoll file
2164 * descriptor, there is the change of creating closed loops, which are
28d82dc1
JB
2165 * better be handled here, than in more critical paths. While we are
2166 * checking for loops we also determine the list of files reachable
2167 * and hang them on the tfile_check_list, so we can check that we
2168 * haven't created too many possible wakeup paths.
22bacca4 2169 *
67347fe4
JB
2170 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2171 * the epoll file descriptor is attaching directly to a wakeup source,
2172 * unless the epoll file descriptor is nested. The purpose of taking the
2173 * 'epmutex' on add is to prevent complex toplogies such as loops and
2174 * deep wakeup paths from forming in parallel through multiple
2175 * EPOLL_CTL_ADD operations.
22bacca4 2176 */
39220e8d
JA
2177 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2178 if (error)
2179 goto error_tgt_fput;
28d82dc1 2180 if (op == EPOLL_CTL_ADD) {
67347fe4
JB
2181 if (!list_empty(&f.file->f_ep_links) ||
2182 is_file_epoll(tf.file)) {
67347fe4 2183 mutex_unlock(&ep->mtx);
39220e8d
JA
2184 error = epoll_mutex_lock(&epmutex, 0, nonblock);
2185 if (error)
2186 goto error_tgt_fput;
2187 full_check = 1;
67347fe4
JB
2188 if (is_file_epoll(tf.file)) {
2189 error = -ELOOP;
2190 if (ep_loop_check(ep, tf.file) != 0) {
2191 clear_tfile_check_list();
2192 goto error_tgt_fput;
2193 }
2194 } else
2195 list_add(&tf.file->f_tfile_llink,
2196 &tfile_check_list);
39220e8d
JA
2197 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2198 if (error) {
2199out_del:
2200 list_del(&tf.file->f_tfile_llink);
2201 goto error_tgt_fput;
2202 }
67347fe4
JB
2203 if (is_file_epoll(tf.file)) {
2204 tep = tf.file->private_data;
39220e8d
JA
2205 error = epoll_mutex_lock(&tep->mtx, 1, nonblock);
2206 if (error) {
2207 mutex_unlock(&ep->mtx);
2208 goto out_del;
2209 }
13d51807 2210 }
67347fe4
JB
2211 }
2212 }
7699acd1 2213
67647d0f
DL
2214 /*
2215 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2216 * above, we can be sure to be able to use the item looked up by
2217 * ep_find() till we release the mutex.
2218 */
7e3fb584 2219 epi = ep_find(ep, tf.file, fd);
7699acd1
DL
2220
2221 error = -EINVAL;
2222 switch (op) {
2223 case EPOLL_CTL_ADD:
2224 if (!epi) {
58e41a44
JA
2225 epds->events |= EPOLLERR | EPOLLHUP;
2226 error = ep_insert(ep, epds, tf.file, fd, full_check);
7699acd1
DL
2227 } else
2228 error = -EEXIST;
67347fe4
JB
2229 if (full_check)
2230 clear_tfile_check_list();
7699acd1
DL
2231 break;
2232 case EPOLL_CTL_DEL:
2233 if (epi)
2234 error = ep_remove(ep, epi);
2235 else
2236 error = -ENOENT;
2237 break;
2238 case EPOLL_CTL_MOD:
2239 if (epi) {
b6a515c8 2240 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
58e41a44
JA
2241 epds->events |= EPOLLERR | EPOLLHUP;
2242 error = ep_modify(ep, epi, epds);
b6a515c8 2243 }
7699acd1
DL
2244 } else
2245 error = -ENOENT;
2246 break;
2247 }
67347fe4
JB
2248 if (tep != NULL)
2249 mutex_unlock(&tep->mtx);
d47de16c 2250 mutex_unlock(&ep->mtx);
7699acd1
DL
2251
2252error_tgt_fput:
67347fe4 2253 if (full_check)
22bacca4
DL
2254 mutex_unlock(&epmutex);
2255
7e3fb584 2256 fdput(tf);
7699acd1 2257error_fput:
7e3fb584 2258 fdput(f);
7699acd1 2259error_return:
7699acd1
DL
2260
2261 return error;
2262}
2263
58e41a44
JA
2264/*
2265 * The following function implements the controller interface for
2266 * the eventpoll file that enables the insertion/removal/change of
2267 * file descriptors inside the interest set.
2268 */
2269SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2270 struct epoll_event __user *, event)
2271{
2272 struct epoll_event epds;
2273
2274 if (ep_op_has_event(op) &&
2275 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2276 return -EFAULT;
2277
39220e8d 2278 return do_epoll_ctl(epfd, op, fd, &epds, false);
58e41a44
JA
2279}
2280
7699acd1
DL
2281/*
2282 * Implement the event wait interface for the eventpoll file. It is the kernel
2283 * part of the user space epoll_wait(2).
2284 */
791eb22e
DB
2285static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2286 int maxevents, int timeout)
7699acd1 2287{
2903ff01
AV
2288 int error;
2289 struct fd f;
7699acd1
DL
2290 struct eventpoll *ep;
2291
7699acd1
DL
2292 /* The maximum number of event must be greater than zero */
2293 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2294 return -EINVAL;
2295
2296 /* Verify that the area passed by the user is writeable */
96d4f267 2297 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2903ff01 2298 return -EFAULT;
7699acd1
DL
2299
2300 /* Get the "struct file *" for the eventpoll file */
2903ff01
AV
2301 f = fdget(epfd);
2302 if (!f.file)
2303 return -EBADF;
7699acd1
DL
2304
2305 /*
2306 * We have to check that the file structure underneath the fd
2307 * the user passed to us _is_ an eventpoll file.
2308 */
2309 error = -EINVAL;
2903ff01 2310 if (!is_file_epoll(f.file))
7699acd1
DL
2311 goto error_fput;
2312
2313 /*
2314 * At this point it is safe to assume that the "private_data" contains
2315 * our own data structure.
2316 */
2903ff01 2317 ep = f.file->private_data;
7699acd1
DL
2318
2319 /* Time to fish for events ... */
2320 error = ep_poll(ep, events, maxevents, timeout);
2321
2322error_fput:
2903ff01 2323 fdput(f);
7699acd1
DL
2324 return error;
2325}
2326
791eb22e
DB
2327SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2328 int, maxevents, int, timeout)
2329{
2330 return do_epoll_wait(epfd, events, maxevents, timeout);
2331}
2332
7699acd1
DL
2333/*
2334 * Implement the event wait interface for the eventpoll file. It is the kernel
2335 * part of the user space epoll_pwait(2).
2336 */
5a8a82b1
HC
2337SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2338 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2339 size_t, sigsetsize)
7699acd1
DL
2340{
2341 int error;
7699acd1
DL
2342
2343 /*
2344 * If the caller wants a certain signal mask to be set during the wait,
2345 * we apply it here.
2346 */
b772434b 2347 error = set_user_sigmask(sigmask, sigsetsize);
ded653cc
DD
2348 if (error)
2349 return error;
7699acd1 2350
791eb22e 2351 error = do_epoll_wait(epfd, events, maxevents, timeout);
b772434b 2352 restore_saved_sigmask_unless(error == -EINTR);
7699acd1
DL
2353
2354 return error;
2355}
2356
35280bd4
AV
2357#ifdef CONFIG_COMPAT
2358COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2359 struct epoll_event __user *, events,
2360 int, maxevents, int, timeout,
2361 const compat_sigset_t __user *, sigmask,
2362 compat_size_t, sigsetsize)
2363{
2364 long err;
35280bd4
AV
2365
2366 /*
2367 * If the caller wants a certain signal mask to be set during the wait,
2368 * we apply it here.
2369 */
b772434b 2370 err = set_compat_user_sigmask(sigmask, sigsetsize);
ded653cc
DD
2371 if (err)
2372 return err;
35280bd4 2373
791eb22e 2374 err = do_epoll_wait(epfd, events, maxevents, timeout);
b772434b 2375 restore_saved_sigmask_unless(err == -EINTR);
35280bd4
AV
2376
2377 return err;
2378}
2379#endif
2380
1da177e4
LT
2381static int __init eventpoll_init(void)
2382{
7ef9964e
DL
2383 struct sysinfo si;
2384
2385 si_meminfo(&si);
9df04e1f
DL
2386 /*
2387 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2388 */
2389 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
7ef9964e 2390 EP_ITEM_COST;
52bd19f7 2391 BUG_ON(max_user_watches < 0);
1da177e4 2392
22bacca4
DL
2393 /*
2394 * Initialize the structure used to perform epoll file descriptor
2395 * inclusion loops checks.
2396 */
2397 ep_nested_calls_init(&poll_loop_ncalls);
2398
39732ca5
EW
2399 /*
2400 * We can have many thousands of epitems, so prevent this from
2401 * using an extra cache line on 64-bit (and smaller) CPUs
2402 */
2403 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2404
1da177e4
LT
2405 /* Allocates slab cache used to allocate "struct epitem" items */
2406 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2ae928a9 2407 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
1da177e4
LT
2408
2409 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2410 pwq_cache = kmem_cache_create("eventpoll_pwq",
2ae928a9 2411 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
1da177e4 2412
1da177e4 2413 return 0;
1da177e4 2414}
cea69241 2415fs_initcall(eventpoll_init);