]> git.ipfire.org Git - people/ms/linux.git/blame - fs/namespace.c
fs: rename vfsmount counter helpers
[people/ms/linux.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4
LT
11#include <linux/syscalls.h>
12#include <linux/slab.h>
13#include <linux/sched.h>
99b7db7b
NP
14#include <linux/spinlock.h>
15#include <linux/percpu.h>
1da177e4 16#include <linux/init.h>
15a67dd8 17#include <linux/kernel.h>
1da177e4 18#include <linux/acct.h>
16f7e0fe 19#include <linux/capability.h>
3d733633 20#include <linux/cpumask.h>
1da177e4 21#include <linux/module.h>
f20a9ead 22#include <linux/sysfs.h>
1da177e4 23#include <linux/seq_file.h>
6b3286ed 24#include <linux/mnt_namespace.h>
1da177e4 25#include <linux/namei.h>
b43f3cbd 26#include <linux/nsproxy.h>
1da177e4
LT
27#include <linux/security.h>
28#include <linux/mount.h>
07f3f05c 29#include <linux/ramfs.h>
13f14b4d 30#include <linux/log2.h>
73cd49ec 31#include <linux/idr.h>
5ad4e53b 32#include <linux/fs_struct.h>
2504c5d6 33#include <linux/fsnotify.h>
1da177e4
LT
34#include <asm/uaccess.h>
35#include <asm/unistd.h>
07b20889 36#include "pnode.h"
948730b0 37#include "internal.h"
1da177e4 38
13f14b4d
ED
39#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40#define HASH_SIZE (1UL << HASH_SHIFT)
41
5addc5dd 42static int event;
73cd49ec 43static DEFINE_IDA(mnt_id_ida);
719f5d7f 44static DEFINE_IDA(mnt_group_ida);
99b7db7b 45static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
46static int mnt_id_start = 0;
47static int mnt_group_start = 1;
1da177e4 48
fa3536cc 49static struct list_head *mount_hashtable __read_mostly;
e18b890b 50static struct kmem_cache *mnt_cache __read_mostly;
390c6843 51static struct rw_semaphore namespace_sem;
1da177e4 52
f87fd4c2 53/* /sys/fs */
00d26666
GKH
54struct kobject *fs_kobj;
55EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 56
99b7db7b
NP
57/*
58 * vfsmount lock may be taken for read to prevent changes to the
59 * vfsmount hash, ie. during mountpoint lookups or walking back
60 * up the tree.
61 *
62 * It should be taken for write in all cases where the vfsmount
63 * tree or hash is modified or when a vfsmount structure is modified.
64 */
65DEFINE_BRLOCK(vfsmount_lock);
66
1da177e4
LT
67static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
68{
b58fed8b
RP
69 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
70 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
71 tmp = tmp + (tmp >> HASH_SHIFT);
72 return tmp & (HASH_SIZE - 1);
1da177e4
LT
73}
74
3d733633
DH
75#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
76
99b7db7b
NP
77/*
78 * allocation is serialized by namespace_sem, but we need the spinlock to
79 * serialize with freeing.
80 */
73cd49ec
MS
81static int mnt_alloc_id(struct vfsmount *mnt)
82{
83 int res;
84
85retry:
86 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 87 spin_lock(&mnt_id_lock);
f21f6220
AV
88 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
89 if (!res)
90 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 91 spin_unlock(&mnt_id_lock);
73cd49ec
MS
92 if (res == -EAGAIN)
93 goto retry;
94
95 return res;
96}
97
98static void mnt_free_id(struct vfsmount *mnt)
99{
f21f6220 100 int id = mnt->mnt_id;
99b7db7b 101 spin_lock(&mnt_id_lock);
f21f6220
AV
102 ida_remove(&mnt_id_ida, id);
103 if (mnt_id_start > id)
104 mnt_id_start = id;
99b7db7b 105 spin_unlock(&mnt_id_lock);
73cd49ec
MS
106}
107
719f5d7f
MS
108/*
109 * Allocate a new peer group ID
110 *
111 * mnt_group_ida is protected by namespace_sem
112 */
113static int mnt_alloc_group_id(struct vfsmount *mnt)
114{
f21f6220
AV
115 int res;
116
719f5d7f
MS
117 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
118 return -ENOMEM;
119
f21f6220
AV
120 res = ida_get_new_above(&mnt_group_ida,
121 mnt_group_start,
122 &mnt->mnt_group_id);
123 if (!res)
124 mnt_group_start = mnt->mnt_group_id + 1;
125
126 return res;
719f5d7f
MS
127}
128
129/*
130 * Release a peer group ID
131 */
132void mnt_release_group_id(struct vfsmount *mnt)
133{
f21f6220
AV
134 int id = mnt->mnt_group_id;
135 ida_remove(&mnt_group_ida, id);
136 if (mnt_group_start > id)
137 mnt_group_start = id;
719f5d7f
MS
138 mnt->mnt_group_id = 0;
139}
140
1da177e4
LT
141struct vfsmount *alloc_vfsmnt(const char *name)
142{
c3762229 143 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
1da177e4 144 if (mnt) {
73cd49ec
MS
145 int err;
146
147 err = mnt_alloc_id(mnt);
88b38782
LZ
148 if (err)
149 goto out_free_cache;
150
151 if (name) {
152 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
153 if (!mnt->mnt_devname)
154 goto out_free_id;
73cd49ec
MS
155 }
156
b58fed8b 157 atomic_set(&mnt->mnt_count, 1);
1da177e4
LT
158 INIT_LIST_HEAD(&mnt->mnt_hash);
159 INIT_LIST_HEAD(&mnt->mnt_child);
160 INIT_LIST_HEAD(&mnt->mnt_mounts);
161 INIT_LIST_HEAD(&mnt->mnt_list);
55e700b9 162 INIT_LIST_HEAD(&mnt->mnt_expire);
03e06e68 163 INIT_LIST_HEAD(&mnt->mnt_share);
a58b0eb8
RP
164 INIT_LIST_HEAD(&mnt->mnt_slave_list);
165 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
166#ifdef CONFIG_FSNOTIFY
167 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
168#endif
d3ef3d73
NP
169#ifdef CONFIG_SMP
170 mnt->mnt_writers = alloc_percpu(int);
171 if (!mnt->mnt_writers)
172 goto out_free_devname;
173#else
174 mnt->mnt_writers = 0;
175#endif
1da177e4
LT
176 }
177 return mnt;
88b38782 178
d3ef3d73
NP
179#ifdef CONFIG_SMP
180out_free_devname:
181 kfree(mnt->mnt_devname);
182#endif
88b38782
LZ
183out_free_id:
184 mnt_free_id(mnt);
185out_free_cache:
186 kmem_cache_free(mnt_cache, mnt);
187 return NULL;
1da177e4
LT
188}
189
3d733633
DH
190/*
191 * Most r/o checks on a fs are for operations that take
192 * discrete amounts of time, like a write() or unlink().
193 * We must keep track of when those operations start
194 * (for permission checks) and when they end, so that
195 * we can determine when writes are able to occur to
196 * a filesystem.
197 */
198/*
199 * __mnt_is_readonly: check whether a mount is read-only
200 * @mnt: the mount to check for its write status
201 *
202 * This shouldn't be used directly ouside of the VFS.
203 * It does not guarantee that the filesystem will stay
204 * r/w, just that it is right *now*. This can not and
205 * should not be used in place of IS_RDONLY(inode).
206 * mnt_want/drop_write() will _keep_ the filesystem
207 * r/w.
208 */
209int __mnt_is_readonly(struct vfsmount *mnt)
210{
2e4b7fcd
DH
211 if (mnt->mnt_flags & MNT_READONLY)
212 return 1;
213 if (mnt->mnt_sb->s_flags & MS_RDONLY)
214 return 1;
215 return 0;
3d733633
DH
216}
217EXPORT_SYMBOL_GPL(__mnt_is_readonly);
218
c6653a83 219static inline void mnt_inc_writers(struct vfsmount *mnt)
d3ef3d73
NP
220{
221#ifdef CONFIG_SMP
222 (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))++;
223#else
224 mnt->mnt_writers++;
225#endif
226}
3d733633 227
c6653a83 228static inline void mnt_dec_writers(struct vfsmount *mnt)
3d733633 229{
d3ef3d73
NP
230#ifdef CONFIG_SMP
231 (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))--;
232#else
233 mnt->mnt_writers--;
234#endif
3d733633 235}
3d733633 236
c6653a83 237static unsigned int mnt_get_writers(struct vfsmount *mnt)
3d733633 238{
d3ef3d73
NP
239#ifdef CONFIG_SMP
240 unsigned int count = 0;
3d733633 241 int cpu;
3d733633
DH
242
243 for_each_possible_cpu(cpu) {
d3ef3d73 244 count += *per_cpu_ptr(mnt->mnt_writers, cpu);
3d733633 245 }
3d733633 246
d3ef3d73
NP
247 return count;
248#else
249 return mnt->mnt_writers;
250#endif
3d733633
DH
251}
252
8366025e
DH
253/*
254 * Most r/o checks on a fs are for operations that take
255 * discrete amounts of time, like a write() or unlink().
256 * We must keep track of when those operations start
257 * (for permission checks) and when they end, so that
258 * we can determine when writes are able to occur to
259 * a filesystem.
260 */
261/**
262 * mnt_want_write - get write access to a mount
263 * @mnt: the mount on which to take a write
264 *
265 * This tells the low-level filesystem that a write is
266 * about to be performed to it, and makes sure that
267 * writes are allowed before returning success. When
268 * the write operation is finished, mnt_drop_write()
269 * must be called. This is effectively a refcount.
270 */
271int mnt_want_write(struct vfsmount *mnt)
272{
3d733633 273 int ret = 0;
3d733633 274
d3ef3d73 275 preempt_disable();
c6653a83 276 mnt_inc_writers(mnt);
d3ef3d73 277 /*
c6653a83 278 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73
NP
279 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
280 * incremented count after it has set MNT_WRITE_HOLD.
281 */
282 smp_mb();
283 while (mnt->mnt_flags & MNT_WRITE_HOLD)
284 cpu_relax();
285 /*
286 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
287 * be set to match its requirements. So we must not load that until
288 * MNT_WRITE_HOLD is cleared.
289 */
290 smp_rmb();
3d733633 291 if (__mnt_is_readonly(mnt)) {
c6653a83 292 mnt_dec_writers(mnt);
3d733633
DH
293 ret = -EROFS;
294 goto out;
295 }
3d733633 296out:
d3ef3d73 297 preempt_enable();
3d733633 298 return ret;
8366025e
DH
299}
300EXPORT_SYMBOL_GPL(mnt_want_write);
301
96029c4e
NP
302/**
303 * mnt_clone_write - get write access to a mount
304 * @mnt: the mount on which to take a write
305 *
306 * This is effectively like mnt_want_write, except
307 * it must only be used to take an extra write reference
308 * on a mountpoint that we already know has a write reference
309 * on it. This allows some optimisation.
310 *
311 * After finished, mnt_drop_write must be called as usual to
312 * drop the reference.
313 */
314int mnt_clone_write(struct vfsmount *mnt)
315{
316 /* superblock may be r/o */
317 if (__mnt_is_readonly(mnt))
318 return -EROFS;
319 preempt_disable();
c6653a83 320 mnt_inc_writers(mnt);
96029c4e
NP
321 preempt_enable();
322 return 0;
323}
324EXPORT_SYMBOL_GPL(mnt_clone_write);
325
326/**
327 * mnt_want_write_file - get write access to a file's mount
328 * @file: the file who's mount on which to take a write
329 *
330 * This is like mnt_want_write, but it takes a file and can
331 * do some optimisations if the file is open for write already
332 */
333int mnt_want_write_file(struct file *file)
334{
2d8dd38a
OH
335 struct inode *inode = file->f_dentry->d_inode;
336 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
96029c4e
NP
337 return mnt_want_write(file->f_path.mnt);
338 else
339 return mnt_clone_write(file->f_path.mnt);
340}
341EXPORT_SYMBOL_GPL(mnt_want_write_file);
342
8366025e
DH
343/**
344 * mnt_drop_write - give up write access to a mount
345 * @mnt: the mount on which to give up write access
346 *
347 * Tells the low-level filesystem that we are done
348 * performing writes to it. Must be matched with
349 * mnt_want_write() call above.
350 */
351void mnt_drop_write(struct vfsmount *mnt)
352{
d3ef3d73 353 preempt_disable();
c6653a83 354 mnt_dec_writers(mnt);
d3ef3d73 355 preempt_enable();
8366025e
DH
356}
357EXPORT_SYMBOL_GPL(mnt_drop_write);
358
2e4b7fcd 359static int mnt_make_readonly(struct vfsmount *mnt)
8366025e 360{
3d733633
DH
361 int ret = 0;
362
99b7db7b 363 br_write_lock(vfsmount_lock);
d3ef3d73 364 mnt->mnt_flags |= MNT_WRITE_HOLD;
3d733633 365 /*
d3ef3d73
NP
366 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
367 * should be visible before we do.
3d733633 368 */
d3ef3d73
NP
369 smp_mb();
370
3d733633 371 /*
d3ef3d73
NP
372 * With writers on hold, if this value is zero, then there are
373 * definitely no active writers (although held writers may subsequently
374 * increment the count, they'll have to wait, and decrement it after
375 * seeing MNT_READONLY).
376 *
377 * It is OK to have counter incremented on one CPU and decremented on
378 * another: the sum will add up correctly. The danger would be when we
379 * sum up each counter, if we read a counter before it is incremented,
380 * but then read another CPU's count which it has been subsequently
381 * decremented from -- we would see more decrements than we should.
382 * MNT_WRITE_HOLD protects against this scenario, because
383 * mnt_want_write first increments count, then smp_mb, then spins on
384 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
385 * we're counting up here.
3d733633 386 */
c6653a83 387 if (mnt_get_writers(mnt) > 0)
d3ef3d73
NP
388 ret = -EBUSY;
389 else
2e4b7fcd 390 mnt->mnt_flags |= MNT_READONLY;
d3ef3d73
NP
391 /*
392 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
393 * that become unheld will see MNT_READONLY.
394 */
395 smp_wmb();
396 mnt->mnt_flags &= ~MNT_WRITE_HOLD;
99b7db7b 397 br_write_unlock(vfsmount_lock);
3d733633 398 return ret;
8366025e 399}
8366025e 400
2e4b7fcd
DH
401static void __mnt_unmake_readonly(struct vfsmount *mnt)
402{
99b7db7b 403 br_write_lock(vfsmount_lock);
2e4b7fcd 404 mnt->mnt_flags &= ~MNT_READONLY;
99b7db7b 405 br_write_unlock(vfsmount_lock);
2e4b7fcd
DH
406}
407
a3ec947c 408void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
454e2398
DH
409{
410 mnt->mnt_sb = sb;
411 mnt->mnt_root = dget(sb->s_root);
454e2398
DH
412}
413
414EXPORT_SYMBOL(simple_set_mnt);
415
1da177e4
LT
416void free_vfsmnt(struct vfsmount *mnt)
417{
418 kfree(mnt->mnt_devname);
73cd49ec 419 mnt_free_id(mnt);
d3ef3d73
NP
420#ifdef CONFIG_SMP
421 free_percpu(mnt->mnt_writers);
422#endif
1da177e4
LT
423 kmem_cache_free(mnt_cache, mnt);
424}
425
426/*
a05964f3
RP
427 * find the first or last mount at @dentry on vfsmount @mnt depending on
428 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 429 * vfsmount_lock must be held for read or write.
1da177e4 430 */
a05964f3
RP
431struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
432 int dir)
1da177e4 433{
b58fed8b
RP
434 struct list_head *head = mount_hashtable + hash(mnt, dentry);
435 struct list_head *tmp = head;
1da177e4
LT
436 struct vfsmount *p, *found = NULL;
437
1da177e4 438 for (;;) {
a05964f3 439 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
440 p = NULL;
441 if (tmp == head)
442 break;
443 p = list_entry(tmp, struct vfsmount, mnt_hash);
444 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
a05964f3 445 found = p;
1da177e4
LT
446 break;
447 }
448 }
1da177e4
LT
449 return found;
450}
451
a05964f3
RP
452/*
453 * lookup_mnt increments the ref count before returning
454 * the vfsmount struct.
455 */
1c755af4 456struct vfsmount *lookup_mnt(struct path *path)
a05964f3
RP
457{
458 struct vfsmount *child_mnt;
99b7db7b
NP
459
460 br_read_lock(vfsmount_lock);
1c755af4 461 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
a05964f3 462 mntget(child_mnt);
99b7db7b 463 br_read_unlock(vfsmount_lock);
a05964f3
RP
464 return child_mnt;
465}
466
1da177e4
LT
467static inline int check_mnt(struct vfsmount *mnt)
468{
6b3286ed 469 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
470}
471
99b7db7b
NP
472/*
473 * vfsmount lock must be held for write
474 */
6b3286ed 475static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
476{
477 if (ns) {
478 ns->event = ++event;
479 wake_up_interruptible(&ns->poll);
480 }
481}
482
99b7db7b
NP
483/*
484 * vfsmount lock must be held for write
485 */
6b3286ed 486static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
487{
488 if (ns && ns->event != event) {
489 ns->event = event;
490 wake_up_interruptible(&ns->poll);
491 }
492}
493
5f57cbcc
NP
494/*
495 * Clear dentry's mounted state if it has no remaining mounts.
496 * vfsmount_lock must be held for write.
497 */
498static void dentry_reset_mounted(struct vfsmount *mnt, struct dentry *dentry)
499{
500 unsigned u;
501
502 for (u = 0; u < HASH_SIZE; u++) {
503 struct vfsmount *p;
504
505 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
506 if (p->mnt_mountpoint == dentry)
507 return;
508 }
509 }
510 spin_lock(&dentry->d_lock);
511 dentry->d_flags &= ~DCACHE_MOUNTED;
512 spin_unlock(&dentry->d_lock);
513}
514
99b7db7b
NP
515/*
516 * vfsmount lock must be held for write
517 */
1a390689 518static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
1da177e4 519{
1a390689
AV
520 old_path->dentry = mnt->mnt_mountpoint;
521 old_path->mnt = mnt->mnt_parent;
1da177e4
LT
522 mnt->mnt_parent = mnt;
523 mnt->mnt_mountpoint = mnt->mnt_root;
524 list_del_init(&mnt->mnt_child);
525 list_del_init(&mnt->mnt_hash);
5f57cbcc 526 dentry_reset_mounted(old_path->mnt, old_path->dentry);
1da177e4
LT
527}
528
99b7db7b
NP
529/*
530 * vfsmount lock must be held for write
531 */
b90fa9ae
RP
532void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
533 struct vfsmount *child_mnt)
534{
535 child_mnt->mnt_parent = mntget(mnt);
536 child_mnt->mnt_mountpoint = dget(dentry);
5f57cbcc
NP
537 spin_lock(&dentry->d_lock);
538 dentry->d_flags |= DCACHE_MOUNTED;
539 spin_unlock(&dentry->d_lock);
b90fa9ae
RP
540}
541
99b7db7b
NP
542/*
543 * vfsmount lock must be held for write
544 */
1a390689 545static void attach_mnt(struct vfsmount *mnt, struct path *path)
1da177e4 546{
1a390689 547 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
b90fa9ae 548 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689
AV
549 hash(path->mnt, path->dentry));
550 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
b90fa9ae
RP
551}
552
553/*
99b7db7b 554 * vfsmount lock must be held for write
b90fa9ae
RP
555 */
556static void commit_tree(struct vfsmount *mnt)
557{
558 struct vfsmount *parent = mnt->mnt_parent;
559 struct vfsmount *m;
560 LIST_HEAD(head);
6b3286ed 561 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae
RP
562
563 BUG_ON(parent == mnt);
564
565 list_add_tail(&head, &mnt->mnt_list);
566 list_for_each_entry(m, &head, mnt_list)
6b3286ed 567 m->mnt_ns = n;
b90fa9ae
RP
568 list_splice(&head, n->list.prev);
569
570 list_add_tail(&mnt->mnt_hash, mount_hashtable +
571 hash(parent, mnt->mnt_mountpoint));
572 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 573 touch_mnt_namespace(n);
1da177e4
LT
574}
575
576static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
577{
578 struct list_head *next = p->mnt_mounts.next;
579 if (next == &p->mnt_mounts) {
580 while (1) {
581 if (p == root)
582 return NULL;
583 next = p->mnt_child.next;
584 if (next != &p->mnt_parent->mnt_mounts)
585 break;
586 p = p->mnt_parent;
587 }
588 }
589 return list_entry(next, struct vfsmount, mnt_child);
590}
591
9676f0c6
RP
592static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
593{
594 struct list_head *prev = p->mnt_mounts.prev;
595 while (prev != &p->mnt_mounts) {
596 p = list_entry(prev, struct vfsmount, mnt_child);
597 prev = p->mnt_mounts.prev;
598 }
599 return p;
600}
601
36341f64
RP
602static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
603 int flag)
1da177e4
LT
604{
605 struct super_block *sb = old->mnt_sb;
606 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
607
608 if (mnt) {
719f5d7f
MS
609 if (flag & (CL_SLAVE | CL_PRIVATE))
610 mnt->mnt_group_id = 0; /* not a peer of original */
611 else
612 mnt->mnt_group_id = old->mnt_group_id;
613
614 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
615 int err = mnt_alloc_group_id(mnt);
616 if (err)
617 goto out_free;
618 }
619
be1a16a0 620 mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
1da177e4
LT
621 atomic_inc(&sb->s_active);
622 mnt->mnt_sb = sb;
623 mnt->mnt_root = dget(root);
624 mnt->mnt_mountpoint = mnt->mnt_root;
625 mnt->mnt_parent = mnt;
b90fa9ae 626
5afe0022
RP
627 if (flag & CL_SLAVE) {
628 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
629 mnt->mnt_master = old;
630 CLEAR_MNT_SHARED(mnt);
8aec0809 631 } else if (!(flag & CL_PRIVATE)) {
796a6b52 632 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
5afe0022
RP
633 list_add(&mnt->mnt_share, &old->mnt_share);
634 if (IS_MNT_SLAVE(old))
635 list_add(&mnt->mnt_slave, &old->mnt_slave);
636 mnt->mnt_master = old->mnt_master;
637 }
b90fa9ae
RP
638 if (flag & CL_MAKE_SHARED)
639 set_mnt_shared(mnt);
1da177e4
LT
640
641 /* stick the duplicate mount on the same expiry list
642 * as the original if that was on one */
36341f64 643 if (flag & CL_EXPIRE) {
36341f64
RP
644 if (!list_empty(&old->mnt_expire))
645 list_add(&mnt->mnt_expire, &old->mnt_expire);
36341f64 646 }
1da177e4
LT
647 }
648 return mnt;
719f5d7f
MS
649
650 out_free:
651 free_vfsmnt(mnt);
652 return NULL;
1da177e4
LT
653}
654
7b7b1ace 655static inline void __mntput(struct vfsmount *mnt)
1da177e4
LT
656{
657 struct super_block *sb = mnt->mnt_sb;
3d733633
DH
658 /*
659 * This probably indicates that somebody messed
660 * up a mnt_want/drop_write() pair. If this
661 * happens, the filesystem was probably unable
662 * to make r/w->r/o transitions.
663 */
d3ef3d73
NP
664 /*
665 * atomic_dec_and_lock() used to deal with ->mnt_count decrements
c6653a83 666 * provides barriers, so mnt_get_writers() below is safe. AV
d3ef3d73 667 */
c6653a83 668 WARN_ON(mnt_get_writers(mnt));
ca9c726e 669 fsnotify_vfsmount_delete(mnt);
1da177e4
LT
670 dput(mnt->mnt_root);
671 free_vfsmnt(mnt);
672 deactivate_super(sb);
673}
674
7b7b1ace
AV
675void mntput_no_expire(struct vfsmount *mnt)
676{
677repeat:
99b7db7b
NP
678 if (atomic_add_unless(&mnt->mnt_count, -1, 1))
679 return;
680 br_write_lock(vfsmount_lock);
681 if (!atomic_dec_and_test(&mnt->mnt_count)) {
682 br_write_unlock(vfsmount_lock);
683 return;
684 }
685 if (likely(!mnt->mnt_pinned)) {
686 br_write_unlock(vfsmount_lock);
687 __mntput(mnt);
688 return;
7b7b1ace 689 }
99b7db7b
NP
690 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
691 mnt->mnt_pinned = 0;
692 br_write_unlock(vfsmount_lock);
693 acct_auto_close_mnt(mnt);
694 goto repeat;
7b7b1ace 695}
7b7b1ace
AV
696EXPORT_SYMBOL(mntput_no_expire);
697
698void mnt_pin(struct vfsmount *mnt)
699{
99b7db7b 700 br_write_lock(vfsmount_lock);
7b7b1ace 701 mnt->mnt_pinned++;
99b7db7b 702 br_write_unlock(vfsmount_lock);
7b7b1ace
AV
703}
704
705EXPORT_SYMBOL(mnt_pin);
706
707void mnt_unpin(struct vfsmount *mnt)
708{
99b7db7b 709 br_write_lock(vfsmount_lock);
7b7b1ace
AV
710 if (mnt->mnt_pinned) {
711 atomic_inc(&mnt->mnt_count);
712 mnt->mnt_pinned--;
713 }
99b7db7b 714 br_write_unlock(vfsmount_lock);
7b7b1ace
AV
715}
716
717EXPORT_SYMBOL(mnt_unpin);
1da177e4 718
b3b304a2
MS
719static inline void mangle(struct seq_file *m, const char *s)
720{
721 seq_escape(m, s, " \t\n\\");
722}
723
724/*
725 * Simple .show_options callback for filesystems which don't want to
726 * implement more complex mount option showing.
727 *
728 * See also save_mount_options().
729 */
730int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
731{
2a32cebd
AV
732 const char *options;
733
734 rcu_read_lock();
735 options = rcu_dereference(mnt->mnt_sb->s_options);
b3b304a2
MS
736
737 if (options != NULL && options[0]) {
738 seq_putc(m, ',');
739 mangle(m, options);
740 }
2a32cebd 741 rcu_read_unlock();
b3b304a2
MS
742
743 return 0;
744}
745EXPORT_SYMBOL(generic_show_options);
746
747/*
748 * If filesystem uses generic_show_options(), this function should be
749 * called from the fill_super() callback.
750 *
751 * The .remount_fs callback usually needs to be handled in a special
752 * way, to make sure, that previous options are not overwritten if the
753 * remount fails.
754 *
755 * Also note, that if the filesystem's .remount_fs function doesn't
756 * reset all options to their default value, but changes only newly
757 * given options, then the displayed options will not reflect reality
758 * any more.
759 */
760void save_mount_options(struct super_block *sb, char *options)
761{
2a32cebd
AV
762 BUG_ON(sb->s_options);
763 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
764}
765EXPORT_SYMBOL(save_mount_options);
766
2a32cebd
AV
767void replace_mount_options(struct super_block *sb, char *options)
768{
769 char *old = sb->s_options;
770 rcu_assign_pointer(sb->s_options, options);
771 if (old) {
772 synchronize_rcu();
773 kfree(old);
774 }
775}
776EXPORT_SYMBOL(replace_mount_options);
777
a1a2c409 778#ifdef CONFIG_PROC_FS
1da177e4
LT
779/* iterator */
780static void *m_start(struct seq_file *m, loff_t *pos)
781{
a1a2c409 782 struct proc_mounts *p = m->private;
1da177e4 783
390c6843 784 down_read(&namespace_sem);
a1a2c409 785 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
786}
787
788static void *m_next(struct seq_file *m, void *v, loff_t *pos)
789{
a1a2c409 790 struct proc_mounts *p = m->private;
b0765fb8 791
a1a2c409 792 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
793}
794
795static void m_stop(struct seq_file *m, void *v)
796{
390c6843 797 up_read(&namespace_sem);
1da177e4
LT
798}
799
9f5596af
AV
800int mnt_had_events(struct proc_mounts *p)
801{
802 struct mnt_namespace *ns = p->ns;
803 int res = 0;
804
99b7db7b 805 br_read_lock(vfsmount_lock);
9f5596af
AV
806 if (p->event != ns->event) {
807 p->event = ns->event;
808 res = 1;
809 }
99b7db7b 810 br_read_unlock(vfsmount_lock);
9f5596af
AV
811
812 return res;
813}
814
2d4d4864
RP
815struct proc_fs_info {
816 int flag;
817 const char *str;
818};
819
2069f457 820static int show_sb_opts(struct seq_file *m, struct super_block *sb)
1da177e4 821{
2d4d4864 822 static const struct proc_fs_info fs_info[] = {
1da177e4
LT
823 { MS_SYNCHRONOUS, ",sync" },
824 { MS_DIRSYNC, ",dirsync" },
825 { MS_MANDLOCK, ",mand" },
1da177e4
LT
826 { 0, NULL }
827 };
2d4d4864
RP
828 const struct proc_fs_info *fs_infop;
829
830 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
831 if (sb->s_flags & fs_infop->flag)
832 seq_puts(m, fs_infop->str);
833 }
2069f457
EP
834
835 return security_sb_show_options(m, sb);
2d4d4864
RP
836}
837
838static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
839{
840 static const struct proc_fs_info mnt_info[] = {
1da177e4
LT
841 { MNT_NOSUID, ",nosuid" },
842 { MNT_NODEV, ",nodev" },
843 { MNT_NOEXEC, ",noexec" },
fc33a7bb
CH
844 { MNT_NOATIME, ",noatime" },
845 { MNT_NODIRATIME, ",nodiratime" },
47ae32d6 846 { MNT_RELATIME, ",relatime" },
1da177e4
LT
847 { 0, NULL }
848 };
2d4d4864
RP
849 const struct proc_fs_info *fs_infop;
850
851 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
852 if (mnt->mnt_flags & fs_infop->flag)
853 seq_puts(m, fs_infop->str);
854 }
855}
856
857static void show_type(struct seq_file *m, struct super_block *sb)
858{
859 mangle(m, sb->s_type->name);
860 if (sb->s_subtype && sb->s_subtype[0]) {
861 seq_putc(m, '.');
862 mangle(m, sb->s_subtype);
863 }
864}
865
866static int show_vfsmnt(struct seq_file *m, void *v)
867{
868 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
869 int err = 0;
c32c2f63 870 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1da177e4
LT
871
872 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
873 seq_putc(m, ' ');
c32c2f63 874 seq_path(m, &mnt_path, " \t\n\\");
1da177e4 875 seq_putc(m, ' ');
2d4d4864 876 show_type(m, mnt->mnt_sb);
2e4b7fcd 877 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
2069f457
EP
878 err = show_sb_opts(m, mnt->mnt_sb);
879 if (err)
880 goto out;
2d4d4864 881 show_mnt_opts(m, mnt);
1da177e4
LT
882 if (mnt->mnt_sb->s_op->show_options)
883 err = mnt->mnt_sb->s_op->show_options(m, mnt);
884 seq_puts(m, " 0 0\n");
2069f457 885out:
1da177e4
LT
886 return err;
887}
888
a1a2c409 889const struct seq_operations mounts_op = {
1da177e4
LT
890 .start = m_start,
891 .next = m_next,
892 .stop = m_stop,
893 .show = show_vfsmnt
894};
895
2d4d4864
RP
896static int show_mountinfo(struct seq_file *m, void *v)
897{
898 struct proc_mounts *p = m->private;
899 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
900 struct super_block *sb = mnt->mnt_sb;
901 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
902 struct path root = p->root;
903 int err = 0;
904
905 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
906 MAJOR(sb->s_dev), MINOR(sb->s_dev));
907 seq_dentry(m, mnt->mnt_root, " \t\n\\");
908 seq_putc(m, ' ');
909 seq_path_root(m, &mnt_path, &root, " \t\n\\");
910 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
911 /*
912 * Mountpoint is outside root, discard that one. Ugly,
913 * but less so than trying to do that in iterator in a
914 * race-free way (due to renames).
915 */
916 return SEQ_SKIP;
917 }
918 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
919 show_mnt_opts(m, mnt);
920
921 /* Tagged fields ("foo:X" or "bar") */
922 if (IS_MNT_SHARED(mnt))
923 seq_printf(m, " shared:%i", mnt->mnt_group_id);
97e7e0f7
MS
924 if (IS_MNT_SLAVE(mnt)) {
925 int master = mnt->mnt_master->mnt_group_id;
926 int dom = get_dominating_id(mnt, &p->root);
927 seq_printf(m, " master:%i", master);
928 if (dom && dom != master)
929 seq_printf(m, " propagate_from:%i", dom);
930 }
2d4d4864
RP
931 if (IS_MNT_UNBINDABLE(mnt))
932 seq_puts(m, " unbindable");
933
934 /* Filesystem specific data */
935 seq_puts(m, " - ");
936 show_type(m, sb);
937 seq_putc(m, ' ');
938 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
939 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
2069f457
EP
940 err = show_sb_opts(m, sb);
941 if (err)
942 goto out;
2d4d4864
RP
943 if (sb->s_op->show_options)
944 err = sb->s_op->show_options(m, mnt);
945 seq_putc(m, '\n');
2069f457 946out:
2d4d4864
RP
947 return err;
948}
949
950const struct seq_operations mountinfo_op = {
951 .start = m_start,
952 .next = m_next,
953 .stop = m_stop,
954 .show = show_mountinfo,
955};
956
b4629fe2
CL
957static int show_vfsstat(struct seq_file *m, void *v)
958{
b0765fb8 959 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
c32c2f63 960 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
b4629fe2
CL
961 int err = 0;
962
963 /* device */
964 if (mnt->mnt_devname) {
965 seq_puts(m, "device ");
966 mangle(m, mnt->mnt_devname);
967 } else
968 seq_puts(m, "no device");
969
970 /* mount point */
971 seq_puts(m, " mounted on ");
c32c2f63 972 seq_path(m, &mnt_path, " \t\n\\");
b4629fe2
CL
973 seq_putc(m, ' ');
974
975 /* file system type */
976 seq_puts(m, "with fstype ");
2d4d4864 977 show_type(m, mnt->mnt_sb);
b4629fe2
CL
978
979 /* optional statistics */
980 if (mnt->mnt_sb->s_op->show_stats) {
981 seq_putc(m, ' ');
982 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
983 }
984
985 seq_putc(m, '\n');
986 return err;
987}
988
a1a2c409 989const struct seq_operations mountstats_op = {
b4629fe2
CL
990 .start = m_start,
991 .next = m_next,
992 .stop = m_stop,
993 .show = show_vfsstat,
994};
a1a2c409 995#endif /* CONFIG_PROC_FS */
b4629fe2 996
1da177e4
LT
997/**
998 * may_umount_tree - check if a mount tree is busy
999 * @mnt: root of mount tree
1000 *
1001 * This is called to check if a tree of mounts has any
1002 * open files, pwds, chroots or sub mounts that are
1003 * busy.
1004 */
1005int may_umount_tree(struct vfsmount *mnt)
1006{
36341f64
RP
1007 int actual_refs = 0;
1008 int minimum_refs = 0;
1009 struct vfsmount *p;
1da177e4 1010
99b7db7b 1011 br_read_lock(vfsmount_lock);
36341f64 1012 for (p = mnt; p; p = next_mnt(p, mnt)) {
1da177e4
LT
1013 actual_refs += atomic_read(&p->mnt_count);
1014 minimum_refs += 2;
1da177e4 1015 }
99b7db7b 1016 br_read_unlock(vfsmount_lock);
1da177e4
LT
1017
1018 if (actual_refs > minimum_refs)
e3474a8e 1019 return 0;
1da177e4 1020
e3474a8e 1021 return 1;
1da177e4
LT
1022}
1023
1024EXPORT_SYMBOL(may_umount_tree);
1025
1026/**
1027 * may_umount - check if a mount point is busy
1028 * @mnt: root of mount
1029 *
1030 * This is called to check if a mount point has any
1031 * open files, pwds, chroots or sub mounts. If the
1032 * mount has sub mounts this will return busy
1033 * regardless of whether the sub mounts are busy.
1034 *
1035 * Doesn't take quota and stuff into account. IOW, in some cases it will
1036 * give false negatives. The main reason why it's here is that we need
1037 * a non-destructive way to look for easily umountable filesystems.
1038 */
1039int may_umount(struct vfsmount *mnt)
1040{
e3474a8e 1041 int ret = 1;
8ad08d8a 1042 down_read(&namespace_sem);
99b7db7b 1043 br_read_lock(vfsmount_lock);
a05964f3 1044 if (propagate_mount_busy(mnt, 2))
e3474a8e 1045 ret = 0;
99b7db7b 1046 br_read_unlock(vfsmount_lock);
8ad08d8a 1047 up_read(&namespace_sem);
a05964f3 1048 return ret;
1da177e4
LT
1049}
1050
1051EXPORT_SYMBOL(may_umount);
1052
b90fa9ae 1053void release_mounts(struct list_head *head)
70fbcdf4
RP
1054{
1055 struct vfsmount *mnt;
bf066c7d 1056 while (!list_empty(head)) {
b5e61818 1057 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
70fbcdf4
RP
1058 list_del_init(&mnt->mnt_hash);
1059 if (mnt->mnt_parent != mnt) {
1060 struct dentry *dentry;
1061 struct vfsmount *m;
99b7db7b
NP
1062
1063 br_write_lock(vfsmount_lock);
70fbcdf4
RP
1064 dentry = mnt->mnt_mountpoint;
1065 m = mnt->mnt_parent;
1066 mnt->mnt_mountpoint = mnt->mnt_root;
1067 mnt->mnt_parent = mnt;
7c4b93d8 1068 m->mnt_ghosts--;
99b7db7b 1069 br_write_unlock(vfsmount_lock);
70fbcdf4
RP
1070 dput(dentry);
1071 mntput(m);
1072 }
1073 mntput(mnt);
1074 }
1075}
1076
99b7db7b
NP
1077/*
1078 * vfsmount lock must be held for write
1079 * namespace_sem must be held for write
1080 */
a05964f3 1081void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1da177e4
LT
1082{
1083 struct vfsmount *p;
1da177e4 1084
1bfba4e8
AM
1085 for (p = mnt; p; p = next_mnt(p, mnt))
1086 list_move(&p->mnt_hash, kill);
1da177e4 1087
a05964f3
RP
1088 if (propagate)
1089 propagate_umount(kill);
1090
70fbcdf4
RP
1091 list_for_each_entry(p, kill, mnt_hash) {
1092 list_del_init(&p->mnt_expire);
1093 list_del_init(&p->mnt_list);
6b3286ed
KK
1094 __touch_mnt_namespace(p->mnt_ns);
1095 p->mnt_ns = NULL;
70fbcdf4 1096 list_del_init(&p->mnt_child);
7c4b93d8
AV
1097 if (p->mnt_parent != p) {
1098 p->mnt_parent->mnt_ghosts++;
5f57cbcc 1099 dentry_reset_mounted(p->mnt_parent, p->mnt_mountpoint);
7c4b93d8 1100 }
a05964f3 1101 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1102 }
1103}
1104
c35038be
AV
1105static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1106
1da177e4
LT
1107static int do_umount(struct vfsmount *mnt, int flags)
1108{
b58fed8b 1109 struct super_block *sb = mnt->mnt_sb;
1da177e4 1110 int retval;
70fbcdf4 1111 LIST_HEAD(umount_list);
1da177e4
LT
1112
1113 retval = security_sb_umount(mnt, flags);
1114 if (retval)
1115 return retval;
1116
1117 /*
1118 * Allow userspace to request a mountpoint be expired rather than
1119 * unmounting unconditionally. Unmount only happens if:
1120 * (1) the mark is already set (the mark is cleared by mntput())
1121 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1122 */
1123 if (flags & MNT_EXPIRE) {
6ac08c39 1124 if (mnt == current->fs->root.mnt ||
1da177e4
LT
1125 flags & (MNT_FORCE | MNT_DETACH))
1126 return -EINVAL;
1127
1128 if (atomic_read(&mnt->mnt_count) != 2)
1129 return -EBUSY;
1130
1131 if (!xchg(&mnt->mnt_expiry_mark, 1))
1132 return -EAGAIN;
1133 }
1134
1135 /*
1136 * If we may have to abort operations to get out of this
1137 * mount, and they will themselves hold resources we must
1138 * allow the fs to do things. In the Unix tradition of
1139 * 'Gee thats tricky lets do it in userspace' the umount_begin
1140 * might fail to complete on the first run through as other tasks
1141 * must return, and the like. Thats for the mount program to worry
1142 * about for the moment.
1143 */
1144
42faad99 1145 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1146 sb->s_op->umount_begin(sb);
42faad99 1147 }
1da177e4
LT
1148
1149 /*
1150 * No sense to grab the lock for this test, but test itself looks
1151 * somewhat bogus. Suggestions for better replacement?
1152 * Ho-hum... In principle, we might treat that as umount + switch
1153 * to rootfs. GC would eventually take care of the old vfsmount.
1154 * Actually it makes sense, especially if rootfs would contain a
1155 * /reboot - static binary that would close all descriptors and
1156 * call reboot(9). Then init(8) could umount root and exec /reboot.
1157 */
6ac08c39 1158 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1159 /*
1160 * Special case for "unmounting" root ...
1161 * we just try to remount it readonly.
1162 */
1163 down_write(&sb->s_umount);
4aa98cf7 1164 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1165 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1166 up_write(&sb->s_umount);
1167 return retval;
1168 }
1169
390c6843 1170 down_write(&namespace_sem);
99b7db7b 1171 br_write_lock(vfsmount_lock);
5addc5dd 1172 event++;
1da177e4 1173
c35038be
AV
1174 if (!(flags & MNT_DETACH))
1175 shrink_submounts(mnt, &umount_list);
1176
1da177e4 1177 retval = -EBUSY;
a05964f3 1178 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1da177e4 1179 if (!list_empty(&mnt->mnt_list))
a05964f3 1180 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1181 retval = 0;
1182 }
99b7db7b 1183 br_write_unlock(vfsmount_lock);
390c6843 1184 up_write(&namespace_sem);
70fbcdf4 1185 release_mounts(&umount_list);
1da177e4
LT
1186 return retval;
1187}
1188
1189/*
1190 * Now umount can handle mount points as well as block devices.
1191 * This is important for filesystems which use unnamed block devices.
1192 *
1193 * We now support a flag for forced unmount like the other 'big iron'
1194 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1195 */
1196
bdc480e3 1197SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1198{
2d8f3038 1199 struct path path;
1da177e4 1200 int retval;
db1f05bb 1201 int lookup_flags = 0;
1da177e4 1202
db1f05bb
MS
1203 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1204 return -EINVAL;
1205
1206 if (!(flags & UMOUNT_NOFOLLOW))
1207 lookup_flags |= LOOKUP_FOLLOW;
1208
1209 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1210 if (retval)
1211 goto out;
1212 retval = -EINVAL;
2d8f3038 1213 if (path.dentry != path.mnt->mnt_root)
1da177e4 1214 goto dput_and_out;
2d8f3038 1215 if (!check_mnt(path.mnt))
1da177e4
LT
1216 goto dput_and_out;
1217
1218 retval = -EPERM;
1219 if (!capable(CAP_SYS_ADMIN))
1220 goto dput_and_out;
1221
2d8f3038 1222 retval = do_umount(path.mnt, flags);
1da177e4 1223dput_and_out:
429731b1 1224 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038
AV
1225 dput(path.dentry);
1226 mntput_no_expire(path.mnt);
1da177e4
LT
1227out:
1228 return retval;
1229}
1230
1231#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1232
1233/*
b58fed8b 1234 * The 2.0 compatible umount. No flags.
1da177e4 1235 */
bdc480e3 1236SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1237{
b58fed8b 1238 return sys_umount(name, 0);
1da177e4
LT
1239}
1240
1241#endif
1242
2d92ab3c 1243static int mount_is_safe(struct path *path)
1da177e4
LT
1244{
1245 if (capable(CAP_SYS_ADMIN))
1246 return 0;
1247 return -EPERM;
1248#ifdef notyet
2d92ab3c 1249 if (S_ISLNK(path->dentry->d_inode->i_mode))
1da177e4 1250 return -EPERM;
2d92ab3c 1251 if (path->dentry->d_inode->i_mode & S_ISVTX) {
da9592ed 1252 if (current_uid() != path->dentry->d_inode->i_uid)
1da177e4
LT
1253 return -EPERM;
1254 }
2d92ab3c 1255 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1da177e4
LT
1256 return -EPERM;
1257 return 0;
1258#endif
1259}
1260
b90fa9ae 1261struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
36341f64 1262 int flag)
1da177e4
LT
1263{
1264 struct vfsmount *res, *p, *q, *r, *s;
1a390689 1265 struct path path;
1da177e4 1266
9676f0c6
RP
1267 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1268 return NULL;
1269
36341f64 1270 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
1271 if (!q)
1272 goto Enomem;
1273 q->mnt_mountpoint = mnt->mnt_mountpoint;
1274
1275 p = mnt;
fdadd65f 1276 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
7ec02ef1 1277 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1278 continue;
1279
1280 for (s = r; s; s = next_mnt(s, r)) {
9676f0c6
RP
1281 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1282 s = skip_mnt_tree(s);
1283 continue;
1284 }
1da177e4
LT
1285 while (p != s->mnt_parent) {
1286 p = p->mnt_parent;
1287 q = q->mnt_parent;
1288 }
1289 p = s;
1a390689
AV
1290 path.mnt = q;
1291 path.dentry = p->mnt_mountpoint;
36341f64 1292 q = clone_mnt(p, p->mnt_root, flag);
1da177e4
LT
1293 if (!q)
1294 goto Enomem;
99b7db7b 1295 br_write_lock(vfsmount_lock);
1da177e4 1296 list_add_tail(&q->mnt_list, &res->mnt_list);
1a390689 1297 attach_mnt(q, &path);
99b7db7b 1298 br_write_unlock(vfsmount_lock);
1da177e4
LT
1299 }
1300 }
1301 return res;
b58fed8b 1302Enomem:
1da177e4 1303 if (res) {
70fbcdf4 1304 LIST_HEAD(umount_list);
99b7db7b 1305 br_write_lock(vfsmount_lock);
a05964f3 1306 umount_tree(res, 0, &umount_list);
99b7db7b 1307 br_write_unlock(vfsmount_lock);
70fbcdf4 1308 release_mounts(&umount_list);
1da177e4
LT
1309 }
1310 return NULL;
1311}
1312
589ff870 1313struct vfsmount *collect_mounts(struct path *path)
8aec0809
AV
1314{
1315 struct vfsmount *tree;
1a60a280 1316 down_write(&namespace_sem);
589ff870 1317 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1a60a280 1318 up_write(&namespace_sem);
8aec0809
AV
1319 return tree;
1320}
1321
1322void drop_collected_mounts(struct vfsmount *mnt)
1323{
1324 LIST_HEAD(umount_list);
1a60a280 1325 down_write(&namespace_sem);
99b7db7b 1326 br_write_lock(vfsmount_lock);
8aec0809 1327 umount_tree(mnt, 0, &umount_list);
99b7db7b 1328 br_write_unlock(vfsmount_lock);
1a60a280 1329 up_write(&namespace_sem);
8aec0809
AV
1330 release_mounts(&umount_list);
1331}
1332
1f707137
AV
1333int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1334 struct vfsmount *root)
1335{
1336 struct vfsmount *mnt;
1337 int res = f(root, arg);
1338 if (res)
1339 return res;
1340 list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1341 res = f(mnt, arg);
1342 if (res)
1343 return res;
1344 }
1345 return 0;
1346}
1347
719f5d7f
MS
1348static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1349{
1350 struct vfsmount *p;
1351
1352 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1353 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1354 mnt_release_group_id(p);
1355 }
1356}
1357
1358static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1359{
1360 struct vfsmount *p;
1361
1362 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1363 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1364 int err = mnt_alloc_group_id(p);
1365 if (err) {
1366 cleanup_group_ids(mnt, p);
1367 return err;
1368 }
1369 }
1370 }
1371
1372 return 0;
1373}
1374
b90fa9ae
RP
1375/*
1376 * @source_mnt : mount tree to be attached
21444403
RP
1377 * @nd : place the mount tree @source_mnt is attached
1378 * @parent_nd : if non-null, detach the source_mnt from its parent and
1379 * store the parent mount and mountpoint dentry.
1380 * (done when source_mnt is moved)
b90fa9ae
RP
1381 *
1382 * NOTE: in the table below explains the semantics when a source mount
1383 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1384 * ---------------------------------------------------------------------------
1385 * | BIND MOUNT OPERATION |
1386 * |**************************************************************************
1387 * | source-->| shared | private | slave | unbindable |
1388 * | dest | | | | |
1389 * | | | | | | |
1390 * | v | | | | |
1391 * |**************************************************************************
1392 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1393 * | | | | | |
1394 * |non-shared| shared (+) | private | slave (*) | invalid |
1395 * ***************************************************************************
b90fa9ae
RP
1396 * A bind operation clones the source mount and mounts the clone on the
1397 * destination mount.
1398 *
1399 * (++) the cloned mount is propagated to all the mounts in the propagation
1400 * tree of the destination mount and the cloned mount is added to
1401 * the peer group of the source mount.
1402 * (+) the cloned mount is created under the destination mount and is marked
1403 * as shared. The cloned mount is added to the peer group of the source
1404 * mount.
5afe0022
RP
1405 * (+++) the mount is propagated to all the mounts in the propagation tree
1406 * of the destination mount and the cloned mount is made slave
1407 * of the same master as that of the source mount. The cloned mount
1408 * is marked as 'shared and slave'.
1409 * (*) the cloned mount is made a slave of the same master as that of the
1410 * source mount.
1411 *
9676f0c6
RP
1412 * ---------------------------------------------------------------------------
1413 * | MOVE MOUNT OPERATION |
1414 * |**************************************************************************
1415 * | source-->| shared | private | slave | unbindable |
1416 * | dest | | | | |
1417 * | | | | | | |
1418 * | v | | | | |
1419 * |**************************************************************************
1420 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1421 * | | | | | |
1422 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1423 * ***************************************************************************
5afe0022
RP
1424 *
1425 * (+) the mount is moved to the destination. And is then propagated to
1426 * all the mounts in the propagation tree of the destination mount.
21444403 1427 * (+*) the mount is moved to the destination.
5afe0022
RP
1428 * (+++) the mount is moved to the destination and is then propagated to
1429 * all the mounts belonging to the destination mount's propagation tree.
1430 * the mount is marked as 'shared and slave'.
1431 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1432 *
1433 * if the source mount is a tree, the operations explained above is
1434 * applied to each mount in the tree.
1435 * Must be called without spinlocks held, since this function can sleep
1436 * in allocations.
1437 */
1438static int attach_recursive_mnt(struct vfsmount *source_mnt,
1a390689 1439 struct path *path, struct path *parent_path)
b90fa9ae
RP
1440{
1441 LIST_HEAD(tree_list);
1a390689
AV
1442 struct vfsmount *dest_mnt = path->mnt;
1443 struct dentry *dest_dentry = path->dentry;
b90fa9ae 1444 struct vfsmount *child, *p;
719f5d7f 1445 int err;
b90fa9ae 1446
719f5d7f
MS
1447 if (IS_MNT_SHARED(dest_mnt)) {
1448 err = invent_group_ids(source_mnt, true);
1449 if (err)
1450 goto out;
1451 }
1452 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1453 if (err)
1454 goto out_cleanup_ids;
b90fa9ae 1455
99b7db7b 1456 br_write_lock(vfsmount_lock);
df1a1ad2 1457
b90fa9ae
RP
1458 if (IS_MNT_SHARED(dest_mnt)) {
1459 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1460 set_mnt_shared(p);
1461 }
1a390689
AV
1462 if (parent_path) {
1463 detach_mnt(source_mnt, parent_path);
1464 attach_mnt(source_mnt, path);
e5d67f07 1465 touch_mnt_namespace(parent_path->mnt->mnt_ns);
21444403
RP
1466 } else {
1467 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1468 commit_tree(source_mnt);
1469 }
b90fa9ae
RP
1470
1471 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1472 list_del_init(&child->mnt_hash);
1473 commit_tree(child);
1474 }
99b7db7b
NP
1475 br_write_unlock(vfsmount_lock);
1476
b90fa9ae 1477 return 0;
719f5d7f
MS
1478
1479 out_cleanup_ids:
1480 if (IS_MNT_SHARED(dest_mnt))
1481 cleanup_group_ids(source_mnt, NULL);
1482 out:
1483 return err;
b90fa9ae
RP
1484}
1485
8c3ee42e 1486static int graft_tree(struct vfsmount *mnt, struct path *path)
1da177e4
LT
1487{
1488 int err;
1489 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1490 return -EINVAL;
1491
8c3ee42e 1492 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1da177e4
LT
1493 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1494 return -ENOTDIR;
1495
1496 err = -ENOENT;
8c3ee42e 1497 mutex_lock(&path->dentry->d_inode->i_mutex);
d83c49f3 1498 if (cant_mount(path->dentry))
1da177e4
LT
1499 goto out_unlock;
1500
f3da392e 1501 if (!d_unlinked(path->dentry))
8c3ee42e 1502 err = attach_recursive_mnt(mnt, path, NULL);
1da177e4 1503out_unlock:
8c3ee42e 1504 mutex_unlock(&path->dentry->d_inode->i_mutex);
1da177e4
LT
1505 return err;
1506}
1507
7a2e8a8f
VA
1508/*
1509 * Sanity check the flags to change_mnt_propagation.
1510 */
1511
1512static int flags_to_propagation_type(int flags)
1513{
1514 int type = flags & ~MS_REC;
1515
1516 /* Fail if any non-propagation flags are set */
1517 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1518 return 0;
1519 /* Only one propagation flag should be set */
1520 if (!is_power_of_2(type))
1521 return 0;
1522 return type;
1523}
1524
07b20889
RP
1525/*
1526 * recursively change the type of the mountpoint.
1527 */
0a0d8a46 1528static int do_change_type(struct path *path, int flag)
07b20889 1529{
2d92ab3c 1530 struct vfsmount *m, *mnt = path->mnt;
07b20889 1531 int recurse = flag & MS_REC;
7a2e8a8f 1532 int type;
719f5d7f 1533 int err = 0;
07b20889 1534
ee6f9582
MS
1535 if (!capable(CAP_SYS_ADMIN))
1536 return -EPERM;
1537
2d92ab3c 1538 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1539 return -EINVAL;
1540
7a2e8a8f
VA
1541 type = flags_to_propagation_type(flag);
1542 if (!type)
1543 return -EINVAL;
1544
07b20889 1545 down_write(&namespace_sem);
719f5d7f
MS
1546 if (type == MS_SHARED) {
1547 err = invent_group_ids(mnt, recurse);
1548 if (err)
1549 goto out_unlock;
1550 }
1551
99b7db7b 1552 br_write_lock(vfsmount_lock);
07b20889
RP
1553 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1554 change_mnt_propagation(m, type);
99b7db7b 1555 br_write_unlock(vfsmount_lock);
719f5d7f
MS
1556
1557 out_unlock:
07b20889 1558 up_write(&namespace_sem);
719f5d7f 1559 return err;
07b20889
RP
1560}
1561
1da177e4
LT
1562/*
1563 * do loopback mount.
1564 */
0a0d8a46 1565static int do_loopback(struct path *path, char *old_name,
2dafe1c4 1566 int recurse)
1da177e4 1567{
2d92ab3c 1568 struct path old_path;
1da177e4 1569 struct vfsmount *mnt = NULL;
2d92ab3c 1570 int err = mount_is_safe(path);
1da177e4
LT
1571 if (err)
1572 return err;
1573 if (!old_name || !*old_name)
1574 return -EINVAL;
2d92ab3c 1575 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1576 if (err)
1577 return err;
1578
390c6843 1579 down_write(&namespace_sem);
1da177e4 1580 err = -EINVAL;
2d92ab3c 1581 if (IS_MNT_UNBINDABLE(old_path.mnt))
4ac91378 1582 goto out;
9676f0c6 1583
2d92ab3c 1584 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
ccd48bc7 1585 goto out;
1da177e4 1586
ccd48bc7
AV
1587 err = -ENOMEM;
1588 if (recurse)
2d92ab3c 1589 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
ccd48bc7 1590 else
2d92ab3c 1591 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
ccd48bc7
AV
1592
1593 if (!mnt)
1594 goto out;
1595
2d92ab3c 1596 err = graft_tree(mnt, path);
ccd48bc7 1597 if (err) {
70fbcdf4 1598 LIST_HEAD(umount_list);
99b7db7b
NP
1599
1600 br_write_lock(vfsmount_lock);
a05964f3 1601 umount_tree(mnt, 0, &umount_list);
99b7db7b 1602 br_write_unlock(vfsmount_lock);
70fbcdf4 1603 release_mounts(&umount_list);
5b83d2c5 1604 }
1da177e4 1605
ccd48bc7 1606out:
390c6843 1607 up_write(&namespace_sem);
2d92ab3c 1608 path_put(&old_path);
1da177e4
LT
1609 return err;
1610}
1611
2e4b7fcd
DH
1612static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1613{
1614 int error = 0;
1615 int readonly_request = 0;
1616
1617 if (ms_flags & MS_RDONLY)
1618 readonly_request = 1;
1619 if (readonly_request == __mnt_is_readonly(mnt))
1620 return 0;
1621
1622 if (readonly_request)
1623 error = mnt_make_readonly(mnt);
1624 else
1625 __mnt_unmake_readonly(mnt);
1626 return error;
1627}
1628
1da177e4
LT
1629/*
1630 * change filesystem flags. dir should be a physical root of filesystem.
1631 * If you've mounted a non-root directory somewhere and want to do remount
1632 * on it - tough luck.
1633 */
0a0d8a46 1634static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1635 void *data)
1636{
1637 int err;
2d92ab3c 1638 struct super_block *sb = path->mnt->mnt_sb;
1da177e4
LT
1639
1640 if (!capable(CAP_SYS_ADMIN))
1641 return -EPERM;
1642
2d92ab3c 1643 if (!check_mnt(path->mnt))
1da177e4
LT
1644 return -EINVAL;
1645
2d92ab3c 1646 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1647 return -EINVAL;
1648
1649 down_write(&sb->s_umount);
2e4b7fcd 1650 if (flags & MS_BIND)
2d92ab3c 1651 err = change_mount_flags(path->mnt, flags);
4aa98cf7 1652 else
2e4b7fcd 1653 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1654 if (!err) {
99b7db7b 1655 br_write_lock(vfsmount_lock);
495d6c9c 1656 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
2d92ab3c 1657 path->mnt->mnt_flags = mnt_flags;
99b7db7b 1658 br_write_unlock(vfsmount_lock);
7b43a79f 1659 }
1da177e4 1660 up_write(&sb->s_umount);
0e55a7cc 1661 if (!err) {
99b7db7b 1662 br_write_lock(vfsmount_lock);
0e55a7cc 1663 touch_mnt_namespace(path->mnt->mnt_ns);
99b7db7b 1664 br_write_unlock(vfsmount_lock);
0e55a7cc 1665 }
1da177e4
LT
1666 return err;
1667}
1668
9676f0c6
RP
1669static inline int tree_contains_unbindable(struct vfsmount *mnt)
1670{
1671 struct vfsmount *p;
1672 for (p = mnt; p; p = next_mnt(p, mnt)) {
1673 if (IS_MNT_UNBINDABLE(p))
1674 return 1;
1675 }
1676 return 0;
1677}
1678
0a0d8a46 1679static int do_move_mount(struct path *path, char *old_name)
1da177e4 1680{
2d92ab3c 1681 struct path old_path, parent_path;
1da177e4
LT
1682 struct vfsmount *p;
1683 int err = 0;
1684 if (!capable(CAP_SYS_ADMIN))
1685 return -EPERM;
1686 if (!old_name || !*old_name)
1687 return -EINVAL;
2d92ab3c 1688 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1689 if (err)
1690 return err;
1691
390c6843 1692 down_write(&namespace_sem);
2d92ab3c 1693 while (d_mountpoint(path->dentry) &&
9393bd07 1694 follow_down(path))
1da177e4
LT
1695 ;
1696 err = -EINVAL;
2d92ab3c 1697 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1da177e4
LT
1698 goto out;
1699
1700 err = -ENOENT;
2d92ab3c 1701 mutex_lock(&path->dentry->d_inode->i_mutex);
d83c49f3 1702 if (cant_mount(path->dentry))
1da177e4
LT
1703 goto out1;
1704
f3da392e 1705 if (d_unlinked(path->dentry))
21444403 1706 goto out1;
1da177e4
LT
1707
1708 err = -EINVAL;
2d92ab3c 1709 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1710 goto out1;
1da177e4 1711
2d92ab3c 1712 if (old_path.mnt == old_path.mnt->mnt_parent)
21444403 1713 goto out1;
1da177e4 1714
2d92ab3c
AV
1715 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1716 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1717 goto out1;
1718 /*
1719 * Don't move a mount residing in a shared parent.
1720 */
2d92ab3c
AV
1721 if (old_path.mnt->mnt_parent &&
1722 IS_MNT_SHARED(old_path.mnt->mnt_parent))
21444403 1723 goto out1;
9676f0c6
RP
1724 /*
1725 * Don't move a mount tree containing unbindable mounts to a destination
1726 * mount which is shared.
1727 */
2d92ab3c
AV
1728 if (IS_MNT_SHARED(path->mnt) &&
1729 tree_contains_unbindable(old_path.mnt))
9676f0c6 1730 goto out1;
1da177e4 1731 err = -ELOOP;
2d92ab3c
AV
1732 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1733 if (p == old_path.mnt)
21444403 1734 goto out1;
1da177e4 1735
2d92ab3c 1736 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
4ac91378 1737 if (err)
21444403 1738 goto out1;
1da177e4
LT
1739
1740 /* if the mount is moved, it should no longer be expire
1741 * automatically */
2d92ab3c 1742 list_del_init(&old_path.mnt->mnt_expire);
1da177e4 1743out1:
2d92ab3c 1744 mutex_unlock(&path->dentry->d_inode->i_mutex);
1da177e4 1745out:
390c6843 1746 up_write(&namespace_sem);
1da177e4 1747 if (!err)
1a390689 1748 path_put(&parent_path);
2d92ab3c 1749 path_put(&old_path);
1da177e4
LT
1750 return err;
1751}
1752
1753/*
1754 * create a new mount for userspace and request it to be added into the
1755 * namespace's tree
1756 */
0a0d8a46 1757static int do_new_mount(struct path *path, char *type, int flags,
1da177e4
LT
1758 int mnt_flags, char *name, void *data)
1759{
1760 struct vfsmount *mnt;
1761
eca6f534 1762 if (!type)
1da177e4
LT
1763 return -EINVAL;
1764
1765 /* we need capabilities... */
1766 if (!capable(CAP_SYS_ADMIN))
1767 return -EPERM;
1768
1769 mnt = do_kern_mount(type, flags, name, data);
1770 if (IS_ERR(mnt))
1771 return PTR_ERR(mnt);
1772
2d92ab3c 1773 return do_add_mount(mnt, path, mnt_flags, NULL);
1da177e4
LT
1774}
1775
1776/*
1777 * add a mount into a namespace's mount tree
1778 * - provide the option of adding the new mount to an expiration list
1779 */
8d66bf54 1780int do_add_mount(struct vfsmount *newmnt, struct path *path,
1da177e4
LT
1781 int mnt_flags, struct list_head *fslist)
1782{
1783 int err;
1784
8089352a 1785 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
27d55f1f 1786
390c6843 1787 down_write(&namespace_sem);
1da177e4 1788 /* Something was mounted here while we slept */
8d66bf54 1789 while (d_mountpoint(path->dentry) &&
9393bd07 1790 follow_down(path))
1da177e4
LT
1791 ;
1792 err = -EINVAL;
dd5cae6e 1793 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1da177e4
LT
1794 goto unlock;
1795
1796 /* Refuse the same filesystem on the same mount point */
1797 err = -EBUSY;
8d66bf54
AV
1798 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1799 path->mnt->mnt_root == path->dentry)
1da177e4
LT
1800 goto unlock;
1801
1802 err = -EINVAL;
1803 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1804 goto unlock;
1805
1806 newmnt->mnt_flags = mnt_flags;
8d66bf54 1807 if ((err = graft_tree(newmnt, path)))
5b83d2c5 1808 goto unlock;
1da177e4 1809
6758f953 1810 if (fslist) /* add to the specified expiration list */
55e700b9 1811 list_add_tail(&newmnt->mnt_expire, fslist);
6758f953 1812
390c6843 1813 up_write(&namespace_sem);
5b83d2c5 1814 return 0;
1da177e4
LT
1815
1816unlock:
390c6843 1817 up_write(&namespace_sem);
1da177e4
LT
1818 mntput(newmnt);
1819 return err;
1820}
1821
1822EXPORT_SYMBOL_GPL(do_add_mount);
1823
1824/*
1825 * process a list of expirable mountpoints with the intent of discarding any
1826 * mountpoints that aren't in use and haven't been touched since last we came
1827 * here
1828 */
1829void mark_mounts_for_expiry(struct list_head *mounts)
1830{
1da177e4
LT
1831 struct vfsmount *mnt, *next;
1832 LIST_HEAD(graveyard);
bcc5c7d2 1833 LIST_HEAD(umounts);
1da177e4
LT
1834
1835 if (list_empty(mounts))
1836 return;
1837
bcc5c7d2 1838 down_write(&namespace_sem);
99b7db7b 1839 br_write_lock(vfsmount_lock);
1da177e4
LT
1840
1841 /* extract from the expiration list every vfsmount that matches the
1842 * following criteria:
1843 * - only referenced by its parent vfsmount
1844 * - still marked for expiry (marked on the last call here; marks are
1845 * cleared by mntput())
1846 */
55e700b9 1847 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1da177e4 1848 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
bcc5c7d2 1849 propagate_mount_busy(mnt, 1))
1da177e4 1850 continue;
55e700b9 1851 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 1852 }
bcc5c7d2
AV
1853 while (!list_empty(&graveyard)) {
1854 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1855 touch_mnt_namespace(mnt->mnt_ns);
1856 umount_tree(mnt, 1, &umounts);
1857 }
99b7db7b 1858 br_write_unlock(vfsmount_lock);
bcc5c7d2
AV
1859 up_write(&namespace_sem);
1860
1861 release_mounts(&umounts);
5528f911
TM
1862}
1863
1864EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1865
1866/*
1867 * Ripoff of 'select_parent()'
1868 *
1869 * search the list of submounts for a given mountpoint, and move any
1870 * shrinkable submounts to the 'graveyard' list.
1871 */
1872static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1873{
1874 struct vfsmount *this_parent = parent;
1875 struct list_head *next;
1876 int found = 0;
1877
1878repeat:
1879 next = this_parent->mnt_mounts.next;
1880resume:
1881 while (next != &this_parent->mnt_mounts) {
1882 struct list_head *tmp = next;
1883 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1884
1885 next = tmp->next;
1886 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1da177e4 1887 continue;
5528f911
TM
1888 /*
1889 * Descend a level if the d_mounts list is non-empty.
1890 */
1891 if (!list_empty(&mnt->mnt_mounts)) {
1892 this_parent = mnt;
1893 goto repeat;
1894 }
1da177e4 1895
5528f911 1896 if (!propagate_mount_busy(mnt, 1)) {
5528f911
TM
1897 list_move_tail(&mnt->mnt_expire, graveyard);
1898 found++;
1899 }
1da177e4 1900 }
5528f911
TM
1901 /*
1902 * All done at this level ... ascend and resume the search
1903 */
1904 if (this_parent != parent) {
1905 next = this_parent->mnt_child.next;
1906 this_parent = this_parent->mnt_parent;
1907 goto resume;
1908 }
1909 return found;
1910}
1911
1912/*
1913 * process a list of expirable mountpoints with the intent of discarding any
1914 * submounts of a specific parent mountpoint
99b7db7b
NP
1915 *
1916 * vfsmount_lock must be held for write
5528f911 1917 */
c35038be 1918static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
5528f911
TM
1919{
1920 LIST_HEAD(graveyard);
c35038be 1921 struct vfsmount *m;
5528f911 1922
5528f911 1923 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 1924 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 1925 while (!list_empty(&graveyard)) {
c35038be 1926 m = list_first_entry(&graveyard, struct vfsmount,
bcc5c7d2 1927 mnt_expire);
afef80b3
EB
1928 touch_mnt_namespace(m->mnt_ns);
1929 umount_tree(m, 1, umounts);
bcc5c7d2
AV
1930 }
1931 }
1da177e4
LT
1932}
1933
1da177e4
LT
1934/*
1935 * Some copy_from_user() implementations do not return the exact number of
1936 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1937 * Note that this function differs from copy_from_user() in that it will oops
1938 * on bad values of `to', rather than returning a short copy.
1939 */
b58fed8b
RP
1940static long exact_copy_from_user(void *to, const void __user * from,
1941 unsigned long n)
1da177e4
LT
1942{
1943 char *t = to;
1944 const char __user *f = from;
1945 char c;
1946
1947 if (!access_ok(VERIFY_READ, from, n))
1948 return n;
1949
1950 while (n) {
1951 if (__get_user(c, f)) {
1952 memset(t, 0, n);
1953 break;
1954 }
1955 *t++ = c;
1956 f++;
1957 n--;
1958 }
1959 return n;
1960}
1961
b58fed8b 1962int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
1963{
1964 int i;
1965 unsigned long page;
1966 unsigned long size;
b58fed8b 1967
1da177e4
LT
1968 *where = 0;
1969 if (!data)
1970 return 0;
1971
1972 if (!(page = __get_free_page(GFP_KERNEL)))
1973 return -ENOMEM;
1974
1975 /* We only care that *some* data at the address the user
1976 * gave us is valid. Just in case, we'll zero
1977 * the remainder of the page.
1978 */
1979 /* copy_from_user cannot cross TASK_SIZE ! */
1980 size = TASK_SIZE - (unsigned long)data;
1981 if (size > PAGE_SIZE)
1982 size = PAGE_SIZE;
1983
1984 i = size - exact_copy_from_user((void *)page, data, size);
1985 if (!i) {
b58fed8b 1986 free_page(page);
1da177e4
LT
1987 return -EFAULT;
1988 }
1989 if (i != PAGE_SIZE)
1990 memset((char *)page + i, 0, PAGE_SIZE - i);
1991 *where = page;
1992 return 0;
1993}
1994
eca6f534
VN
1995int copy_mount_string(const void __user *data, char **where)
1996{
1997 char *tmp;
1998
1999 if (!data) {
2000 *where = NULL;
2001 return 0;
2002 }
2003
2004 tmp = strndup_user(data, PAGE_SIZE);
2005 if (IS_ERR(tmp))
2006 return PTR_ERR(tmp);
2007
2008 *where = tmp;
2009 return 0;
2010}
2011
1da177e4
LT
2012/*
2013 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2014 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2015 *
2016 * data is a (void *) that can point to any structure up to
2017 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2018 * information (or be NULL).
2019 *
2020 * Pre-0.97 versions of mount() didn't have a flags word.
2021 * When the flags word was introduced its top half was required
2022 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2023 * Therefore, if this magic number is present, it carries no information
2024 * and must be discarded.
2025 */
b58fed8b 2026long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
2027 unsigned long flags, void *data_page)
2028{
2d92ab3c 2029 struct path path;
1da177e4
LT
2030 int retval = 0;
2031 int mnt_flags = 0;
2032
2033 /* Discard magic */
2034 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2035 flags &= ~MS_MGC_MSK;
2036
2037 /* Basic sanity checks */
2038
2039 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2040 return -EINVAL;
1da177e4
LT
2041
2042 if (data_page)
2043 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2044
a27ab9f2
TH
2045 /* ... and get the mountpoint */
2046 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2047 if (retval)
2048 return retval;
2049
2050 retval = security_sb_mount(dev_name, &path,
2051 type_page, flags, data_page);
2052 if (retval)
2053 goto dput_out;
2054
613cbe3d
AK
2055 /* Default to relatime unless overriden */
2056 if (!(flags & MS_NOATIME))
2057 mnt_flags |= MNT_RELATIME;
0a1c01c9 2058
1da177e4
LT
2059 /* Separate the per-mountpoint flags */
2060 if (flags & MS_NOSUID)
2061 mnt_flags |= MNT_NOSUID;
2062 if (flags & MS_NODEV)
2063 mnt_flags |= MNT_NODEV;
2064 if (flags & MS_NOEXEC)
2065 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2066 if (flags & MS_NOATIME)
2067 mnt_flags |= MNT_NOATIME;
2068 if (flags & MS_NODIRATIME)
2069 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2070 if (flags & MS_STRICTATIME)
2071 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2072 if (flags & MS_RDONLY)
2073 mnt_flags |= MNT_READONLY;
fc33a7bb 2074
7a4dec53 2075 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2076 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2077 MS_STRICTATIME);
1da177e4 2078
1da177e4 2079 if (flags & MS_REMOUNT)
2d92ab3c 2080 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2081 data_page);
2082 else if (flags & MS_BIND)
2d92ab3c 2083 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2084 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2085 retval = do_change_type(&path, flags);
1da177e4 2086 else if (flags & MS_MOVE)
2d92ab3c 2087 retval = do_move_mount(&path, dev_name);
1da177e4 2088 else
2d92ab3c 2089 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2090 dev_name, data_page);
2091dput_out:
2d92ab3c 2092 path_put(&path);
1da177e4
LT
2093 return retval;
2094}
2095
cf8d2c11
TM
2096static struct mnt_namespace *alloc_mnt_ns(void)
2097{
2098 struct mnt_namespace *new_ns;
2099
2100 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2101 if (!new_ns)
2102 return ERR_PTR(-ENOMEM);
2103 atomic_set(&new_ns->count, 1);
2104 new_ns->root = NULL;
2105 INIT_LIST_HEAD(&new_ns->list);
2106 init_waitqueue_head(&new_ns->poll);
2107 new_ns->event = 0;
2108 return new_ns;
2109}
2110
741a2951
JD
2111/*
2112 * Allocate a new namespace structure and populate it with contents
2113 * copied from the namespace of the passed in task structure.
2114 */
e3222c4e 2115static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 2116 struct fs_struct *fs)
1da177e4 2117{
6b3286ed 2118 struct mnt_namespace *new_ns;
7f2da1e7 2119 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
1da177e4
LT
2120 struct vfsmount *p, *q;
2121
cf8d2c11
TM
2122 new_ns = alloc_mnt_ns();
2123 if (IS_ERR(new_ns))
2124 return new_ns;
1da177e4 2125
390c6843 2126 down_write(&namespace_sem);
1da177e4 2127 /* First pass: copy the tree topology */
6b3286ed 2128 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
9676f0c6 2129 CL_COPY_ALL | CL_EXPIRE);
1da177e4 2130 if (!new_ns->root) {
390c6843 2131 up_write(&namespace_sem);
1da177e4 2132 kfree(new_ns);
5cc4a034 2133 return ERR_PTR(-ENOMEM);
1da177e4 2134 }
99b7db7b 2135 br_write_lock(vfsmount_lock);
1da177e4 2136 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
99b7db7b 2137 br_write_unlock(vfsmount_lock);
1da177e4
LT
2138
2139 /*
2140 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2141 * as belonging to new namespace. We have already acquired a private
2142 * fs_struct, so tsk->fs->lock is not needed.
2143 */
6b3286ed 2144 p = mnt_ns->root;
1da177e4
LT
2145 q = new_ns->root;
2146 while (p) {
6b3286ed 2147 q->mnt_ns = new_ns;
1da177e4 2148 if (fs) {
6ac08c39 2149 if (p == fs->root.mnt) {
1da177e4 2150 rootmnt = p;
6ac08c39 2151 fs->root.mnt = mntget(q);
1da177e4 2152 }
6ac08c39 2153 if (p == fs->pwd.mnt) {
1da177e4 2154 pwdmnt = p;
6ac08c39 2155 fs->pwd.mnt = mntget(q);
1da177e4 2156 }
1da177e4 2157 }
6b3286ed 2158 p = next_mnt(p, mnt_ns->root);
1da177e4
LT
2159 q = next_mnt(q, new_ns->root);
2160 }
390c6843 2161 up_write(&namespace_sem);
1da177e4 2162
1da177e4
LT
2163 if (rootmnt)
2164 mntput(rootmnt);
2165 if (pwdmnt)
2166 mntput(pwdmnt);
1da177e4 2167
741a2951
JD
2168 return new_ns;
2169}
2170
213dd266 2171struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 2172 struct fs_struct *new_fs)
741a2951 2173{
6b3286ed 2174 struct mnt_namespace *new_ns;
741a2951 2175
e3222c4e 2176 BUG_ON(!ns);
6b3286ed 2177 get_mnt_ns(ns);
741a2951
JD
2178
2179 if (!(flags & CLONE_NEWNS))
e3222c4e 2180 return ns;
741a2951 2181
e3222c4e 2182 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 2183
6b3286ed 2184 put_mnt_ns(ns);
e3222c4e 2185 return new_ns;
1da177e4
LT
2186}
2187
cf8d2c11
TM
2188/**
2189 * create_mnt_ns - creates a private namespace and adds a root filesystem
2190 * @mnt: pointer to the new root filesystem mountpoint
2191 */
a2770d86 2192struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
cf8d2c11
TM
2193{
2194 struct mnt_namespace *new_ns;
2195
2196 new_ns = alloc_mnt_ns();
2197 if (!IS_ERR(new_ns)) {
2198 mnt->mnt_ns = new_ns;
2199 new_ns->root = mnt;
2200 list_add(&new_ns->list, &new_ns->root->mnt_list);
2201 }
2202 return new_ns;
2203}
a2770d86 2204EXPORT_SYMBOL(create_mnt_ns);
cf8d2c11 2205
bdc480e3
HC
2206SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2207 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2208{
eca6f534
VN
2209 int ret;
2210 char *kernel_type;
2211 char *kernel_dir;
2212 char *kernel_dev;
1da177e4 2213 unsigned long data_page;
1da177e4 2214
eca6f534
VN
2215 ret = copy_mount_string(type, &kernel_type);
2216 if (ret < 0)
2217 goto out_type;
1da177e4 2218
eca6f534
VN
2219 kernel_dir = getname(dir_name);
2220 if (IS_ERR(kernel_dir)) {
2221 ret = PTR_ERR(kernel_dir);
2222 goto out_dir;
2223 }
1da177e4 2224
eca6f534
VN
2225 ret = copy_mount_string(dev_name, &kernel_dev);
2226 if (ret < 0)
2227 goto out_dev;
1da177e4 2228
eca6f534
VN
2229 ret = copy_mount_options(data, &data_page);
2230 if (ret < 0)
2231 goto out_data;
1da177e4 2232
eca6f534
VN
2233 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2234 (void *) data_page);
1da177e4 2235
eca6f534
VN
2236 free_page(data_page);
2237out_data:
2238 kfree(kernel_dev);
2239out_dev:
2240 putname(kernel_dir);
2241out_dir:
2242 kfree(kernel_type);
2243out_type:
2244 return ret;
1da177e4
LT
2245}
2246
1da177e4
LT
2247/*
2248 * pivot_root Semantics:
2249 * Moves the root file system of the current process to the directory put_old,
2250 * makes new_root as the new root file system of the current process, and sets
2251 * root/cwd of all processes which had them on the current root to new_root.
2252 *
2253 * Restrictions:
2254 * The new_root and put_old must be directories, and must not be on the
2255 * same file system as the current process root. The put_old must be
2256 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2257 * pointed to by put_old must yield the same directory as new_root. No other
2258 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2259 *
4a0d11fa
NB
2260 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2261 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2262 * in this situation.
2263 *
1da177e4
LT
2264 * Notes:
2265 * - we don't move root/cwd if they are not at the root (reason: if something
2266 * cared enough to change them, it's probably wrong to force them elsewhere)
2267 * - it's okay to pick a root that isn't the root of a file system, e.g.
2268 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2269 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2270 * first.
2271 */
3480b257
HC
2272SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2273 const char __user *, put_old)
1da177e4
LT
2274{
2275 struct vfsmount *tmp;
2d8f3038 2276 struct path new, old, parent_path, root_parent, root;
1da177e4
LT
2277 int error;
2278
2279 if (!capable(CAP_SYS_ADMIN))
2280 return -EPERM;
2281
2d8f3038 2282 error = user_path_dir(new_root, &new);
1da177e4
LT
2283 if (error)
2284 goto out0;
2285 error = -EINVAL;
2d8f3038 2286 if (!check_mnt(new.mnt))
1da177e4
LT
2287 goto out1;
2288
2d8f3038 2289 error = user_path_dir(put_old, &old);
1da177e4
LT
2290 if (error)
2291 goto out1;
2292
2d8f3038 2293 error = security_sb_pivotroot(&old, &new);
1da177e4 2294 if (error) {
2d8f3038 2295 path_put(&old);
1da177e4
LT
2296 goto out1;
2297 }
2298
f7ad3c6b 2299 get_fs_root(current->fs, &root);
390c6843 2300 down_write(&namespace_sem);
2d8f3038 2301 mutex_lock(&old.dentry->d_inode->i_mutex);
1da177e4 2302 error = -EINVAL;
2d8f3038
AV
2303 if (IS_MNT_SHARED(old.mnt) ||
2304 IS_MNT_SHARED(new.mnt->mnt_parent) ||
8c3ee42e 2305 IS_MNT_SHARED(root.mnt->mnt_parent))
21444403 2306 goto out2;
8c3ee42e 2307 if (!check_mnt(root.mnt))
1da177e4
LT
2308 goto out2;
2309 error = -ENOENT;
d83c49f3 2310 if (cant_mount(old.dentry))
1da177e4 2311 goto out2;
f3da392e 2312 if (d_unlinked(new.dentry))
1da177e4 2313 goto out2;
f3da392e 2314 if (d_unlinked(old.dentry))
1da177e4
LT
2315 goto out2;
2316 error = -EBUSY;
2d8f3038
AV
2317 if (new.mnt == root.mnt ||
2318 old.mnt == root.mnt)
1da177e4
LT
2319 goto out2; /* loop, on the same file system */
2320 error = -EINVAL;
8c3ee42e 2321 if (root.mnt->mnt_root != root.dentry)
1da177e4 2322 goto out2; /* not a mountpoint */
8c3ee42e 2323 if (root.mnt->mnt_parent == root.mnt)
0bb6fcc1 2324 goto out2; /* not attached */
2d8f3038 2325 if (new.mnt->mnt_root != new.dentry)
1da177e4 2326 goto out2; /* not a mountpoint */
2d8f3038 2327 if (new.mnt->mnt_parent == new.mnt)
0bb6fcc1 2328 goto out2; /* not attached */
4ac91378 2329 /* make sure we can reach put_old from new_root */
2d8f3038 2330 tmp = old.mnt;
99b7db7b 2331 br_write_lock(vfsmount_lock);
2d8f3038 2332 if (tmp != new.mnt) {
1da177e4
LT
2333 for (;;) {
2334 if (tmp->mnt_parent == tmp)
2335 goto out3; /* already mounted on put_old */
2d8f3038 2336 if (tmp->mnt_parent == new.mnt)
1da177e4
LT
2337 break;
2338 tmp = tmp->mnt_parent;
2339 }
2d8f3038 2340 if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
1da177e4 2341 goto out3;
2d8f3038 2342 } else if (!is_subdir(old.dentry, new.dentry))
1da177e4 2343 goto out3;
2d8f3038 2344 detach_mnt(new.mnt, &parent_path);
8c3ee42e 2345 detach_mnt(root.mnt, &root_parent);
4ac91378 2346 /* mount old root on put_old */
2d8f3038 2347 attach_mnt(root.mnt, &old);
4ac91378 2348 /* mount new_root on / */
2d8f3038 2349 attach_mnt(new.mnt, &root_parent);
6b3286ed 2350 touch_mnt_namespace(current->nsproxy->mnt_ns);
99b7db7b 2351 br_write_unlock(vfsmount_lock);
2d8f3038 2352 chroot_fs_refs(&root, &new);
1da177e4 2353 error = 0;
1a390689
AV
2354 path_put(&root_parent);
2355 path_put(&parent_path);
1da177e4 2356out2:
2d8f3038 2357 mutex_unlock(&old.dentry->d_inode->i_mutex);
390c6843 2358 up_write(&namespace_sem);
8c3ee42e 2359 path_put(&root);
2d8f3038 2360 path_put(&old);
1da177e4 2361out1:
2d8f3038 2362 path_put(&new);
1da177e4 2363out0:
1da177e4
LT
2364 return error;
2365out3:
99b7db7b 2366 br_write_unlock(vfsmount_lock);
1da177e4
LT
2367 goto out2;
2368}
2369
2370static void __init init_mount_tree(void)
2371{
2372 struct vfsmount *mnt;
6b3286ed 2373 struct mnt_namespace *ns;
ac748a09 2374 struct path root;
1da177e4
LT
2375
2376 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2377 if (IS_ERR(mnt))
2378 panic("Can't create rootfs");
3b22edc5
TM
2379 ns = create_mnt_ns(mnt);
2380 if (IS_ERR(ns))
1da177e4 2381 panic("Can't allocate initial namespace");
6b3286ed
KK
2382
2383 init_task.nsproxy->mnt_ns = ns;
2384 get_mnt_ns(ns);
2385
ac748a09
JB
2386 root.mnt = ns->root;
2387 root.dentry = ns->root->mnt_root;
2388
2389 set_fs_pwd(current->fs, &root);
2390 set_fs_root(current->fs, &root);
1da177e4
LT
2391}
2392
74bf17cf 2393void __init mnt_init(void)
1da177e4 2394{
13f14b4d 2395 unsigned u;
15a67dd8 2396 int err;
1da177e4 2397
390c6843
RP
2398 init_rwsem(&namespace_sem);
2399
1da177e4 2400 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
20c2df83 2401 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2402
b58fed8b 2403 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2404
2405 if (!mount_hashtable)
2406 panic("Failed to allocate mount hash table\n");
2407
13f14b4d
ED
2408 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2409
2410 for (u = 0; u < HASH_SIZE; u++)
2411 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2412
99b7db7b
NP
2413 br_lock_init(vfsmount_lock);
2414
15a67dd8
RD
2415 err = sysfs_init();
2416 if (err)
2417 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2418 __func__, err);
00d26666
GKH
2419 fs_kobj = kobject_create_and_add("fs", NULL);
2420 if (!fs_kobj)
8e24eea7 2421 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2422 init_rootfs();
2423 init_mount_tree();
2424}
2425
616511d0 2426void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2427{
70fbcdf4 2428 LIST_HEAD(umount_list);
616511d0 2429
d498b25a 2430 if (!atomic_dec_and_test(&ns->count))
616511d0 2431 return;
390c6843 2432 down_write(&namespace_sem);
99b7db7b 2433 br_write_lock(vfsmount_lock);
d498b25a 2434 umount_tree(ns->root, 0, &umount_list);
99b7db7b 2435 br_write_unlock(vfsmount_lock);
390c6843 2436 up_write(&namespace_sem);
70fbcdf4 2437 release_mounts(&umount_list);
6b3286ed 2438 kfree(ns);
1da177e4 2439}
cf8d2c11 2440EXPORT_SYMBOL(put_mnt_ns);