]> git.ipfire.org Git - people/ms/linux.git/blame - fs/xfs/xfs_extfree_item.c
Merge tag 'soc-fixes-6.0-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[people/ms/linux.git] / fs / xfs / xfs_extfree_item.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769
NS
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
a844f451 7#include "xfs_fs.h"
4fb6e8ad 8#include "xfs_format.h"
239880ef
DC
9#include "xfs_log_format.h"
10#include "xfs_trans_resv.h"
dc42375d 11#include "xfs_bit.h"
5467b34b 12#include "xfs_shared.h"
1da177e4 13#include "xfs_mount.h"
08d3e84f 14#include "xfs_ag.h"
81f40041 15#include "xfs_defer.h"
239880ef 16#include "xfs_trans.h"
1da177e4
LT
17#include "xfs_trans_priv.h"
18#include "xfs_extfree_item.h"
1234351c 19#include "xfs_log.h"
340785cc
DW
20#include "xfs_btree.h"
21#include "xfs_rmap.h"
81f40041
CH
22#include "xfs_alloc.h"
23#include "xfs_bmap.h"
24#include "xfs_trace.h"
a5155b87 25#include "xfs_error.h"
9817aa80 26#include "xfs_log_priv.h"
86ffa471 27#include "xfs_log_recover.h"
1da177e4 28
182696fb
DW
29struct kmem_cache *xfs_efi_cache;
30struct kmem_cache *xfs_efd_cache;
1da177e4 31
10d0c6e0
DW
32static const struct xfs_item_ops xfs_efi_item_ops;
33
7bfa31d8
CH
34static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
35{
36 return container_of(lip, struct xfs_efi_log_item, efi_item);
37}
1da177e4 38
9817aa80 39STATIC void
7bfa31d8
CH
40xfs_efi_item_free(
41 struct xfs_efi_log_item *efip)
7d795ca3 42{
b1c5ebb2 43 kmem_free(efip->efi_item.li_lv_shadow);
7bfa31d8 44 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
f0e2d93c 45 kmem_free(efip);
7bfa31d8 46 else
182696fb 47 kmem_cache_free(xfs_efi_cache, efip);
7d795ca3 48}
1da177e4 49
0612d116
DC
50/*
51 * Freeing the efi requires that we remove it from the AIL if it has already
52 * been placed there. However, the EFI may not yet have been placed in the AIL
53 * when called by xfs_efi_release() from EFD processing due to the ordering of
54 * committed vs unpin operations in bulk insert operations. Hence the reference
55 * count to ensure only the last caller frees the EFI.
56 */
10d0c6e0 57STATIC void
0612d116
DC
58xfs_efi_release(
59 struct xfs_efi_log_item *efip)
60{
61 ASSERT(atomic_read(&efip->efi_refcount) > 0);
3512fc1e
DC
62 if (!atomic_dec_and_test(&efip->efi_refcount))
63 return;
64
65 xfs_trans_ail_delete(&efip->efi_item, 0);
66 xfs_efi_item_free(efip);
0612d116
DC
67}
68
1da177e4
LT
69/*
70 * This returns the number of iovecs needed to log the given efi item.
71 * We only need 1 iovec for an efi item. It just logs the efi_log_format
72 * structure.
73 */
166d1368
DC
74static inline int
75xfs_efi_item_sizeof(
76 struct xfs_efi_log_item *efip)
77{
78 return sizeof(struct xfs_efi_log_format) +
79 (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
80}
81
82STATIC void
7bfa31d8 83xfs_efi_item_size(
166d1368
DC
84 struct xfs_log_item *lip,
85 int *nvecs,
86 int *nbytes)
1da177e4 87{
166d1368
DC
88 *nvecs += 1;
89 *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
1da177e4
LT
90}
91
92/*
93 * This is called to fill in the vector of log iovecs for the
94 * given efi log item. We use only 1 iovec, and we point that
95 * at the efi_log_format structure embedded in the efi item.
96 * It is at this point that we assert that all of the extent
97 * slots in the efi item have been filled.
98 */
99STATIC void
7bfa31d8
CH
100xfs_efi_item_format(
101 struct xfs_log_item *lip,
bde7cff6 102 struct xfs_log_vec *lv)
1da177e4 103{
7bfa31d8 104 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
bde7cff6 105 struct xfs_log_iovec *vecp = NULL;
1da177e4 106
b199c8a4
DC
107 ASSERT(atomic_read(&efip->efi_next_extent) ==
108 efip->efi_format.efi_nextents);
1da177e4
LT
109
110 efip->efi_format.efi_type = XFS_LI_EFI;
1da177e4
LT
111 efip->efi_format.efi_size = 1;
112
bde7cff6 113 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
1234351c
CH
114 &efip->efi_format,
115 xfs_efi_item_sizeof(efip));
1da177e4
LT
116}
117
118
1da177e4 119/*
8d99fe92
BF
120 * The unpin operation is the last place an EFI is manipulated in the log. It is
121 * either inserted in the AIL or aborted in the event of a log I/O error. In
122 * either case, the EFI transaction has been successfully committed to make it
123 * this far. Therefore, we expect whoever committed the EFI to either construct
124 * and commit the EFD or drop the EFD's reference in the event of error. Simply
125 * drop the log's EFI reference now that the log is done with it.
1da177e4 126 */
1da177e4 127STATIC void
7bfa31d8
CH
128xfs_efi_item_unpin(
129 struct xfs_log_item *lip,
130 int remove)
1da177e4 131{
7bfa31d8 132 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
5e4b5386 133 xfs_efi_release(efip);
1da177e4
LT
134}
135
8d99fe92
BF
136/*
137 * The EFI has been either committed or aborted if the transaction has been
138 * cancelled. If the transaction was cancelled, an EFD isn't going to be
139 * constructed and thus we free the EFI here directly.
140 */
1da177e4 141STATIC void
ddf92053 142xfs_efi_item_release(
7bfa31d8 143 struct xfs_log_item *lip)
1da177e4 144{
ddf92053 145 xfs_efi_release(EFI_ITEM(lip));
1da177e4
LT
146}
147
1da177e4
LT
148/*
149 * Allocate and initialize an efi item with the given number of extents.
150 */
9817aa80 151STATIC struct xfs_efi_log_item *
7bfa31d8
CH
152xfs_efi_init(
153 struct xfs_mount *mp,
154 uint nextents)
1da177e4
LT
155
156{
7bfa31d8 157 struct xfs_efi_log_item *efip;
1da177e4
LT
158 uint size;
159
160 ASSERT(nextents > 0);
161 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
82ff450b 162 size = (uint)(sizeof(struct xfs_efi_log_item) +
1da177e4 163 ((nextents - 1) * sizeof(xfs_extent_t)));
707e0dda 164 efip = kmem_zalloc(size, 0);
1da177e4 165 } else {
182696fb 166 efip = kmem_cache_zalloc(xfs_efi_cache,
32a2b11f 167 GFP_KERNEL | __GFP_NOFAIL);
1da177e4
LT
168 }
169
43f5efc5 170 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
1da177e4 171 efip->efi_format.efi_nextents = nextents;
db9d67d6 172 efip->efi_format.efi_id = (uintptr_t)(void *)efip;
b199c8a4 173 atomic_set(&efip->efi_next_extent, 0);
666d644c 174 atomic_set(&efip->efi_refcount, 2);
1da177e4 175
7bfa31d8 176 return efip;
1da177e4
LT
177}
178
6d192a9b
TS
179/*
180 * Copy an EFI format buffer from the given buf, and into the destination
181 * EFI format structure.
182 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
183 * one of which will be the native format for this kernel.
184 * It will handle the conversion of formats if necessary.
185 */
9817aa80 186STATIC int
6d192a9b
TS
187xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
188{
4e0d5f92 189 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
6d192a9b 190 uint i;
5e9466a5
XS
191 uint len = sizeof(xfs_efi_log_format_t) +
192 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
193 uint len32 = sizeof(xfs_efi_log_format_32_t) +
194 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
195 uint len64 = sizeof(xfs_efi_log_format_64_t) +
196 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
6d192a9b
TS
197
198 if (buf->i_len == len) {
199 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
200 return 0;
201 } else if (buf->i_len == len32) {
4e0d5f92 202 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
6d192a9b
TS
203
204 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
205 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
206 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
207 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
208 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
209 dst_efi_fmt->efi_extents[i].ext_start =
210 src_efi_fmt_32->efi_extents[i].ext_start;
211 dst_efi_fmt->efi_extents[i].ext_len =
212 src_efi_fmt_32->efi_extents[i].ext_len;
213 }
214 return 0;
215 } else if (buf->i_len == len64) {
4e0d5f92 216 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
6d192a9b
TS
217
218 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
219 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
220 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
221 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
222 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
223 dst_efi_fmt->efi_extents[i].ext_start =
224 src_efi_fmt_64->efi_extents[i].ext_start;
225 dst_efi_fmt->efi_extents[i].ext_len =
226 src_efi_fmt_64->efi_extents[i].ext_len;
227 }
228 return 0;
229 }
a5155b87 230 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
2451337d 231 return -EFSCORRUPTED;
6d192a9b
TS
232}
233
7bfa31d8 234static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
7d795ca3 235{
7bfa31d8
CH
236 return container_of(lip, struct xfs_efd_log_item, efd_item);
237}
1da177e4 238
7bfa31d8
CH
239STATIC void
240xfs_efd_item_free(struct xfs_efd_log_item *efdp)
241{
b1c5ebb2 242 kmem_free(efdp->efd_item.li_lv_shadow);
7bfa31d8 243 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
f0e2d93c 244 kmem_free(efdp);
7bfa31d8 245 else
182696fb 246 kmem_cache_free(xfs_efd_cache, efdp);
7d795ca3 247}
1da177e4
LT
248
249/*
250 * This returns the number of iovecs needed to log the given efd item.
251 * We only need 1 iovec for an efd item. It just logs the efd_log_format
252 * structure.
253 */
166d1368
DC
254static inline int
255xfs_efd_item_sizeof(
256 struct xfs_efd_log_item *efdp)
257{
258 return sizeof(xfs_efd_log_format_t) +
259 (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
260}
261
262STATIC void
7bfa31d8 263xfs_efd_item_size(
166d1368
DC
264 struct xfs_log_item *lip,
265 int *nvecs,
266 int *nbytes)
1da177e4 267{
166d1368
DC
268 *nvecs += 1;
269 *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
1da177e4
LT
270}
271
272/*
273 * This is called to fill in the vector of log iovecs for the
274 * given efd log item. We use only 1 iovec, and we point that
275 * at the efd_log_format structure embedded in the efd item.
276 * It is at this point that we assert that all of the extent
277 * slots in the efd item have been filled.
278 */
279STATIC void
7bfa31d8
CH
280xfs_efd_item_format(
281 struct xfs_log_item *lip,
bde7cff6 282 struct xfs_log_vec *lv)
1da177e4 283{
7bfa31d8 284 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
bde7cff6 285 struct xfs_log_iovec *vecp = NULL;
1da177e4
LT
286
287 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
288
289 efdp->efd_format.efd_type = XFS_LI_EFD;
1da177e4
LT
290 efdp->efd_format.efd_size = 1;
291
bde7cff6 292 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
1234351c
CH
293 &efdp->efd_format,
294 xfs_efd_item_sizeof(efdp));
1da177e4
LT
295}
296
8d99fe92
BF
297/*
298 * The EFD is either committed or aborted if the transaction is cancelled. If
299 * the transaction is cancelled, drop our reference to the EFI and free the EFD.
300 */
1da177e4 301STATIC void
ddf92053 302xfs_efd_item_release(
7bfa31d8 303 struct xfs_log_item *lip)
1da177e4 304{
8d99fe92
BF
305 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
306
ddf92053
CH
307 xfs_efi_release(efdp->efd_efip);
308 xfs_efd_item_free(efdp);
1da177e4
LT
309}
310
c23ab603
DC
311static struct xfs_log_item *
312xfs_efd_item_intent(
313 struct xfs_log_item *lip)
314{
315 return &EFD_ITEM(lip)->efd_efip->efi_item;
316}
317
272e42b2 318static const struct xfs_item_ops xfs_efd_item_ops = {
f5b81200
DC
319 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED |
320 XFS_ITEM_INTENT_DONE,
7bfa31d8
CH
321 .iop_size = xfs_efd_item_size,
322 .iop_format = xfs_efd_item_format,
ddf92053 323 .iop_release = xfs_efd_item_release,
c23ab603 324 .iop_intent = xfs_efd_item_intent,
1da177e4
LT
325};
326
1da177e4 327/*
9c5e7c2a
CH
328 * Allocate an "extent free done" log item that will hold nextents worth of
329 * extents. The caller must use all nextents extents, because we are not
330 * flexible about this at all.
1da177e4 331 */
81f40041 332static struct xfs_efd_log_item *
9c5e7c2a
CH
333xfs_trans_get_efd(
334 struct xfs_trans *tp,
335 struct xfs_efi_log_item *efip,
336 unsigned int nextents)
1da177e4 337{
9c5e7c2a 338 struct xfs_efd_log_item *efdp;
1da177e4
LT
339
340 ASSERT(nextents > 0);
9c5e7c2a 341
1da177e4 342 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
9c5e7c2a
CH
343 efdp = kmem_zalloc(sizeof(struct xfs_efd_log_item) +
344 (nextents - 1) * sizeof(struct xfs_extent),
707e0dda 345 0);
1da177e4 346 } else {
182696fb 347 efdp = kmem_cache_zalloc(xfs_efd_cache,
32a2b11f 348 GFP_KERNEL | __GFP_NOFAIL);
1da177e4
LT
349 }
350
9c5e7c2a
CH
351 xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD,
352 &xfs_efd_item_ops);
1da177e4
LT
353 efdp->efd_efip = efip;
354 efdp->efd_format.efd_nextents = nextents;
355 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
356
9c5e7c2a 357 xfs_trans_add_item(tp, &efdp->efd_item);
7bfa31d8 358 return efdp;
1da177e4 359}
dc42375d 360
81f40041
CH
361/*
362 * Free an extent and log it to the EFD. Note that the transaction is marked
363 * dirty regardless of whether the extent free succeeds or fails to support the
364 * EFI/EFD lifecycle rules.
365 */
366static int
367xfs_trans_free_extent(
368 struct xfs_trans *tp,
369 struct xfs_efd_log_item *efdp,
370 xfs_fsblock_t start_block,
371 xfs_extlen_t ext_len,
372 const struct xfs_owner_info *oinfo,
373 bool skip_discard)
374{
375 struct xfs_mount *mp = tp->t_mountp;
376 struct xfs_extent *extp;
377 uint next_extent;
378 xfs_agnumber_t agno = XFS_FSB_TO_AGNO(mp, start_block);
379 xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(mp,
380 start_block);
381 int error;
382
383 trace_xfs_bmap_free_deferred(tp->t_mountp, agno, 0, agbno, ext_len);
384
385 error = __xfs_free_extent(tp, start_block, ext_len,
386 oinfo, XFS_AG_RESV_NONE, skip_discard);
387 /*
388 * Mark the transaction dirty, even on error. This ensures the
389 * transaction is aborted, which:
390 *
391 * 1.) releases the EFI and frees the EFD
392 * 2.) shuts down the filesystem
393 */
bb7b1c9c 394 tp->t_flags |= XFS_TRANS_DIRTY | XFS_TRANS_HAS_INTENT_DONE;
81f40041
CH
395 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
396
397 next_extent = efdp->efd_next_extent;
398 ASSERT(next_extent < efdp->efd_format.efd_nextents);
399 extp = &(efdp->efd_format.efd_extents[next_extent]);
400 extp->ext_start = start_block;
401 extp->ext_len = ext_len;
402 efdp->efd_next_extent++;
403
404 return error;
405}
406
407/* Sort bmap items by AG. */
408static int
409xfs_extent_free_diff_items(
410 void *priv,
4f0f586b
ST
411 const struct list_head *a,
412 const struct list_head *b)
81f40041
CH
413{
414 struct xfs_mount *mp = priv;
415 struct xfs_extent_free_item *ra;
416 struct xfs_extent_free_item *rb;
417
418 ra = container_of(a, struct xfs_extent_free_item, xefi_list);
419 rb = container_of(b, struct xfs_extent_free_item, xefi_list);
420 return XFS_FSB_TO_AGNO(mp, ra->xefi_startblock) -
421 XFS_FSB_TO_AGNO(mp, rb->xefi_startblock);
422}
423
81f40041
CH
424/* Log a free extent to the intent item. */
425STATIC void
426xfs_extent_free_log_item(
427 struct xfs_trans *tp,
c1f09188
CH
428 struct xfs_efi_log_item *efip,
429 struct xfs_extent_free_item *free)
81f40041 430{
81f40041
CH
431 uint next_extent;
432 struct xfs_extent *extp;
433
81f40041
CH
434 tp->t_flags |= XFS_TRANS_DIRTY;
435 set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
436
437 /*
438 * atomic_inc_return gives us the value after the increment;
439 * we want to use it as an array index so we need to subtract 1 from
440 * it.
441 */
442 next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
443 ASSERT(next_extent < efip->efi_format.efi_nextents);
444 extp = &efip->efi_format.efi_extents[next_extent];
445 extp->ext_start = free->xefi_startblock;
446 extp->ext_len = free->xefi_blockcount;
447}
448
13a83333 449static struct xfs_log_item *
c1f09188
CH
450xfs_extent_free_create_intent(
451 struct xfs_trans *tp,
452 struct list_head *items,
d367a868
CH
453 unsigned int count,
454 bool sort)
c1f09188
CH
455{
456 struct xfs_mount *mp = tp->t_mountp;
457 struct xfs_efi_log_item *efip = xfs_efi_init(mp, count);
458 struct xfs_extent_free_item *free;
459
460 ASSERT(count > 0);
461
462 xfs_trans_add_item(tp, &efip->efi_item);
d367a868
CH
463 if (sort)
464 list_sort(mp, items, xfs_extent_free_diff_items);
c1f09188
CH
465 list_for_each_entry(free, items, xefi_list)
466 xfs_extent_free_log_item(tp, efip, free);
13a83333 467 return &efip->efi_item;
c1f09188
CH
468}
469
81f40041 470/* Get an EFD so we can process all the free extents. */
f09d167c 471static struct xfs_log_item *
81f40041
CH
472xfs_extent_free_create_done(
473 struct xfs_trans *tp,
13a83333 474 struct xfs_log_item *intent,
81f40041
CH
475 unsigned int count)
476{
f09d167c 477 return &xfs_trans_get_efd(tp, EFI_ITEM(intent), count)->efd_item;
81f40041
CH
478}
479
480/* Process a free extent. */
481STATIC int
482xfs_extent_free_finish_item(
483 struct xfs_trans *tp,
f09d167c 484 struct xfs_log_item *done,
81f40041 485 struct list_head *item,
3ec1b26c 486 struct xfs_btree_cur **state)
81f40041 487{
b3b5ff41 488 struct xfs_owner_info oinfo = { };
81f40041
CH
489 struct xfs_extent_free_item *free;
490 int error;
491
492 free = container_of(item, struct xfs_extent_free_item, xefi_list);
b3b5ff41
DW
493 oinfo.oi_owner = free->xefi_owner;
494 if (free->xefi_flags & XFS_EFI_ATTR_FORK)
495 oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK;
496 if (free->xefi_flags & XFS_EFI_BMBT_BLOCK)
497 oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK;
f09d167c 498 error = xfs_trans_free_extent(tp, EFD_ITEM(done),
81f40041
CH
499 free->xefi_startblock,
500 free->xefi_blockcount,
b3b5ff41 501 &oinfo, free->xefi_flags & XFS_EFI_SKIP_DISCARD);
c201d9ca 502 kmem_cache_free(xfs_extfree_item_cache, free);
81f40041
CH
503 return error;
504}
505
506/* Abort all pending EFIs. */
507STATIC void
508xfs_extent_free_abort_intent(
13a83333 509 struct xfs_log_item *intent)
81f40041 510{
13a83333 511 xfs_efi_release(EFI_ITEM(intent));
81f40041
CH
512}
513
514/* Cancel a free extent. */
515STATIC void
516xfs_extent_free_cancel_item(
517 struct list_head *item)
518{
519 struct xfs_extent_free_item *free;
520
521 free = container_of(item, struct xfs_extent_free_item, xefi_list);
c201d9ca 522 kmem_cache_free(xfs_extfree_item_cache, free);
81f40041
CH
523}
524
525const struct xfs_defer_op_type xfs_extent_free_defer_type = {
526 .max_items = XFS_EFI_MAX_FAST_EXTENTS,
81f40041
CH
527 .create_intent = xfs_extent_free_create_intent,
528 .abort_intent = xfs_extent_free_abort_intent,
81f40041
CH
529 .create_done = xfs_extent_free_create_done,
530 .finish_item = xfs_extent_free_finish_item,
531 .cancel_item = xfs_extent_free_cancel_item,
532};
533
534/*
535 * AGFL blocks are accounted differently in the reserve pools and are not
536 * inserted into the busy extent list.
537 */
538STATIC int
539xfs_agfl_free_finish_item(
540 struct xfs_trans *tp,
f09d167c 541 struct xfs_log_item *done,
81f40041 542 struct list_head *item,
3ec1b26c 543 struct xfs_btree_cur **state)
81f40041 544{
b3b5ff41 545 struct xfs_owner_info oinfo = { };
81f40041 546 struct xfs_mount *mp = tp->t_mountp;
f09d167c 547 struct xfs_efd_log_item *efdp = EFD_ITEM(done);
81f40041
CH
548 struct xfs_extent_free_item *free;
549 struct xfs_extent *extp;
550 struct xfs_buf *agbp;
551 int error;
552 xfs_agnumber_t agno;
553 xfs_agblock_t agbno;
554 uint next_extent;
08d3e84f 555 struct xfs_perag *pag;
81f40041
CH
556
557 free = container_of(item, struct xfs_extent_free_item, xefi_list);
558 ASSERT(free->xefi_blockcount == 1);
559 agno = XFS_FSB_TO_AGNO(mp, free->xefi_startblock);
560 agbno = XFS_FSB_TO_AGBNO(mp, free->xefi_startblock);
b3b5ff41 561 oinfo.oi_owner = free->xefi_owner;
81f40041
CH
562
563 trace_xfs_agfl_free_deferred(mp, agno, 0, agbno, free->xefi_blockcount);
564
08d3e84f
DC
565 pag = xfs_perag_get(mp, agno);
566 error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
81f40041 567 if (!error)
b3b5ff41 568 error = xfs_free_agfl_block(tp, agno, agbno, agbp, &oinfo);
08d3e84f 569 xfs_perag_put(pag);
81f40041
CH
570
571 /*
572 * Mark the transaction dirty, even on error. This ensures the
573 * transaction is aborted, which:
574 *
575 * 1.) releases the EFI and frees the EFD
576 * 2.) shuts down the filesystem
577 */
578 tp->t_flags |= XFS_TRANS_DIRTY;
579 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
580
581 next_extent = efdp->efd_next_extent;
582 ASSERT(next_extent < efdp->efd_format.efd_nextents);
583 extp = &(efdp->efd_format.efd_extents[next_extent]);
584 extp->ext_start = free->xefi_startblock;
585 extp->ext_len = free->xefi_blockcount;
586 efdp->efd_next_extent++;
587
c201d9ca 588 kmem_cache_free(xfs_extfree_item_cache, free);
81f40041
CH
589 return error;
590}
591
592/* sub-type with special handling for AGFL deferred frees */
593const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
594 .max_items = XFS_EFI_MAX_FAST_EXTENTS,
81f40041
CH
595 .create_intent = xfs_extent_free_create_intent,
596 .abort_intent = xfs_extent_free_abort_intent,
81f40041
CH
597 .create_done = xfs_extent_free_create_done,
598 .finish_item = xfs_agfl_free_finish_item,
599 .cancel_item = xfs_extent_free_cancel_item,
600};
601
3c15df3d
DW
602/* Is this recovered EFI ok? */
603static inline bool
604xfs_efi_validate_ext(
605 struct xfs_mount *mp,
606 struct xfs_extent *extp)
607{
67457eb0 608 return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len);
3c15df3d
DW
609}
610
dc42375d
DW
611/*
612 * Process an extent free intent item that was recovered from
613 * the log. We need to free the extents that it describes.
614 */
10d0c6e0 615STATIC int
96b60f82
DW
616xfs_efi_item_recover(
617 struct xfs_log_item *lip,
e6fff81e 618 struct list_head *capture_list)
dc42375d 619{
96b60f82 620 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
d86142dd 621 struct xfs_mount *mp = lip->li_log->l_mp;
96b60f82
DW
622 struct xfs_efd_log_item *efdp;
623 struct xfs_trans *tp;
624 struct xfs_extent *extp;
96b60f82
DW
625 int i;
626 int error = 0;
dc42375d 627
dc42375d
DW
628 /*
629 * First check the validity of the extents described by the
630 * EFI. If any are bad, then assume that all are bad and
631 * just toss the EFI.
632 */
633 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3c15df3d
DW
634 if (!xfs_efi_validate_ext(mp,
635 &efip->efi_format.efi_extents[i])) {
636 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
637 &efip->efi_format,
638 sizeof(efip->efi_format));
895e196f 639 return -EFSCORRUPTED;
3c15df3d 640 }
dc42375d
DW
641 }
642
643 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
644 if (error)
645 return error;
646 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
647
648 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
e127fafd 649 extp = &efip->efi_format.efi_extents[i];
dc42375d 650 error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
7280feda
DW
651 extp->ext_len,
652 &XFS_RMAP_OINFO_ANY_OWNER, false);
43059d54
DW
653 if (error == -EFSCORRUPTED)
654 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
655 extp, sizeof(*extp));
dc42375d
DW
656 if (error)
657 goto abort_error;
658
659 }
660
512edfac 661 return xfs_defer_ops_capture_and_commit(tp, capture_list);
dc42375d
DW
662
663abort_error:
664 xfs_trans_cancel(tp);
665 return error;
666}
86ffa471 667
154c733a
DW
668STATIC bool
669xfs_efi_item_match(
670 struct xfs_log_item *lip,
671 uint64_t intent_id)
672{
673 return EFI_ITEM(lip)->efi_format.efi_id == intent_id;
674}
675
4e919af7
DW
676/* Relog an intent item to push the log tail forward. */
677static struct xfs_log_item *
678xfs_efi_item_relog(
679 struct xfs_log_item *intent,
680 struct xfs_trans *tp)
681{
682 struct xfs_efd_log_item *efdp;
683 struct xfs_efi_log_item *efip;
684 struct xfs_extent *extp;
685 unsigned int count;
686
687 count = EFI_ITEM(intent)->efi_format.efi_nextents;
688 extp = EFI_ITEM(intent)->efi_format.efi_extents;
689
690 tp->t_flags |= XFS_TRANS_DIRTY;
691 efdp = xfs_trans_get_efd(tp, EFI_ITEM(intent), count);
692 efdp->efd_next_extent = count;
693 memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp));
694 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
695
696 efip = xfs_efi_init(tp->t_mountp, count);
697 memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp));
698 atomic_set(&efip->efi_next_extent, count);
699 xfs_trans_add_item(tp, &efip->efi_item);
700 set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
701 return &efip->efi_item;
702}
703
10d0c6e0 704static const struct xfs_item_ops xfs_efi_item_ops = {
f5b81200 705 .flags = XFS_ITEM_INTENT,
10d0c6e0
DW
706 .iop_size = xfs_efi_item_size,
707 .iop_format = xfs_efi_item_format,
708 .iop_unpin = xfs_efi_item_unpin,
709 .iop_release = xfs_efi_item_release,
710 .iop_recover = xfs_efi_item_recover,
154c733a 711 .iop_match = xfs_efi_item_match,
4e919af7 712 .iop_relog = xfs_efi_item_relog,
10d0c6e0
DW
713};
714
9817aa80
DW
715/*
716 * This routine is called to create an in-core extent free intent
717 * item from the efi format structure which was logged on disk.
718 * It allocates an in-core efi, copies the extents from the format
719 * structure into it, and adds the efi to the AIL with the given
720 * LSN.
721 */
722STATIC int
723xlog_recover_efi_commit_pass2(
724 struct xlog *log,
725 struct list_head *buffer_list,
726 struct xlog_recover_item *item,
727 xfs_lsn_t lsn)
728{
729 struct xfs_mount *mp = log->l_mp;
730 struct xfs_efi_log_item *efip;
731 struct xfs_efi_log_format *efi_formatp;
732 int error;
733
734 efi_formatp = item->ri_buf[0].i_addr;
735
736 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
737 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
738 if (error) {
739 xfs_efi_item_free(efip);
740 return error;
741 }
742 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
9817aa80 743 /*
86a37174
DW
744 * Insert the intent into the AIL directly and drop one reference so
745 * that finishing or canceling the work will drop the other.
9817aa80 746 */
86a37174 747 xfs_trans_ail_insert(log->l_ailp, &efip->efi_item, lsn);
9817aa80
DW
748 xfs_efi_release(efip);
749 return 0;
750}
751
86ffa471
DW
752const struct xlog_recover_item_ops xlog_efi_item_ops = {
753 .item_type = XFS_LI_EFI,
9817aa80 754 .commit_pass2 = xlog_recover_efi_commit_pass2,
86ffa471
DW
755};
756
9817aa80
DW
757/*
758 * This routine is called when an EFD format structure is found in a committed
759 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
760 * was still in the log. To do this it searches the AIL for the EFI with an id
761 * equal to that in the EFD format structure. If we find it we drop the EFD
762 * reference, which removes the EFI from the AIL and frees it.
763 */
764STATIC int
765xlog_recover_efd_commit_pass2(
766 struct xlog *log,
767 struct list_head *buffer_list,
768 struct xlog_recover_item *item,
769 xfs_lsn_t lsn)
770{
9817aa80 771 struct xfs_efd_log_format *efd_formatp;
9817aa80
DW
772
773 efd_formatp = item->ri_buf[0].i_addr;
774 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
775 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
776 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
777 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
9817aa80 778
154c733a 779 xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id);
9817aa80
DW
780 return 0;
781}
782
86ffa471
DW
783const struct xlog_recover_item_ops xlog_efd_item_ops = {
784 .item_type = XFS_LI_EFD,
9817aa80 785 .commit_pass2 = xlog_recover_efd_commit_pass2,
86ffa471 786};