]> git.ipfire.org Git - people/ms/linux.git/blame - fs/xfs/xfs_trans_buf.c
Merge tag 'soc-fixes-6.0-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[people/ms/linux.git] / fs / xfs / xfs_trans_buf.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769
NS
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
a844f451 7#include "xfs_fs.h"
70a9883c 8#include "xfs_shared.h"
a4fbe6ab 9#include "xfs_format.h"
239880ef
DC
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
1da177e4 12#include "xfs_mount.h"
239880ef 13#include "xfs_trans.h"
a844f451 14#include "xfs_buf_item.h"
1da177e4 15#include "xfs_trans_priv.h"
0b1b213f 16#include "xfs_trace.h"
1da177e4 17
4a5224d7
CH
18/*
19 * Check to see if a buffer matching the given parameters is already
20 * a part of the given transaction.
21 */
22STATIC struct xfs_buf *
23xfs_trans_buf_item_match(
24 struct xfs_trans *tp,
25 struct xfs_buftarg *target,
de2a4f59
DC
26 struct xfs_buf_map *map,
27 int nmaps)
4a5224d7 28{
e6631f85 29 struct xfs_log_item *lip;
e98c414f 30 struct xfs_buf_log_item *blip;
de2a4f59
DC
31 int len = 0;
32 int i;
33
34 for (i = 0; i < nmaps; i++)
35 len += map[i].bm_len;
1da177e4 36
e6631f85
DC
37 list_for_each_entry(lip, &tp->t_items, li_trans) {
38 blip = (struct xfs_buf_log_item *)lip;
e98c414f 39 if (blip->bli_item.li_type == XFS_LI_BUF &&
49074c06 40 blip->bli_buf->b_target == target &&
04fcad80 41 xfs_buf_daddr(blip->bli_buf) == map[0].bm_bn &&
de2a4f59
DC
42 blip->bli_buf->b_length == len) {
43 ASSERT(blip->bli_buf->b_map_count == nmaps);
e98c414f 44 return blip->bli_buf;
de2a4f59 45 }
4a5224d7
CH
46 }
47
48 return NULL;
49}
1da177e4 50
d7e84f41
CH
51/*
52 * Add the locked buffer to the transaction.
53 *
54 * The buffer must be locked, and it cannot be associated with any
55 * transaction.
56 *
57 * If the buffer does not yet have a buf log item associated with it,
58 * then allocate one for it. Then add the buf item to the transaction.
59 */
60STATIC void
61_xfs_trans_bjoin(
62 struct xfs_trans *tp,
63 struct xfs_buf *bp,
64 int reset_recur)
65{
66 struct xfs_buf_log_item *bip;
67
bf9d9013 68 ASSERT(bp->b_transp == NULL);
d7e84f41
CH
69
70 /*
fb1755a6 71 * The xfs_buf_log_item pointer is stored in b_log_item. If
d7e84f41
CH
72 * it doesn't have one yet, then allocate one and initialize it.
73 * The checks to see if one is there are in xfs_buf_item_init().
74 */
75 xfs_buf_item_init(bp, tp->t_mountp);
fb1755a6 76 bip = bp->b_log_item;
d7e84f41 77 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
0f22f9d0 78 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
d7e84f41
CH
79 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
80 if (reset_recur)
81 bip->bli_recur = 0;
82
83 /*
84 * Take a reference for this transaction on the buf item.
85 */
86 atomic_inc(&bip->bli_refcount);
87
88 /*
e6631f85
DC
89 * Attach the item to the transaction so we can find it in
90 * xfs_trans_get_buf() and friends.
d7e84f41 91 */
e98c414f 92 xfs_trans_add_item(tp, &bip->bli_item);
bf9d9013 93 bp->b_transp = tp;
d7e84f41
CH
94
95}
96
97void
98xfs_trans_bjoin(
99 struct xfs_trans *tp,
100 struct xfs_buf *bp)
101{
102 _xfs_trans_bjoin(tp, bp, 0);
fb1755a6 103 trace_xfs_trans_bjoin(bp->b_log_item);
d7e84f41 104}
1da177e4
LT
105
106/*
107 * Get and lock the buffer for the caller if it is not already
108 * locked within the given transaction. If it is already locked
109 * within the transaction, just increment its lock recursion count
110 * and return a pointer to it.
111 *
1da177e4
LT
112 * If the transaction pointer is NULL, make this just a normal
113 * get_buf() call.
114 */
9676b54e 115int
de2a4f59
DC
116xfs_trans_get_buf_map(
117 struct xfs_trans *tp,
118 struct xfs_buftarg *target,
119 struct xfs_buf_map *map,
120 int nmaps,
9676b54e
DW
121 xfs_buf_flags_t flags,
122 struct xfs_buf **bpp)
1da177e4 123{
e8222613 124 struct xfs_buf *bp;
70a20655 125 struct xfs_buf_log_item *bip;
3848b5f6 126 int error;
1da177e4 127
9676b54e
DW
128 *bpp = NULL;
129 if (!tp)
130 return xfs_buf_get_map(target, map, nmaps, flags, bpp);
1da177e4
LT
131
132 /*
133 * If we find the buffer in the cache with this transaction
134 * pointer in its b_fsprivate2 field, then we know we already
135 * have it locked. In this case we just increment the lock
136 * recursion count and return the buffer to the caller.
137 */
de2a4f59 138 bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
1da177e4 139 if (bp != NULL) {
0c842ad4 140 ASSERT(xfs_buf_islocked(bp));
75c8c50f 141 if (xfs_is_shutdown(tp->t_mountp)) {
c867cb61 142 xfs_buf_stale(bp);
b0388bf1 143 bp->b_flags |= XBF_DONE;
c867cb61 144 }
0b1b213f 145
bf9d9013 146 ASSERT(bp->b_transp == tp);
fb1755a6 147 bip = bp->b_log_item;
1da177e4
LT
148 ASSERT(bip != NULL);
149 ASSERT(atomic_read(&bip->bli_refcount) > 0);
150 bip->bli_recur++;
0b1b213f 151 trace_xfs_trans_get_buf_recur(bip);
9676b54e
DW
152 *bpp = bp;
153 return 0;
1da177e4
LT
154 }
155
3848b5f6
DW
156 error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
157 if (error)
9676b54e 158 return error;
1da177e4 159
5a52c2a5 160 ASSERT(!bp->b_error);
1da177e4 161
d7e84f41 162 _xfs_trans_bjoin(tp, bp, 1);
fb1755a6 163 trace_xfs_trans_get_buf(bp->b_log_item);
9676b54e
DW
164 *bpp = bp;
165 return 0;
1da177e4
LT
166}
167
168/*
cead0b10 169 * Get and lock the superblock buffer for the given transaction.
1da177e4 170 */
cead0b10 171struct xfs_buf *
70a20655 172xfs_trans_getsb(
cead0b10 173 struct xfs_trans *tp)
1da177e4 174{
cead0b10 175 struct xfs_buf *bp = tp->t_mountp->m_sb_bp;
1da177e4
LT
176
177 /*
cead0b10
CH
178 * Just increment the lock recursion count if the buffer is already
179 * attached to this transaction.
1da177e4 180 */
bf9d9013 181 if (bp->b_transp == tp) {
cead0b10
CH
182 struct xfs_buf_log_item *bip = bp->b_log_item;
183
1da177e4
LT
184 ASSERT(bip != NULL);
185 ASSERT(atomic_read(&bip->bli_refcount) > 0);
186 bip->bli_recur++;
cead0b10 187
0b1b213f 188 trace_xfs_trans_getsb_recur(bip);
cead0b10
CH
189 } else {
190 xfs_buf_lock(bp);
191 xfs_buf_hold(bp);
192 _xfs_trans_bjoin(tp, bp, 1);
1da177e4 193
cead0b10
CH
194 trace_xfs_trans_getsb(bp->b_log_item);
195 }
1da177e4 196
d99831ff 197 return bp;
1da177e4
LT
198}
199
1da177e4
LT
200/*
201 * Get and lock the buffer for the caller if it is not already
202 * locked within the given transaction. If it has not yet been
203 * read in, read it from disk. If it is already locked
204 * within the transaction and already read in, just increment its
205 * lock recursion count and return a pointer to it.
206 *
1da177e4
LT
207 * If the transaction pointer is NULL, make this just a normal
208 * read_buf() call.
209 */
210int
de2a4f59
DC
211xfs_trans_read_buf_map(
212 struct xfs_mount *mp,
213 struct xfs_trans *tp,
214 struct xfs_buftarg *target,
215 struct xfs_buf_map *map,
216 int nmaps,
217 xfs_buf_flags_t flags,
c3f8fc73 218 struct xfs_buf **bpp,
1813dd64 219 const struct xfs_buf_ops *ops)
1da177e4 220{
2d3d0c53
DC
221 struct xfs_buf *bp = NULL;
222 struct xfs_buf_log_item *bip;
1da177e4
LT
223 int error;
224
7ca790a5 225 *bpp = NULL;
1da177e4
LT
226 /*
227 * If we find the buffer in the cache with this transaction
228 * pointer in its b_fsprivate2 field, then we know we already
229 * have it locked. If it is already read in we just increment
230 * the lock recursion count and return the buffer to the caller.
231 * If the buffer is not yet read in, then we read it in, increment
232 * the lock recursion count, and return it to the caller.
233 */
2d3d0c53
DC
234 if (tp)
235 bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
236 if (bp) {
0c842ad4 237 ASSERT(xfs_buf_islocked(bp));
bf9d9013 238 ASSERT(bp->b_transp == tp);
fb1755a6 239 ASSERT(bp->b_log_item != NULL);
5a52c2a5 240 ASSERT(!bp->b_error);
2d3d0c53
DC
241 ASSERT(bp->b_flags & XBF_DONE);
242
1da177e4
LT
243 /*
244 * We never locked this buf ourselves, so we shouldn't
245 * brelse it either. Just get out.
246 */
75c8c50f 247 if (xfs_is_shutdown(mp)) {
0b1b213f 248 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
2451337d 249 return -EIO;
1da177e4
LT
250 }
251
1aff5696
DW
252 /*
253 * Check if the caller is trying to read a buffer that is
254 * already attached to the transaction yet has no buffer ops
255 * assigned. Ops are usually attached when the buffer is
256 * attached to the transaction, or by the read caller if
257 * special circumstances. That didn't happen, which is not
258 * how this is supposed to go.
259 *
260 * If the buffer passes verification we'll let this go, but if
261 * not we have to shut down. Let the transaction cleanup code
262 * release this buffer when it kills the tranaction.
263 */
264 ASSERT(bp->b_ops != NULL);
75d02303 265 error = xfs_buf_reverify(bp, ops);
1aff5696 266 if (error) {
cdbcf82b 267 xfs_buf_ioerror_alert(bp, __return_address);
1aff5696
DW
268
269 if (tp->t_flags & XFS_TRANS_DIRTY)
270 xfs_force_shutdown(tp->t_mountp,
271 SHUTDOWN_META_IO_ERROR);
272
273 /* bad CRC means corrupted metadata */
274 if (error == -EFSBADCRC)
275 error = -EFSCORRUPTED;
276 return error;
277 }
278
fb1755a6 279 bip = bp->b_log_item;
1da177e4
LT
280 bip->bli_recur++;
281
282 ASSERT(atomic_read(&bip->bli_refcount) > 0);
0b1b213f 283 trace_xfs_trans_read_buf_recur(bip);
1aff5696 284 ASSERT(bp->b_ops != NULL || ops == NULL);
1da177e4
LT
285 *bpp = bp;
286 return 0;
287 }
288
cdbcf82b
DW
289 error = xfs_buf_read_map(target, map, nmaps, flags, &bp, ops,
290 __return_address);
4ed8e27b
DW
291 switch (error) {
292 case 0:
293 break;
294 default:
2d3d0c53 295 if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
7d04a335 296 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
53004ee7 297 fallthrough;
4ed8e27b
DW
298 case -ENOMEM:
299 case -EAGAIN:
1da177e4
LT
300 return error;
301 }
2d3d0c53 302
75c8c50f 303 if (xfs_is_shutdown(mp)) {
2d3d0c53
DC
304 xfs_buf_relse(bp);
305 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
306 return -EIO;
1da177e4 307 }
1da177e4 308
e9892d3c 309 if (tp) {
2d3d0c53 310 _xfs_trans_bjoin(tp, bp, 1);
fb1755a6 311 trace_xfs_trans_read_buf(bp->b_log_item);
e9892d3c 312 }
1aff5696 313 ASSERT(bp->b_ops != NULL || ops == NULL);
1da177e4
LT
314 *bpp = bp;
315 return 0;
316
1da177e4
LT
317}
318
38b6238e
DW
319/* Has this buffer been dirtied by anyone? */
320bool
321xfs_trans_buf_is_dirty(
322 struct xfs_buf *bp)
323{
324 struct xfs_buf_log_item *bip = bp->b_log_item;
325
326 if (!bip)
327 return false;
328 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
329 return test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
330}
331
1da177e4 332/*
23420d05
BF
333 * Release a buffer previously joined to the transaction. If the buffer is
334 * modified within this transaction, decrement the recursion count but do not
335 * release the buffer even if the count goes to 0. If the buffer is not modified
336 * within the transaction, decrement the recursion count and release the buffer
337 * if the recursion count goes to 0.
1da177e4 338 *
23420d05
BF
339 * If the buffer is to be released and it was not already dirty before this
340 * transaction began, then also free the buf_log_item associated with it.
1da177e4 341 *
23420d05 342 * If the transaction pointer is NULL, this is a normal xfs_buf_relse() call.
1da177e4
LT
343 */
344void
70a20655 345xfs_trans_brelse(
23420d05
BF
346 struct xfs_trans *tp,
347 struct xfs_buf *bp)
1da177e4 348{
23420d05 349 struct xfs_buf_log_item *bip = bp->b_log_item;
1da177e4 350
23420d05
BF
351 ASSERT(bp->b_transp == tp);
352
353 if (!tp) {
1da177e4
LT
354 xfs_buf_relse(bp);
355 return;
356 }
357
23420d05 358 trace_xfs_trans_brelse(bip);
1da177e4 359 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
1da177e4
LT
360 ASSERT(atomic_read(&bip->bli_refcount) > 0);
361
1da177e4 362 /*
23420d05
BF
363 * If the release is for a recursive lookup, then decrement the count
364 * and return.
1da177e4
LT
365 */
366 if (bip->bli_recur > 0) {
367 bip->bli_recur--;
1da177e4
LT
368 return;
369 }
370
371 /*
23420d05 372 * If the buffer is invalidated or dirty in this transaction, we can't
1da177e4
LT
373 * release it until we commit.
374 */
e6631f85 375 if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags))
1da177e4 376 return;
0b1b213f 377 if (bip->bli_flags & XFS_BLI_STALE)
1da177e4 378 return;
1da177e4 379
1da177e4 380 /*
23420d05
BF
381 * Unlink the log item from the transaction and clear the hold flag, if
382 * set. We wouldn't want the next user of the buffer to get confused.
1da177e4 383 */
23420d05 384 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
e98c414f 385 xfs_trans_del_item(&bip->bli_item);
23420d05 386 bip->bli_flags &= ~XFS_BLI_HOLD;
1da177e4 387
95808459
BF
388 /* drop the reference to the bli */
389 xfs_buf_item_put(bip);
1da177e4 390
5b03ff1b 391 bp->b_transp = NULL;
1da177e4 392 xfs_buf_relse(bp);
1da177e4
LT
393}
394
1da177e4
LT
395/*
396 * Mark the buffer as not needing to be unlocked when the buf item's
ddf92053 397 * iop_committing() routine is called. The buffer must already be locked
1da177e4
LT
398 * and associated with the given transaction.
399 */
400/* ARGSUSED */
401void
70a20655
CM
402xfs_trans_bhold(
403 xfs_trans_t *tp,
e8222613 404 struct xfs_buf *bp)
1da177e4 405{
fb1755a6 406 struct xfs_buf_log_item *bip = bp->b_log_item;
1da177e4 407
bf9d9013 408 ASSERT(bp->b_transp == tp);
adadbeef 409 ASSERT(bip != NULL);
1da177e4 410 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
0f22f9d0 411 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
1da177e4 412 ASSERT(atomic_read(&bip->bli_refcount) > 0);
adadbeef 413
1da177e4 414 bip->bli_flags |= XFS_BLI_HOLD;
0b1b213f 415 trace_xfs_trans_bhold(bip);
1da177e4
LT
416}
417
efa092f3
TS
418/*
419 * Cancel the previous buffer hold request made on this buffer
420 * for this transaction.
421 */
422void
70a20655
CM
423xfs_trans_bhold_release(
424 xfs_trans_t *tp,
e8222613 425 struct xfs_buf *bp)
efa092f3 426{
fb1755a6 427 struct xfs_buf_log_item *bip = bp->b_log_item;
efa092f3 428
bf9d9013 429 ASSERT(bp->b_transp == tp);
adadbeef 430 ASSERT(bip != NULL);
efa092f3 431 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
0f22f9d0 432 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
efa092f3
TS
433 ASSERT(atomic_read(&bip->bli_refcount) > 0);
434 ASSERT(bip->bli_flags & XFS_BLI_HOLD);
0b1b213f 435
adadbeef 436 bip->bli_flags &= ~XFS_BLI_HOLD;
0b1b213f 437 trace_xfs_trans_bhold_release(bip);
efa092f3
TS
438}
439
1da177e4 440/*
9684010d 441 * Mark a buffer dirty in the transaction.
1da177e4
LT
442 */
443void
9684010d
BF
444xfs_trans_dirty_buf(
445 struct xfs_trans *tp,
446 struct xfs_buf *bp)
1da177e4 447{
fb1755a6 448 struct xfs_buf_log_item *bip = bp->b_log_item;
1da177e4 449
bf9d9013 450 ASSERT(bp->b_transp == tp);
adadbeef 451 ASSERT(bip != NULL);
1da177e4
LT
452
453 /*
454 * Mark the buffer as needing to be written out eventually,
455 * and set its iodone function to remove the buffer's buf log
456 * item from the AIL and free it when the buffer is flushed
b01d1461 457 * to disk.
1da177e4 458 */
b0388bf1 459 bp->b_flags |= XBF_DONE;
1da177e4 460
1da177e4 461 ASSERT(atomic_read(&bip->bli_refcount) > 0);
1da177e4
LT
462
463 /*
464 * If we invalidated the buffer within this transaction, then
465 * cancel the invalidation now that we're dirtying the buffer
466 * again. There are no races with the code in xfs_buf_item_unpin(),
467 * because we have a reference to the buffer this entire time.
468 */
469 if (bip->bli_flags & XFS_BLI_STALE) {
1da177e4 470 bip->bli_flags &= ~XFS_BLI_STALE;
5cfd28b6
DC
471 ASSERT(bp->b_flags & XBF_STALE);
472 bp->b_flags &= ~XBF_STALE;
0f22f9d0 473 bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
1da177e4 474 }
9684010d 475 bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
1da177e4 476
1da177e4 477 tp->t_flags |= XFS_TRANS_DIRTY;
e6631f85 478 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
9684010d
BF
479}
480
481/*
482 * This is called to mark bytes first through last inclusive of the given
483 * buffer as needing to be logged when the transaction is committed.
484 * The buffer must already be associated with the given transaction.
485 *
486 * First and last are numbers relative to the beginning of this buffer,
487 * so the first byte in the buffer is numbered 0 regardless of the
488 * value of b_blkno.
489 */
490void
491xfs_trans_log_buf(
492 struct xfs_trans *tp,
493 struct xfs_buf *bp,
494 uint first,
495 uint last)
496{
fb1755a6 497 struct xfs_buf_log_item *bip = bp->b_log_item;
9684010d
BF
498
499 ASSERT(first <= last && last < BBTOB(bp->b_length));
8dc518df 500 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
9684010d
BF
501
502 xfs_trans_dirty_buf(tp, bp);
5f6bed76 503
9684010d 504 trace_xfs_trans_log_buf(bip);
8dc518df 505 xfs_buf_item_log(bip, first, last);
1da177e4
LT
506}
507
508
509/*
43ff2122
CH
510 * Invalidate a buffer that is being used within a transaction.
511 *
512 * Typically this is because the blocks in the buffer are being freed, so we
513 * need to prevent it from being written out when we're done. Allowing it
514 * to be written again might overwrite data in the free blocks if they are
515 * reallocated to a file.
1da177e4 516 *
43ff2122
CH
517 * We prevent the buffer from being written out by marking it stale. We can't
518 * get rid of the buf log item at this point because the buffer may still be
519 * pinned by another transaction. If that is the case, then we'll wait until
520 * the buffer is committed to disk for the last time (we can tell by the ref
521 * count) and free it in xfs_buf_item_unpin(). Until that happens we will
522 * keep the buffer locked so that the buffer and buf log item are not reused.
523 *
524 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
525 * the buf item. This will be used at recovery time to determine that copies
526 * of the buffer in the log before this should not be replayed.
527 *
528 * We mark the item descriptor and the transaction dirty so that we'll hold
529 * the buffer until after the commit.
530 *
531 * Since we're invalidating the buffer, we also clear the state about which
532 * parts of the buffer have been logged. We also clear the flag indicating
533 * that this is an inode buffer since the data in the buffer will no longer
534 * be valid.
535 *
536 * We set the stale bit in the buffer as well since we're getting rid of it.
1da177e4
LT
537 */
538void
539xfs_trans_binval(
70a20655 540 xfs_trans_t *tp,
e8222613 541 struct xfs_buf *bp)
1da177e4 542{
fb1755a6 543 struct xfs_buf_log_item *bip = bp->b_log_item;
91e4bac0 544 int i;
1da177e4 545
bf9d9013 546 ASSERT(bp->b_transp == tp);
adadbeef 547 ASSERT(bip != NULL);
1da177e4
LT
548 ASSERT(atomic_read(&bip->bli_refcount) > 0);
549
0b1b213f
CH
550 trace_xfs_trans_binval(bip);
551
1da177e4
LT
552 if (bip->bli_flags & XFS_BLI_STALE) {
553 /*
554 * If the buffer is already invalidated, then
555 * just return.
556 */
5cfd28b6 557 ASSERT(bp->b_flags & XBF_STALE);
1da177e4 558 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
0f22f9d0 559 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
61fe135c 560 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
0f22f9d0 561 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
e6631f85 562 ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags));
1da177e4 563 ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
1da177e4
LT
564 return;
565 }
566
c867cb61 567 xfs_buf_stale(bp);
43ff2122 568
1da177e4 569 bip->bli_flags |= XFS_BLI_STALE;
ccf7c23f 570 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
0f22f9d0
MT
571 bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
572 bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
61fe135c 573 bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
91e4bac0
MT
574 for (i = 0; i < bip->bli_format_count; i++) {
575 memset(bip->bli_formats[i].blf_data_map, 0,
576 (bip->bli_formats[i].blf_map_size * sizeof(uint)));
577 }
e6631f85 578 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
1da177e4 579 tp->t_flags |= XFS_TRANS_DIRTY;
1da177e4
LT
580}
581
582/*
ccf7c23f
DC
583 * This call is used to indicate that the buffer contains on-disk inodes which
584 * must be handled specially during recovery. They require special handling
585 * because only the di_next_unlinked from the inodes in the buffer should be
586 * recovered. The rest of the data in the buffer is logged via the inodes
587 * themselves.
1da177e4 588 *
ccf7c23f
DC
589 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
590 * transferred to the buffer's log format structure so that we'll know what to
591 * do at recovery time.
1da177e4 592 */
1da177e4
LT
593void
594xfs_trans_inode_buf(
70a20655 595 xfs_trans_t *tp,
e8222613 596 struct xfs_buf *bp)
1da177e4 597{
fb1755a6 598 struct xfs_buf_log_item *bip = bp->b_log_item;
1da177e4 599
bf9d9013 600 ASSERT(bp->b_transp == tp);
adadbeef 601 ASSERT(bip != NULL);
1da177e4
LT
602 ASSERT(atomic_read(&bip->bli_refcount) > 0);
603
ccf7c23f 604 bip->bli_flags |= XFS_BLI_INODE_BUF;
f593bf14 605 bp->b_flags |= _XBF_INODES;
61fe135c 606 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
1da177e4
LT
607}
608
609/*
610 * This call is used to indicate that the buffer is going to
611 * be staled and was an inode buffer. This means it gets
93848a99 612 * special processing during unpin - where any inodes
1da177e4
LT
613 * associated with the buffer should be removed from ail.
614 * There is also special processing during recovery,
615 * any replay of the inodes in the buffer needs to be
616 * prevented as the buffer may have been reused.
617 */
618void
619xfs_trans_stale_inode_buf(
70a20655 620 xfs_trans_t *tp,
e8222613 621 struct xfs_buf *bp)
1da177e4 622{
fb1755a6 623 struct xfs_buf_log_item *bip = bp->b_log_item;
1da177e4 624
bf9d9013 625 ASSERT(bp->b_transp == tp);
adadbeef 626 ASSERT(bip != NULL);
1da177e4
LT
627 ASSERT(atomic_read(&bip->bli_refcount) > 0);
628
629 bip->bli_flags |= XFS_BLI_STALE_INODE;
f593bf14 630 bp->b_flags |= _XBF_INODES;
61fe135c 631 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
1da177e4
LT
632}
633
1da177e4
LT
634/*
635 * Mark the buffer as being one which contains newly allocated
636 * inodes. We need to make sure that even if this buffer is
637 * relogged as an 'inode buf' we still recover all of the inode
638 * images in the face of a crash. This works in coordination with
639 * xfs_buf_item_committed() to ensure that the buffer remains in the
640 * AIL at its original location even after it has been relogged.
641 */
642/* ARGSUSED */
643void
644xfs_trans_inode_alloc_buf(
70a20655 645 xfs_trans_t *tp,
e8222613 646 struct xfs_buf *bp)
1da177e4 647{
fb1755a6 648 struct xfs_buf_log_item *bip = bp->b_log_item;
1da177e4 649
bf9d9013 650 ASSERT(bp->b_transp == tp);
adadbeef 651 ASSERT(bip != NULL);
1da177e4
LT
652 ASSERT(atomic_read(&bip->bli_refcount) > 0);
653
654 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
f593bf14 655 bp->b_flags |= _XBF_INODES;
61fe135c 656 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
1da177e4
LT
657}
658
5f6bed76 659/*
8dc518df
BF
660 * Mark the buffer as ordered for this transaction. This means that the contents
661 * of the buffer are not recorded in the transaction but it is tracked in the
662 * AIL as though it was. This allows us to record logical changes in
663 * transactions rather than the physical changes we make to the buffer without
664 * changing writeback ordering constraints of metadata buffers.
5f6bed76 665 */
a5814bce 666bool
5f6bed76
DC
667xfs_trans_ordered_buf(
668 struct xfs_trans *tp,
669 struct xfs_buf *bp)
670{
fb1755a6 671 struct xfs_buf_log_item *bip = bp->b_log_item;
5f6bed76
DC
672
673 ASSERT(bp->b_transp == tp);
674 ASSERT(bip != NULL);
675 ASSERT(atomic_read(&bip->bli_refcount) > 0);
a5814bce
BF
676
677 if (xfs_buf_item_dirty_format(bip))
678 return false;
5f6bed76
DC
679
680 bip->bli_flags |= XFS_BLI_ORDERED;
681 trace_xfs_buf_item_ordered(bip);
8dc518df
BF
682
683 /*
684 * We don't log a dirty range of an ordered buffer but it still needs
685 * to be marked dirty and that it has been logged.
686 */
687 xfs_trans_dirty_buf(tp, bp);
a5814bce 688 return true;
5f6bed76
DC
689}
690
ee1a47ab
CH
691/*
692 * Set the type of the buffer for log recovery so that it can correctly identify
693 * and hence attach the correct buffer ops to the buffer after replay.
694 */
695void
696xfs_trans_buf_set_type(
697 struct xfs_trans *tp,
698 struct xfs_buf *bp,
61fe135c 699 enum xfs_blft type)
ee1a47ab 700{
fb1755a6 701 struct xfs_buf_log_item *bip = bp->b_log_item;
ee1a47ab 702
d75afeb3
DC
703 if (!tp)
704 return;
705
ee1a47ab
CH
706 ASSERT(bp->b_transp == tp);
707 ASSERT(bip != NULL);
708 ASSERT(atomic_read(&bip->bli_refcount) > 0);
ee1a47ab 709
61fe135c 710 xfs_blft_to_flags(&bip->__bli_format, type);
ee1a47ab 711}
1da177e4 712
d75afeb3
DC
713void
714xfs_trans_buf_copy_type(
715 struct xfs_buf *dst_bp,
716 struct xfs_buf *src_bp)
717{
fb1755a6
CM
718 struct xfs_buf_log_item *sbip = src_bp->b_log_item;
719 struct xfs_buf_log_item *dbip = dst_bp->b_log_item;
61fe135c 720 enum xfs_blft type;
d75afeb3 721
61fe135c
DC
722 type = xfs_blft_from_flags(&sbip->__bli_format);
723 xfs_blft_to_flags(&dbip->__bli_format, type);
d75afeb3
DC
724}
725
1da177e4
LT
726/*
727 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
728 * dquots. However, unlike in inode buffer recovery, dquot buffers get
729 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
730 * The only thing that makes dquot buffers different from regular
731 * buffers is that we must not replay dquot bufs when recovering
732 * if a _corresponding_ quotaoff has happened. We also have to distinguish
733 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
734 * can be turned off independently.
735 */
736/* ARGSUSED */
737void
738xfs_trans_dquot_buf(
70a20655 739 xfs_trans_t *tp,
e8222613 740 struct xfs_buf *bp,
70a20655 741 uint type)
1da177e4 742{
fb1755a6 743 struct xfs_buf_log_item *bip = bp->b_log_item;
61fe135c 744
c1155410
DC
745 ASSERT(type == XFS_BLF_UDQUOT_BUF ||
746 type == XFS_BLF_PDQUOT_BUF ||
747 type == XFS_BLF_GDQUOT_BUF);
1da177e4 748
61fe135c
DC
749 bip->__bli_format.blf_flags |= type;
750
751 switch (type) {
752 case XFS_BLF_UDQUOT_BUF:
753 type = XFS_BLFT_UDQUOT_BUF;
754 break;
755 case XFS_BLF_PDQUOT_BUF:
756 type = XFS_BLFT_PDQUOT_BUF;
757 break;
758 case XFS_BLF_GDQUOT_BUF:
759 type = XFS_BLFT_GDQUOT_BUF;
760 break;
761 default:
762 type = XFS_BLFT_UNKNOWN_BUF;
763 break;
764 }
765
0c7e5afb 766 bp->b_flags |= _XBF_DQUOTS;
ee1a47ab 767 xfs_trans_buf_set_type(tp, bp, type);
1da177e4 768}