]> git.ipfire.org Git - people/ms/linux.git/blame - mm/memcontrol.c
mm: memcontrol: convert reclaim iterator to simple css refcounting
[people/ms/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
ada4ba59 83static int really_do_swap_account __initdata;
a42c390c
MH
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
5ac8fb31
JW
146struct reclaim_iter {
147 struct mem_cgroup *position;
527a5ec9
JW
148 /* scan generation, increased every round-trip */
149 unsigned int generation;
150};
151
6d12e2d8
KH
152/*
153 * per-zone information in memory controller.
154 */
6d12e2d8 155struct mem_cgroup_per_zone {
6290df54 156 struct lruvec lruvec;
1eb49272 157 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 158
5ac8fb31 159 struct reclaim_iter iter[DEF_PRIORITY + 1];
527a5ec9 160
bb4cc1a8 161 struct rb_node tree_node; /* RB tree node */
3e32cb2e 162 unsigned long usage_in_excess;/* Set to the value by which */
bb4cc1a8
AM
163 /* the soft limit is exceeded*/
164 bool on_tree;
d79154bb 165 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 166 /* use container_of */
6d12e2d8 167};
6d12e2d8
KH
168
169struct mem_cgroup_per_node {
170 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
171};
172
bb4cc1a8
AM
173/*
174 * Cgroups above their limits are maintained in a RB-Tree, independent of
175 * their hierarchy representation
176 */
177
178struct mem_cgroup_tree_per_zone {
179 struct rb_root rb_root;
180 spinlock_t lock;
181};
182
183struct mem_cgroup_tree_per_node {
184 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
185};
186
187struct mem_cgroup_tree {
188 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
189};
190
191static struct mem_cgroup_tree soft_limit_tree __read_mostly;
192
2e72b634
KS
193struct mem_cgroup_threshold {
194 struct eventfd_ctx *eventfd;
3e32cb2e 195 unsigned long threshold;
2e72b634
KS
196};
197
9490ff27 198/* For threshold */
2e72b634 199struct mem_cgroup_threshold_ary {
748dad36 200 /* An array index points to threshold just below or equal to usage. */
5407a562 201 int current_threshold;
2e72b634
KS
202 /* Size of entries[] */
203 unsigned int size;
204 /* Array of thresholds */
205 struct mem_cgroup_threshold entries[0];
206};
2c488db2
KS
207
208struct mem_cgroup_thresholds {
209 /* Primary thresholds array */
210 struct mem_cgroup_threshold_ary *primary;
211 /*
212 * Spare threshold array.
213 * This is needed to make mem_cgroup_unregister_event() "never fail".
214 * It must be able to store at least primary->size - 1 entries.
215 */
216 struct mem_cgroup_threshold_ary *spare;
217};
218
9490ff27
KH
219/* for OOM */
220struct mem_cgroup_eventfd_list {
221 struct list_head list;
222 struct eventfd_ctx *eventfd;
223};
2e72b634 224
79bd9814
TH
225/*
226 * cgroup_event represents events which userspace want to receive.
227 */
3bc942f3 228struct mem_cgroup_event {
79bd9814 229 /*
59b6f873 230 * memcg which the event belongs to.
79bd9814 231 */
59b6f873 232 struct mem_cgroup *memcg;
79bd9814
TH
233 /*
234 * eventfd to signal userspace about the event.
235 */
236 struct eventfd_ctx *eventfd;
237 /*
238 * Each of these stored in a list by the cgroup.
239 */
240 struct list_head list;
fba94807
TH
241 /*
242 * register_event() callback will be used to add new userspace
243 * waiter for changes related to this event. Use eventfd_signal()
244 * on eventfd to send notification to userspace.
245 */
59b6f873 246 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 247 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
248 /*
249 * unregister_event() callback will be called when userspace closes
250 * the eventfd or on cgroup removing. This callback must be set,
251 * if you want provide notification functionality.
252 */
59b6f873 253 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 254 struct eventfd_ctx *eventfd);
79bd9814
TH
255 /*
256 * All fields below needed to unregister event when
257 * userspace closes eventfd.
258 */
259 poll_table pt;
260 wait_queue_head_t *wqh;
261 wait_queue_t wait;
262 struct work_struct remove;
263};
264
c0ff4b85
R
265static void mem_cgroup_threshold(struct mem_cgroup *memcg);
266static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 267
8cdea7c0
BS
268/*
269 * The memory controller data structure. The memory controller controls both
270 * page cache and RSS per cgroup. We would eventually like to provide
271 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
272 * to help the administrator determine what knobs to tune.
273 *
274 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
275 * we hit the water mark. May be even add a low water mark, such that
276 * no reclaim occurs from a cgroup at it's low water mark, this is
277 * a feature that will be implemented much later in the future.
8cdea7c0
BS
278 */
279struct mem_cgroup {
280 struct cgroup_subsys_state css;
3e32cb2e
JW
281
282 /* Accounted resources */
283 struct page_counter memory;
284 struct page_counter memsw;
285 struct page_counter kmem;
286
287 unsigned long soft_limit;
59927fb9 288
70ddf637
AV
289 /* vmpressure notifications */
290 struct vmpressure vmpressure;
291
2f7dd7a4
JW
292 /* css_online() has been completed */
293 int initialized;
294
18f59ea7
BS
295 /*
296 * Should the accounting and control be hierarchical, per subtree?
297 */
298 bool use_hierarchy;
510fc4e1 299 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
300
301 bool oom_lock;
302 atomic_t under_oom;
3812c8c8 303 atomic_t oom_wakeups;
79dfdacc 304
1f4c025b 305 int swappiness;
3c11ecf4
KH
306 /* OOM-Killer disable */
307 int oom_kill_disable;
a7885eb8 308
2e72b634
KS
309 /* protect arrays of thresholds */
310 struct mutex thresholds_lock;
311
312 /* thresholds for memory usage. RCU-protected */
2c488db2 313 struct mem_cgroup_thresholds thresholds;
907860ed 314
2e72b634 315 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 316 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 317
9490ff27
KH
318 /* For oom notifier event fd */
319 struct list_head oom_notify;
185efc0f 320
7dc74be0
DN
321 /*
322 * Should we move charges of a task when a task is moved into this
323 * mem_cgroup ? And what type of charges should we move ?
324 */
f894ffa8 325 unsigned long move_charge_at_immigrate;
619d094b
KH
326 /*
327 * set > 0 if pages under this cgroup are moving to other cgroup.
328 */
329 atomic_t moving_account;
312734c0
KH
330 /* taken only while moving_account > 0 */
331 spinlock_t move_lock;
d52aa412 332 /*
c62b1a3b 333 * percpu counter.
d52aa412 334 */
3a7951b4 335 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
336 /*
337 * used when a cpu is offlined or other synchronizations
338 * See mem_cgroup_read_stat().
339 */
340 struct mem_cgroup_stat_cpu nocpu_base;
341 spinlock_t pcp_counter_lock;
d1a4c0b3 342
4bd2c1ee 343#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 344 struct cg_proto tcp_mem;
d1a4c0b3 345#endif
2633d7a0 346#if defined(CONFIG_MEMCG_KMEM)
bd673145
VD
347 /* analogous to slab_common's slab_caches list, but per-memcg;
348 * protected by memcg_slab_mutex */
2633d7a0 349 struct list_head memcg_slab_caches;
2633d7a0
GC
350 /* Index in the kmem_cache->memcg_params->memcg_caches array */
351 int kmemcg_id;
352#endif
45cf7ebd
GC
353
354 int last_scanned_node;
355#if MAX_NUMNODES > 1
356 nodemask_t scan_nodes;
357 atomic_t numainfo_events;
358 atomic_t numainfo_updating;
359#endif
70ddf637 360
fba94807
TH
361 /* List of events which userspace want to receive */
362 struct list_head event_list;
363 spinlock_t event_list_lock;
364
54f72fe0
JW
365 struct mem_cgroup_per_node *nodeinfo[0];
366 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
367};
368
510fc4e1
GC
369/* internal only representation about the status of kmem accounting. */
370enum {
6de64beb 371 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
7de37682 372 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
373};
374
510fc4e1
GC
375#ifdef CONFIG_MEMCG_KMEM
376static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
377{
378 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
379}
7de37682
GC
380
381static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
382{
383 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
384}
385
386static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
387{
10d5ebf4
LZ
388 /*
389 * Our caller must use css_get() first, because memcg_uncharge_kmem()
390 * will call css_put() if it sees the memcg is dead.
391 */
392 smp_wmb();
7de37682
GC
393 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
394 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
395}
396
397static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
398{
399 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
400 &memcg->kmem_account_flags);
401}
510fc4e1
GC
402#endif
403
7dc74be0
DN
404/* Stuffs for move charges at task migration. */
405/*
ee5e8472
GC
406 * Types of charges to be moved. "move_charge_at_immitgrate" and
407 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
408 */
409enum move_type {
4ffef5fe 410 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 411 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
412 NR_MOVE_TYPE,
413};
414
4ffef5fe
DN
415/* "mc" and its members are protected by cgroup_mutex */
416static struct move_charge_struct {
b1dd693e 417 spinlock_t lock; /* for from, to */
4ffef5fe
DN
418 struct mem_cgroup *from;
419 struct mem_cgroup *to;
ee5e8472 420 unsigned long immigrate_flags;
4ffef5fe 421 unsigned long precharge;
854ffa8d 422 unsigned long moved_charge;
483c30b5 423 unsigned long moved_swap;
8033b97c
DN
424 struct task_struct *moving_task; /* a task moving charges */
425 wait_queue_head_t waitq; /* a waitq for other context */
426} mc = {
2bd9bb20 427 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
428 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
429};
4ffef5fe 430
90254a65
DN
431static bool move_anon(void)
432{
ee5e8472 433 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
434}
435
87946a72
DN
436static bool move_file(void)
437{
ee5e8472 438 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
439}
440
4e416953
BS
441/*
442 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
443 * limit reclaim to prevent infinite loops, if they ever occur.
444 */
a0db00fc 445#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 446#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 447
217bc319
KH
448enum charge_type {
449 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 450 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 451 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 452 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
453 NR_CHARGE_TYPE,
454};
455
8c7c6e34 456/* for encoding cft->private value on file */
86ae53e1
GC
457enum res_type {
458 _MEM,
459 _MEMSWAP,
460 _OOM_TYPE,
510fc4e1 461 _KMEM,
86ae53e1
GC
462};
463
a0db00fc
KS
464#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
465#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 466#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
467/* Used for OOM nofiier */
468#define OOM_CONTROL (0)
8c7c6e34 469
0999821b
GC
470/*
471 * The memcg_create_mutex will be held whenever a new cgroup is created.
472 * As a consequence, any change that needs to protect against new child cgroups
473 * appearing has to hold it as well.
474 */
475static DEFINE_MUTEX(memcg_create_mutex);
476
b2145145
WL
477struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
478{
a7c6d554 479 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
480}
481
70ddf637
AV
482/* Some nice accessors for the vmpressure. */
483struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
484{
485 if (!memcg)
486 memcg = root_mem_cgroup;
487 return &memcg->vmpressure;
488}
489
490struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
491{
492 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
493}
494
7ffc0edc
MH
495static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
496{
497 return (memcg == root_mem_cgroup);
498}
499
4219b2da
LZ
500/*
501 * We restrict the id in the range of [1, 65535], so it can fit into
502 * an unsigned short.
503 */
504#define MEM_CGROUP_ID_MAX USHRT_MAX
505
34c00c31
LZ
506static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
507{
15a4c835 508 return memcg->css.id;
34c00c31
LZ
509}
510
511static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
512{
513 struct cgroup_subsys_state *css;
514
7d699ddb 515 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
516 return mem_cgroup_from_css(css);
517}
518
e1aab161 519/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 520#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 521
e1aab161
GC
522void sock_update_memcg(struct sock *sk)
523{
376be5ff 524 if (mem_cgroup_sockets_enabled) {
e1aab161 525 struct mem_cgroup *memcg;
3f134619 526 struct cg_proto *cg_proto;
e1aab161
GC
527
528 BUG_ON(!sk->sk_prot->proto_cgroup);
529
f3f511e1
GC
530 /* Socket cloning can throw us here with sk_cgrp already
531 * filled. It won't however, necessarily happen from
532 * process context. So the test for root memcg given
533 * the current task's memcg won't help us in this case.
534 *
535 * Respecting the original socket's memcg is a better
536 * decision in this case.
537 */
538 if (sk->sk_cgrp) {
539 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 540 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
541 return;
542 }
543
e1aab161
GC
544 rcu_read_lock();
545 memcg = mem_cgroup_from_task(current);
3f134619 546 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 547 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
548 memcg_proto_active(cg_proto) &&
549 css_tryget_online(&memcg->css)) {
3f134619 550 sk->sk_cgrp = cg_proto;
e1aab161
GC
551 }
552 rcu_read_unlock();
553 }
554}
555EXPORT_SYMBOL(sock_update_memcg);
556
557void sock_release_memcg(struct sock *sk)
558{
376be5ff 559 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
560 struct mem_cgroup *memcg;
561 WARN_ON(!sk->sk_cgrp->memcg);
562 memcg = sk->sk_cgrp->memcg;
5347e5ae 563 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
564 }
565}
d1a4c0b3
GC
566
567struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
568{
569 if (!memcg || mem_cgroup_is_root(memcg))
570 return NULL;
571
2e685cad 572 return &memcg->tcp_mem;
d1a4c0b3
GC
573}
574EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 575
3f134619
GC
576static void disarm_sock_keys(struct mem_cgroup *memcg)
577{
2e685cad 578 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
579 return;
580 static_key_slow_dec(&memcg_socket_limit_enabled);
581}
582#else
583static void disarm_sock_keys(struct mem_cgroup *memcg)
584{
585}
586#endif
587
a8964b9b 588#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
589/*
590 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
591 * The main reason for not using cgroup id for this:
592 * this works better in sparse environments, where we have a lot of memcgs,
593 * but only a few kmem-limited. Or also, if we have, for instance, 200
594 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
595 * 200 entry array for that.
55007d84
GC
596 *
597 * The current size of the caches array is stored in
598 * memcg_limited_groups_array_size. It will double each time we have to
599 * increase it.
600 */
601static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
602int memcg_limited_groups_array_size;
603
55007d84
GC
604/*
605 * MIN_SIZE is different than 1, because we would like to avoid going through
606 * the alloc/free process all the time. In a small machine, 4 kmem-limited
607 * cgroups is a reasonable guess. In the future, it could be a parameter or
608 * tunable, but that is strictly not necessary.
609 *
b8627835 610 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
611 * this constant directly from cgroup, but it is understandable that this is
612 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 613 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
614 * increase ours as well if it increases.
615 */
616#define MEMCG_CACHES_MIN_SIZE 4
b8627835 617#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 618
d7f25f8a
GC
619/*
620 * A lot of the calls to the cache allocation functions are expected to be
621 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
622 * conditional to this static branch, we'll have to allow modules that does
623 * kmem_cache_alloc and the such to see this symbol as well
624 */
a8964b9b 625struct static_key memcg_kmem_enabled_key;
d7f25f8a 626EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 627
f3bb3043
VD
628static void memcg_free_cache_id(int id);
629
a8964b9b
GC
630static void disarm_kmem_keys(struct mem_cgroup *memcg)
631{
55007d84 632 if (memcg_kmem_is_active(memcg)) {
a8964b9b 633 static_key_slow_dec(&memcg_kmem_enabled_key);
f3bb3043 634 memcg_free_cache_id(memcg->kmemcg_id);
55007d84 635 }
bea207c8
GC
636 /*
637 * This check can't live in kmem destruction function,
638 * since the charges will outlive the cgroup
639 */
3e32cb2e 640 WARN_ON(page_counter_read(&memcg->kmem));
a8964b9b
GC
641}
642#else
643static void disarm_kmem_keys(struct mem_cgroup *memcg)
644{
645}
646#endif /* CONFIG_MEMCG_KMEM */
647
648static void disarm_static_keys(struct mem_cgroup *memcg)
649{
650 disarm_sock_keys(memcg);
651 disarm_kmem_keys(memcg);
652}
653
c0ff4b85 654static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 655
f64c3f54 656static struct mem_cgroup_per_zone *
e231875b 657mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 658{
e231875b
JZ
659 int nid = zone_to_nid(zone);
660 int zid = zone_idx(zone);
661
54f72fe0 662 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
663}
664
c0ff4b85 665struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 666{
c0ff4b85 667 return &memcg->css;
d324236b
WF
668}
669
f64c3f54 670static struct mem_cgroup_per_zone *
e231875b 671mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 672{
97a6c37b
JW
673 int nid = page_to_nid(page);
674 int zid = page_zonenum(page);
f64c3f54 675
e231875b 676 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
677}
678
bb4cc1a8
AM
679static struct mem_cgroup_tree_per_zone *
680soft_limit_tree_node_zone(int nid, int zid)
681{
682 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
683}
684
685static struct mem_cgroup_tree_per_zone *
686soft_limit_tree_from_page(struct page *page)
687{
688 int nid = page_to_nid(page);
689 int zid = page_zonenum(page);
690
691 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
692}
693
cf2c8127
JW
694static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
695 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 696 unsigned long new_usage_in_excess)
bb4cc1a8
AM
697{
698 struct rb_node **p = &mctz->rb_root.rb_node;
699 struct rb_node *parent = NULL;
700 struct mem_cgroup_per_zone *mz_node;
701
702 if (mz->on_tree)
703 return;
704
705 mz->usage_in_excess = new_usage_in_excess;
706 if (!mz->usage_in_excess)
707 return;
708 while (*p) {
709 parent = *p;
710 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
711 tree_node);
712 if (mz->usage_in_excess < mz_node->usage_in_excess)
713 p = &(*p)->rb_left;
714 /*
715 * We can't avoid mem cgroups that are over their soft
716 * limit by the same amount
717 */
718 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
719 p = &(*p)->rb_right;
720 }
721 rb_link_node(&mz->tree_node, parent, p);
722 rb_insert_color(&mz->tree_node, &mctz->rb_root);
723 mz->on_tree = true;
724}
725
cf2c8127
JW
726static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
727 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
728{
729 if (!mz->on_tree)
730 return;
731 rb_erase(&mz->tree_node, &mctz->rb_root);
732 mz->on_tree = false;
733}
734
cf2c8127
JW
735static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
736 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 737{
0a31bc97
JW
738 unsigned long flags;
739
740 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 741 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 742 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
743}
744
3e32cb2e
JW
745static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
746{
747 unsigned long nr_pages = page_counter_read(&memcg->memory);
748 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
749 unsigned long excess = 0;
750
751 if (nr_pages > soft_limit)
752 excess = nr_pages - soft_limit;
753
754 return excess;
755}
bb4cc1a8
AM
756
757static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
758{
3e32cb2e 759 unsigned long excess;
bb4cc1a8
AM
760 struct mem_cgroup_per_zone *mz;
761 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 762
e231875b 763 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
764 /*
765 * Necessary to update all ancestors when hierarchy is used.
766 * because their event counter is not touched.
767 */
768 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 769 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 770 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
771 /*
772 * We have to update the tree if mz is on RB-tree or
773 * mem is over its softlimit.
774 */
775 if (excess || mz->on_tree) {
0a31bc97
JW
776 unsigned long flags;
777
778 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
779 /* if on-tree, remove it */
780 if (mz->on_tree)
cf2c8127 781 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
782 /*
783 * Insert again. mz->usage_in_excess will be updated.
784 * If excess is 0, no tree ops.
785 */
cf2c8127 786 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 787 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
788 }
789 }
790}
791
792static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
793{
bb4cc1a8 794 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
795 struct mem_cgroup_per_zone *mz;
796 int nid, zid;
bb4cc1a8 797
e231875b
JZ
798 for_each_node(nid) {
799 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
800 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
801 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 802 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
803 }
804 }
805}
806
807static struct mem_cgroup_per_zone *
808__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
809{
810 struct rb_node *rightmost = NULL;
811 struct mem_cgroup_per_zone *mz;
812
813retry:
814 mz = NULL;
815 rightmost = rb_last(&mctz->rb_root);
816 if (!rightmost)
817 goto done; /* Nothing to reclaim from */
818
819 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
820 /*
821 * Remove the node now but someone else can add it back,
822 * we will to add it back at the end of reclaim to its correct
823 * position in the tree.
824 */
cf2c8127 825 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 826 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 827 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
828 goto retry;
829done:
830 return mz;
831}
832
833static struct mem_cgroup_per_zone *
834mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
835{
836 struct mem_cgroup_per_zone *mz;
837
0a31bc97 838 spin_lock_irq(&mctz->lock);
bb4cc1a8 839 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 840 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
841 return mz;
842}
843
711d3d2c
KH
844/*
845 * Implementation Note: reading percpu statistics for memcg.
846 *
847 * Both of vmstat[] and percpu_counter has threshold and do periodic
848 * synchronization to implement "quick" read. There are trade-off between
849 * reading cost and precision of value. Then, we may have a chance to implement
850 * a periodic synchronizion of counter in memcg's counter.
851 *
852 * But this _read() function is used for user interface now. The user accounts
853 * memory usage by memory cgroup and he _always_ requires exact value because
854 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
855 * have to visit all online cpus and make sum. So, for now, unnecessary
856 * synchronization is not implemented. (just implemented for cpu hotplug)
857 *
858 * If there are kernel internal actions which can make use of some not-exact
859 * value, and reading all cpu value can be performance bottleneck in some
860 * common workload, threashold and synchonization as vmstat[] should be
861 * implemented.
862 */
c0ff4b85 863static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 864 enum mem_cgroup_stat_index idx)
c62b1a3b 865{
7a159cc9 866 long val = 0;
c62b1a3b 867 int cpu;
c62b1a3b 868
711d3d2c
KH
869 get_online_cpus();
870 for_each_online_cpu(cpu)
c0ff4b85 871 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 872#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
873 spin_lock(&memcg->pcp_counter_lock);
874 val += memcg->nocpu_base.count[idx];
875 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
876#endif
877 put_online_cpus();
c62b1a3b
KH
878 return val;
879}
880
c0ff4b85 881static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
882 enum mem_cgroup_events_index idx)
883{
884 unsigned long val = 0;
885 int cpu;
886
9c567512 887 get_online_cpus();
e9f8974f 888 for_each_online_cpu(cpu)
c0ff4b85 889 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 890#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
891 spin_lock(&memcg->pcp_counter_lock);
892 val += memcg->nocpu_base.events[idx];
893 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 894#endif
9c567512 895 put_online_cpus();
e9f8974f
JW
896 return val;
897}
898
c0ff4b85 899static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 900 struct page *page,
0a31bc97 901 int nr_pages)
d52aa412 902{
b2402857
KH
903 /*
904 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
905 * counted as CACHE even if it's on ANON LRU.
906 */
0a31bc97 907 if (PageAnon(page))
b2402857 908 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 909 nr_pages);
d52aa412 910 else
b2402857 911 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 912 nr_pages);
55e462b0 913
b070e65c
DR
914 if (PageTransHuge(page))
915 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
916 nr_pages);
917
e401f176
KH
918 /* pagein of a big page is an event. So, ignore page size */
919 if (nr_pages > 0)
c0ff4b85 920 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 921 else {
c0ff4b85 922 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
923 nr_pages = -nr_pages; /* for event */
924 }
e401f176 925
13114716 926 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
927}
928
e231875b 929unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
930{
931 struct mem_cgroup_per_zone *mz;
932
933 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
934 return mz->lru_size[lru];
935}
936
e231875b
JZ
937static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
938 int nid,
939 unsigned int lru_mask)
bb2a0de9 940{
e231875b 941 unsigned long nr = 0;
889976db
YH
942 int zid;
943
e231875b 944 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 945
e231875b
JZ
946 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
947 struct mem_cgroup_per_zone *mz;
948 enum lru_list lru;
949
950 for_each_lru(lru) {
951 if (!(BIT(lru) & lru_mask))
952 continue;
953 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
954 nr += mz->lru_size[lru];
955 }
956 }
957 return nr;
889976db 958}
bb2a0de9 959
c0ff4b85 960static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 961 unsigned int lru_mask)
6d12e2d8 962{
e231875b 963 unsigned long nr = 0;
889976db 964 int nid;
6d12e2d8 965
31aaea4a 966 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
967 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
968 return nr;
d52aa412
KH
969}
970
f53d7ce3
JW
971static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
972 enum mem_cgroup_events_target target)
7a159cc9
JW
973{
974 unsigned long val, next;
975
13114716 976 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 977 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 978 /* from time_after() in jiffies.h */
f53d7ce3
JW
979 if ((long)next - (long)val < 0) {
980 switch (target) {
981 case MEM_CGROUP_TARGET_THRESH:
982 next = val + THRESHOLDS_EVENTS_TARGET;
983 break;
bb4cc1a8
AM
984 case MEM_CGROUP_TARGET_SOFTLIMIT:
985 next = val + SOFTLIMIT_EVENTS_TARGET;
986 break;
f53d7ce3
JW
987 case MEM_CGROUP_TARGET_NUMAINFO:
988 next = val + NUMAINFO_EVENTS_TARGET;
989 break;
990 default:
991 break;
992 }
993 __this_cpu_write(memcg->stat->targets[target], next);
994 return true;
7a159cc9 995 }
f53d7ce3 996 return false;
d2265e6f
KH
997}
998
999/*
1000 * Check events in order.
1001 *
1002 */
c0ff4b85 1003static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
1004{
1005 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1006 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1007 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1008 bool do_softlimit;
82b3f2a7 1009 bool do_numainfo __maybe_unused;
f53d7ce3 1010
bb4cc1a8
AM
1011 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1012 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1013#if MAX_NUMNODES > 1
1014 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1015 MEM_CGROUP_TARGET_NUMAINFO);
1016#endif
c0ff4b85 1017 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1018 if (unlikely(do_softlimit))
1019 mem_cgroup_update_tree(memcg, page);
453a9bf3 1020#if MAX_NUMNODES > 1
f53d7ce3 1021 if (unlikely(do_numainfo))
c0ff4b85 1022 atomic_inc(&memcg->numainfo_events);
453a9bf3 1023#endif
0a31bc97 1024 }
d2265e6f
KH
1025}
1026
cf475ad2 1027struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1028{
31a78f23
BS
1029 /*
1030 * mm_update_next_owner() may clear mm->owner to NULL
1031 * if it races with swapoff, page migration, etc.
1032 * So this can be called with p == NULL.
1033 */
1034 if (unlikely(!p))
1035 return NULL;
1036
073219e9 1037 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1038}
1039
df381975 1040static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1041{
c0ff4b85 1042 struct mem_cgroup *memcg = NULL;
0b7f569e 1043
54595fe2
KH
1044 rcu_read_lock();
1045 do {
6f6acb00
MH
1046 /*
1047 * Page cache insertions can happen withou an
1048 * actual mm context, e.g. during disk probing
1049 * on boot, loopback IO, acct() writes etc.
1050 */
1051 if (unlikely(!mm))
df381975 1052 memcg = root_mem_cgroup;
6f6acb00
MH
1053 else {
1054 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1055 if (unlikely(!memcg))
1056 memcg = root_mem_cgroup;
1057 }
ec903c0c 1058 } while (!css_tryget_online(&memcg->css));
54595fe2 1059 rcu_read_unlock();
c0ff4b85 1060 return memcg;
54595fe2
KH
1061}
1062
5660048c
JW
1063/**
1064 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1065 * @root: hierarchy root
1066 * @prev: previously returned memcg, NULL on first invocation
1067 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1068 *
1069 * Returns references to children of the hierarchy below @root, or
1070 * @root itself, or %NULL after a full round-trip.
1071 *
1072 * Caller must pass the return value in @prev on subsequent
1073 * invocations for reference counting, or use mem_cgroup_iter_break()
1074 * to cancel a hierarchy walk before the round-trip is complete.
1075 *
1076 * Reclaimers can specify a zone and a priority level in @reclaim to
1077 * divide up the memcgs in the hierarchy among all concurrent
1078 * reclaimers operating on the same zone and priority.
1079 */
694fbc0f 1080struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1081 struct mem_cgroup *prev,
694fbc0f 1082 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1083{
5ac8fb31
JW
1084 struct reclaim_iter *uninitialized_var(iter);
1085 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1086 struct mem_cgroup *memcg = NULL;
5ac8fb31 1087 struct mem_cgroup *pos = NULL;
711d3d2c 1088
694fbc0f
AM
1089 if (mem_cgroup_disabled())
1090 return NULL;
5660048c 1091
9f3a0d09
JW
1092 if (!root)
1093 root = root_mem_cgroup;
7d74b06f 1094
9f3a0d09 1095 if (prev && !reclaim)
5ac8fb31 1096 pos = prev;
14067bb3 1097
9f3a0d09
JW
1098 if (!root->use_hierarchy && root != root_mem_cgroup) {
1099 if (prev)
5ac8fb31 1100 goto out;
694fbc0f 1101 return root;
9f3a0d09 1102 }
14067bb3 1103
542f85f9 1104 rcu_read_lock();
5f578161 1105
5ac8fb31
JW
1106 if (reclaim) {
1107 struct mem_cgroup_per_zone *mz;
1108
1109 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1110 iter = &mz->iter[reclaim->priority];
1111
1112 if (prev && reclaim->generation != iter->generation)
1113 goto out_unlock;
1114
1115 do {
1116 pos = ACCESS_ONCE(iter->position);
1117 /*
1118 * A racing update may change the position and
1119 * put the last reference, hence css_tryget(),
1120 * or retry to see the updated position.
1121 */
1122 } while (pos && !css_tryget(&pos->css));
1123 }
1124
1125 if (pos)
1126 css = &pos->css;
1127
1128 for (;;) {
1129 css = css_next_descendant_pre(css, &root->css);
1130 if (!css) {
1131 /*
1132 * Reclaimers share the hierarchy walk, and a
1133 * new one might jump in right at the end of
1134 * the hierarchy - make sure they see at least
1135 * one group and restart from the beginning.
1136 */
1137 if (!prev)
1138 continue;
1139 break;
527a5ec9 1140 }
7d74b06f 1141
5ac8fb31
JW
1142 /*
1143 * Verify the css and acquire a reference. The root
1144 * is provided by the caller, so we know it's alive
1145 * and kicking, and don't take an extra reference.
1146 */
1147 memcg = mem_cgroup_from_css(css);
14067bb3 1148
5ac8fb31
JW
1149 if (css == &root->css)
1150 break;
542f85f9 1151
5ac8fb31
JW
1152 if (css_tryget_online(css)) {
1153 /*
1154 * Make sure the memcg is initialized:
1155 * mem_cgroup_css_online() orders the the
1156 * initialization against setting the flag.
1157 */
1158 if (smp_load_acquire(&memcg->initialized))
1159 break;
1160
1161 css_put(css);
527a5ec9 1162 }
9f3a0d09 1163
5ac8fb31
JW
1164 memcg = NULL;
1165 }
1166
1167 if (reclaim) {
1168 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1169 if (memcg)
1170 css_get(&memcg->css);
1171 if (pos)
1172 css_put(&pos->css);
1173 }
1174
1175 /*
1176 * pairs with css_tryget when dereferencing iter->position
1177 * above.
1178 */
1179 if (pos)
1180 css_put(&pos->css);
1181
1182 if (!memcg)
1183 iter->generation++;
1184 else if (!prev)
1185 reclaim->generation = iter->generation;
9f3a0d09 1186 }
5ac8fb31 1187
542f85f9
MH
1188out_unlock:
1189 rcu_read_unlock();
5ac8fb31 1190out:
c40046f3
MH
1191 if (prev && prev != root)
1192 css_put(&prev->css);
1193
9f3a0d09 1194 return memcg;
14067bb3 1195}
7d74b06f 1196
5660048c
JW
1197/**
1198 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1199 * @root: hierarchy root
1200 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1201 */
1202void mem_cgroup_iter_break(struct mem_cgroup *root,
1203 struct mem_cgroup *prev)
9f3a0d09
JW
1204{
1205 if (!root)
1206 root = root_mem_cgroup;
1207 if (prev && prev != root)
1208 css_put(&prev->css);
1209}
7d74b06f 1210
9f3a0d09
JW
1211/*
1212 * Iteration constructs for visiting all cgroups (under a tree). If
1213 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1214 * be used for reference counting.
1215 */
1216#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1217 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1218 iter != NULL; \
527a5ec9 1219 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1220
9f3a0d09 1221#define for_each_mem_cgroup(iter) \
527a5ec9 1222 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1223 iter != NULL; \
527a5ec9 1224 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1225
68ae564b 1226void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1227{
c0ff4b85 1228 struct mem_cgroup *memcg;
456f998e 1229
456f998e 1230 rcu_read_lock();
c0ff4b85
R
1231 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1232 if (unlikely(!memcg))
456f998e
YH
1233 goto out;
1234
1235 switch (idx) {
456f998e 1236 case PGFAULT:
0e574a93
JW
1237 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1238 break;
1239 case PGMAJFAULT:
1240 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1241 break;
1242 default:
1243 BUG();
1244 }
1245out:
1246 rcu_read_unlock();
1247}
68ae564b 1248EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1249
925b7673
JW
1250/**
1251 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1252 * @zone: zone of the wanted lruvec
fa9add64 1253 * @memcg: memcg of the wanted lruvec
925b7673
JW
1254 *
1255 * Returns the lru list vector holding pages for the given @zone and
1256 * @mem. This can be the global zone lruvec, if the memory controller
1257 * is disabled.
1258 */
1259struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1260 struct mem_cgroup *memcg)
1261{
1262 struct mem_cgroup_per_zone *mz;
bea8c150 1263 struct lruvec *lruvec;
925b7673 1264
bea8c150
HD
1265 if (mem_cgroup_disabled()) {
1266 lruvec = &zone->lruvec;
1267 goto out;
1268 }
925b7673 1269
e231875b 1270 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1271 lruvec = &mz->lruvec;
1272out:
1273 /*
1274 * Since a node can be onlined after the mem_cgroup was created,
1275 * we have to be prepared to initialize lruvec->zone here;
1276 * and if offlined then reonlined, we need to reinitialize it.
1277 */
1278 if (unlikely(lruvec->zone != zone))
1279 lruvec->zone = zone;
1280 return lruvec;
925b7673
JW
1281}
1282
925b7673 1283/**
fa9add64 1284 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1285 * @page: the page
fa9add64 1286 * @zone: zone of the page
925b7673 1287 */
fa9add64 1288struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1289{
08e552c6 1290 struct mem_cgroup_per_zone *mz;
925b7673
JW
1291 struct mem_cgroup *memcg;
1292 struct page_cgroup *pc;
bea8c150 1293 struct lruvec *lruvec;
6d12e2d8 1294
bea8c150
HD
1295 if (mem_cgroup_disabled()) {
1296 lruvec = &zone->lruvec;
1297 goto out;
1298 }
925b7673 1299
08e552c6 1300 pc = lookup_page_cgroup(page);
38c5d72f 1301 memcg = pc->mem_cgroup;
7512102c
HD
1302
1303 /*
fa9add64 1304 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1305 * an uncharged page off lru does nothing to secure
1306 * its former mem_cgroup from sudden removal.
1307 *
1308 * Our caller holds lru_lock, and PageCgroupUsed is updated
1309 * under page_cgroup lock: between them, they make all uses
1310 * of pc->mem_cgroup safe.
1311 */
fa9add64 1312 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1313 pc->mem_cgroup = memcg = root_mem_cgroup;
1314
e231875b 1315 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1316 lruvec = &mz->lruvec;
1317out:
1318 /*
1319 * Since a node can be onlined after the mem_cgroup was created,
1320 * we have to be prepared to initialize lruvec->zone here;
1321 * and if offlined then reonlined, we need to reinitialize it.
1322 */
1323 if (unlikely(lruvec->zone != zone))
1324 lruvec->zone = zone;
1325 return lruvec;
08e552c6 1326}
b69408e8 1327
925b7673 1328/**
fa9add64
HD
1329 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1330 * @lruvec: mem_cgroup per zone lru vector
1331 * @lru: index of lru list the page is sitting on
1332 * @nr_pages: positive when adding or negative when removing
925b7673 1333 *
fa9add64
HD
1334 * This function must be called when a page is added to or removed from an
1335 * lru list.
3f58a829 1336 */
fa9add64
HD
1337void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1338 int nr_pages)
3f58a829
MK
1339{
1340 struct mem_cgroup_per_zone *mz;
fa9add64 1341 unsigned long *lru_size;
3f58a829
MK
1342
1343 if (mem_cgroup_disabled())
1344 return;
1345
fa9add64
HD
1346 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1347 lru_size = mz->lru_size + lru;
1348 *lru_size += nr_pages;
1349 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1350}
544122e5 1351
3e92041d 1352/*
c0ff4b85 1353 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1354 * hierarchy subtree
1355 */
c3ac9a8a
JW
1356bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1357 struct mem_cgroup *memcg)
3e92041d 1358{
91c63734
JW
1359 if (root_memcg == memcg)
1360 return true;
3a981f48 1361 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1362 return false;
b47f77b5 1363 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1364}
1365
1366static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1367 struct mem_cgroup *memcg)
1368{
1369 bool ret;
1370
91c63734 1371 rcu_read_lock();
c3ac9a8a 1372 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1373 rcu_read_unlock();
1374 return ret;
3e92041d
MH
1375}
1376
ffbdccf5
DR
1377bool task_in_mem_cgroup(struct task_struct *task,
1378 const struct mem_cgroup *memcg)
4c4a2214 1379{
0b7f569e 1380 struct mem_cgroup *curr = NULL;
158e0a2d 1381 struct task_struct *p;
ffbdccf5 1382 bool ret;
4c4a2214 1383
158e0a2d 1384 p = find_lock_task_mm(task);
de077d22 1385 if (p) {
df381975 1386 curr = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1387 task_unlock(p);
1388 } else {
1389 /*
1390 * All threads may have already detached their mm's, but the oom
1391 * killer still needs to detect if they have already been oom
1392 * killed to prevent needlessly killing additional tasks.
1393 */
ffbdccf5 1394 rcu_read_lock();
de077d22
DR
1395 curr = mem_cgroup_from_task(task);
1396 if (curr)
1397 css_get(&curr->css);
ffbdccf5 1398 rcu_read_unlock();
de077d22 1399 }
d31f56db 1400 /*
c0ff4b85 1401 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1402 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1403 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1404 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1405 */
c0ff4b85 1406 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1407 css_put(&curr->css);
4c4a2214
DR
1408 return ret;
1409}
1410
c56d5c7d 1411int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1412{
9b272977 1413 unsigned long inactive_ratio;
14797e23 1414 unsigned long inactive;
9b272977 1415 unsigned long active;
c772be93 1416 unsigned long gb;
14797e23 1417
4d7dcca2
HD
1418 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1419 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1420
c772be93
KM
1421 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1422 if (gb)
1423 inactive_ratio = int_sqrt(10 * gb);
1424 else
1425 inactive_ratio = 1;
1426
9b272977 1427 return inactive * inactive_ratio < active;
14797e23
KM
1428}
1429
3e32cb2e 1430#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1431 container_of(counter, struct mem_cgroup, member)
1432
19942822 1433/**
9d11ea9f 1434 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1435 * @memcg: the memory cgroup
19942822 1436 *
9d11ea9f 1437 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1438 * pages.
19942822 1439 */
c0ff4b85 1440static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1441{
3e32cb2e
JW
1442 unsigned long margin = 0;
1443 unsigned long count;
1444 unsigned long limit;
9d11ea9f 1445
3e32cb2e
JW
1446 count = page_counter_read(&memcg->memory);
1447 limit = ACCESS_ONCE(memcg->memory.limit);
1448 if (count < limit)
1449 margin = limit - count;
1450
1451 if (do_swap_account) {
1452 count = page_counter_read(&memcg->memsw);
1453 limit = ACCESS_ONCE(memcg->memsw.limit);
1454 if (count <= limit)
1455 margin = min(margin, limit - count);
1456 }
1457
1458 return margin;
19942822
JW
1459}
1460
1f4c025b 1461int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1462{
a7885eb8 1463 /* root ? */
14208b0e 1464 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1465 return vm_swappiness;
1466
bf1ff263 1467 return memcg->swappiness;
a7885eb8
KM
1468}
1469
619d094b
KH
1470/*
1471 * memcg->moving_account is used for checking possibility that some thread is
1472 * calling move_account(). When a thread on CPU-A starts moving pages under
1473 * a memcg, other threads should check memcg->moving_account under
1474 * rcu_read_lock(), like this:
1475 *
1476 * CPU-A CPU-B
1477 * rcu_read_lock()
1478 * memcg->moving_account+1 if (memcg->mocing_account)
1479 * take heavy locks.
1480 * synchronize_rcu() update something.
1481 * rcu_read_unlock()
1482 * start move here.
1483 */
4331f7d3 1484
c0ff4b85 1485static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1486{
619d094b 1487 atomic_inc(&memcg->moving_account);
32047e2a
KH
1488 synchronize_rcu();
1489}
1490
c0ff4b85 1491static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1492{
619d094b
KH
1493 /*
1494 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1495 * We check NULL in callee rather than caller.
1496 */
d7365e78 1497 if (memcg)
619d094b 1498 atomic_dec(&memcg->moving_account);
32047e2a 1499}
619d094b 1500
32047e2a 1501/*
bdcbb659 1502 * A routine for checking "mem" is under move_account() or not.
32047e2a 1503 *
bdcbb659
QH
1504 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1505 * moving cgroups. This is for waiting at high-memory pressure
1506 * caused by "move".
32047e2a 1507 */
c0ff4b85 1508static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1509{
2bd9bb20
KH
1510 struct mem_cgroup *from;
1511 struct mem_cgroup *to;
4b534334 1512 bool ret = false;
2bd9bb20
KH
1513 /*
1514 * Unlike task_move routines, we access mc.to, mc.from not under
1515 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1516 */
1517 spin_lock(&mc.lock);
1518 from = mc.from;
1519 to = mc.to;
1520 if (!from)
1521 goto unlock;
3e92041d 1522
c0ff4b85
R
1523 ret = mem_cgroup_same_or_subtree(memcg, from)
1524 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1525unlock:
1526 spin_unlock(&mc.lock);
4b534334
KH
1527 return ret;
1528}
1529
c0ff4b85 1530static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1531{
1532 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1533 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1534 DEFINE_WAIT(wait);
1535 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1536 /* moving charge context might have finished. */
1537 if (mc.moving_task)
1538 schedule();
1539 finish_wait(&mc.waitq, &wait);
1540 return true;
1541 }
1542 }
1543 return false;
1544}
1545
312734c0
KH
1546/*
1547 * Take this lock when
1548 * - a code tries to modify page's memcg while it's USED.
1549 * - a code tries to modify page state accounting in a memcg.
312734c0
KH
1550 */
1551static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1552 unsigned long *flags)
1553{
1554 spin_lock_irqsave(&memcg->move_lock, *flags);
1555}
1556
1557static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1558 unsigned long *flags)
1559{
1560 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1561}
1562
58cf188e 1563#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1564/**
58cf188e 1565 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1566 * @memcg: The memory cgroup that went over limit
1567 * @p: Task that is going to be killed
1568 *
1569 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1570 * enabled
1571 */
1572void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1573{
e61734c5 1574 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1575 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1576 struct mem_cgroup *iter;
1577 unsigned int i;
e222432b 1578
58cf188e 1579 if (!p)
e222432b
BS
1580 return;
1581
08088cb9 1582 mutex_lock(&oom_info_lock);
e222432b
BS
1583 rcu_read_lock();
1584
e61734c5
TH
1585 pr_info("Task in ");
1586 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1587 pr_info(" killed as a result of limit of ");
1588 pr_cont_cgroup_path(memcg->css.cgroup);
1589 pr_info("\n");
e222432b 1590
e222432b
BS
1591 rcu_read_unlock();
1592
3e32cb2e
JW
1593 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1594 K((u64)page_counter_read(&memcg->memory)),
1595 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1596 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1597 K((u64)page_counter_read(&memcg->memsw)),
1598 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1599 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1600 K((u64)page_counter_read(&memcg->kmem)),
1601 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1602
1603 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1604 pr_info("Memory cgroup stats for ");
1605 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1606 pr_cont(":");
1607
1608 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1609 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1610 continue;
1611 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1612 K(mem_cgroup_read_stat(iter, i)));
1613 }
1614
1615 for (i = 0; i < NR_LRU_LISTS; i++)
1616 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1617 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1618
1619 pr_cont("\n");
1620 }
08088cb9 1621 mutex_unlock(&oom_info_lock);
e222432b
BS
1622}
1623
81d39c20
KH
1624/*
1625 * This function returns the number of memcg under hierarchy tree. Returns
1626 * 1(self count) if no children.
1627 */
c0ff4b85 1628static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1629{
1630 int num = 0;
7d74b06f
KH
1631 struct mem_cgroup *iter;
1632
c0ff4b85 1633 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1634 num++;
81d39c20
KH
1635 return num;
1636}
1637
a63d83f4
DR
1638/*
1639 * Return the memory (and swap, if configured) limit for a memcg.
1640 */
3e32cb2e 1641static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1642{
3e32cb2e 1643 unsigned long limit;
a63d83f4 1644
3e32cb2e 1645 limit = memcg->memory.limit;
9a5a8f19 1646 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1647 unsigned long memsw_limit;
9a5a8f19 1648
3e32cb2e
JW
1649 memsw_limit = memcg->memsw.limit;
1650 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1651 }
9a5a8f19 1652 return limit;
a63d83f4
DR
1653}
1654
19965460
DR
1655static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1656 int order)
9cbb78bb
DR
1657{
1658 struct mem_cgroup *iter;
1659 unsigned long chosen_points = 0;
1660 unsigned long totalpages;
1661 unsigned int points = 0;
1662 struct task_struct *chosen = NULL;
1663
876aafbf 1664 /*
465adcf1
DR
1665 * If current has a pending SIGKILL or is exiting, then automatically
1666 * select it. The goal is to allow it to allocate so that it may
1667 * quickly exit and free its memory.
876aafbf 1668 */
465adcf1 1669 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1670 set_thread_flag(TIF_MEMDIE);
1671 return;
1672 }
1673
1674 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
3e32cb2e 1675 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1676 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1677 struct css_task_iter it;
9cbb78bb
DR
1678 struct task_struct *task;
1679
72ec7029
TH
1680 css_task_iter_start(&iter->css, &it);
1681 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1682 switch (oom_scan_process_thread(task, totalpages, NULL,
1683 false)) {
1684 case OOM_SCAN_SELECT:
1685 if (chosen)
1686 put_task_struct(chosen);
1687 chosen = task;
1688 chosen_points = ULONG_MAX;
1689 get_task_struct(chosen);
1690 /* fall through */
1691 case OOM_SCAN_CONTINUE:
1692 continue;
1693 case OOM_SCAN_ABORT:
72ec7029 1694 css_task_iter_end(&it);
9cbb78bb
DR
1695 mem_cgroup_iter_break(memcg, iter);
1696 if (chosen)
1697 put_task_struct(chosen);
1698 return;
1699 case OOM_SCAN_OK:
1700 break;
1701 };
1702 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1703 if (!points || points < chosen_points)
1704 continue;
1705 /* Prefer thread group leaders for display purposes */
1706 if (points == chosen_points &&
1707 thread_group_leader(chosen))
1708 continue;
1709
1710 if (chosen)
1711 put_task_struct(chosen);
1712 chosen = task;
1713 chosen_points = points;
1714 get_task_struct(chosen);
9cbb78bb 1715 }
72ec7029 1716 css_task_iter_end(&it);
9cbb78bb
DR
1717 }
1718
1719 if (!chosen)
1720 return;
1721 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1722 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1723 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1724}
1725
4d0c066d
KH
1726/**
1727 * test_mem_cgroup_node_reclaimable
dad7557e 1728 * @memcg: the target memcg
4d0c066d
KH
1729 * @nid: the node ID to be checked.
1730 * @noswap : specify true here if the user wants flle only information.
1731 *
1732 * This function returns whether the specified memcg contains any
1733 * reclaimable pages on a node. Returns true if there are any reclaimable
1734 * pages in the node.
1735 */
c0ff4b85 1736static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1737 int nid, bool noswap)
1738{
c0ff4b85 1739 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1740 return true;
1741 if (noswap || !total_swap_pages)
1742 return false;
c0ff4b85 1743 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1744 return true;
1745 return false;
1746
1747}
bb4cc1a8 1748#if MAX_NUMNODES > 1
889976db
YH
1749
1750/*
1751 * Always updating the nodemask is not very good - even if we have an empty
1752 * list or the wrong list here, we can start from some node and traverse all
1753 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1754 *
1755 */
c0ff4b85 1756static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1757{
1758 int nid;
453a9bf3
KH
1759 /*
1760 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1761 * pagein/pageout changes since the last update.
1762 */
c0ff4b85 1763 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1764 return;
c0ff4b85 1765 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1766 return;
1767
889976db 1768 /* make a nodemask where this memcg uses memory from */
31aaea4a 1769 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1770
31aaea4a 1771 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1772
c0ff4b85
R
1773 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1774 node_clear(nid, memcg->scan_nodes);
889976db 1775 }
453a9bf3 1776
c0ff4b85
R
1777 atomic_set(&memcg->numainfo_events, 0);
1778 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1779}
1780
1781/*
1782 * Selecting a node where we start reclaim from. Because what we need is just
1783 * reducing usage counter, start from anywhere is O,K. Considering
1784 * memory reclaim from current node, there are pros. and cons.
1785 *
1786 * Freeing memory from current node means freeing memory from a node which
1787 * we'll use or we've used. So, it may make LRU bad. And if several threads
1788 * hit limits, it will see a contention on a node. But freeing from remote
1789 * node means more costs for memory reclaim because of memory latency.
1790 *
1791 * Now, we use round-robin. Better algorithm is welcomed.
1792 */
c0ff4b85 1793int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1794{
1795 int node;
1796
c0ff4b85
R
1797 mem_cgroup_may_update_nodemask(memcg);
1798 node = memcg->last_scanned_node;
889976db 1799
c0ff4b85 1800 node = next_node(node, memcg->scan_nodes);
889976db 1801 if (node == MAX_NUMNODES)
c0ff4b85 1802 node = first_node(memcg->scan_nodes);
889976db
YH
1803 /*
1804 * We call this when we hit limit, not when pages are added to LRU.
1805 * No LRU may hold pages because all pages are UNEVICTABLE or
1806 * memcg is too small and all pages are not on LRU. In that case,
1807 * we use curret node.
1808 */
1809 if (unlikely(node == MAX_NUMNODES))
1810 node = numa_node_id();
1811
c0ff4b85 1812 memcg->last_scanned_node = node;
889976db
YH
1813 return node;
1814}
1815
bb4cc1a8
AM
1816/*
1817 * Check all nodes whether it contains reclaimable pages or not.
1818 * For quick scan, we make use of scan_nodes. This will allow us to skip
1819 * unused nodes. But scan_nodes is lazily updated and may not cotain
1820 * enough new information. We need to do double check.
1821 */
1822static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1823{
1824 int nid;
1825
1826 /*
1827 * quick check...making use of scan_node.
1828 * We can skip unused nodes.
1829 */
1830 if (!nodes_empty(memcg->scan_nodes)) {
1831 for (nid = first_node(memcg->scan_nodes);
1832 nid < MAX_NUMNODES;
1833 nid = next_node(nid, memcg->scan_nodes)) {
1834
1835 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1836 return true;
1837 }
1838 }
1839 /*
1840 * Check rest of nodes.
1841 */
1842 for_each_node_state(nid, N_MEMORY) {
1843 if (node_isset(nid, memcg->scan_nodes))
1844 continue;
1845 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1846 return true;
1847 }
1848 return false;
1849}
1850
889976db 1851#else
c0ff4b85 1852int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1853{
1854 return 0;
1855}
4d0c066d 1856
bb4cc1a8
AM
1857static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1858{
1859 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1860}
889976db
YH
1861#endif
1862
0608f43d
AM
1863static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1864 struct zone *zone,
1865 gfp_t gfp_mask,
1866 unsigned long *total_scanned)
1867{
1868 struct mem_cgroup *victim = NULL;
1869 int total = 0;
1870 int loop = 0;
1871 unsigned long excess;
1872 unsigned long nr_scanned;
1873 struct mem_cgroup_reclaim_cookie reclaim = {
1874 .zone = zone,
1875 .priority = 0,
1876 };
1877
3e32cb2e 1878 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1879
1880 while (1) {
1881 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1882 if (!victim) {
1883 loop++;
1884 if (loop >= 2) {
1885 /*
1886 * If we have not been able to reclaim
1887 * anything, it might because there are
1888 * no reclaimable pages under this hierarchy
1889 */
1890 if (!total)
1891 break;
1892 /*
1893 * We want to do more targeted reclaim.
1894 * excess >> 2 is not to excessive so as to
1895 * reclaim too much, nor too less that we keep
1896 * coming back to reclaim from this cgroup
1897 */
1898 if (total >= (excess >> 2) ||
1899 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1900 break;
1901 }
1902 continue;
1903 }
1904 if (!mem_cgroup_reclaimable(victim, false))
1905 continue;
1906 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1907 zone, &nr_scanned);
1908 *total_scanned += nr_scanned;
3e32cb2e 1909 if (!soft_limit_excess(root_memcg))
0608f43d 1910 break;
6d61ef40 1911 }
0608f43d
AM
1912 mem_cgroup_iter_break(root_memcg, victim);
1913 return total;
6d61ef40
BS
1914}
1915
0056f4e6
JW
1916#ifdef CONFIG_LOCKDEP
1917static struct lockdep_map memcg_oom_lock_dep_map = {
1918 .name = "memcg_oom_lock",
1919};
1920#endif
1921
fb2a6fc5
JW
1922static DEFINE_SPINLOCK(memcg_oom_lock);
1923
867578cb
KH
1924/*
1925 * Check OOM-Killer is already running under our hierarchy.
1926 * If someone is running, return false.
1927 */
fb2a6fc5 1928static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1929{
79dfdacc 1930 struct mem_cgroup *iter, *failed = NULL;
a636b327 1931
fb2a6fc5
JW
1932 spin_lock(&memcg_oom_lock);
1933
9f3a0d09 1934 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1935 if (iter->oom_lock) {
79dfdacc
MH
1936 /*
1937 * this subtree of our hierarchy is already locked
1938 * so we cannot give a lock.
1939 */
79dfdacc 1940 failed = iter;
9f3a0d09
JW
1941 mem_cgroup_iter_break(memcg, iter);
1942 break;
23751be0
JW
1943 } else
1944 iter->oom_lock = true;
7d74b06f 1945 }
867578cb 1946
fb2a6fc5
JW
1947 if (failed) {
1948 /*
1949 * OK, we failed to lock the whole subtree so we have
1950 * to clean up what we set up to the failing subtree
1951 */
1952 for_each_mem_cgroup_tree(iter, memcg) {
1953 if (iter == failed) {
1954 mem_cgroup_iter_break(memcg, iter);
1955 break;
1956 }
1957 iter->oom_lock = false;
79dfdacc 1958 }
0056f4e6
JW
1959 } else
1960 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1961
1962 spin_unlock(&memcg_oom_lock);
1963
1964 return !failed;
a636b327 1965}
0b7f569e 1966
fb2a6fc5 1967static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1968{
7d74b06f
KH
1969 struct mem_cgroup *iter;
1970
fb2a6fc5 1971 spin_lock(&memcg_oom_lock);
0056f4e6 1972 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1973 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1974 iter->oom_lock = false;
fb2a6fc5 1975 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1976}
1977
c0ff4b85 1978static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1979{
1980 struct mem_cgroup *iter;
1981
c0ff4b85 1982 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1983 atomic_inc(&iter->under_oom);
1984}
1985
c0ff4b85 1986static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1987{
1988 struct mem_cgroup *iter;
1989
867578cb
KH
1990 /*
1991 * When a new child is created while the hierarchy is under oom,
1992 * mem_cgroup_oom_lock() may not be called. We have to use
1993 * atomic_add_unless() here.
1994 */
c0ff4b85 1995 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1996 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1997}
1998
867578cb
KH
1999static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2000
dc98df5a 2001struct oom_wait_info {
d79154bb 2002 struct mem_cgroup *memcg;
dc98df5a
KH
2003 wait_queue_t wait;
2004};
2005
2006static int memcg_oom_wake_function(wait_queue_t *wait,
2007 unsigned mode, int sync, void *arg)
2008{
d79154bb
HD
2009 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2010 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2011 struct oom_wait_info *oom_wait_info;
2012
2013 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2014 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2015
dc98df5a 2016 /*
d79154bb 2017 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2018 * Then we can use css_is_ancestor without taking care of RCU.
2019 */
c0ff4b85
R
2020 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2021 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2022 return 0;
dc98df5a
KH
2023 return autoremove_wake_function(wait, mode, sync, arg);
2024}
2025
c0ff4b85 2026static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2027{
3812c8c8 2028 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2029 /* for filtering, pass "memcg" as argument. */
2030 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2031}
2032
c0ff4b85 2033static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2034{
c0ff4b85
R
2035 if (memcg && atomic_read(&memcg->under_oom))
2036 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2037}
2038
3812c8c8 2039static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2040{
3812c8c8
JW
2041 if (!current->memcg_oom.may_oom)
2042 return;
867578cb 2043 /*
49426420
JW
2044 * We are in the middle of the charge context here, so we
2045 * don't want to block when potentially sitting on a callstack
2046 * that holds all kinds of filesystem and mm locks.
2047 *
2048 * Also, the caller may handle a failed allocation gracefully
2049 * (like optional page cache readahead) and so an OOM killer
2050 * invocation might not even be necessary.
2051 *
2052 * That's why we don't do anything here except remember the
2053 * OOM context and then deal with it at the end of the page
2054 * fault when the stack is unwound, the locks are released,
2055 * and when we know whether the fault was overall successful.
867578cb 2056 */
49426420
JW
2057 css_get(&memcg->css);
2058 current->memcg_oom.memcg = memcg;
2059 current->memcg_oom.gfp_mask = mask;
2060 current->memcg_oom.order = order;
3812c8c8
JW
2061}
2062
2063/**
2064 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2065 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2066 *
49426420
JW
2067 * This has to be called at the end of a page fault if the memcg OOM
2068 * handler was enabled.
3812c8c8 2069 *
49426420 2070 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2071 * sleep on a waitqueue until the userspace task resolves the
2072 * situation. Sleeping directly in the charge context with all kinds
2073 * of locks held is not a good idea, instead we remember an OOM state
2074 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2075 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2076 *
2077 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2078 * completed, %false otherwise.
3812c8c8 2079 */
49426420 2080bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2081{
49426420 2082 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2083 struct oom_wait_info owait;
49426420 2084 bool locked;
3812c8c8
JW
2085
2086 /* OOM is global, do not handle */
3812c8c8 2087 if (!memcg)
49426420 2088 return false;
3812c8c8 2089
49426420
JW
2090 if (!handle)
2091 goto cleanup;
3812c8c8
JW
2092
2093 owait.memcg = memcg;
2094 owait.wait.flags = 0;
2095 owait.wait.func = memcg_oom_wake_function;
2096 owait.wait.private = current;
2097 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2098
3812c8c8 2099 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2100 mem_cgroup_mark_under_oom(memcg);
2101
2102 locked = mem_cgroup_oom_trylock(memcg);
2103
2104 if (locked)
2105 mem_cgroup_oom_notify(memcg);
2106
2107 if (locked && !memcg->oom_kill_disable) {
2108 mem_cgroup_unmark_under_oom(memcg);
2109 finish_wait(&memcg_oom_waitq, &owait.wait);
2110 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2111 current->memcg_oom.order);
2112 } else {
3812c8c8 2113 schedule();
49426420
JW
2114 mem_cgroup_unmark_under_oom(memcg);
2115 finish_wait(&memcg_oom_waitq, &owait.wait);
2116 }
2117
2118 if (locked) {
fb2a6fc5
JW
2119 mem_cgroup_oom_unlock(memcg);
2120 /*
2121 * There is no guarantee that an OOM-lock contender
2122 * sees the wakeups triggered by the OOM kill
2123 * uncharges. Wake any sleepers explicitely.
2124 */
2125 memcg_oom_recover(memcg);
2126 }
49426420
JW
2127cleanup:
2128 current->memcg_oom.memcg = NULL;
3812c8c8 2129 css_put(&memcg->css);
867578cb 2130 return true;
0b7f569e
KH
2131}
2132
d7365e78
JW
2133/**
2134 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
2135 * @page: page that is going to change accounted state
2136 * @locked: &memcg->move_lock slowpath was taken
2137 * @flags: IRQ-state flags for &memcg->move_lock
32047e2a 2138 *
d7365e78
JW
2139 * This function must mark the beginning of an accounted page state
2140 * change to prevent double accounting when the page is concurrently
2141 * being moved to another memcg:
32047e2a 2142 *
d7365e78
JW
2143 * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
2144 * if (TestClearPageState(page))
2145 * mem_cgroup_update_page_stat(memcg, state, -1);
2146 * mem_cgroup_end_page_stat(memcg, locked, flags);
32047e2a 2147 *
d7365e78
JW
2148 * The RCU lock is held throughout the transaction. The fast path can
2149 * get away without acquiring the memcg->move_lock (@locked is false)
2150 * because page moving starts with an RCU grace period.
32047e2a 2151 *
d7365e78
JW
2152 * The RCU lock also protects the memcg from being freed when the page
2153 * state that is going to change is the only thing preventing the page
2154 * from being uncharged. E.g. end-writeback clearing PageWriteback(),
2155 * which allows migration to go ahead and uncharge the page before the
2156 * account transaction might be complete.
d69b042f 2157 */
d7365e78
JW
2158struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
2159 bool *locked,
2160 unsigned long *flags)
89c06bd5
KH
2161{
2162 struct mem_cgroup *memcg;
2163 struct page_cgroup *pc;
2164
d7365e78
JW
2165 rcu_read_lock();
2166
2167 if (mem_cgroup_disabled())
2168 return NULL;
2169
89c06bd5
KH
2170 pc = lookup_page_cgroup(page);
2171again:
2172 memcg = pc->mem_cgroup;
2173 if (unlikely(!memcg || !PageCgroupUsed(pc)))
d7365e78
JW
2174 return NULL;
2175
2176 *locked = false;
bdcbb659 2177 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 2178 return memcg;
89c06bd5
KH
2179
2180 move_lock_mem_cgroup(memcg, flags);
2181 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2182 move_unlock_mem_cgroup(memcg, flags);
2183 goto again;
2184 }
2185 *locked = true;
d7365e78
JW
2186
2187 return memcg;
89c06bd5
KH
2188}
2189
d7365e78
JW
2190/**
2191 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2192 * @memcg: the memcg that was accounted against
2193 * @locked: value received from mem_cgroup_begin_page_stat()
2194 * @flags: value received from mem_cgroup_begin_page_stat()
2195 */
2196void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool locked,
2197 unsigned long flags)
89c06bd5 2198{
d7365e78
JW
2199 if (memcg && locked)
2200 move_unlock_mem_cgroup(memcg, &flags);
89c06bd5 2201
d7365e78 2202 rcu_read_unlock();
89c06bd5
KH
2203}
2204
d7365e78
JW
2205/**
2206 * mem_cgroup_update_page_stat - update page state statistics
2207 * @memcg: memcg to account against
2208 * @idx: page state item to account
2209 * @val: number of pages (positive or negative)
2210 *
2211 * See mem_cgroup_begin_page_stat() for locking requirements.
2212 */
2213void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
68b4876d 2214 enum mem_cgroup_stat_index idx, int val)
d69b042f 2215{
658b72c5 2216 VM_BUG_ON(!rcu_read_lock_held());
26174efd 2217
d7365e78
JW
2218 if (memcg)
2219 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2220}
26174efd 2221
cdec2e42
KH
2222/*
2223 * size of first charge trial. "32" comes from vmscan.c's magic value.
2224 * TODO: maybe necessary to use big numbers in big irons.
2225 */
7ec99d62 2226#define CHARGE_BATCH 32U
cdec2e42
KH
2227struct memcg_stock_pcp {
2228 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2229 unsigned int nr_pages;
cdec2e42 2230 struct work_struct work;
26fe6168 2231 unsigned long flags;
a0db00fc 2232#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2233};
2234static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2235static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2236
a0956d54
SS
2237/**
2238 * consume_stock: Try to consume stocked charge on this cpu.
2239 * @memcg: memcg to consume from.
2240 * @nr_pages: how many pages to charge.
2241 *
2242 * The charges will only happen if @memcg matches the current cpu's memcg
2243 * stock, and at least @nr_pages are available in that stock. Failure to
2244 * service an allocation will refill the stock.
2245 *
2246 * returns true if successful, false otherwise.
cdec2e42 2247 */
a0956d54 2248static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2249{
2250 struct memcg_stock_pcp *stock;
3e32cb2e 2251 bool ret = false;
cdec2e42 2252
a0956d54 2253 if (nr_pages > CHARGE_BATCH)
3e32cb2e 2254 return ret;
a0956d54 2255
cdec2e42 2256 stock = &get_cpu_var(memcg_stock);
3e32cb2e 2257 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2258 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2259 ret = true;
2260 }
cdec2e42
KH
2261 put_cpu_var(memcg_stock);
2262 return ret;
2263}
2264
2265/*
3e32cb2e 2266 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2267 */
2268static void drain_stock(struct memcg_stock_pcp *stock)
2269{
2270 struct mem_cgroup *old = stock->cached;
2271
11c9ea4e 2272 if (stock->nr_pages) {
3e32cb2e 2273 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 2274 if (do_swap_account)
3e32cb2e 2275 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2276 stock->nr_pages = 0;
cdec2e42
KH
2277 }
2278 stock->cached = NULL;
cdec2e42
KH
2279}
2280
2281/*
2282 * This must be called under preempt disabled or must be called by
2283 * a thread which is pinned to local cpu.
2284 */
2285static void drain_local_stock(struct work_struct *dummy)
2286{
7c8e0181 2287 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2288 drain_stock(stock);
26fe6168 2289 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2290}
2291
e4777496
MH
2292static void __init memcg_stock_init(void)
2293{
2294 int cpu;
2295
2296 for_each_possible_cpu(cpu) {
2297 struct memcg_stock_pcp *stock =
2298 &per_cpu(memcg_stock, cpu);
2299 INIT_WORK(&stock->work, drain_local_stock);
2300 }
2301}
2302
cdec2e42 2303/*
3e32cb2e 2304 * Cache charges(val) to local per_cpu area.
320cc51d 2305 * This will be consumed by consume_stock() function, later.
cdec2e42 2306 */
c0ff4b85 2307static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2308{
2309 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2310
c0ff4b85 2311 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2312 drain_stock(stock);
c0ff4b85 2313 stock->cached = memcg;
cdec2e42 2314 }
11c9ea4e 2315 stock->nr_pages += nr_pages;
cdec2e42
KH
2316 put_cpu_var(memcg_stock);
2317}
2318
2319/*
c0ff4b85 2320 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2321 * of the hierarchy under it. sync flag says whether we should block
2322 * until the work is done.
cdec2e42 2323 */
c0ff4b85 2324static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2325{
26fe6168 2326 int cpu, curcpu;
d38144b7 2327
cdec2e42 2328 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2329 get_online_cpus();
5af12d0e 2330 curcpu = get_cpu();
cdec2e42
KH
2331 for_each_online_cpu(cpu) {
2332 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2333 struct mem_cgroup *memcg;
26fe6168 2334
c0ff4b85
R
2335 memcg = stock->cached;
2336 if (!memcg || !stock->nr_pages)
26fe6168 2337 continue;
c0ff4b85 2338 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2339 continue;
d1a05b69
MH
2340 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2341 if (cpu == curcpu)
2342 drain_local_stock(&stock->work);
2343 else
2344 schedule_work_on(cpu, &stock->work);
2345 }
cdec2e42 2346 }
5af12d0e 2347 put_cpu();
d38144b7
MH
2348
2349 if (!sync)
2350 goto out;
2351
2352 for_each_online_cpu(cpu) {
2353 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2354 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2355 flush_work(&stock->work);
2356 }
2357out:
f894ffa8 2358 put_online_cpus();
d38144b7
MH
2359}
2360
2361/*
2362 * Tries to drain stocked charges in other cpus. This function is asynchronous
2363 * and just put a work per cpu for draining localy on each cpu. Caller can
3e32cb2e 2364 * expects some charges will be back later but cannot wait for it.
d38144b7 2365 */
c0ff4b85 2366static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2367{
9f50fad6
MH
2368 /*
2369 * If someone calls draining, avoid adding more kworker runs.
2370 */
2371 if (!mutex_trylock(&percpu_charge_mutex))
2372 return;
c0ff4b85 2373 drain_all_stock(root_memcg, false);
9f50fad6 2374 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2375}
2376
2377/* This is a synchronous drain interface. */
c0ff4b85 2378static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2379{
2380 /* called when force_empty is called */
9f50fad6 2381 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2382 drain_all_stock(root_memcg, true);
9f50fad6 2383 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2384}
2385
711d3d2c
KH
2386/*
2387 * This function drains percpu counter value from DEAD cpu and
2388 * move it to local cpu. Note that this function can be preempted.
2389 */
c0ff4b85 2390static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2391{
2392 int i;
2393
c0ff4b85 2394 spin_lock(&memcg->pcp_counter_lock);
6104621d 2395 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2396 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2397
c0ff4b85
R
2398 per_cpu(memcg->stat->count[i], cpu) = 0;
2399 memcg->nocpu_base.count[i] += x;
711d3d2c 2400 }
e9f8974f 2401 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2402 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2403
c0ff4b85
R
2404 per_cpu(memcg->stat->events[i], cpu) = 0;
2405 memcg->nocpu_base.events[i] += x;
e9f8974f 2406 }
c0ff4b85 2407 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2408}
2409
0db0628d 2410static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2411 unsigned long action,
2412 void *hcpu)
2413{
2414 int cpu = (unsigned long)hcpu;
2415 struct memcg_stock_pcp *stock;
711d3d2c 2416 struct mem_cgroup *iter;
cdec2e42 2417
619d094b 2418 if (action == CPU_ONLINE)
1489ebad 2419 return NOTIFY_OK;
1489ebad 2420
d833049b 2421 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2422 return NOTIFY_OK;
711d3d2c 2423
9f3a0d09 2424 for_each_mem_cgroup(iter)
711d3d2c
KH
2425 mem_cgroup_drain_pcp_counter(iter, cpu);
2426
cdec2e42
KH
2427 stock = &per_cpu(memcg_stock, cpu);
2428 drain_stock(stock);
2429 return NOTIFY_OK;
2430}
2431
00501b53
JW
2432static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2433 unsigned int nr_pages)
8a9f3ccd 2434{
7ec99d62 2435 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2436 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2437 struct mem_cgroup *mem_over_limit;
3e32cb2e 2438 struct page_counter *counter;
6539cc05 2439 unsigned long nr_reclaimed;
b70a2a21
JW
2440 bool may_swap = true;
2441 bool drained = false;
05b84301 2442 int ret = 0;
a636b327 2443
ce00a967
JW
2444 if (mem_cgroup_is_root(memcg))
2445 goto done;
6539cc05 2446retry:
b6b6cc72
MH
2447 if (consume_stock(memcg, nr_pages))
2448 goto done;
8a9f3ccd 2449
3fbe7244 2450 if (!do_swap_account ||
3e32cb2e
JW
2451 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2452 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2453 goto done_restock;
3fbe7244 2454 if (do_swap_account)
3e32cb2e
JW
2455 page_counter_uncharge(&memcg->memsw, batch);
2456 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2457 } else {
3e32cb2e 2458 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2459 may_swap = false;
3fbe7244 2460 }
7a81b88c 2461
6539cc05
JW
2462 if (batch > nr_pages) {
2463 batch = nr_pages;
2464 goto retry;
2465 }
6d61ef40 2466
06b078fc
JW
2467 /*
2468 * Unlike in global OOM situations, memcg is not in a physical
2469 * memory shortage. Allow dying and OOM-killed tasks to
2470 * bypass the last charges so that they can exit quickly and
2471 * free their memory.
2472 */
2473 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2474 fatal_signal_pending(current) ||
2475 current->flags & PF_EXITING))
2476 goto bypass;
2477
2478 if (unlikely(task_in_memcg_oom(current)))
2479 goto nomem;
2480
6539cc05
JW
2481 if (!(gfp_mask & __GFP_WAIT))
2482 goto nomem;
4b534334 2483
b70a2a21
JW
2484 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2485 gfp_mask, may_swap);
6539cc05 2486
61e02c74 2487 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2488 goto retry;
28c34c29 2489
b70a2a21
JW
2490 if (!drained) {
2491 drain_all_stock_async(mem_over_limit);
2492 drained = true;
2493 goto retry;
2494 }
2495
28c34c29
JW
2496 if (gfp_mask & __GFP_NORETRY)
2497 goto nomem;
6539cc05
JW
2498 /*
2499 * Even though the limit is exceeded at this point, reclaim
2500 * may have been able to free some pages. Retry the charge
2501 * before killing the task.
2502 *
2503 * Only for regular pages, though: huge pages are rather
2504 * unlikely to succeed so close to the limit, and we fall back
2505 * to regular pages anyway in case of failure.
2506 */
61e02c74 2507 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2508 goto retry;
2509 /*
2510 * At task move, charge accounts can be doubly counted. So, it's
2511 * better to wait until the end of task_move if something is going on.
2512 */
2513 if (mem_cgroup_wait_acct_move(mem_over_limit))
2514 goto retry;
2515
9b130619
JW
2516 if (nr_retries--)
2517 goto retry;
2518
06b078fc
JW
2519 if (gfp_mask & __GFP_NOFAIL)
2520 goto bypass;
2521
6539cc05
JW
2522 if (fatal_signal_pending(current))
2523 goto bypass;
2524
61e02c74 2525 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2526nomem:
6d1fdc48 2527 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2528 return -ENOMEM;
867578cb 2529bypass:
ce00a967 2530 return -EINTR;
6539cc05
JW
2531
2532done_restock:
2533 if (batch > nr_pages)
2534 refill_stock(memcg, batch - nr_pages);
2535done:
05b84301 2536 return ret;
7a81b88c 2537}
8a9f3ccd 2538
00501b53 2539static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2540{
ce00a967
JW
2541 if (mem_cgroup_is_root(memcg))
2542 return;
2543
3e32cb2e 2544 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2545 if (do_swap_account)
3e32cb2e 2546 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f
KH
2547}
2548
a3b2d692
KH
2549/*
2550 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2551 * rcu_read_lock(). The caller is responsible for calling
2552 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2553 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2554 */
2555static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2556{
a3b2d692
KH
2557 /* ID 0 is unused ID */
2558 if (!id)
2559 return NULL;
34c00c31 2560 return mem_cgroup_from_id(id);
a3b2d692
KH
2561}
2562
0a31bc97
JW
2563/*
2564 * try_get_mem_cgroup_from_page - look up page's memcg association
2565 * @page: the page
2566 *
2567 * Look up, get a css reference, and return the memcg that owns @page.
2568 *
2569 * The page must be locked to prevent racing with swap-in and page
2570 * cache charges. If coming from an unlocked page table, the caller
2571 * must ensure the page is on the LRU or this can race with charging.
2572 */
e42d9d5d 2573struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2574{
c0ff4b85 2575 struct mem_cgroup *memcg = NULL;
3c776e64 2576 struct page_cgroup *pc;
a3b2d692 2577 unsigned short id;
b5a84319
KH
2578 swp_entry_t ent;
2579
309381fe 2580 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2581
3c776e64 2582 pc = lookup_page_cgroup(page);
a3b2d692 2583 if (PageCgroupUsed(pc)) {
c0ff4b85 2584 memcg = pc->mem_cgroup;
ec903c0c 2585 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2586 memcg = NULL;
e42d9d5d 2587 } else if (PageSwapCache(page)) {
3c776e64 2588 ent.val = page_private(page);
9fb4b7cc 2589 id = lookup_swap_cgroup_id(ent);
a3b2d692 2590 rcu_read_lock();
c0ff4b85 2591 memcg = mem_cgroup_lookup(id);
ec903c0c 2592 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2593 memcg = NULL;
a3b2d692 2594 rcu_read_unlock();
3c776e64 2595 }
c0ff4b85 2596 return memcg;
b5a84319
KH
2597}
2598
0a31bc97
JW
2599static void lock_page_lru(struct page *page, int *isolated)
2600{
2601 struct zone *zone = page_zone(page);
2602
2603 spin_lock_irq(&zone->lru_lock);
2604 if (PageLRU(page)) {
2605 struct lruvec *lruvec;
2606
2607 lruvec = mem_cgroup_page_lruvec(page, zone);
2608 ClearPageLRU(page);
2609 del_page_from_lru_list(page, lruvec, page_lru(page));
2610 *isolated = 1;
2611 } else
2612 *isolated = 0;
2613}
2614
2615static void unlock_page_lru(struct page *page, int isolated)
2616{
2617 struct zone *zone = page_zone(page);
2618
2619 if (isolated) {
2620 struct lruvec *lruvec;
2621
2622 lruvec = mem_cgroup_page_lruvec(page, zone);
2623 VM_BUG_ON_PAGE(PageLRU(page), page);
2624 SetPageLRU(page);
2625 add_page_to_lru_list(page, lruvec, page_lru(page));
2626 }
2627 spin_unlock_irq(&zone->lru_lock);
2628}
2629
00501b53 2630static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2631 bool lrucare)
7a81b88c 2632{
ce587e65 2633 struct page_cgroup *pc = lookup_page_cgroup(page);
0a31bc97 2634 int isolated;
9ce70c02 2635
309381fe 2636 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
ca3e0214
KH
2637 /*
2638 * we don't need page_cgroup_lock about tail pages, becase they are not
2639 * accessed by any other context at this point.
2640 */
9ce70c02
HD
2641
2642 /*
2643 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2644 * may already be on some other mem_cgroup's LRU. Take care of it.
2645 */
0a31bc97
JW
2646 if (lrucare)
2647 lock_page_lru(page, &isolated);
9ce70c02 2648
0a31bc97
JW
2649 /*
2650 * Nobody should be changing or seriously looking at
2651 * pc->mem_cgroup and pc->flags at this point:
2652 *
2653 * - the page is uncharged
2654 *
2655 * - the page is off-LRU
2656 *
2657 * - an anonymous fault has exclusive page access, except for
2658 * a locked page table
2659 *
2660 * - a page cache insertion, a swapin fault, or a migration
2661 * have the page locked
2662 */
c0ff4b85 2663 pc->mem_cgroup = memcg;
0a31bc97 2664 pc->flags = PCG_USED | PCG_MEM | (do_swap_account ? PCG_MEMSW : 0);
9ce70c02 2665
0a31bc97
JW
2666 if (lrucare)
2667 unlock_page_lru(page, isolated);
7a81b88c 2668}
66e1707b 2669
7ae1e1d0 2670#ifdef CONFIG_MEMCG_KMEM
bd673145
VD
2671/*
2672 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2673 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2674 */
2675static DEFINE_MUTEX(memcg_slab_mutex);
2676
d6441637
VD
2677static DEFINE_MUTEX(activate_kmem_mutex);
2678
1f458cbf
GC
2679/*
2680 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2681 * in the memcg_cache_params struct.
2682 */
2683static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2684{
2685 struct kmem_cache *cachep;
2686
2687 VM_BUG_ON(p->is_root_cache);
2688 cachep = p->root_cache;
7a67d7ab 2689 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2690}
2691
749c5415 2692#ifdef CONFIG_SLABINFO
2da8ca82 2693static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
749c5415 2694{
2da8ca82 2695 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
749c5415
GC
2696 struct memcg_cache_params *params;
2697
cf2b8fbf 2698 if (!memcg_kmem_is_active(memcg))
749c5415
GC
2699 return -EIO;
2700
2701 print_slabinfo_header(m);
2702
bd673145 2703 mutex_lock(&memcg_slab_mutex);
749c5415
GC
2704 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2705 cache_show(memcg_params_to_cache(params), m);
bd673145 2706 mutex_unlock(&memcg_slab_mutex);
749c5415
GC
2707
2708 return 0;
2709}
2710#endif
2711
3e32cb2e
JW
2712static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2713 unsigned long nr_pages)
7ae1e1d0 2714{
3e32cb2e 2715 struct page_counter *counter;
7ae1e1d0 2716 int ret = 0;
7ae1e1d0 2717
3e32cb2e
JW
2718 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2719 if (ret < 0)
7ae1e1d0
GC
2720 return ret;
2721
3e32cb2e 2722 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2723 if (ret == -EINTR) {
2724 /*
00501b53
JW
2725 * try_charge() chose to bypass to root due to OOM kill or
2726 * fatal signal. Since our only options are to either fail
2727 * the allocation or charge it to this cgroup, do it as a
2728 * temporary condition. But we can't fail. From a kmem/slab
2729 * perspective, the cache has already been selected, by
2730 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2731 * our minds.
2732 *
2733 * This condition will only trigger if the task entered
00501b53
JW
2734 * memcg_charge_kmem in a sane state, but was OOM-killed
2735 * during try_charge() above. Tasks that were already dying
2736 * when the allocation triggers should have been already
7ae1e1d0
GC
2737 * directed to the root cgroup in memcontrol.h
2738 */
3e32cb2e 2739 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2740 if (do_swap_account)
3e32cb2e 2741 page_counter_charge(&memcg->memsw, nr_pages);
7ae1e1d0
GC
2742 ret = 0;
2743 } else if (ret)
3e32cb2e 2744 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2745
2746 return ret;
2747}
2748
3e32cb2e
JW
2749static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
2750 unsigned long nr_pages)
7ae1e1d0 2751{
3e32cb2e 2752 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2753 if (do_swap_account)
3e32cb2e 2754 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682
GC
2755
2756 /* Not down to 0 */
3e32cb2e 2757 if (page_counter_uncharge(&memcg->kmem, nr_pages))
7de37682
GC
2758 return;
2759
10d5ebf4
LZ
2760 /*
2761 * Releases a reference taken in kmem_cgroup_css_offline in case
2762 * this last uncharge is racing with the offlining code or it is
2763 * outliving the memcg existence.
2764 *
2765 * The memory barrier imposed by test&clear is paired with the
2766 * explicit one in memcg_kmem_mark_dead().
2767 */
7de37682 2768 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 2769 css_put(&memcg->css);
7ae1e1d0
GC
2770}
2771
2633d7a0
GC
2772/*
2773 * helper for acessing a memcg's index. It will be used as an index in the
2774 * child cache array in kmem_cache, and also to derive its name. This function
2775 * will return -1 when this is not a kmem-limited memcg.
2776 */
2777int memcg_cache_id(struct mem_cgroup *memcg)
2778{
2779 return memcg ? memcg->kmemcg_id : -1;
2780}
2781
f3bb3043 2782static int memcg_alloc_cache_id(void)
55007d84 2783{
f3bb3043
VD
2784 int id, size;
2785 int err;
2786
2787 id = ida_simple_get(&kmem_limited_groups,
2788 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2789 if (id < 0)
2790 return id;
55007d84 2791
f3bb3043
VD
2792 if (id < memcg_limited_groups_array_size)
2793 return id;
2794
2795 /*
2796 * There's no space for the new id in memcg_caches arrays,
2797 * so we have to grow them.
2798 */
2799
2800 size = 2 * (id + 1);
55007d84
GC
2801 if (size < MEMCG_CACHES_MIN_SIZE)
2802 size = MEMCG_CACHES_MIN_SIZE;
2803 else if (size > MEMCG_CACHES_MAX_SIZE)
2804 size = MEMCG_CACHES_MAX_SIZE;
2805
f3bb3043
VD
2806 mutex_lock(&memcg_slab_mutex);
2807 err = memcg_update_all_caches(size);
2808 mutex_unlock(&memcg_slab_mutex);
2809
2810 if (err) {
2811 ida_simple_remove(&kmem_limited_groups, id);
2812 return err;
2813 }
2814 return id;
2815}
2816
2817static void memcg_free_cache_id(int id)
2818{
2819 ida_simple_remove(&kmem_limited_groups, id);
55007d84
GC
2820}
2821
2822/*
2823 * We should update the current array size iff all caches updates succeed. This
2824 * can only be done from the slab side. The slab mutex needs to be held when
2825 * calling this.
2826 */
2827void memcg_update_array_size(int num)
2828{
f3bb3043 2829 memcg_limited_groups_array_size = num;
55007d84
GC
2830}
2831
776ed0f0
VD
2832static void memcg_register_cache(struct mem_cgroup *memcg,
2833 struct kmem_cache *root_cache)
2633d7a0 2834{
93f39eea
VD
2835 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2836 memcg_slab_mutex */
bd673145 2837 struct kmem_cache *cachep;
d7f25f8a
GC
2838 int id;
2839
bd673145
VD
2840 lockdep_assert_held(&memcg_slab_mutex);
2841
2842 id = memcg_cache_id(memcg);
2843
2844 /*
2845 * Since per-memcg caches are created asynchronously on first
2846 * allocation (see memcg_kmem_get_cache()), several threads can try to
2847 * create the same cache, but only one of them may succeed.
2848 */
2849 if (cache_from_memcg_idx(root_cache, id))
1aa13254
VD
2850 return;
2851
073ee1c6 2852 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
776ed0f0 2853 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2edefe11 2854 /*
bd673145
VD
2855 * If we could not create a memcg cache, do not complain, because
2856 * that's not critical at all as we can always proceed with the root
2857 * cache.
2edefe11 2858 */
bd673145
VD
2859 if (!cachep)
2860 return;
2edefe11 2861
33a690c4 2862 css_get(&memcg->css);
bd673145 2863 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
1aa13254 2864
d7f25f8a 2865 /*
959c8963
VD
2866 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2867 * barrier here to ensure nobody will see the kmem_cache partially
2868 * initialized.
d7f25f8a 2869 */
959c8963
VD
2870 smp_wmb();
2871
bd673145
VD
2872 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2873 root_cache->memcg_params->memcg_caches[id] = cachep;
1aa13254 2874}
d7f25f8a 2875
776ed0f0 2876static void memcg_unregister_cache(struct kmem_cache *cachep)
1aa13254 2877{
bd673145 2878 struct kmem_cache *root_cache;
1aa13254
VD
2879 struct mem_cgroup *memcg;
2880 int id;
2881
bd673145 2882 lockdep_assert_held(&memcg_slab_mutex);
d7f25f8a 2883
bd673145 2884 BUG_ON(is_root_cache(cachep));
2edefe11 2885
bd673145
VD
2886 root_cache = cachep->memcg_params->root_cache;
2887 memcg = cachep->memcg_params->memcg;
96403da2 2888 id = memcg_cache_id(memcg);
d7f25f8a 2889
bd673145
VD
2890 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2891 root_cache->memcg_params->memcg_caches[id] = NULL;
d7f25f8a 2892
bd673145
VD
2893 list_del(&cachep->memcg_params->list);
2894
2895 kmem_cache_destroy(cachep);
33a690c4
VD
2896
2897 /* drop the reference taken in memcg_register_cache */
2898 css_put(&memcg->css);
2633d7a0
GC
2899}
2900
0e9d92f2
GC
2901/*
2902 * During the creation a new cache, we need to disable our accounting mechanism
2903 * altogether. This is true even if we are not creating, but rather just
2904 * enqueing new caches to be created.
2905 *
2906 * This is because that process will trigger allocations; some visible, like
2907 * explicit kmallocs to auxiliary data structures, name strings and internal
2908 * cache structures; some well concealed, like INIT_WORK() that can allocate
2909 * objects during debug.
2910 *
2911 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
2912 * to it. This may not be a bounded recursion: since the first cache creation
2913 * failed to complete (waiting on the allocation), we'll just try to create the
2914 * cache again, failing at the same point.
2915 *
2916 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
2917 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
2918 * inside the following two functions.
2919 */
2920static inline void memcg_stop_kmem_account(void)
2921{
2922 VM_BUG_ON(!current->mm);
2923 current->memcg_kmem_skip_account++;
2924}
2925
2926static inline void memcg_resume_kmem_account(void)
2927{
2928 VM_BUG_ON(!current->mm);
2929 current->memcg_kmem_skip_account--;
2930}
2931
776ed0f0 2932int __memcg_cleanup_cache_params(struct kmem_cache *s)
7cf27982
GC
2933{
2934 struct kmem_cache *c;
b8529907 2935 int i, failed = 0;
7cf27982 2936
bd673145 2937 mutex_lock(&memcg_slab_mutex);
7a67d7ab
QH
2938 for_each_memcg_cache_index(i) {
2939 c = cache_from_memcg_idx(s, i);
7cf27982
GC
2940 if (!c)
2941 continue;
2942
776ed0f0 2943 memcg_unregister_cache(c);
b8529907
VD
2944
2945 if (cache_from_memcg_idx(s, i))
2946 failed++;
7cf27982 2947 }
bd673145 2948 mutex_unlock(&memcg_slab_mutex);
b8529907 2949 return failed;
7cf27982
GC
2950}
2951
776ed0f0 2952static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
2953{
2954 struct kmem_cache *cachep;
bd673145 2955 struct memcg_cache_params *params, *tmp;
1f458cbf
GC
2956
2957 if (!memcg_kmem_is_active(memcg))
2958 return;
2959
bd673145
VD
2960 mutex_lock(&memcg_slab_mutex);
2961 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
1f458cbf 2962 cachep = memcg_params_to_cache(params);
bd673145
VD
2963 kmem_cache_shrink(cachep);
2964 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
776ed0f0 2965 memcg_unregister_cache(cachep);
1f458cbf 2966 }
bd673145 2967 mutex_unlock(&memcg_slab_mutex);
1f458cbf
GC
2968}
2969
776ed0f0 2970struct memcg_register_cache_work {
5722d094
VD
2971 struct mem_cgroup *memcg;
2972 struct kmem_cache *cachep;
2973 struct work_struct work;
2974};
2975
776ed0f0 2976static void memcg_register_cache_func(struct work_struct *w)
d7f25f8a 2977{
776ed0f0
VD
2978 struct memcg_register_cache_work *cw =
2979 container_of(w, struct memcg_register_cache_work, work);
5722d094
VD
2980 struct mem_cgroup *memcg = cw->memcg;
2981 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2982
bd673145 2983 mutex_lock(&memcg_slab_mutex);
776ed0f0 2984 memcg_register_cache(memcg, cachep);
bd673145
VD
2985 mutex_unlock(&memcg_slab_mutex);
2986
5722d094 2987 css_put(&memcg->css);
d7f25f8a
GC
2988 kfree(cw);
2989}
2990
2991/*
2992 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2993 */
776ed0f0
VD
2994static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
2995 struct kmem_cache *cachep)
d7f25f8a 2996{
776ed0f0 2997 struct memcg_register_cache_work *cw;
d7f25f8a 2998
776ed0f0 2999 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
ca0dde97
LZ
3000 if (cw == NULL) {
3001 css_put(&memcg->css);
d7f25f8a
GC
3002 return;
3003 }
3004
3005 cw->memcg = memcg;
3006 cw->cachep = cachep;
3007
776ed0f0 3008 INIT_WORK(&cw->work, memcg_register_cache_func);
d7f25f8a
GC
3009 schedule_work(&cw->work);
3010}
3011
776ed0f0
VD
3012static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
3013 struct kmem_cache *cachep)
0e9d92f2
GC
3014{
3015 /*
3016 * We need to stop accounting when we kmalloc, because if the
3017 * corresponding kmalloc cache is not yet created, the first allocation
776ed0f0 3018 * in __memcg_schedule_register_cache will recurse.
0e9d92f2
GC
3019 *
3020 * However, it is better to enclose the whole function. Depending on
3021 * the debugging options enabled, INIT_WORK(), for instance, can
3022 * trigger an allocation. This too, will make us recurse. Because at
3023 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3024 * the safest choice is to do it like this, wrapping the whole function.
3025 */
3026 memcg_stop_kmem_account();
776ed0f0 3027 __memcg_schedule_register_cache(memcg, cachep);
0e9d92f2
GC
3028 memcg_resume_kmem_account();
3029}
c67a8a68
VD
3030
3031int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
3032{
3e32cb2e 3033 unsigned int nr_pages = 1 << order;
c67a8a68
VD
3034 int res;
3035
3e32cb2e 3036 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
c67a8a68 3037 if (!res)
3e32cb2e 3038 atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
c67a8a68
VD
3039 return res;
3040}
3041
3042void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
3043{
3e32cb2e
JW
3044 unsigned int nr_pages = 1 << order;
3045
3046 memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
3047 atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
c67a8a68
VD
3048}
3049
d7f25f8a
GC
3050/*
3051 * Return the kmem_cache we're supposed to use for a slab allocation.
3052 * We try to use the current memcg's version of the cache.
3053 *
3054 * If the cache does not exist yet, if we are the first user of it,
3055 * we either create it immediately, if possible, or create it asynchronously
3056 * in a workqueue.
3057 * In the latter case, we will let the current allocation go through with
3058 * the original cache.
3059 *
3060 * Can't be called in interrupt context or from kernel threads.
3061 * This function needs to be called with rcu_read_lock() held.
3062 */
3063struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3064 gfp_t gfp)
3065{
3066 struct mem_cgroup *memcg;
959c8963 3067 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
3068
3069 VM_BUG_ON(!cachep->memcg_params);
3070 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3071
0e9d92f2
GC
3072 if (!current->mm || current->memcg_kmem_skip_account)
3073 return cachep;
3074
d7f25f8a
GC
3075 rcu_read_lock();
3076 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a 3077
cf2b8fbf 3078 if (!memcg_kmem_is_active(memcg))
ca0dde97 3079 goto out;
d7f25f8a 3080
959c8963
VD
3081 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3082 if (likely(memcg_cachep)) {
3083 cachep = memcg_cachep;
ca0dde97 3084 goto out;
d7f25f8a
GC
3085 }
3086
ca0dde97 3087 /* The corresponding put will be done in the workqueue. */
ec903c0c 3088 if (!css_tryget_online(&memcg->css))
ca0dde97
LZ
3089 goto out;
3090 rcu_read_unlock();
3091
3092 /*
3093 * If we are in a safe context (can wait, and not in interrupt
3094 * context), we could be be predictable and return right away.
3095 * This would guarantee that the allocation being performed
3096 * already belongs in the new cache.
3097 *
3098 * However, there are some clashes that can arrive from locking.
3099 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
3100 * memcg_create_kmem_cache, this means no further allocation
3101 * could happen with the slab_mutex held. So it's better to
3102 * defer everything.
ca0dde97 3103 */
776ed0f0 3104 memcg_schedule_register_cache(memcg, cachep);
ca0dde97
LZ
3105 return cachep;
3106out:
3107 rcu_read_unlock();
3108 return cachep;
d7f25f8a 3109}
d7f25f8a 3110
7ae1e1d0
GC
3111/*
3112 * We need to verify if the allocation against current->mm->owner's memcg is
3113 * possible for the given order. But the page is not allocated yet, so we'll
3114 * need a further commit step to do the final arrangements.
3115 *
3116 * It is possible for the task to switch cgroups in this mean time, so at
3117 * commit time, we can't rely on task conversion any longer. We'll then use
3118 * the handle argument to return to the caller which cgroup we should commit
3119 * against. We could also return the memcg directly and avoid the pointer
3120 * passing, but a boolean return value gives better semantics considering
3121 * the compiled-out case as well.
3122 *
3123 * Returning true means the allocation is possible.
3124 */
3125bool
3126__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3127{
3128 struct mem_cgroup *memcg;
3129 int ret;
3130
3131 *_memcg = NULL;
6d42c232
GC
3132
3133 /*
3134 * Disabling accounting is only relevant for some specific memcg
3135 * internal allocations. Therefore we would initially not have such
52383431
VD
3136 * check here, since direct calls to the page allocator that are
3137 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3138 * outside memcg core. We are mostly concerned with cache allocations,
3139 * and by having this test at memcg_kmem_get_cache, we are already able
3140 * to relay the allocation to the root cache and bypass the memcg cache
3141 * altogether.
6d42c232
GC
3142 *
3143 * There is one exception, though: the SLUB allocator does not create
3144 * large order caches, but rather service large kmallocs directly from
3145 * the page allocator. Therefore, the following sequence when backed by
3146 * the SLUB allocator:
3147 *
f894ffa8
AM
3148 * memcg_stop_kmem_account();
3149 * kmalloc(<large_number>)
3150 * memcg_resume_kmem_account();
6d42c232
GC
3151 *
3152 * would effectively ignore the fact that we should skip accounting,
3153 * since it will drive us directly to this function without passing
3154 * through the cache selector memcg_kmem_get_cache. Such large
3155 * allocations are extremely rare but can happen, for instance, for the
3156 * cache arrays. We bring this test here.
3157 */
3158 if (!current->mm || current->memcg_kmem_skip_account)
3159 return true;
3160
df381975 3161 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 3162
cf2b8fbf 3163 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
3164 css_put(&memcg->css);
3165 return true;
3166 }
3167
3e32cb2e 3168 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
3169 if (!ret)
3170 *_memcg = memcg;
7ae1e1d0
GC
3171
3172 css_put(&memcg->css);
3173 return (ret == 0);
3174}
3175
3176void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3177 int order)
3178{
3179 struct page_cgroup *pc;
3180
3181 VM_BUG_ON(mem_cgroup_is_root(memcg));
3182
3183 /* The page allocation failed. Revert */
3184 if (!page) {
3e32cb2e 3185 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
3186 return;
3187 }
a840cda6
JW
3188 /*
3189 * The page is freshly allocated and not visible to any
3190 * outside callers yet. Set up pc non-atomically.
3191 */
7ae1e1d0 3192 pc = lookup_page_cgroup(page);
7ae1e1d0 3193 pc->mem_cgroup = memcg;
a840cda6 3194 pc->flags = PCG_USED;
7ae1e1d0
GC
3195}
3196
3197void __memcg_kmem_uncharge_pages(struct page *page, int order)
3198{
3199 struct mem_cgroup *memcg = NULL;
3200 struct page_cgroup *pc;
3201
3202
3203 pc = lookup_page_cgroup(page);
7ae1e1d0
GC
3204 if (!PageCgroupUsed(pc))
3205 return;
3206
a840cda6
JW
3207 memcg = pc->mem_cgroup;
3208 pc->flags = 0;
7ae1e1d0
GC
3209
3210 /*
3211 * We trust that only if there is a memcg associated with the page, it
3212 * is a valid allocation
3213 */
3214 if (!memcg)
3215 return;
3216
309381fe 3217 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3e32cb2e 3218 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0 3219}
1f458cbf 3220#else
776ed0f0 3221static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
3222{
3223}
7ae1e1d0
GC
3224#endif /* CONFIG_MEMCG_KMEM */
3225
ca3e0214
KH
3226#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3227
ca3e0214
KH
3228/*
3229 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3230 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3231 * charge/uncharge will be never happen and move_account() is done under
3232 * compound_lock(), so we don't have to take care of races.
ca3e0214 3233 */
e94c8a9c 3234void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3235{
3236 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3237 struct page_cgroup *pc;
b070e65c 3238 struct mem_cgroup *memcg;
e94c8a9c 3239 int i;
ca3e0214 3240
3d37c4a9
KH
3241 if (mem_cgroup_disabled())
3242 return;
b070e65c
DR
3243
3244 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3245 for (i = 1; i < HPAGE_PMD_NR; i++) {
3246 pc = head_pc + i;
b070e65c 3247 pc->mem_cgroup = memcg;
0a31bc97 3248 pc->flags = head_pc->flags;
e94c8a9c 3249 }
b070e65c
DR
3250 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3251 HPAGE_PMD_NR);
ca3e0214 3252}
12d27107 3253#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3254
f817ed48 3255/**
de3638d9 3256 * mem_cgroup_move_account - move account of the page
5564e88b 3257 * @page: the page
7ec99d62 3258 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3259 * @pc: page_cgroup of the page.
3260 * @from: mem_cgroup which the page is moved from.
3261 * @to: mem_cgroup which the page is moved to. @from != @to.
3262 *
3263 * The caller must confirm following.
08e552c6 3264 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3265 * - compound_lock is held when nr_pages > 1
f817ed48 3266 *
2f3479b1
KH
3267 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3268 * from old cgroup.
f817ed48 3269 */
7ec99d62
JW
3270static int mem_cgroup_move_account(struct page *page,
3271 unsigned int nr_pages,
3272 struct page_cgroup *pc,
3273 struct mem_cgroup *from,
2f3479b1 3274 struct mem_cgroup *to)
f817ed48 3275{
de3638d9
JW
3276 unsigned long flags;
3277 int ret;
987eba66 3278
f817ed48 3279 VM_BUG_ON(from == to);
309381fe 3280 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3281 /*
3282 * The page is isolated from LRU. So, collapse function
3283 * will not handle this page. But page splitting can happen.
3284 * Do this check under compound_page_lock(). The caller should
3285 * hold it.
3286 */
3287 ret = -EBUSY;
7ec99d62 3288 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3289 goto out;
3290
0a31bc97
JW
3291 /*
3292 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3293 * of its source page while we change it: page migration takes
3294 * both pages off the LRU, but page cache replacement doesn't.
3295 */
3296 if (!trylock_page(page))
3297 goto out;
de3638d9
JW
3298
3299 ret = -EINVAL;
3300 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
0a31bc97 3301 goto out_unlock;
de3638d9 3302
312734c0 3303 move_lock_mem_cgroup(from, &flags);
f817ed48 3304
0a31bc97 3305 if (!PageAnon(page) && page_mapped(page)) {
59d1d256
JW
3306 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3307 nr_pages);
3308 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3309 nr_pages);
3310 }
3ea67d06 3311
59d1d256
JW
3312 if (PageWriteback(page)) {
3313 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3314 nr_pages);
3315 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3316 nr_pages);
3317 }
3ea67d06 3318
0a31bc97
JW
3319 /*
3320 * It is safe to change pc->mem_cgroup here because the page
3321 * is referenced, charged, and isolated - we can't race with
3322 * uncharging, charging, migration, or LRU putback.
3323 */
d69b042f 3324
854ffa8d 3325 /* caller should have done css_get */
08e552c6 3326 pc->mem_cgroup = to;
312734c0 3327 move_unlock_mem_cgroup(from, &flags);
de3638d9 3328 ret = 0;
0a31bc97
JW
3329
3330 local_irq_disable();
3331 mem_cgroup_charge_statistics(to, page, nr_pages);
5564e88b 3332 memcg_check_events(to, page);
0a31bc97 3333 mem_cgroup_charge_statistics(from, page, -nr_pages);
5564e88b 3334 memcg_check_events(from, page);
0a31bc97
JW
3335 local_irq_enable();
3336out_unlock:
3337 unlock_page(page);
de3638d9 3338out:
f817ed48
KH
3339 return ret;
3340}
3341
2ef37d3f
MH
3342/**
3343 * mem_cgroup_move_parent - moves page to the parent group
3344 * @page: the page to move
3345 * @pc: page_cgroup of the page
3346 * @child: page's cgroup
3347 *
3348 * move charges to its parent or the root cgroup if the group has no
3349 * parent (aka use_hierarchy==0).
3350 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3351 * mem_cgroup_move_account fails) the failure is always temporary and
3352 * it signals a race with a page removal/uncharge or migration. In the
3353 * first case the page is on the way out and it will vanish from the LRU
3354 * on the next attempt and the call should be retried later.
3355 * Isolation from the LRU fails only if page has been isolated from
3356 * the LRU since we looked at it and that usually means either global
3357 * reclaim or migration going on. The page will either get back to the
3358 * LRU or vanish.
3359 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3360 * (!PageCgroupUsed) or moved to a different group. The page will
3361 * disappear in the next attempt.
f817ed48 3362 */
5564e88b
JW
3363static int mem_cgroup_move_parent(struct page *page,
3364 struct page_cgroup *pc,
6068bf01 3365 struct mem_cgroup *child)
f817ed48 3366{
f817ed48 3367 struct mem_cgroup *parent;
7ec99d62 3368 unsigned int nr_pages;
4be4489f 3369 unsigned long uninitialized_var(flags);
f817ed48
KH
3370 int ret;
3371
d8423011 3372 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3373
57f9fd7d
DN
3374 ret = -EBUSY;
3375 if (!get_page_unless_zero(page))
3376 goto out;
3377 if (isolate_lru_page(page))
3378 goto put;
52dbb905 3379
7ec99d62 3380 nr_pages = hpage_nr_pages(page);
08e552c6 3381
cc926f78
KH
3382 parent = parent_mem_cgroup(child);
3383 /*
3384 * If no parent, move charges to root cgroup.
3385 */
3386 if (!parent)
3387 parent = root_mem_cgroup;
f817ed48 3388
2ef37d3f 3389 if (nr_pages > 1) {
309381fe 3390 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
987eba66 3391 flags = compound_lock_irqsave(page);
2ef37d3f 3392 }
987eba66 3393
cc926f78 3394 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3395 pc, child, parent);
3e32cb2e
JW
3396 if (!ret) {
3397 /* Take charge off the local counters */
3398 page_counter_cancel(&child->memory, nr_pages);
3399 if (do_swap_account)
3400 page_counter_cancel(&child->memsw, nr_pages);
3401 }
8dba474f 3402
7ec99d62 3403 if (nr_pages > 1)
987eba66 3404 compound_unlock_irqrestore(page, flags);
08e552c6 3405 putback_lru_page(page);
57f9fd7d 3406put:
40d58138 3407 put_page(page);
57f9fd7d 3408out:
f817ed48
KH
3409 return ret;
3410}
3411
c255a458 3412#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
3413static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3414 bool charge)
d13d1443 3415{
0a31bc97
JW
3416 int val = (charge) ? 1 : -1;
3417 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 3418}
02491447
DN
3419
3420/**
3421 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3422 * @entry: swap entry to be moved
3423 * @from: mem_cgroup which the entry is moved from
3424 * @to: mem_cgroup which the entry is moved to
3425 *
3426 * It succeeds only when the swap_cgroup's record for this entry is the same
3427 * as the mem_cgroup's id of @from.
3428 *
3429 * Returns 0 on success, -EINVAL on failure.
3430 *
3e32cb2e 3431 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3432 * both res and memsw, and called css_get().
3433 */
3434static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3435 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3436{
3437 unsigned short old_id, new_id;
3438
34c00c31
LZ
3439 old_id = mem_cgroup_id(from);
3440 new_id = mem_cgroup_id(to);
02491447
DN
3441
3442 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3443 mem_cgroup_swap_statistics(from, false);
483c30b5 3444 mem_cgroup_swap_statistics(to, true);
02491447 3445 /*
483c30b5 3446 * This function is only called from task migration context now.
3e32cb2e 3447 * It postpones page_counter and refcount handling till the end
483c30b5 3448 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
3449 * improvement. But we cannot postpone css_get(to) because if
3450 * the process that has been moved to @to does swap-in, the
3451 * refcount of @to might be decreased to 0.
3452 *
3453 * We are in attach() phase, so the cgroup is guaranteed to be
3454 * alive, so we can just call css_get().
02491447 3455 */
4050377b 3456 css_get(&to->css);
02491447
DN
3457 return 0;
3458 }
3459 return -EINVAL;
3460}
3461#else
3462static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3463 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3464{
3465 return -EINVAL;
3466}
8c7c6e34 3467#endif
d13d1443 3468
f212ad7c
DN
3469#ifdef CONFIG_DEBUG_VM
3470static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3471{
3472 struct page_cgroup *pc;
3473
3474 pc = lookup_page_cgroup(page);
cfa44946
JW
3475 /*
3476 * Can be NULL while feeding pages into the page allocator for
3477 * the first time, i.e. during boot or memory hotplug;
3478 * or when mem_cgroup_disabled().
3479 */
f212ad7c
DN
3480 if (likely(pc) && PageCgroupUsed(pc))
3481 return pc;
3482 return NULL;
3483}
3484
3485bool mem_cgroup_bad_page_check(struct page *page)
3486{
3487 if (mem_cgroup_disabled())
3488 return false;
3489
3490 return lookup_page_cgroup_used(page) != NULL;
3491}
3492
3493void mem_cgroup_print_bad_page(struct page *page)
3494{
3495 struct page_cgroup *pc;
3496
3497 pc = lookup_page_cgroup_used(page);
3498 if (pc) {
d045197f
AM
3499 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3500 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3501 }
3502}
3503#endif
3504
3e32cb2e
JW
3505static DEFINE_MUTEX(memcg_limit_mutex);
3506
d38d2a75 3507static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 3508 unsigned long limit)
628f4235 3509{
3e32cb2e
JW
3510 unsigned long curusage;
3511 unsigned long oldusage;
3512 bool enlarge = false;
81d39c20 3513 int retry_count;
3e32cb2e 3514 int ret;
81d39c20
KH
3515
3516 /*
3517 * For keeping hierarchical_reclaim simple, how long we should retry
3518 * is depends on callers. We set our retry-count to be function
3519 * of # of children which we should visit in this loop.
3520 */
3e32cb2e
JW
3521 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3522 mem_cgroup_count_children(memcg);
81d39c20 3523
3e32cb2e 3524 oldusage = page_counter_read(&memcg->memory);
628f4235 3525
3e32cb2e 3526 do {
628f4235
KH
3527 if (signal_pending(current)) {
3528 ret = -EINTR;
3529 break;
3530 }
3e32cb2e
JW
3531
3532 mutex_lock(&memcg_limit_mutex);
3533 if (limit > memcg->memsw.limit) {
3534 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3535 ret = -EINVAL;
628f4235
KH
3536 break;
3537 }
3e32cb2e
JW
3538 if (limit > memcg->memory.limit)
3539 enlarge = true;
3540 ret = page_counter_limit(&memcg->memory, limit);
3541 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3542
3543 if (!ret)
3544 break;
3545
b70a2a21
JW
3546 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3547
3e32cb2e 3548 curusage = page_counter_read(&memcg->memory);
81d39c20 3549 /* Usage is reduced ? */
f894ffa8 3550 if (curusage >= oldusage)
81d39c20
KH
3551 retry_count--;
3552 else
3553 oldusage = curusage;
3e32cb2e
JW
3554 } while (retry_count);
3555
3c11ecf4
KH
3556 if (!ret && enlarge)
3557 memcg_oom_recover(memcg);
14797e23 3558
8c7c6e34
KH
3559 return ret;
3560}
3561
338c8431 3562static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 3563 unsigned long limit)
8c7c6e34 3564{
3e32cb2e
JW
3565 unsigned long curusage;
3566 unsigned long oldusage;
3567 bool enlarge = false;
81d39c20 3568 int retry_count;
3e32cb2e 3569 int ret;
8c7c6e34 3570
81d39c20 3571 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
3572 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3573 mem_cgroup_count_children(memcg);
3574
3575 oldusage = page_counter_read(&memcg->memsw);
3576
3577 do {
8c7c6e34
KH
3578 if (signal_pending(current)) {
3579 ret = -EINTR;
3580 break;
3581 }
3e32cb2e
JW
3582
3583 mutex_lock(&memcg_limit_mutex);
3584 if (limit < memcg->memory.limit) {
3585 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3586 ret = -EINVAL;
8c7c6e34
KH
3587 break;
3588 }
3e32cb2e
JW
3589 if (limit > memcg->memsw.limit)
3590 enlarge = true;
3591 ret = page_counter_limit(&memcg->memsw, limit);
3592 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3593
3594 if (!ret)
3595 break;
3596
b70a2a21
JW
3597 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3598
3e32cb2e 3599 curusage = page_counter_read(&memcg->memsw);
81d39c20 3600 /* Usage is reduced ? */
8c7c6e34 3601 if (curusage >= oldusage)
628f4235 3602 retry_count--;
81d39c20
KH
3603 else
3604 oldusage = curusage;
3e32cb2e
JW
3605 } while (retry_count);
3606
3c11ecf4
KH
3607 if (!ret && enlarge)
3608 memcg_oom_recover(memcg);
3e32cb2e 3609
628f4235
KH
3610 return ret;
3611}
3612
0608f43d
AM
3613unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3614 gfp_t gfp_mask,
3615 unsigned long *total_scanned)
3616{
3617 unsigned long nr_reclaimed = 0;
3618 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3619 unsigned long reclaimed;
3620 int loop = 0;
3621 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 3622 unsigned long excess;
0608f43d
AM
3623 unsigned long nr_scanned;
3624
3625 if (order > 0)
3626 return 0;
3627
3628 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3629 /*
3630 * This loop can run a while, specially if mem_cgroup's continuously
3631 * keep exceeding their soft limit and putting the system under
3632 * pressure
3633 */
3634 do {
3635 if (next_mz)
3636 mz = next_mz;
3637 else
3638 mz = mem_cgroup_largest_soft_limit_node(mctz);
3639 if (!mz)
3640 break;
3641
3642 nr_scanned = 0;
3643 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3644 gfp_mask, &nr_scanned);
3645 nr_reclaimed += reclaimed;
3646 *total_scanned += nr_scanned;
0a31bc97 3647 spin_lock_irq(&mctz->lock);
0608f43d
AM
3648
3649 /*
3650 * If we failed to reclaim anything from this memory cgroup
3651 * it is time to move on to the next cgroup
3652 */
3653 next_mz = NULL;
3654 if (!reclaimed) {
3655 do {
3656 /*
3657 * Loop until we find yet another one.
3658 *
3659 * By the time we get the soft_limit lock
3660 * again, someone might have aded the
3661 * group back on the RB tree. Iterate to
3662 * make sure we get a different mem.
3663 * mem_cgroup_largest_soft_limit_node returns
3664 * NULL if no other cgroup is present on
3665 * the tree
3666 */
3667 next_mz =
3668 __mem_cgroup_largest_soft_limit_node(mctz);
3669 if (next_mz == mz)
3670 css_put(&next_mz->memcg->css);
3671 else /* next_mz == NULL or other memcg */
3672 break;
3673 } while (1);
3674 }
cf2c8127 3675 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 3676 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3677 /*
3678 * One school of thought says that we should not add
3679 * back the node to the tree if reclaim returns 0.
3680 * But our reclaim could return 0, simply because due
3681 * to priority we are exposing a smaller subset of
3682 * memory to reclaim from. Consider this as a longer
3683 * term TODO.
3684 */
3685 /* If excess == 0, no tree ops */
cf2c8127 3686 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3687 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3688 css_put(&mz->memcg->css);
3689 loop++;
3690 /*
3691 * Could not reclaim anything and there are no more
3692 * mem cgroups to try or we seem to be looping without
3693 * reclaiming anything.
3694 */
3695 if (!nr_reclaimed &&
3696 (next_mz == NULL ||
3697 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3698 break;
3699 } while (!nr_reclaimed);
3700 if (next_mz)
3701 css_put(&next_mz->memcg->css);
3702 return nr_reclaimed;
3703}
3704
2ef37d3f
MH
3705/**
3706 * mem_cgroup_force_empty_list - clears LRU of a group
3707 * @memcg: group to clear
3708 * @node: NUMA node
3709 * @zid: zone id
3710 * @lru: lru to to clear
3711 *
3c935d18 3712 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
3713 * reclaim the pages page themselves - pages are moved to the parent (or root)
3714 * group.
cc847582 3715 */
2ef37d3f 3716static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3717 int node, int zid, enum lru_list lru)
cc847582 3718{
bea8c150 3719 struct lruvec *lruvec;
2ef37d3f 3720 unsigned long flags;
072c56c1 3721 struct list_head *list;
925b7673
JW
3722 struct page *busy;
3723 struct zone *zone;
072c56c1 3724
08e552c6 3725 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
3726 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
3727 list = &lruvec->lists[lru];
cc847582 3728
f817ed48 3729 busy = NULL;
2ef37d3f 3730 do {
925b7673 3731 struct page_cgroup *pc;
5564e88b
JW
3732 struct page *page;
3733
08e552c6 3734 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3735 if (list_empty(list)) {
08e552c6 3736 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3737 break;
f817ed48 3738 }
925b7673
JW
3739 page = list_entry(list->prev, struct page, lru);
3740 if (busy == page) {
3741 list_move(&page->lru, list);
648bcc77 3742 busy = NULL;
08e552c6 3743 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3744 continue;
3745 }
08e552c6 3746 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3747
925b7673 3748 pc = lookup_page_cgroup(page);
5564e88b 3749
3c935d18 3750 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 3751 /* found lock contention or "pc" is obsolete. */
925b7673 3752 busy = page;
f817ed48
KH
3753 } else
3754 busy = NULL;
2a7a0e0f 3755 cond_resched();
2ef37d3f 3756 } while (!list_empty(list));
cc847582
KH
3757}
3758
3759/*
c26251f9
MH
3760 * make mem_cgroup's charge to be 0 if there is no task by moving
3761 * all the charges and pages to the parent.
cc847582 3762 * This enables deleting this mem_cgroup.
c26251f9
MH
3763 *
3764 * Caller is responsible for holding css reference on the memcg.
cc847582 3765 */
ab5196c2 3766static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 3767{
c26251f9 3768 int node, zid;
f817ed48 3769
fce66477 3770 do {
52d4b9ac
KH
3771 /* This is for making all *used* pages to be on LRU. */
3772 lru_add_drain_all();
c0ff4b85 3773 drain_all_stock_sync(memcg);
c0ff4b85 3774 mem_cgroup_start_move(memcg);
31aaea4a 3775 for_each_node_state(node, N_MEMORY) {
2ef37d3f 3776 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3777 enum lru_list lru;
3778 for_each_lru(lru) {
2ef37d3f 3779 mem_cgroup_force_empty_list(memcg,
f156ab93 3780 node, zid, lru);
f817ed48 3781 }
1ecaab2b 3782 }
f817ed48 3783 }
c0ff4b85
R
3784 mem_cgroup_end_move(memcg);
3785 memcg_oom_recover(memcg);
52d4b9ac 3786 cond_resched();
f817ed48 3787
2ef37d3f 3788 /*
bea207c8
GC
3789 * Kernel memory may not necessarily be trackable to a specific
3790 * process. So they are not migrated, and therefore we can't
3791 * expect their value to drop to 0 here.
3792 * Having res filled up with kmem only is enough.
3793 *
2ef37d3f
MH
3794 * This is a safety check because mem_cgroup_force_empty_list
3795 * could have raced with mem_cgroup_replace_page_cache callers
3796 * so the lru seemed empty but the page could have been added
3797 * right after the check. RES_USAGE should be safe as we always
3798 * charge before adding to the LRU.
3799 */
3e32cb2e
JW
3800 } while (page_counter_read(&memcg->memory) -
3801 page_counter_read(&memcg->kmem) > 0);
c26251f9
MH
3802}
3803
ea280e7b
TH
3804/*
3805 * Test whether @memcg has children, dead or alive. Note that this
3806 * function doesn't care whether @memcg has use_hierarchy enabled and
3807 * returns %true if there are child csses according to the cgroup
3808 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3809 */
b5f99b53
GC
3810static inline bool memcg_has_children(struct mem_cgroup *memcg)
3811{
ea280e7b
TH
3812 bool ret;
3813
696ac172 3814 /*
ea280e7b
TH
3815 * The lock does not prevent addition or deletion of children, but
3816 * it prevents a new child from being initialized based on this
3817 * parent in css_online(), so it's enough to decide whether
3818 * hierarchically inherited attributes can still be changed or not.
696ac172 3819 */
ea280e7b
TH
3820 lockdep_assert_held(&memcg_create_mutex);
3821
3822 rcu_read_lock();
3823 ret = css_next_child(NULL, &memcg->css);
3824 rcu_read_unlock();
3825 return ret;
b5f99b53
GC
3826}
3827
c26251f9
MH
3828/*
3829 * Reclaims as many pages from the given memcg as possible and moves
3830 * the rest to the parent.
3831 *
3832 * Caller is responsible for holding css reference for memcg.
3833 */
3834static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3835{
3836 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3837
c1e862c1
KH
3838 /* we call try-to-free pages for make this cgroup empty */
3839 lru_add_drain_all();
f817ed48 3840 /* try to free all pages in this cgroup */
3e32cb2e 3841 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3842 int progress;
c1e862c1 3843
c26251f9
MH
3844 if (signal_pending(current))
3845 return -EINTR;
3846
b70a2a21
JW
3847 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3848 GFP_KERNEL, true);
c1e862c1 3849 if (!progress) {
f817ed48 3850 nr_retries--;
c1e862c1 3851 /* maybe some writeback is necessary */
8aa7e847 3852 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3853 }
f817ed48
KH
3854
3855 }
ab5196c2
MH
3856
3857 return 0;
cc847582
KH
3858}
3859
6770c64e
TH
3860static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3861 char *buf, size_t nbytes,
3862 loff_t off)
c1e862c1 3863{
6770c64e 3864 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3865
d8423011
MH
3866 if (mem_cgroup_is_root(memcg))
3867 return -EINVAL;
6770c64e 3868 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3869}
3870
182446d0
TH
3871static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3872 struct cftype *cft)
18f59ea7 3873{
182446d0 3874 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3875}
3876
182446d0
TH
3877static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3878 struct cftype *cft, u64 val)
18f59ea7
BS
3879{
3880 int retval = 0;
182446d0 3881 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3882 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3883
0999821b 3884 mutex_lock(&memcg_create_mutex);
567fb435
GC
3885
3886 if (memcg->use_hierarchy == val)
3887 goto out;
3888
18f59ea7 3889 /*
af901ca1 3890 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3891 * in the child subtrees. If it is unset, then the change can
3892 * occur, provided the current cgroup has no children.
3893 *
3894 * For the root cgroup, parent_mem is NULL, we allow value to be
3895 * set if there are no children.
3896 */
c0ff4b85 3897 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3898 (val == 1 || val == 0)) {
ea280e7b 3899 if (!memcg_has_children(memcg))
c0ff4b85 3900 memcg->use_hierarchy = val;
18f59ea7
BS
3901 else
3902 retval = -EBUSY;
3903 } else
3904 retval = -EINVAL;
567fb435
GC
3905
3906out:
0999821b 3907 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3908
3909 return retval;
3910}
3911
3e32cb2e
JW
3912static unsigned long tree_stat(struct mem_cgroup *memcg,
3913 enum mem_cgroup_stat_index idx)
ce00a967
JW
3914{
3915 struct mem_cgroup *iter;
3916 long val = 0;
3917
3918 /* Per-cpu values can be negative, use a signed accumulator */
3919 for_each_mem_cgroup_tree(iter, memcg)
3920 val += mem_cgroup_read_stat(iter, idx);
3921
3922 if (val < 0) /* race ? */
3923 val = 0;
3924 return val;
3925}
3926
3927static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3928{
3929 u64 val;
3930
3e32cb2e
JW
3931 if (mem_cgroup_is_root(memcg)) {
3932 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3933 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3934 if (swap)
3935 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3936 } else {
ce00a967 3937 if (!swap)
3e32cb2e 3938 val = page_counter_read(&memcg->memory);
ce00a967 3939 else
3e32cb2e 3940 val = page_counter_read(&memcg->memsw);
ce00a967 3941 }
ce00a967
JW
3942 return val << PAGE_SHIFT;
3943}
3944
3e32cb2e
JW
3945enum {
3946 RES_USAGE,
3947 RES_LIMIT,
3948 RES_MAX_USAGE,
3949 RES_FAILCNT,
3950 RES_SOFT_LIMIT,
3951};
ce00a967 3952
791badbd 3953static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3954 struct cftype *cft)
8cdea7c0 3955{
182446d0 3956 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3957 struct page_counter *counter;
af36f906 3958
3e32cb2e 3959 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3960 case _MEM:
3e32cb2e
JW
3961 counter = &memcg->memory;
3962 break;
8c7c6e34 3963 case _MEMSWAP:
3e32cb2e
JW
3964 counter = &memcg->memsw;
3965 break;
510fc4e1 3966 case _KMEM:
3e32cb2e 3967 counter = &memcg->kmem;
510fc4e1 3968 break;
8c7c6e34
KH
3969 default:
3970 BUG();
8c7c6e34 3971 }
3e32cb2e
JW
3972
3973 switch (MEMFILE_ATTR(cft->private)) {
3974 case RES_USAGE:
3975 if (counter == &memcg->memory)
3976 return mem_cgroup_usage(memcg, false);
3977 if (counter == &memcg->memsw)
3978 return mem_cgroup_usage(memcg, true);
3979 return (u64)page_counter_read(counter) * PAGE_SIZE;
3980 case RES_LIMIT:
3981 return (u64)counter->limit * PAGE_SIZE;
3982 case RES_MAX_USAGE:
3983 return (u64)counter->watermark * PAGE_SIZE;
3984 case RES_FAILCNT:
3985 return counter->failcnt;
3986 case RES_SOFT_LIMIT:
3987 return (u64)memcg->soft_limit * PAGE_SIZE;
3988 default:
3989 BUG();
3990 }
8cdea7c0 3991}
510fc4e1 3992
510fc4e1 3993#ifdef CONFIG_MEMCG_KMEM
d6441637
VD
3994/* should be called with activate_kmem_mutex held */
3995static int __memcg_activate_kmem(struct mem_cgroup *memcg,
3e32cb2e 3996 unsigned long nr_pages)
d6441637
VD
3997{
3998 int err = 0;
3999 int memcg_id;
4000
4001 if (memcg_kmem_is_active(memcg))
4002 return 0;
4003
4004 /*
4005 * We are going to allocate memory for data shared by all memory
4006 * cgroups so let's stop accounting here.
4007 */
4008 memcg_stop_kmem_account();
4009
510fc4e1
GC
4010 /*
4011 * For simplicity, we won't allow this to be disabled. It also can't
4012 * be changed if the cgroup has children already, or if tasks had
4013 * already joined.
4014 *
4015 * If tasks join before we set the limit, a person looking at
4016 * kmem.usage_in_bytes will have no way to determine when it took
4017 * place, which makes the value quite meaningless.
4018 *
4019 * After it first became limited, changes in the value of the limit are
4020 * of course permitted.
510fc4e1 4021 */
0999821b 4022 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
4023 if (cgroup_has_tasks(memcg->css.cgroup) ||
4024 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
4025 err = -EBUSY;
4026 mutex_unlock(&memcg_create_mutex);
4027 if (err)
4028 goto out;
510fc4e1 4029
f3bb3043 4030 memcg_id = memcg_alloc_cache_id();
d6441637
VD
4031 if (memcg_id < 0) {
4032 err = memcg_id;
4033 goto out;
4034 }
4035
d6441637
VD
4036 memcg->kmemcg_id = memcg_id;
4037 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
d6441637
VD
4038
4039 /*
4040 * We couldn't have accounted to this cgroup, because it hasn't got the
4041 * active bit set yet, so this should succeed.
4042 */
3e32cb2e 4043 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
4044 VM_BUG_ON(err);
4045
4046 static_key_slow_inc(&memcg_kmem_enabled_key);
4047 /*
4048 * Setting the active bit after enabling static branching will
4049 * guarantee no one starts accounting before all call sites are
4050 * patched.
4051 */
4052 memcg_kmem_set_active(memcg);
510fc4e1 4053out:
d6441637
VD
4054 memcg_resume_kmem_account();
4055 return err;
d6441637
VD
4056}
4057
4058static int memcg_activate_kmem(struct mem_cgroup *memcg,
3e32cb2e 4059 unsigned long nr_pages)
d6441637
VD
4060{
4061 int ret;
4062
4063 mutex_lock(&activate_kmem_mutex);
3e32cb2e 4064 ret = __memcg_activate_kmem(memcg, nr_pages);
d6441637
VD
4065 mutex_unlock(&activate_kmem_mutex);
4066 return ret;
4067}
4068
4069static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 4070 unsigned long limit)
d6441637
VD
4071{
4072 int ret;
4073
3e32cb2e 4074 mutex_lock(&memcg_limit_mutex);
d6441637 4075 if (!memcg_kmem_is_active(memcg))
3e32cb2e 4076 ret = memcg_activate_kmem(memcg, limit);
d6441637 4077 else
3e32cb2e
JW
4078 ret = page_counter_limit(&memcg->kmem, limit);
4079 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
4080 return ret;
4081}
4082
55007d84 4083static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 4084{
55007d84 4085 int ret = 0;
510fc4e1 4086 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 4087
d6441637
VD
4088 if (!parent)
4089 return 0;
55007d84 4090
d6441637 4091 mutex_lock(&activate_kmem_mutex);
55007d84 4092 /*
d6441637
VD
4093 * If the parent cgroup is not kmem-active now, it cannot be activated
4094 * after this point, because it has at least one child already.
55007d84 4095 */
d6441637 4096 if (memcg_kmem_is_active(parent))
3e32cb2e 4097 ret = __memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
d6441637 4098 mutex_unlock(&activate_kmem_mutex);
55007d84 4099 return ret;
510fc4e1 4100}
d6441637
VD
4101#else
4102static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 4103 unsigned long limit)
d6441637
VD
4104{
4105 return -EINVAL;
4106}
6d043990 4107#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 4108
628f4235
KH
4109/*
4110 * The user of this function is...
4111 * RES_LIMIT.
4112 */
451af504
TH
4113static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4114 char *buf, size_t nbytes, loff_t off)
8cdea7c0 4115{
451af504 4116 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 4117 unsigned long nr_pages;
628f4235
KH
4118 int ret;
4119
451af504 4120 buf = strstrip(buf);
3e32cb2e
JW
4121 ret = page_counter_memparse(buf, &nr_pages);
4122 if (ret)
4123 return ret;
af36f906 4124
3e32cb2e 4125 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 4126 case RES_LIMIT:
4b3bde4c
BS
4127 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4128 ret = -EINVAL;
4129 break;
4130 }
3e32cb2e
JW
4131 switch (MEMFILE_TYPE(of_cft(of)->private)) {
4132 case _MEM:
4133 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 4134 break;
3e32cb2e
JW
4135 case _MEMSWAP:
4136 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 4137 break;
3e32cb2e
JW
4138 case _KMEM:
4139 ret = memcg_update_kmem_limit(memcg, nr_pages);
4140 break;
4141 }
296c81d8 4142 break;
3e32cb2e
JW
4143 case RES_SOFT_LIMIT:
4144 memcg->soft_limit = nr_pages;
4145 ret = 0;
628f4235
KH
4146 break;
4147 }
451af504 4148 return ret ?: nbytes;
8cdea7c0
BS
4149}
4150
6770c64e
TH
4151static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4152 size_t nbytes, loff_t off)
c84872e1 4153{
6770c64e 4154 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 4155 struct page_counter *counter;
c84872e1 4156
3e32cb2e
JW
4157 switch (MEMFILE_TYPE(of_cft(of)->private)) {
4158 case _MEM:
4159 counter = &memcg->memory;
4160 break;
4161 case _MEMSWAP:
4162 counter = &memcg->memsw;
4163 break;
4164 case _KMEM:
4165 counter = &memcg->kmem;
4166 break;
4167 default:
4168 BUG();
4169 }
af36f906 4170
3e32cb2e 4171 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 4172 case RES_MAX_USAGE:
3e32cb2e 4173 page_counter_reset_watermark(counter);
29f2a4da
PE
4174 break;
4175 case RES_FAILCNT:
3e32cb2e 4176 counter->failcnt = 0;
29f2a4da 4177 break;
3e32cb2e
JW
4178 default:
4179 BUG();
29f2a4da 4180 }
f64c3f54 4181
6770c64e 4182 return nbytes;
c84872e1
PE
4183}
4184
182446d0 4185static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
4186 struct cftype *cft)
4187{
182446d0 4188 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
4189}
4190
02491447 4191#ifdef CONFIG_MMU
182446d0 4192static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
4193 struct cftype *cft, u64 val)
4194{
182446d0 4195 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
4196
4197 if (val >= (1 << NR_MOVE_TYPE))
4198 return -EINVAL;
ee5e8472 4199
7dc74be0 4200 /*
ee5e8472
GC
4201 * No kind of locking is needed in here, because ->can_attach() will
4202 * check this value once in the beginning of the process, and then carry
4203 * on with stale data. This means that changes to this value will only
4204 * affect task migrations starting after the change.
7dc74be0 4205 */
c0ff4b85 4206 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4207 return 0;
4208}
02491447 4209#else
182446d0 4210static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
4211 struct cftype *cft, u64 val)
4212{
4213 return -ENOSYS;
4214}
4215#endif
7dc74be0 4216
406eb0c9 4217#ifdef CONFIG_NUMA
2da8ca82 4218static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 4219{
25485de6
GT
4220 struct numa_stat {
4221 const char *name;
4222 unsigned int lru_mask;
4223 };
4224
4225 static const struct numa_stat stats[] = {
4226 { "total", LRU_ALL },
4227 { "file", LRU_ALL_FILE },
4228 { "anon", LRU_ALL_ANON },
4229 { "unevictable", BIT(LRU_UNEVICTABLE) },
4230 };
4231 const struct numa_stat *stat;
406eb0c9 4232 int nid;
25485de6 4233 unsigned long nr;
2da8ca82 4234 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 4235
25485de6
GT
4236 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4237 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
4238 seq_printf(m, "%s=%lu", stat->name, nr);
4239 for_each_node_state(nid, N_MEMORY) {
4240 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4241 stat->lru_mask);
4242 seq_printf(m, " N%d=%lu", nid, nr);
4243 }
4244 seq_putc(m, '\n');
406eb0c9 4245 }
406eb0c9 4246
071aee13
YH
4247 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4248 struct mem_cgroup *iter;
4249
4250 nr = 0;
4251 for_each_mem_cgroup_tree(iter, memcg)
4252 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
4253 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
4254 for_each_node_state(nid, N_MEMORY) {
4255 nr = 0;
4256 for_each_mem_cgroup_tree(iter, memcg)
4257 nr += mem_cgroup_node_nr_lru_pages(
4258 iter, nid, stat->lru_mask);
4259 seq_printf(m, " N%d=%lu", nid, nr);
4260 }
4261 seq_putc(m, '\n');
406eb0c9 4262 }
406eb0c9 4263
406eb0c9
YH
4264 return 0;
4265}
4266#endif /* CONFIG_NUMA */
4267
af7c4b0e
JW
4268static inline void mem_cgroup_lru_names_not_uptodate(void)
4269{
4270 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4271}
4272
2da8ca82 4273static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4274{
2da8ca82 4275 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 4276 unsigned long memory, memsw;
af7c4b0e
JW
4277 struct mem_cgroup *mi;
4278 unsigned int i;
406eb0c9 4279
af7c4b0e 4280 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 4281 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4282 continue;
af7c4b0e
JW
4283 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4284 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 4285 }
7b854121 4286
af7c4b0e
JW
4287 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4288 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4289 mem_cgroup_read_events(memcg, i));
4290
4291 for (i = 0; i < NR_LRU_LISTS; i++)
4292 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4293 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4294
14067bb3 4295 /* Hierarchical information */
3e32cb2e
JW
4296 memory = memsw = PAGE_COUNTER_MAX;
4297 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4298 memory = min(memory, mi->memory.limit);
4299 memsw = min(memsw, mi->memsw.limit);
fee7b548 4300 }
3e32cb2e
JW
4301 seq_printf(m, "hierarchical_memory_limit %llu\n",
4302 (u64)memory * PAGE_SIZE);
4303 if (do_swap_account)
4304 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4305 (u64)memsw * PAGE_SIZE);
7f016ee8 4306
af7c4b0e
JW
4307 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4308 long long val = 0;
4309
bff6bb83 4310 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4311 continue;
af7c4b0e
JW
4312 for_each_mem_cgroup_tree(mi, memcg)
4313 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4314 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4315 }
4316
4317 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4318 unsigned long long val = 0;
4319
4320 for_each_mem_cgroup_tree(mi, memcg)
4321 val += mem_cgroup_read_events(mi, i);
4322 seq_printf(m, "total_%s %llu\n",
4323 mem_cgroup_events_names[i], val);
4324 }
4325
4326 for (i = 0; i < NR_LRU_LISTS; i++) {
4327 unsigned long long val = 0;
4328
4329 for_each_mem_cgroup_tree(mi, memcg)
4330 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4331 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 4332 }
14067bb3 4333
7f016ee8 4334#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4335 {
4336 int nid, zid;
4337 struct mem_cgroup_per_zone *mz;
89abfab1 4338 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4339 unsigned long recent_rotated[2] = {0, 0};
4340 unsigned long recent_scanned[2] = {0, 0};
4341
4342 for_each_online_node(nid)
4343 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 4344 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 4345 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4346
89abfab1
HD
4347 recent_rotated[0] += rstat->recent_rotated[0];
4348 recent_rotated[1] += rstat->recent_rotated[1];
4349 recent_scanned[0] += rstat->recent_scanned[0];
4350 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 4351 }
78ccf5b5
JW
4352 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4353 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4354 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4355 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
4356 }
4357#endif
4358
d2ceb9b7
KH
4359 return 0;
4360}
4361
182446d0
TH
4362static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4363 struct cftype *cft)
a7885eb8 4364{
182446d0 4365 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4366
1f4c025b 4367 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4368}
4369
182446d0
TH
4370static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4371 struct cftype *cft, u64 val)
a7885eb8 4372{
182446d0 4373 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4374
3dae7fec 4375 if (val > 100)
a7885eb8
KM
4376 return -EINVAL;
4377
14208b0e 4378 if (css->parent)
3dae7fec
JW
4379 memcg->swappiness = val;
4380 else
4381 vm_swappiness = val;
068b38c1 4382
a7885eb8
KM
4383 return 0;
4384}
4385
2e72b634
KS
4386static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4387{
4388 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4389 unsigned long usage;
2e72b634
KS
4390 int i;
4391
4392 rcu_read_lock();
4393 if (!swap)
2c488db2 4394 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4395 else
2c488db2 4396 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4397
4398 if (!t)
4399 goto unlock;
4400
ce00a967 4401 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4402
4403 /*
748dad36 4404 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4405 * If it's not true, a threshold was crossed after last
4406 * call of __mem_cgroup_threshold().
4407 */
5407a562 4408 i = t->current_threshold;
2e72b634
KS
4409
4410 /*
4411 * Iterate backward over array of thresholds starting from
4412 * current_threshold and check if a threshold is crossed.
4413 * If none of thresholds below usage is crossed, we read
4414 * only one element of the array here.
4415 */
4416 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4417 eventfd_signal(t->entries[i].eventfd, 1);
4418
4419 /* i = current_threshold + 1 */
4420 i++;
4421
4422 /*
4423 * Iterate forward over array of thresholds starting from
4424 * current_threshold+1 and check if a threshold is crossed.
4425 * If none of thresholds above usage is crossed, we read
4426 * only one element of the array here.
4427 */
4428 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4429 eventfd_signal(t->entries[i].eventfd, 1);
4430
4431 /* Update current_threshold */
5407a562 4432 t->current_threshold = i - 1;
2e72b634
KS
4433unlock:
4434 rcu_read_unlock();
4435}
4436
4437static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4438{
ad4ca5f4
KS
4439 while (memcg) {
4440 __mem_cgroup_threshold(memcg, false);
4441 if (do_swap_account)
4442 __mem_cgroup_threshold(memcg, true);
4443
4444 memcg = parent_mem_cgroup(memcg);
4445 }
2e72b634
KS
4446}
4447
4448static int compare_thresholds(const void *a, const void *b)
4449{
4450 const struct mem_cgroup_threshold *_a = a;
4451 const struct mem_cgroup_threshold *_b = b;
4452
2bff24a3
GT
4453 if (_a->threshold > _b->threshold)
4454 return 1;
4455
4456 if (_a->threshold < _b->threshold)
4457 return -1;
4458
4459 return 0;
2e72b634
KS
4460}
4461
c0ff4b85 4462static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4463{
4464 struct mem_cgroup_eventfd_list *ev;
4465
2bcf2e92
MH
4466 spin_lock(&memcg_oom_lock);
4467
c0ff4b85 4468 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4469 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4470
4471 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4472 return 0;
4473}
4474
c0ff4b85 4475static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4476{
7d74b06f
KH
4477 struct mem_cgroup *iter;
4478
c0ff4b85 4479 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4480 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4481}
4482
59b6f873 4483static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4484 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4485{
2c488db2
KS
4486 struct mem_cgroup_thresholds *thresholds;
4487 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4488 unsigned long threshold;
4489 unsigned long usage;
2c488db2 4490 int i, size, ret;
2e72b634 4491
3e32cb2e 4492 ret = page_counter_memparse(args, &threshold);
2e72b634
KS
4493 if (ret)
4494 return ret;
4495
4496 mutex_lock(&memcg->thresholds_lock);
2c488db2 4497
05b84301 4498 if (type == _MEM) {
2c488db2 4499 thresholds = &memcg->thresholds;
ce00a967 4500 usage = mem_cgroup_usage(memcg, false);
05b84301 4501 } else if (type == _MEMSWAP) {
2c488db2 4502 thresholds = &memcg->memsw_thresholds;
ce00a967 4503 usage = mem_cgroup_usage(memcg, true);
05b84301 4504 } else
2e72b634
KS
4505 BUG();
4506
2e72b634 4507 /* Check if a threshold crossed before adding a new one */
2c488db2 4508 if (thresholds->primary)
2e72b634
KS
4509 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4510
2c488db2 4511 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4512
4513 /* Allocate memory for new array of thresholds */
2c488db2 4514 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4515 GFP_KERNEL);
2c488db2 4516 if (!new) {
2e72b634
KS
4517 ret = -ENOMEM;
4518 goto unlock;
4519 }
2c488db2 4520 new->size = size;
2e72b634
KS
4521
4522 /* Copy thresholds (if any) to new array */
2c488db2
KS
4523 if (thresholds->primary) {
4524 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4525 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4526 }
4527
2e72b634 4528 /* Add new threshold */
2c488db2
KS
4529 new->entries[size - 1].eventfd = eventfd;
4530 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4531
4532 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4533 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4534 compare_thresholds, NULL);
4535
4536 /* Find current threshold */
2c488db2 4537 new->current_threshold = -1;
2e72b634 4538 for (i = 0; i < size; i++) {
748dad36 4539 if (new->entries[i].threshold <= usage) {
2e72b634 4540 /*
2c488db2
KS
4541 * new->current_threshold will not be used until
4542 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4543 * it here.
4544 */
2c488db2 4545 ++new->current_threshold;
748dad36
SZ
4546 } else
4547 break;
2e72b634
KS
4548 }
4549
2c488db2
KS
4550 /* Free old spare buffer and save old primary buffer as spare */
4551 kfree(thresholds->spare);
4552 thresholds->spare = thresholds->primary;
4553
4554 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4555
907860ed 4556 /* To be sure that nobody uses thresholds */
2e72b634
KS
4557 synchronize_rcu();
4558
2e72b634
KS
4559unlock:
4560 mutex_unlock(&memcg->thresholds_lock);
4561
4562 return ret;
4563}
4564
59b6f873 4565static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4566 struct eventfd_ctx *eventfd, const char *args)
4567{
59b6f873 4568 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4569}
4570
59b6f873 4571static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4572 struct eventfd_ctx *eventfd, const char *args)
4573{
59b6f873 4574 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4575}
4576
59b6f873 4577static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4578 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4579{
2c488db2
KS
4580 struct mem_cgroup_thresholds *thresholds;
4581 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4582 unsigned long usage;
2c488db2 4583 int i, j, size;
2e72b634
KS
4584
4585 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4586
4587 if (type == _MEM) {
2c488db2 4588 thresholds = &memcg->thresholds;
ce00a967 4589 usage = mem_cgroup_usage(memcg, false);
05b84301 4590 } else if (type == _MEMSWAP) {
2c488db2 4591 thresholds = &memcg->memsw_thresholds;
ce00a967 4592 usage = mem_cgroup_usage(memcg, true);
05b84301 4593 } else
2e72b634
KS
4594 BUG();
4595
371528ca
AV
4596 if (!thresholds->primary)
4597 goto unlock;
4598
2e72b634
KS
4599 /* Check if a threshold crossed before removing */
4600 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4601
4602 /* Calculate new number of threshold */
2c488db2
KS
4603 size = 0;
4604 for (i = 0; i < thresholds->primary->size; i++) {
4605 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4606 size++;
4607 }
4608
2c488db2 4609 new = thresholds->spare;
907860ed 4610
2e72b634
KS
4611 /* Set thresholds array to NULL if we don't have thresholds */
4612 if (!size) {
2c488db2
KS
4613 kfree(new);
4614 new = NULL;
907860ed 4615 goto swap_buffers;
2e72b634
KS
4616 }
4617
2c488db2 4618 new->size = size;
2e72b634
KS
4619
4620 /* Copy thresholds and find current threshold */
2c488db2
KS
4621 new->current_threshold = -1;
4622 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4623 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4624 continue;
4625
2c488db2 4626 new->entries[j] = thresholds->primary->entries[i];
748dad36 4627 if (new->entries[j].threshold <= usage) {
2e72b634 4628 /*
2c488db2 4629 * new->current_threshold will not be used
2e72b634
KS
4630 * until rcu_assign_pointer(), so it's safe to increment
4631 * it here.
4632 */
2c488db2 4633 ++new->current_threshold;
2e72b634
KS
4634 }
4635 j++;
4636 }
4637
907860ed 4638swap_buffers:
2c488db2
KS
4639 /* Swap primary and spare array */
4640 thresholds->spare = thresholds->primary;
8c757763
SZ
4641 /* If all events are unregistered, free the spare array */
4642 if (!new) {
4643 kfree(thresholds->spare);
4644 thresholds->spare = NULL;
4645 }
4646
2c488db2 4647 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4648
907860ed 4649 /* To be sure that nobody uses thresholds */
2e72b634 4650 synchronize_rcu();
371528ca 4651unlock:
2e72b634 4652 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4653}
c1e862c1 4654
59b6f873 4655static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4656 struct eventfd_ctx *eventfd)
4657{
59b6f873 4658 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4659}
4660
59b6f873 4661static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4662 struct eventfd_ctx *eventfd)
4663{
59b6f873 4664 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4665}
4666
59b6f873 4667static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4668 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4669{
9490ff27 4670 struct mem_cgroup_eventfd_list *event;
9490ff27 4671
9490ff27
KH
4672 event = kmalloc(sizeof(*event), GFP_KERNEL);
4673 if (!event)
4674 return -ENOMEM;
4675
1af8efe9 4676 spin_lock(&memcg_oom_lock);
9490ff27
KH
4677
4678 event->eventfd = eventfd;
4679 list_add(&event->list, &memcg->oom_notify);
4680
4681 /* already in OOM ? */
79dfdacc 4682 if (atomic_read(&memcg->under_oom))
9490ff27 4683 eventfd_signal(eventfd, 1);
1af8efe9 4684 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4685
4686 return 0;
4687}
4688
59b6f873 4689static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4690 struct eventfd_ctx *eventfd)
9490ff27 4691{
9490ff27 4692 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4693
1af8efe9 4694 spin_lock(&memcg_oom_lock);
9490ff27 4695
c0ff4b85 4696 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4697 if (ev->eventfd == eventfd) {
4698 list_del(&ev->list);
4699 kfree(ev);
4700 }
4701 }
4702
1af8efe9 4703 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4704}
4705
2da8ca82 4706static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4707{
2da8ca82 4708 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 4709
791badbd
TH
4710 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4711 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
4712 return 0;
4713}
4714
182446d0 4715static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4716 struct cftype *cft, u64 val)
4717{
182446d0 4718 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4719
4720 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4721 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4722 return -EINVAL;
4723
c0ff4b85 4724 memcg->oom_kill_disable = val;
4d845ebf 4725 if (!val)
c0ff4b85 4726 memcg_oom_recover(memcg);
3dae7fec 4727
3c11ecf4
KH
4728 return 0;
4729}
4730
c255a458 4731#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4732static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4733{
55007d84
GC
4734 int ret;
4735
2633d7a0 4736 memcg->kmemcg_id = -1;
55007d84
GC
4737 ret = memcg_propagate_kmem(memcg);
4738 if (ret)
4739 return ret;
2633d7a0 4740
1d62e436 4741 return mem_cgroup_sockets_init(memcg, ss);
573b400d 4742}
e5671dfa 4743
10d5ebf4 4744static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 4745{
1d62e436 4746 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
4747}
4748
4749static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
4750{
4751 if (!memcg_kmem_is_active(memcg))
4752 return;
4753
4754 /*
4755 * kmem charges can outlive the cgroup. In the case of slab
4756 * pages, for instance, a page contain objects from various
4757 * processes. As we prevent from taking a reference for every
4758 * such allocation we have to be careful when doing uncharge
4759 * (see memcg_uncharge_kmem) and here during offlining.
4760 *
4761 * The idea is that that only the _last_ uncharge which sees
4762 * the dead memcg will drop the last reference. An additional
4763 * reference is taken here before the group is marked dead
4764 * which is then paired with css_put during uncharge resp. here.
4765 *
4766 * Although this might sound strange as this path is called from
ec903c0c
TH
4767 * css_offline() when the referencemight have dropped down to 0 and
4768 * shouldn't be incremented anymore (css_tryget_online() would
4769 * fail) we do not have other options because of the kmem
4770 * allocations lifetime.
10d5ebf4
LZ
4771 */
4772 css_get(&memcg->css);
7de37682
GC
4773
4774 memcg_kmem_mark_dead(memcg);
4775
3e32cb2e 4776 if (page_counter_read(&memcg->kmem))
7de37682
GC
4777 return;
4778
7de37682 4779 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 4780 css_put(&memcg->css);
d1a4c0b3 4781}
e5671dfa 4782#else
cbe128e3 4783static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4784{
4785 return 0;
4786}
d1a4c0b3 4787
10d5ebf4
LZ
4788static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4789{
4790}
4791
4792static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
4793{
4794}
e5671dfa
GC
4795#endif
4796
3bc942f3
TH
4797/*
4798 * DO NOT USE IN NEW FILES.
4799 *
4800 * "cgroup.event_control" implementation.
4801 *
4802 * This is way over-engineered. It tries to support fully configurable
4803 * events for each user. Such level of flexibility is completely
4804 * unnecessary especially in the light of the planned unified hierarchy.
4805 *
4806 * Please deprecate this and replace with something simpler if at all
4807 * possible.
4808 */
4809
79bd9814
TH
4810/*
4811 * Unregister event and free resources.
4812 *
4813 * Gets called from workqueue.
4814 */
3bc942f3 4815static void memcg_event_remove(struct work_struct *work)
79bd9814 4816{
3bc942f3
TH
4817 struct mem_cgroup_event *event =
4818 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4819 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4820
4821 remove_wait_queue(event->wqh, &event->wait);
4822
59b6f873 4823 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4824
4825 /* Notify userspace the event is going away. */
4826 eventfd_signal(event->eventfd, 1);
4827
4828 eventfd_ctx_put(event->eventfd);
4829 kfree(event);
59b6f873 4830 css_put(&memcg->css);
79bd9814
TH
4831}
4832
4833/*
4834 * Gets called on POLLHUP on eventfd when user closes it.
4835 *
4836 * Called with wqh->lock held and interrupts disabled.
4837 */
3bc942f3
TH
4838static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4839 int sync, void *key)
79bd9814 4840{
3bc942f3
TH
4841 struct mem_cgroup_event *event =
4842 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4843 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4844 unsigned long flags = (unsigned long)key;
4845
4846 if (flags & POLLHUP) {
4847 /*
4848 * If the event has been detached at cgroup removal, we
4849 * can simply return knowing the other side will cleanup
4850 * for us.
4851 *
4852 * We can't race against event freeing since the other
4853 * side will require wqh->lock via remove_wait_queue(),
4854 * which we hold.
4855 */
fba94807 4856 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4857 if (!list_empty(&event->list)) {
4858 list_del_init(&event->list);
4859 /*
4860 * We are in atomic context, but cgroup_event_remove()
4861 * may sleep, so we have to call it in workqueue.
4862 */
4863 schedule_work(&event->remove);
4864 }
fba94807 4865 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4866 }
4867
4868 return 0;
4869}
4870
3bc942f3 4871static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4872 wait_queue_head_t *wqh, poll_table *pt)
4873{
3bc942f3
TH
4874 struct mem_cgroup_event *event =
4875 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4876
4877 event->wqh = wqh;
4878 add_wait_queue(wqh, &event->wait);
4879}
4880
4881/*
3bc942f3
TH
4882 * DO NOT USE IN NEW FILES.
4883 *
79bd9814
TH
4884 * Parse input and register new cgroup event handler.
4885 *
4886 * Input must be in format '<event_fd> <control_fd> <args>'.
4887 * Interpretation of args is defined by control file implementation.
4888 */
451af504
TH
4889static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4890 char *buf, size_t nbytes, loff_t off)
79bd9814 4891{
451af504 4892 struct cgroup_subsys_state *css = of_css(of);
fba94807 4893 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4894 struct mem_cgroup_event *event;
79bd9814
TH
4895 struct cgroup_subsys_state *cfile_css;
4896 unsigned int efd, cfd;
4897 struct fd efile;
4898 struct fd cfile;
fba94807 4899 const char *name;
79bd9814
TH
4900 char *endp;
4901 int ret;
4902
451af504
TH
4903 buf = strstrip(buf);
4904
4905 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4906 if (*endp != ' ')
4907 return -EINVAL;
451af504 4908 buf = endp + 1;
79bd9814 4909
451af504 4910 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4911 if ((*endp != ' ') && (*endp != '\0'))
4912 return -EINVAL;
451af504 4913 buf = endp + 1;
79bd9814
TH
4914
4915 event = kzalloc(sizeof(*event), GFP_KERNEL);
4916 if (!event)
4917 return -ENOMEM;
4918
59b6f873 4919 event->memcg = memcg;
79bd9814 4920 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4921 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4922 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4923 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4924
4925 efile = fdget(efd);
4926 if (!efile.file) {
4927 ret = -EBADF;
4928 goto out_kfree;
4929 }
4930
4931 event->eventfd = eventfd_ctx_fileget(efile.file);
4932 if (IS_ERR(event->eventfd)) {
4933 ret = PTR_ERR(event->eventfd);
4934 goto out_put_efile;
4935 }
4936
4937 cfile = fdget(cfd);
4938 if (!cfile.file) {
4939 ret = -EBADF;
4940 goto out_put_eventfd;
4941 }
4942
4943 /* the process need read permission on control file */
4944 /* AV: shouldn't we check that it's been opened for read instead? */
4945 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4946 if (ret < 0)
4947 goto out_put_cfile;
4948
fba94807
TH
4949 /*
4950 * Determine the event callbacks and set them in @event. This used
4951 * to be done via struct cftype but cgroup core no longer knows
4952 * about these events. The following is crude but the whole thing
4953 * is for compatibility anyway.
3bc942f3
TH
4954 *
4955 * DO NOT ADD NEW FILES.
fba94807
TH
4956 */
4957 name = cfile.file->f_dentry->d_name.name;
4958
4959 if (!strcmp(name, "memory.usage_in_bytes")) {
4960 event->register_event = mem_cgroup_usage_register_event;
4961 event->unregister_event = mem_cgroup_usage_unregister_event;
4962 } else if (!strcmp(name, "memory.oom_control")) {
4963 event->register_event = mem_cgroup_oom_register_event;
4964 event->unregister_event = mem_cgroup_oom_unregister_event;
4965 } else if (!strcmp(name, "memory.pressure_level")) {
4966 event->register_event = vmpressure_register_event;
4967 event->unregister_event = vmpressure_unregister_event;
4968 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4969 event->register_event = memsw_cgroup_usage_register_event;
4970 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4971 } else {
4972 ret = -EINVAL;
4973 goto out_put_cfile;
4974 }
4975
79bd9814 4976 /*
b5557c4c
TH
4977 * Verify @cfile should belong to @css. Also, remaining events are
4978 * automatically removed on cgroup destruction but the removal is
4979 * asynchronous, so take an extra ref on @css.
79bd9814 4980 */
ec903c0c
TH
4981 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
4982 &memory_cgrp_subsys);
79bd9814 4983 ret = -EINVAL;
5a17f543 4984 if (IS_ERR(cfile_css))
79bd9814 4985 goto out_put_cfile;
5a17f543
TH
4986 if (cfile_css != css) {
4987 css_put(cfile_css);
79bd9814 4988 goto out_put_cfile;
5a17f543 4989 }
79bd9814 4990
451af504 4991 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4992 if (ret)
4993 goto out_put_css;
4994
4995 efile.file->f_op->poll(efile.file, &event->pt);
4996
fba94807
TH
4997 spin_lock(&memcg->event_list_lock);
4998 list_add(&event->list, &memcg->event_list);
4999 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
5000
5001 fdput(cfile);
5002 fdput(efile);
5003
451af504 5004 return nbytes;
79bd9814
TH
5005
5006out_put_css:
b5557c4c 5007 css_put(css);
79bd9814
TH
5008out_put_cfile:
5009 fdput(cfile);
5010out_put_eventfd:
5011 eventfd_ctx_put(event->eventfd);
5012out_put_efile:
5013 fdput(efile);
5014out_kfree:
5015 kfree(event);
5016
5017 return ret;
5018}
5019
8cdea7c0
BS
5020static struct cftype mem_cgroup_files[] = {
5021 {
0eea1030 5022 .name = "usage_in_bytes",
8c7c6e34 5023 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 5024 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5025 },
c84872e1
PE
5026 {
5027 .name = "max_usage_in_bytes",
8c7c6e34 5028 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 5029 .write = mem_cgroup_reset,
791badbd 5030 .read_u64 = mem_cgroup_read_u64,
c84872e1 5031 },
8cdea7c0 5032 {
0eea1030 5033 .name = "limit_in_bytes",
8c7c6e34 5034 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 5035 .write = mem_cgroup_write,
791badbd 5036 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5037 },
296c81d8
BS
5038 {
5039 .name = "soft_limit_in_bytes",
5040 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 5041 .write = mem_cgroup_write,
791badbd 5042 .read_u64 = mem_cgroup_read_u64,
296c81d8 5043 },
8cdea7c0
BS
5044 {
5045 .name = "failcnt",
8c7c6e34 5046 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 5047 .write = mem_cgroup_reset,
791badbd 5048 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5049 },
d2ceb9b7
KH
5050 {
5051 .name = "stat",
2da8ca82 5052 .seq_show = memcg_stat_show,
d2ceb9b7 5053 },
c1e862c1
KH
5054 {
5055 .name = "force_empty",
6770c64e 5056 .write = mem_cgroup_force_empty_write,
c1e862c1 5057 },
18f59ea7
BS
5058 {
5059 .name = "use_hierarchy",
5060 .write_u64 = mem_cgroup_hierarchy_write,
5061 .read_u64 = mem_cgroup_hierarchy_read,
5062 },
79bd9814 5063 {
3bc942f3 5064 .name = "cgroup.event_control", /* XXX: for compat */
451af504 5065 .write = memcg_write_event_control,
79bd9814
TH
5066 .flags = CFTYPE_NO_PREFIX,
5067 .mode = S_IWUGO,
5068 },
a7885eb8
KM
5069 {
5070 .name = "swappiness",
5071 .read_u64 = mem_cgroup_swappiness_read,
5072 .write_u64 = mem_cgroup_swappiness_write,
5073 },
7dc74be0
DN
5074 {
5075 .name = "move_charge_at_immigrate",
5076 .read_u64 = mem_cgroup_move_charge_read,
5077 .write_u64 = mem_cgroup_move_charge_write,
5078 },
9490ff27
KH
5079 {
5080 .name = "oom_control",
2da8ca82 5081 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5082 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5083 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5084 },
70ddf637
AV
5085 {
5086 .name = "pressure_level",
70ddf637 5087 },
406eb0c9
YH
5088#ifdef CONFIG_NUMA
5089 {
5090 .name = "numa_stat",
2da8ca82 5091 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5092 },
5093#endif
510fc4e1
GC
5094#ifdef CONFIG_MEMCG_KMEM
5095 {
5096 .name = "kmem.limit_in_bytes",
5097 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 5098 .write = mem_cgroup_write,
791badbd 5099 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5100 },
5101 {
5102 .name = "kmem.usage_in_bytes",
5103 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5104 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5105 },
5106 {
5107 .name = "kmem.failcnt",
5108 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5109 .write = mem_cgroup_reset,
791badbd 5110 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5111 },
5112 {
5113 .name = "kmem.max_usage_in_bytes",
5114 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5115 .write = mem_cgroup_reset,
791badbd 5116 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5117 },
749c5415
GC
5118#ifdef CONFIG_SLABINFO
5119 {
5120 .name = "kmem.slabinfo",
2da8ca82 5121 .seq_show = mem_cgroup_slabinfo_read,
749c5415
GC
5122 },
5123#endif
8c7c6e34 5124#endif
6bc10349 5125 { }, /* terminate */
af36f906 5126};
8c7c6e34 5127
2d11085e
MH
5128#ifdef CONFIG_MEMCG_SWAP
5129static struct cftype memsw_cgroup_files[] = {
5130 {
5131 .name = "memsw.usage_in_bytes",
5132 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 5133 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5134 },
5135 {
5136 .name = "memsw.max_usage_in_bytes",
5137 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6770c64e 5138 .write = mem_cgroup_reset,
791badbd 5139 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5140 },
5141 {
5142 .name = "memsw.limit_in_bytes",
5143 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
451af504 5144 .write = mem_cgroup_write,
791badbd 5145 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5146 },
5147 {
5148 .name = "memsw.failcnt",
5149 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6770c64e 5150 .write = mem_cgroup_reset,
791badbd 5151 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5152 },
5153 { }, /* terminate */
5154};
5155#endif
c0ff4b85 5156static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5157{
5158 struct mem_cgroup_per_node *pn;
1ecaab2b 5159 struct mem_cgroup_per_zone *mz;
41e3355d 5160 int zone, tmp = node;
1ecaab2b
KH
5161 /*
5162 * This routine is called against possible nodes.
5163 * But it's BUG to call kmalloc() against offline node.
5164 *
5165 * TODO: this routine can waste much memory for nodes which will
5166 * never be onlined. It's better to use memory hotplug callback
5167 * function.
5168 */
41e3355d
KH
5169 if (!node_state(node, N_NORMAL_MEMORY))
5170 tmp = -1;
17295c88 5171 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5172 if (!pn)
5173 return 1;
1ecaab2b 5174
1ecaab2b
KH
5175 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5176 mz = &pn->zoneinfo[zone];
bea8c150 5177 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
5178 mz->usage_in_excess = 0;
5179 mz->on_tree = false;
d79154bb 5180 mz->memcg = memcg;
1ecaab2b 5181 }
54f72fe0 5182 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5183 return 0;
5184}
5185
c0ff4b85 5186static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5187{
54f72fe0 5188 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
5189}
5190
33327948
KH
5191static struct mem_cgroup *mem_cgroup_alloc(void)
5192{
d79154bb 5193 struct mem_cgroup *memcg;
8ff69e2c 5194 size_t size;
33327948 5195
8ff69e2c
VD
5196 size = sizeof(struct mem_cgroup);
5197 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 5198
8ff69e2c 5199 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 5200 if (!memcg)
e7bbcdf3
DC
5201 return NULL;
5202
d79154bb
HD
5203 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5204 if (!memcg->stat)
d2e61b8d 5205 goto out_free;
d79154bb
HD
5206 spin_lock_init(&memcg->pcp_counter_lock);
5207 return memcg;
d2e61b8d
DC
5208
5209out_free:
8ff69e2c 5210 kfree(memcg);
d2e61b8d 5211 return NULL;
33327948
KH
5212}
5213
59927fb9 5214/*
c8b2a36f
GC
5215 * At destroying mem_cgroup, references from swap_cgroup can remain.
5216 * (scanning all at force_empty is too costly...)
5217 *
5218 * Instead of clearing all references at force_empty, we remember
5219 * the number of reference from swap_cgroup and free mem_cgroup when
5220 * it goes down to 0.
5221 *
5222 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 5223 */
c8b2a36f
GC
5224
5225static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5226{
c8b2a36f 5227 int node;
59927fb9 5228
bb4cc1a8 5229 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
5230
5231 for_each_node(node)
5232 free_mem_cgroup_per_zone_info(memcg, node);
5233
5234 free_percpu(memcg->stat);
5235
3f134619
GC
5236 /*
5237 * We need to make sure that (at least for now), the jump label
5238 * destruction code runs outside of the cgroup lock. This is because
5239 * get_online_cpus(), which is called from the static_branch update,
5240 * can't be called inside the cgroup_lock. cpusets are the ones
5241 * enforcing this dependency, so if they ever change, we might as well.
5242 *
5243 * schedule_work() will guarantee this happens. Be careful if you need
5244 * to move this code around, and make sure it is outside
5245 * the cgroup_lock.
5246 */
a8964b9b 5247 disarm_static_keys(memcg);
8ff69e2c 5248 kfree(memcg);
59927fb9 5249}
3afe36b1 5250
7bcc1bb1
DN
5251/*
5252 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5253 */
e1aab161 5254struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 5255{
3e32cb2e 5256 if (!memcg->memory.parent)
7bcc1bb1 5257 return NULL;
3e32cb2e 5258 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 5259}
e1aab161 5260EXPORT_SYMBOL(parent_mem_cgroup);
33327948 5261
bb4cc1a8
AM
5262static void __init mem_cgroup_soft_limit_tree_init(void)
5263{
5264 struct mem_cgroup_tree_per_node *rtpn;
5265 struct mem_cgroup_tree_per_zone *rtpz;
5266 int tmp, node, zone;
5267
5268 for_each_node(node) {
5269 tmp = node;
5270 if (!node_state(node, N_NORMAL_MEMORY))
5271 tmp = -1;
5272 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5273 BUG_ON(!rtpn);
5274
5275 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5276
5277 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5278 rtpz = &rtpn->rb_tree_per_zone[zone];
5279 rtpz->rb_root = RB_ROOT;
5280 spin_lock_init(&rtpz->lock);
5281 }
5282 }
5283}
5284
0eb253e2 5285static struct cgroup_subsys_state * __ref
eb95419b 5286mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 5287{
d142e3e6 5288 struct mem_cgroup *memcg;
04046e1a 5289 long error = -ENOMEM;
6d12e2d8 5290 int node;
8cdea7c0 5291
c0ff4b85
R
5292 memcg = mem_cgroup_alloc();
5293 if (!memcg)
04046e1a 5294 return ERR_PTR(error);
78fb7466 5295
3ed28fa1 5296 for_each_node(node)
c0ff4b85 5297 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 5298 goto free_out;
f64c3f54 5299
c077719b 5300 /* root ? */
eb95419b 5301 if (parent_css == NULL) {
a41c58a6 5302 root_mem_cgroup = memcg;
3e32cb2e
JW
5303 page_counter_init(&memcg->memory, NULL);
5304 page_counter_init(&memcg->memsw, NULL);
5305 page_counter_init(&memcg->kmem, NULL);
18f59ea7 5306 }
28dbc4b6 5307
d142e3e6
GC
5308 memcg->last_scanned_node = MAX_NUMNODES;
5309 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5310 memcg->move_charge_at_immigrate = 0;
5311 mutex_init(&memcg->thresholds_lock);
5312 spin_lock_init(&memcg->move_lock);
70ddf637 5313 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5314 INIT_LIST_HEAD(&memcg->event_list);
5315 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
5316
5317 return &memcg->css;
5318
5319free_out:
5320 __mem_cgroup_free(memcg);
5321 return ERR_PTR(error);
5322}
5323
5324static int
eb95419b 5325mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 5326{
eb95419b 5327 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 5328 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 5329 int ret;
d142e3e6 5330
15a4c835 5331 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
5332 return -ENOSPC;
5333
63876986 5334 if (!parent)
d142e3e6
GC
5335 return 0;
5336
0999821b 5337 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
5338
5339 memcg->use_hierarchy = parent->use_hierarchy;
5340 memcg->oom_kill_disable = parent->oom_kill_disable;
5341 memcg->swappiness = mem_cgroup_swappiness(parent);
5342
5343 if (parent->use_hierarchy) {
3e32cb2e
JW
5344 page_counter_init(&memcg->memory, &parent->memory);
5345 page_counter_init(&memcg->memsw, &parent->memsw);
5346 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 5347
7bcc1bb1 5348 /*
8d76a979
LZ
5349 * No need to take a reference to the parent because cgroup
5350 * core guarantees its existence.
7bcc1bb1 5351 */
18f59ea7 5352 } else {
3e32cb2e
JW
5353 page_counter_init(&memcg->memory, NULL);
5354 page_counter_init(&memcg->memsw, NULL);
5355 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
5356 /*
5357 * Deeper hierachy with use_hierarchy == false doesn't make
5358 * much sense so let cgroup subsystem know about this
5359 * unfortunate state in our controller.
5360 */
d142e3e6 5361 if (parent != root_mem_cgroup)
073219e9 5362 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5363 }
0999821b 5364 mutex_unlock(&memcg_create_mutex);
d6441637 5365
2f7dd7a4
JW
5366 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
5367 if (ret)
5368 return ret;
5369
5370 /*
5371 * Make sure the memcg is initialized: mem_cgroup_iter()
5372 * orders reading memcg->initialized against its callers
5373 * reading the memcg members.
5374 */
5375 smp_store_release(&memcg->initialized, 1);
5376
5377 return 0;
8cdea7c0
BS
5378}
5379
eb95419b 5380static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5381{
eb95419b 5382 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5383 struct mem_cgroup_event *event, *tmp;
4fb1a86f 5384 struct cgroup_subsys_state *iter;
79bd9814
TH
5385
5386 /*
5387 * Unregister events and notify userspace.
5388 * Notify userspace about cgroup removing only after rmdir of cgroup
5389 * directory to avoid race between userspace and kernelspace.
5390 */
fba94807
TH
5391 spin_lock(&memcg->event_list_lock);
5392 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5393 list_del_init(&event->list);
5394 schedule_work(&event->remove);
5395 }
fba94807 5396 spin_unlock(&memcg->event_list_lock);
ec64f515 5397
10d5ebf4
LZ
5398 kmem_cgroup_css_offline(memcg);
5399
4fb1a86f
FB
5400 /*
5401 * This requires that offlining is serialized. Right now that is
5402 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
5403 */
5404 css_for_each_descendant_post(iter, css)
5405 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
5406
776ed0f0 5407 memcg_unregister_all_caches(memcg);
33cb876e 5408 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
5409}
5410
eb95419b 5411static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5412{
eb95419b 5413 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
96f1c58d
JW
5414 /*
5415 * XXX: css_offline() would be where we should reparent all
5416 * memory to prepare the cgroup for destruction. However,
3e32cb2e 5417 * memcg does not do css_tryget_online() and page_counter charging
96f1c58d
JW
5418 * under the same RCU lock region, which means that charging
5419 * could race with offlining. Offlining only happens to
5420 * cgroups with no tasks in them but charges can show up
5421 * without any tasks from the swapin path when the target
5422 * memcg is looked up from the swapout record and not from the
5423 * current task as it usually is. A race like this can leak
5424 * charges and put pages with stale cgroup pointers into
5425 * circulation:
5426 *
5427 * #0 #1
5428 * lookup_swap_cgroup_id()
5429 * rcu_read_lock()
5430 * mem_cgroup_lookup()
ec903c0c 5431 * css_tryget_online()
96f1c58d 5432 * rcu_read_unlock()
ec903c0c 5433 * disable css_tryget_online()
96f1c58d
JW
5434 * call_rcu()
5435 * offline_css()
5436 * reparent_charges()
3e32cb2e 5437 * page_counter_try_charge()
96f1c58d
JW
5438 * css_put()
5439 * css_free()
5440 * pc->mem_cgroup = dead memcg
5441 * add page to lru
5442 *
5443 * The bulk of the charges are still moved in offline_css() to
5444 * avoid pinning a lot of pages in case a long-term reference
5445 * like a swapout record is deferring the css_free() to long
5446 * after offlining. But this makes sure we catch any charges
5447 * made after offlining:
5448 */
5449 mem_cgroup_reparent_charges(memcg);
c268e994 5450
10d5ebf4 5451 memcg_destroy_kmem(memcg);
465939a1 5452 __mem_cgroup_free(memcg);
8cdea7c0
BS
5453}
5454
1ced953b
TH
5455/**
5456 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5457 * @css: the target css
5458 *
5459 * Reset the states of the mem_cgroup associated with @css. This is
5460 * invoked when the userland requests disabling on the default hierarchy
5461 * but the memcg is pinned through dependency. The memcg should stop
5462 * applying policies and should revert to the vanilla state as it may be
5463 * made visible again.
5464 *
5465 * The current implementation only resets the essential configurations.
5466 * This needs to be expanded to cover all the visible parts.
5467 */
5468static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5469{
5470 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5471
3e32cb2e
JW
5472 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
5473 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
5474 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
5475 memcg->soft_limit = 0;
1ced953b
TH
5476}
5477
02491447 5478#ifdef CONFIG_MMU
7dc74be0 5479/* Handlers for move charge at task migration. */
854ffa8d 5480static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5481{
05b84301 5482 int ret;
9476db97
JW
5483
5484 /* Try a single bulk charge without reclaim first */
00501b53 5485 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 5486 if (!ret) {
854ffa8d 5487 mc.precharge += count;
854ffa8d
DN
5488 return ret;
5489 }
692e7c45 5490 if (ret == -EINTR) {
00501b53 5491 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
5492 return ret;
5493 }
9476db97
JW
5494
5495 /* Try charges one by one with reclaim */
854ffa8d 5496 while (count--) {
00501b53 5497 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
5498 /*
5499 * In case of failure, any residual charges against
5500 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
5501 * later on. However, cancel any charges that are
5502 * bypassed to root right away or they'll be lost.
9476db97 5503 */
692e7c45 5504 if (ret == -EINTR)
00501b53 5505 cancel_charge(root_mem_cgroup, 1);
38c5d72f 5506 if (ret)
38c5d72f 5507 return ret;
854ffa8d 5508 mc.precharge++;
9476db97 5509 cond_resched();
854ffa8d 5510 }
9476db97 5511 return 0;
4ffef5fe
DN
5512}
5513
5514/**
8d32ff84 5515 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5516 * @vma: the vma the pte to be checked belongs
5517 * @addr: the address corresponding to the pte to be checked
5518 * @ptent: the pte to be checked
02491447 5519 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5520 *
5521 * Returns
5522 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5523 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5524 * move charge. if @target is not NULL, the page is stored in target->page
5525 * with extra refcnt got(Callers should handle it).
02491447
DN
5526 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5527 * target for charge migration. if @target is not NULL, the entry is stored
5528 * in target->ent.
4ffef5fe
DN
5529 *
5530 * Called with pte lock held.
5531 */
4ffef5fe
DN
5532union mc_target {
5533 struct page *page;
02491447 5534 swp_entry_t ent;
4ffef5fe
DN
5535};
5536
4ffef5fe 5537enum mc_target_type {
8d32ff84 5538 MC_TARGET_NONE = 0,
4ffef5fe 5539 MC_TARGET_PAGE,
02491447 5540 MC_TARGET_SWAP,
4ffef5fe
DN
5541};
5542
90254a65
DN
5543static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5544 unsigned long addr, pte_t ptent)
4ffef5fe 5545{
90254a65 5546 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5547
90254a65
DN
5548 if (!page || !page_mapped(page))
5549 return NULL;
5550 if (PageAnon(page)) {
5551 /* we don't move shared anon */
4b91355e 5552 if (!move_anon())
90254a65 5553 return NULL;
87946a72
DN
5554 } else if (!move_file())
5555 /* we ignore mapcount for file pages */
90254a65
DN
5556 return NULL;
5557 if (!get_page_unless_zero(page))
5558 return NULL;
5559
5560 return page;
5561}
5562
4b91355e 5563#ifdef CONFIG_SWAP
90254a65
DN
5564static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5565 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5566{
90254a65
DN
5567 struct page *page = NULL;
5568 swp_entry_t ent = pte_to_swp_entry(ptent);
5569
5570 if (!move_anon() || non_swap_entry(ent))
5571 return NULL;
4b91355e
KH
5572 /*
5573 * Because lookup_swap_cache() updates some statistics counter,
5574 * we call find_get_page() with swapper_space directly.
5575 */
33806f06 5576 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
5577 if (do_swap_account)
5578 entry->val = ent.val;
5579
5580 return page;
5581}
4b91355e
KH
5582#else
5583static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5584 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5585{
5586 return NULL;
5587}
5588#endif
90254a65 5589
87946a72
DN
5590static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5591 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5592{
5593 struct page *page = NULL;
87946a72
DN
5594 struct address_space *mapping;
5595 pgoff_t pgoff;
5596
5597 if (!vma->vm_file) /* anonymous vma */
5598 return NULL;
5599 if (!move_file())
5600 return NULL;
5601
87946a72
DN
5602 mapping = vma->vm_file->f_mapping;
5603 if (pte_none(ptent))
5604 pgoff = linear_page_index(vma, addr);
5605 else /* pte_file(ptent) is true */
5606 pgoff = pte_to_pgoff(ptent);
5607
5608 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5609#ifdef CONFIG_SWAP
5610 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5611 if (shmem_mapping(mapping)) {
5612 page = find_get_entry(mapping, pgoff);
5613 if (radix_tree_exceptional_entry(page)) {
5614 swp_entry_t swp = radix_to_swp_entry(page);
5615 if (do_swap_account)
5616 *entry = swp;
5617 page = find_get_page(swap_address_space(swp), swp.val);
5618 }
5619 } else
5620 page = find_get_page(mapping, pgoff);
5621#else
5622 page = find_get_page(mapping, pgoff);
aa3b1895 5623#endif
87946a72
DN
5624 return page;
5625}
5626
8d32ff84 5627static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5628 unsigned long addr, pte_t ptent, union mc_target *target)
5629{
5630 struct page *page = NULL;
5631 struct page_cgroup *pc;
8d32ff84 5632 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5633 swp_entry_t ent = { .val = 0 };
5634
5635 if (pte_present(ptent))
5636 page = mc_handle_present_pte(vma, addr, ptent);
5637 else if (is_swap_pte(ptent))
5638 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5639 else if (pte_none(ptent) || pte_file(ptent))
5640 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5641
5642 if (!page && !ent.val)
8d32ff84 5643 return ret;
02491447
DN
5644 if (page) {
5645 pc = lookup_page_cgroup(page);
5646 /*
0a31bc97
JW
5647 * Do only loose check w/o serialization.
5648 * mem_cgroup_move_account() checks the pc is valid or
5649 * not under LRU exclusion.
02491447
DN
5650 */
5651 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5652 ret = MC_TARGET_PAGE;
5653 if (target)
5654 target->page = page;
5655 }
5656 if (!ret || !target)
5657 put_page(page);
5658 }
90254a65
DN
5659 /* There is a swap entry and a page doesn't exist or isn't charged */
5660 if (ent.val && !ret &&
34c00c31 5661 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5662 ret = MC_TARGET_SWAP;
5663 if (target)
5664 target->ent = ent;
4ffef5fe 5665 }
4ffef5fe
DN
5666 return ret;
5667}
5668
12724850
NH
5669#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5670/*
5671 * We don't consider swapping or file mapped pages because THP does not
5672 * support them for now.
5673 * Caller should make sure that pmd_trans_huge(pmd) is true.
5674 */
5675static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5676 unsigned long addr, pmd_t pmd, union mc_target *target)
5677{
5678 struct page *page = NULL;
5679 struct page_cgroup *pc;
5680 enum mc_target_type ret = MC_TARGET_NONE;
5681
5682 page = pmd_page(pmd);
309381fe 5683 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
5684 if (!move_anon())
5685 return ret;
5686 pc = lookup_page_cgroup(page);
5687 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5688 ret = MC_TARGET_PAGE;
5689 if (target) {
5690 get_page(page);
5691 target->page = page;
5692 }
5693 }
5694 return ret;
5695}
5696#else
5697static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5698 unsigned long addr, pmd_t pmd, union mc_target *target)
5699{
5700 return MC_TARGET_NONE;
5701}
5702#endif
5703
4ffef5fe
DN
5704static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5705 unsigned long addr, unsigned long end,
5706 struct mm_walk *walk)
5707{
5708 struct vm_area_struct *vma = walk->private;
5709 pte_t *pte;
5710 spinlock_t *ptl;
5711
bf929152 5712 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
5713 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5714 mc.precharge += HPAGE_PMD_NR;
bf929152 5715 spin_unlock(ptl);
1a5a9906 5716 return 0;
12724850 5717 }
03319327 5718
45f83cef
AA
5719 if (pmd_trans_unstable(pmd))
5720 return 0;
4ffef5fe
DN
5721 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5722 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5723 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5724 mc.precharge++; /* increment precharge temporarily */
5725 pte_unmap_unlock(pte - 1, ptl);
5726 cond_resched();
5727
7dc74be0
DN
5728 return 0;
5729}
5730
4ffef5fe
DN
5731static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5732{
5733 unsigned long precharge;
5734 struct vm_area_struct *vma;
5735
dfe076b0 5736 down_read(&mm->mmap_sem);
4ffef5fe
DN
5737 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5738 struct mm_walk mem_cgroup_count_precharge_walk = {
5739 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5740 .mm = mm,
5741 .private = vma,
5742 };
5743 if (is_vm_hugetlb_page(vma))
5744 continue;
4ffef5fe
DN
5745 walk_page_range(vma->vm_start, vma->vm_end,
5746 &mem_cgroup_count_precharge_walk);
5747 }
dfe076b0 5748 up_read(&mm->mmap_sem);
4ffef5fe
DN
5749
5750 precharge = mc.precharge;
5751 mc.precharge = 0;
5752
5753 return precharge;
5754}
5755
4ffef5fe
DN
5756static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5757{
dfe076b0
DN
5758 unsigned long precharge = mem_cgroup_count_precharge(mm);
5759
5760 VM_BUG_ON(mc.moving_task);
5761 mc.moving_task = current;
5762 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5763}
5764
dfe076b0
DN
5765/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5766static void __mem_cgroup_clear_mc(void)
4ffef5fe 5767{
2bd9bb20
KH
5768 struct mem_cgroup *from = mc.from;
5769 struct mem_cgroup *to = mc.to;
4050377b 5770 int i;
2bd9bb20 5771
4ffef5fe 5772 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5773 if (mc.precharge) {
00501b53 5774 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5775 mc.precharge = 0;
5776 }
5777 /*
5778 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5779 * we must uncharge here.
5780 */
5781 if (mc.moved_charge) {
00501b53 5782 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5783 mc.moved_charge = 0;
4ffef5fe 5784 }
483c30b5
DN
5785 /* we must fixup refcnts and charges */
5786 if (mc.moved_swap) {
483c30b5 5787 /* uncharge swap account from the old cgroup */
ce00a967 5788 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5789 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5790
05b84301 5791 /*
3e32cb2e
JW
5792 * we charged both to->memory and to->memsw, so we
5793 * should uncharge to->memory.
05b84301 5794 */
ce00a967 5795 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5796 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5797
5798 for (i = 0; i < mc.moved_swap; i++)
5799 css_put(&mc.from->css);
5800
4050377b 5801 /* we've already done css_get(mc.to) */
483c30b5
DN
5802 mc.moved_swap = 0;
5803 }
dfe076b0
DN
5804 memcg_oom_recover(from);
5805 memcg_oom_recover(to);
5806 wake_up_all(&mc.waitq);
5807}
5808
5809static void mem_cgroup_clear_mc(void)
5810{
5811 struct mem_cgroup *from = mc.from;
5812
5813 /*
5814 * we must clear moving_task before waking up waiters at the end of
5815 * task migration.
5816 */
5817 mc.moving_task = NULL;
5818 __mem_cgroup_clear_mc();
2bd9bb20 5819 spin_lock(&mc.lock);
4ffef5fe
DN
5820 mc.from = NULL;
5821 mc.to = NULL;
2bd9bb20 5822 spin_unlock(&mc.lock);
32047e2a 5823 mem_cgroup_end_move(from);
4ffef5fe
DN
5824}
5825
eb95419b 5826static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5827 struct cgroup_taskset *tset)
7dc74be0 5828{
2f7ee569 5829 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5830 int ret = 0;
eb95419b 5831 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 5832 unsigned long move_charge_at_immigrate;
7dc74be0 5833
ee5e8472
GC
5834 /*
5835 * We are now commited to this value whatever it is. Changes in this
5836 * tunable will only affect upcoming migrations, not the current one.
5837 * So we need to save it, and keep it going.
5838 */
5839 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5840 if (move_charge_at_immigrate) {
7dc74be0
DN
5841 struct mm_struct *mm;
5842 struct mem_cgroup *from = mem_cgroup_from_task(p);
5843
c0ff4b85 5844 VM_BUG_ON(from == memcg);
7dc74be0
DN
5845
5846 mm = get_task_mm(p);
5847 if (!mm)
5848 return 0;
7dc74be0 5849 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5850 if (mm->owner == p) {
5851 VM_BUG_ON(mc.from);
5852 VM_BUG_ON(mc.to);
5853 VM_BUG_ON(mc.precharge);
854ffa8d 5854 VM_BUG_ON(mc.moved_charge);
483c30b5 5855 VM_BUG_ON(mc.moved_swap);
32047e2a 5856 mem_cgroup_start_move(from);
2bd9bb20 5857 spin_lock(&mc.lock);
4ffef5fe 5858 mc.from = from;
c0ff4b85 5859 mc.to = memcg;
ee5e8472 5860 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 5861 spin_unlock(&mc.lock);
dfe076b0 5862 /* We set mc.moving_task later */
4ffef5fe
DN
5863
5864 ret = mem_cgroup_precharge_mc(mm);
5865 if (ret)
5866 mem_cgroup_clear_mc();
dfe076b0
DN
5867 }
5868 mmput(mm);
7dc74be0
DN
5869 }
5870 return ret;
5871}
5872
eb95419b 5873static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5874 struct cgroup_taskset *tset)
7dc74be0 5875{
4ffef5fe 5876 mem_cgroup_clear_mc();
7dc74be0
DN
5877}
5878
4ffef5fe
DN
5879static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5880 unsigned long addr, unsigned long end,
5881 struct mm_walk *walk)
7dc74be0 5882{
4ffef5fe
DN
5883 int ret = 0;
5884 struct vm_area_struct *vma = walk->private;
5885 pte_t *pte;
5886 spinlock_t *ptl;
12724850
NH
5887 enum mc_target_type target_type;
5888 union mc_target target;
5889 struct page *page;
5890 struct page_cgroup *pc;
4ffef5fe 5891
12724850
NH
5892 /*
5893 * We don't take compound_lock() here but no race with splitting thp
5894 * happens because:
5895 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5896 * under splitting, which means there's no concurrent thp split,
5897 * - if another thread runs into split_huge_page() just after we
5898 * entered this if-block, the thread must wait for page table lock
5899 * to be unlocked in __split_huge_page_splitting(), where the main
5900 * part of thp split is not executed yet.
5901 */
bf929152 5902 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 5903 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5904 spin_unlock(ptl);
12724850
NH
5905 return 0;
5906 }
5907 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5908 if (target_type == MC_TARGET_PAGE) {
5909 page = target.page;
5910 if (!isolate_lru_page(page)) {
5911 pc = lookup_page_cgroup(page);
5912 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 5913 pc, mc.from, mc.to)) {
12724850
NH
5914 mc.precharge -= HPAGE_PMD_NR;
5915 mc.moved_charge += HPAGE_PMD_NR;
5916 }
5917 putback_lru_page(page);
5918 }
5919 put_page(page);
5920 }
bf929152 5921 spin_unlock(ptl);
1a5a9906 5922 return 0;
12724850
NH
5923 }
5924
45f83cef
AA
5925 if (pmd_trans_unstable(pmd))
5926 return 0;
4ffef5fe
DN
5927retry:
5928 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5929 for (; addr != end; addr += PAGE_SIZE) {
5930 pte_t ptent = *(pte++);
02491447 5931 swp_entry_t ent;
4ffef5fe
DN
5932
5933 if (!mc.precharge)
5934 break;
5935
8d32ff84 5936 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5937 case MC_TARGET_PAGE:
5938 page = target.page;
5939 if (isolate_lru_page(page))
5940 goto put;
5941 pc = lookup_page_cgroup(page);
7ec99d62 5942 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 5943 mc.from, mc.to)) {
4ffef5fe 5944 mc.precharge--;
854ffa8d
DN
5945 /* we uncharge from mc.from later. */
5946 mc.moved_charge++;
4ffef5fe
DN
5947 }
5948 putback_lru_page(page);
8d32ff84 5949put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5950 put_page(page);
5951 break;
02491447
DN
5952 case MC_TARGET_SWAP:
5953 ent = target.ent;
e91cbb42 5954 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5955 mc.precharge--;
483c30b5
DN
5956 /* we fixup refcnts and charges later. */
5957 mc.moved_swap++;
5958 }
02491447 5959 break;
4ffef5fe
DN
5960 default:
5961 break;
5962 }
5963 }
5964 pte_unmap_unlock(pte - 1, ptl);
5965 cond_resched();
5966
5967 if (addr != end) {
5968 /*
5969 * We have consumed all precharges we got in can_attach().
5970 * We try charge one by one, but don't do any additional
5971 * charges to mc.to if we have failed in charge once in attach()
5972 * phase.
5973 */
854ffa8d 5974 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5975 if (!ret)
5976 goto retry;
5977 }
5978
5979 return ret;
5980}
5981
5982static void mem_cgroup_move_charge(struct mm_struct *mm)
5983{
5984 struct vm_area_struct *vma;
5985
5986 lru_add_drain_all();
dfe076b0
DN
5987retry:
5988 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5989 /*
5990 * Someone who are holding the mmap_sem might be waiting in
5991 * waitq. So we cancel all extra charges, wake up all waiters,
5992 * and retry. Because we cancel precharges, we might not be able
5993 * to move enough charges, but moving charge is a best-effort
5994 * feature anyway, so it wouldn't be a big problem.
5995 */
5996 __mem_cgroup_clear_mc();
5997 cond_resched();
5998 goto retry;
5999 }
4ffef5fe
DN
6000 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6001 int ret;
6002 struct mm_walk mem_cgroup_move_charge_walk = {
6003 .pmd_entry = mem_cgroup_move_charge_pte_range,
6004 .mm = mm,
6005 .private = vma,
6006 };
6007 if (is_vm_hugetlb_page(vma))
6008 continue;
4ffef5fe
DN
6009 ret = walk_page_range(vma->vm_start, vma->vm_end,
6010 &mem_cgroup_move_charge_walk);
6011 if (ret)
6012 /*
6013 * means we have consumed all precharges and failed in
6014 * doing additional charge. Just abandon here.
6015 */
6016 break;
6017 }
dfe076b0 6018 up_read(&mm->mmap_sem);
7dc74be0
DN
6019}
6020
eb95419b 6021static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6022 struct cgroup_taskset *tset)
67e465a7 6023{
2f7ee569 6024 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6025 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6026
dfe076b0 6027 if (mm) {
a433658c
KM
6028 if (mc.to)
6029 mem_cgroup_move_charge(mm);
dfe076b0
DN
6030 mmput(mm);
6031 }
a433658c
KM
6032 if (mc.to)
6033 mem_cgroup_clear_mc();
67e465a7 6034}
5cfb80a7 6035#else /* !CONFIG_MMU */
eb95419b 6036static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6037 struct cgroup_taskset *tset)
5cfb80a7
DN
6038{
6039 return 0;
6040}
eb95419b 6041static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6042 struct cgroup_taskset *tset)
5cfb80a7
DN
6043{
6044}
eb95419b 6045static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6046 struct cgroup_taskset *tset)
5cfb80a7
DN
6047{
6048}
6049#endif
67e465a7 6050
f00baae7
TH
6051/*
6052 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
6053 * to verify whether we're attached to the default hierarchy on each mount
6054 * attempt.
f00baae7 6055 */
eb95419b 6056static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
6057{
6058 /*
aa6ec29b 6059 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
6060 * guarantees that @root doesn't have any children, so turning it
6061 * on for the root memcg is enough.
6062 */
aa6ec29b 6063 if (cgroup_on_dfl(root_css->cgroup))
eb95419b 6064 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
6065}
6066
073219e9 6067struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6068 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6069 .css_online = mem_cgroup_css_online,
92fb9748
TH
6070 .css_offline = mem_cgroup_css_offline,
6071 .css_free = mem_cgroup_css_free,
1ced953b 6072 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6073 .can_attach = mem_cgroup_can_attach,
6074 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 6075 .attach = mem_cgroup_move_task,
f00baae7 6076 .bind = mem_cgroup_bind,
5577964e 6077 .legacy_cftypes = mem_cgroup_files,
6d12e2d8 6078 .early_init = 0,
8cdea7c0 6079};
c077719b 6080
c255a458 6081#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
6082static int __init enable_swap_account(char *s)
6083{
a2c8990a 6084 if (!strcmp(s, "1"))
a42c390c 6085 really_do_swap_account = 1;
a2c8990a 6086 else if (!strcmp(s, "0"))
a42c390c
MH
6087 really_do_swap_account = 0;
6088 return 1;
6089}
a2c8990a 6090__setup("swapaccount=", enable_swap_account);
c077719b 6091
2d11085e
MH
6092static void __init memsw_file_init(void)
6093{
2cf669a5
TH
6094 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6095 memsw_cgroup_files));
6acc8b02
MH
6096}
6097
6098static void __init enable_swap_cgroup(void)
6099{
6100 if (!mem_cgroup_disabled() && really_do_swap_account) {
6101 do_swap_account = 1;
6102 memsw_file_init();
6103 }
2d11085e 6104}
6acc8b02 6105
2d11085e 6106#else
6acc8b02 6107static void __init enable_swap_cgroup(void)
2d11085e
MH
6108{
6109}
c077719b 6110#endif
2d11085e 6111
0a31bc97
JW
6112#ifdef CONFIG_MEMCG_SWAP
6113/**
6114 * mem_cgroup_swapout - transfer a memsw charge to swap
6115 * @page: page whose memsw charge to transfer
6116 * @entry: swap entry to move the charge to
6117 *
6118 * Transfer the memsw charge of @page to @entry.
6119 */
6120void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6121{
6122 struct page_cgroup *pc;
6123 unsigned short oldid;
6124
6125 VM_BUG_ON_PAGE(PageLRU(page), page);
6126 VM_BUG_ON_PAGE(page_count(page), page);
6127
6128 if (!do_swap_account)
6129 return;
6130
6131 pc = lookup_page_cgroup(page);
6132
6133 /* Readahead page, never charged */
6134 if (!PageCgroupUsed(pc))
6135 return;
6136
6137 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEMSW), page);
6138
6139 oldid = swap_cgroup_record(entry, mem_cgroup_id(pc->mem_cgroup));
6140 VM_BUG_ON_PAGE(oldid, page);
6141
6142 pc->flags &= ~PCG_MEMSW;
6143 css_get(&pc->mem_cgroup->css);
6144 mem_cgroup_swap_statistics(pc->mem_cgroup, true);
6145}
6146
6147/**
6148 * mem_cgroup_uncharge_swap - uncharge a swap entry
6149 * @entry: swap entry to uncharge
6150 *
6151 * Drop the memsw charge associated with @entry.
6152 */
6153void mem_cgroup_uncharge_swap(swp_entry_t entry)
6154{
6155 struct mem_cgroup *memcg;
6156 unsigned short id;
6157
6158 if (!do_swap_account)
6159 return;
6160
6161 id = swap_cgroup_record(entry, 0);
6162 rcu_read_lock();
6163 memcg = mem_cgroup_lookup(id);
6164 if (memcg) {
ce00a967 6165 if (!mem_cgroup_is_root(memcg))
3e32cb2e 6166 page_counter_uncharge(&memcg->memsw, 1);
0a31bc97
JW
6167 mem_cgroup_swap_statistics(memcg, false);
6168 css_put(&memcg->css);
6169 }
6170 rcu_read_unlock();
6171}
6172#endif
6173
00501b53
JW
6174/**
6175 * mem_cgroup_try_charge - try charging a page
6176 * @page: page to charge
6177 * @mm: mm context of the victim
6178 * @gfp_mask: reclaim mode
6179 * @memcgp: charged memcg return
6180 *
6181 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6182 * pages according to @gfp_mask if necessary.
6183 *
6184 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6185 * Otherwise, an error code is returned.
6186 *
6187 * After page->mapping has been set up, the caller must finalize the
6188 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6189 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6190 */
6191int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6192 gfp_t gfp_mask, struct mem_cgroup **memcgp)
6193{
6194 struct mem_cgroup *memcg = NULL;
6195 unsigned int nr_pages = 1;
6196 int ret = 0;
6197
6198 if (mem_cgroup_disabled())
6199 goto out;
6200
6201 if (PageSwapCache(page)) {
6202 struct page_cgroup *pc = lookup_page_cgroup(page);
6203 /*
6204 * Every swap fault against a single page tries to charge the
6205 * page, bail as early as possible. shmem_unuse() encounters
6206 * already charged pages, too. The USED bit is protected by
6207 * the page lock, which serializes swap cache removal, which
6208 * in turn serializes uncharging.
6209 */
6210 if (PageCgroupUsed(pc))
6211 goto out;
6212 }
6213
6214 if (PageTransHuge(page)) {
6215 nr_pages <<= compound_order(page);
6216 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6217 }
6218
6219 if (do_swap_account && PageSwapCache(page))
6220 memcg = try_get_mem_cgroup_from_page(page);
6221 if (!memcg)
6222 memcg = get_mem_cgroup_from_mm(mm);
6223
6224 ret = try_charge(memcg, gfp_mask, nr_pages);
6225
6226 css_put(&memcg->css);
6227
6228 if (ret == -EINTR) {
6229 memcg = root_mem_cgroup;
6230 ret = 0;
6231 }
6232out:
6233 *memcgp = memcg;
6234 return ret;
6235}
6236
6237/**
6238 * mem_cgroup_commit_charge - commit a page charge
6239 * @page: page to charge
6240 * @memcg: memcg to charge the page to
6241 * @lrucare: page might be on LRU already
6242 *
6243 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6244 * after page->mapping has been set up. This must happen atomically
6245 * as part of the page instantiation, i.e. under the page table lock
6246 * for anonymous pages, under the page lock for page and swap cache.
6247 *
6248 * In addition, the page must not be on the LRU during the commit, to
6249 * prevent racing with task migration. If it might be, use @lrucare.
6250 *
6251 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6252 */
6253void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6254 bool lrucare)
6255{
6256 unsigned int nr_pages = 1;
6257
6258 VM_BUG_ON_PAGE(!page->mapping, page);
6259 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6260
6261 if (mem_cgroup_disabled())
6262 return;
6263 /*
6264 * Swap faults will attempt to charge the same page multiple
6265 * times. But reuse_swap_page() might have removed the page
6266 * from swapcache already, so we can't check PageSwapCache().
6267 */
6268 if (!memcg)
6269 return;
6270
6abb5a86
JW
6271 commit_charge(page, memcg, lrucare);
6272
00501b53
JW
6273 if (PageTransHuge(page)) {
6274 nr_pages <<= compound_order(page);
6275 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6276 }
6277
6abb5a86
JW
6278 local_irq_disable();
6279 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6280 memcg_check_events(memcg, page);
6281 local_irq_enable();
00501b53
JW
6282
6283 if (do_swap_account && PageSwapCache(page)) {
6284 swp_entry_t entry = { .val = page_private(page) };
6285 /*
6286 * The swap entry might not get freed for a long time,
6287 * let's not wait for it. The page already received a
6288 * memory+swap charge, drop the swap entry duplicate.
6289 */
6290 mem_cgroup_uncharge_swap(entry);
6291 }
6292}
6293
6294/**
6295 * mem_cgroup_cancel_charge - cancel a page charge
6296 * @page: page to charge
6297 * @memcg: memcg to charge the page to
6298 *
6299 * Cancel a charge transaction started by mem_cgroup_try_charge().
6300 */
6301void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
6302{
6303 unsigned int nr_pages = 1;
6304
6305 if (mem_cgroup_disabled())
6306 return;
6307 /*
6308 * Swap faults will attempt to charge the same page multiple
6309 * times. But reuse_swap_page() might have removed the page
6310 * from swapcache already, so we can't check PageSwapCache().
6311 */
6312 if (!memcg)
6313 return;
6314
6315 if (PageTransHuge(page)) {
6316 nr_pages <<= compound_order(page);
6317 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6318 }
6319
6320 cancel_charge(memcg, nr_pages);
6321}
6322
747db954
JW
6323static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
6324 unsigned long nr_mem, unsigned long nr_memsw,
6325 unsigned long nr_anon, unsigned long nr_file,
6326 unsigned long nr_huge, struct page *dummy_page)
6327{
6328 unsigned long flags;
6329
ce00a967
JW
6330 if (!mem_cgroup_is_root(memcg)) {
6331 if (nr_mem)
3e32cb2e 6332 page_counter_uncharge(&memcg->memory, nr_mem);
ce00a967 6333 if (nr_memsw)
3e32cb2e 6334 page_counter_uncharge(&memcg->memsw, nr_memsw);
ce00a967
JW
6335 memcg_oom_recover(memcg);
6336 }
747db954
JW
6337
6338 local_irq_save(flags);
6339 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
6340 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
6341 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
6342 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
6343 __this_cpu_add(memcg->stat->nr_page_events, nr_anon + nr_file);
6344 memcg_check_events(memcg, dummy_page);
6345 local_irq_restore(flags);
6346}
6347
6348static void uncharge_list(struct list_head *page_list)
6349{
6350 struct mem_cgroup *memcg = NULL;
6351 unsigned long nr_memsw = 0;
6352 unsigned long nr_anon = 0;
6353 unsigned long nr_file = 0;
6354 unsigned long nr_huge = 0;
6355 unsigned long pgpgout = 0;
6356 unsigned long nr_mem = 0;
6357 struct list_head *next;
6358 struct page *page;
6359
6360 next = page_list->next;
6361 do {
6362 unsigned int nr_pages = 1;
6363 struct page_cgroup *pc;
6364
6365 page = list_entry(next, struct page, lru);
6366 next = page->lru.next;
6367
6368 VM_BUG_ON_PAGE(PageLRU(page), page);
6369 VM_BUG_ON_PAGE(page_count(page), page);
6370
6371 pc = lookup_page_cgroup(page);
6372 if (!PageCgroupUsed(pc))
6373 continue;
6374
6375 /*
6376 * Nobody should be changing or seriously looking at
6377 * pc->mem_cgroup and pc->flags at this point, we have
6378 * fully exclusive access to the page.
6379 */
6380
6381 if (memcg != pc->mem_cgroup) {
6382 if (memcg) {
6383 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6384 nr_anon, nr_file, nr_huge, page);
6385 pgpgout = nr_mem = nr_memsw = 0;
6386 nr_anon = nr_file = nr_huge = 0;
6387 }
6388 memcg = pc->mem_cgroup;
6389 }
6390
6391 if (PageTransHuge(page)) {
6392 nr_pages <<= compound_order(page);
6393 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6394 nr_huge += nr_pages;
6395 }
6396
6397 if (PageAnon(page))
6398 nr_anon += nr_pages;
6399 else
6400 nr_file += nr_pages;
6401
6402 if (pc->flags & PCG_MEM)
6403 nr_mem += nr_pages;
6404 if (pc->flags & PCG_MEMSW)
6405 nr_memsw += nr_pages;
6406 pc->flags = 0;
6407
6408 pgpgout++;
6409 } while (next != page_list);
6410
6411 if (memcg)
6412 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6413 nr_anon, nr_file, nr_huge, page);
6414}
6415
0a31bc97
JW
6416/**
6417 * mem_cgroup_uncharge - uncharge a page
6418 * @page: page to uncharge
6419 *
6420 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6421 * mem_cgroup_commit_charge().
6422 */
6423void mem_cgroup_uncharge(struct page *page)
6424{
0a31bc97 6425 struct page_cgroup *pc;
0a31bc97
JW
6426
6427 if (mem_cgroup_disabled())
6428 return;
6429
747db954 6430 /* Don't touch page->lru of any random page, pre-check: */
0a31bc97 6431 pc = lookup_page_cgroup(page);
0a31bc97
JW
6432 if (!PageCgroupUsed(pc))
6433 return;
6434
747db954
JW
6435 INIT_LIST_HEAD(&page->lru);
6436 uncharge_list(&page->lru);
6437}
0a31bc97 6438
747db954
JW
6439/**
6440 * mem_cgroup_uncharge_list - uncharge a list of page
6441 * @page_list: list of pages to uncharge
6442 *
6443 * Uncharge a list of pages previously charged with
6444 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6445 */
6446void mem_cgroup_uncharge_list(struct list_head *page_list)
6447{
6448 if (mem_cgroup_disabled())
6449 return;
0a31bc97 6450
747db954
JW
6451 if (!list_empty(page_list))
6452 uncharge_list(page_list);
0a31bc97
JW
6453}
6454
6455/**
6456 * mem_cgroup_migrate - migrate a charge to another page
6457 * @oldpage: currently charged page
6458 * @newpage: page to transfer the charge to
6459 * @lrucare: both pages might be on the LRU already
6460 *
6461 * Migrate the charge from @oldpage to @newpage.
6462 *
6463 * Both pages must be locked, @newpage->mapping must be set up.
6464 */
6465void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
6466 bool lrucare)
6467{
0a31bc97
JW
6468 struct page_cgroup *pc;
6469 int isolated;
6470
6471 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6472 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6473 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
6474 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
6475 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6476 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6477 newpage);
0a31bc97
JW
6478
6479 if (mem_cgroup_disabled())
6480 return;
6481
6482 /* Page cache replacement: new page already charged? */
6483 pc = lookup_page_cgroup(newpage);
6484 if (PageCgroupUsed(pc))
6485 return;
6486
6487 /* Re-entrant migration: old page already uncharged? */
6488 pc = lookup_page_cgroup(oldpage);
6489 if (!PageCgroupUsed(pc))
6490 return;
6491
6492 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEM), oldpage);
6493 VM_BUG_ON_PAGE(do_swap_account && !(pc->flags & PCG_MEMSW), oldpage);
6494
0a31bc97
JW
6495 if (lrucare)
6496 lock_page_lru(oldpage, &isolated);
6497
6498 pc->flags = 0;
6499
6500 if (lrucare)
6501 unlock_page_lru(oldpage, isolated);
6502
6abb5a86 6503 commit_charge(newpage, pc->mem_cgroup, lrucare);
0a31bc97
JW
6504}
6505
2d11085e 6506/*
1081312f
MH
6507 * subsys_initcall() for memory controller.
6508 *
6509 * Some parts like hotcpu_notifier() have to be initialized from this context
6510 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6511 * everything that doesn't depend on a specific mem_cgroup structure should
6512 * be initialized from here.
2d11085e
MH
6513 */
6514static int __init mem_cgroup_init(void)
6515{
6516 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 6517 enable_swap_cgroup();
bb4cc1a8 6518 mem_cgroup_soft_limit_tree_init();
e4777496 6519 memcg_stock_init();
2d11085e
MH
6520 return 0;
6521}
6522subsys_initcall(mem_cgroup_init);