]> git.ipfire.org Git - people/ms/u-boot.git/blame - arch/arm/cpu/armv7/omap-common/emif-common.c
am33xx: Re-enable SW levelling for DDR2
[people/ms/u-boot.git] / arch / arm / cpu / armv7 / omap-common / emif-common.c
CommitLineData
2ae610f0
A
1/*
2 * EMIF programming
3 *
4 * (C) Copyright 2010
5 * Texas Instruments, <www.ti.com>
6 *
7 * Aneesh V <aneesh@ti.com>
8 *
1a459660 9 * SPDX-License-Identifier: GPL-2.0+
2ae610f0
A
10 */
11
12#include <common.h>
bb772a59 13#include <asm/emif.h>
af1d002f 14#include <asm/arch/clock.h>
2ae610f0
A
15#include <asm/arch/sys_proto.h>
16#include <asm/omap_common.h>
17#include <asm/utils.h>
25476382 18#include <linux/compiler.h>
2ae610f0 19
86021143
LV
20static int emif1_enabled = -1, emif2_enabled = -1;
21
38f25b12
LV
22void set_lpmode_selfrefresh(u32 base)
23{
24 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
25 u32 reg;
26
27 reg = readl(&emif->emif_pwr_mgmt_ctrl);
28 reg &= ~EMIF_REG_LP_MODE_MASK;
29 reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
30 reg &= ~EMIF_REG_SR_TIM_MASK;
31 writel(reg, &emif->emif_pwr_mgmt_ctrl);
32
33 /* dummy read for the new SR_TIM to be loaded */
34 readl(&emif->emif_pwr_mgmt_ctrl);
35}
36
37void force_emif_self_refresh()
38{
39 set_lpmode_selfrefresh(EMIF1_BASE);
40 set_lpmode_selfrefresh(EMIF2_BASE);
41}
42
bb772a59 43inline u32 emif_num(u32 base)
2ae610f0 44{
bb772a59 45 if (base == EMIF1_BASE)
2ae610f0 46 return 1;
bb772a59 47 else if (base == EMIF2_BASE)
2ae610f0
A
48 return 2;
49 else
50 return 0;
51}
52
53static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
54{
55 u32 mr;
56 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
57
bb772a59 58 mr_addr |= cs << EMIF_REG_CS_SHIFT;
2ae610f0
A
59 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
60 if (omap_revision() == OMAP4430_ES2_0)
61 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
62 else
63 mr = readl(&emif->emif_lpddr2_mode_reg_data);
64 debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
65 cs, mr_addr, mr);
55c12849
SS
66 if (((mr & 0x0000ff00) >> 8) == (mr & 0xff) &&
67 ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
68 ((mr & 0xff000000) >> 24) == (mr & 0xff))
69 return mr & 0xff;
70 else
71 return mr;
2ae610f0
A
72}
73
74static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
75{
76 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
77
bb772a59 78 mr_addr |= cs << EMIF_REG_CS_SHIFT;
2ae610f0
A
79 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
80 writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
81}
82
83void emif_reset_phy(u32 base)
84{
85 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
86 u32 iodft;
87
88 iodft = readl(&emif->emif_iodft_tlgc);
bb772a59 89 iodft |= EMIF_REG_RESET_PHY_MASK;
2ae610f0
A
90 writel(iodft, &emif->emif_iodft_tlgc);
91}
92
93static void do_lpddr2_init(u32 base, u32 cs)
94{
95 u32 mr_addr;
e05a4f1f 96 const struct lpddr2_mr_regs *mr_regs;
2ae610f0 97
e05a4f1f 98 get_lpddr2_mr_regs(&mr_regs);
2ae610f0
A
99 /* Wait till device auto initialization is complete */
100 while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
101 ;
e05a4f1f 102 set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
2ae610f0
A
103 /*
104 * tZQINIT = 1 us
105 * Enough loops assuming a maximum of 2GHz
106 */
f4010734 107
2ae610f0 108 sdelay(2000);
f4010734 109
e05a4f1f
LV
110 set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
111 set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
f4010734 112
2ae610f0
A
113 /*
114 * Enable refresh along with writing MR2
115 * Encoding of RL in MR2 is (RL - 2)
116 */
bb772a59 117 mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
e05a4f1f 118 set_mr(base, cs, mr_addr, mr_regs->mr2);
f4010734 119
e05a4f1f
LV
120 if (mr_regs->mr3 > 0)
121 set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
2ae610f0
A
122}
123
124static void lpddr2_init(u32 base, const struct emif_regs *regs)
125{
126 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
127
128 /* Not NVM */
bb772a59 129 clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
2ae610f0
A
130
131 /*
132 * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
133 * when EMIF_SDRAM_CONFIG register is written
134 */
bb772a59 135 setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
2ae610f0
A
136
137 /*
138 * Set the SDRAM_CONFIG and PHY_CTRL for the
139 * un-locked frequency & default RL
140 */
141 writel(regs->sdram_config_init, &emif->emif_sdram_config);
0474fb0e 142 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
f4010734 143
25476382 144 do_ext_phy_settings(base, regs);
2ae610f0
A
145
146 do_lpddr2_init(base, CS0);
bb772a59 147 if (regs->sdram_config & EMIF_REG_EBANK_MASK)
2ae610f0
A
148 do_lpddr2_init(base, CS1);
149
150 writel(regs->sdram_config, &emif->emif_sdram_config);
151 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
152
153 /* Enable refresh now */
bb772a59 154 clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
2ae610f0 155
25476382
S
156 }
157
158__weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
159{
2ae610f0
A
160}
161
bb772a59 162void emif_update_timings(u32 base, const struct emif_regs *regs)
2ae610f0
A
163{
164 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
165
166 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
167 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
168 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
169 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
170 if (omap_revision() == OMAP4430_ES1_0) {
171 /* ES1 bug EMIF should be in force idle during freq_update */
172 writel(0, &emif->emif_pwr_mgmt_ctrl);
173 } else {
174 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
175 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
176 }
177 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
178 writel(regs->zq_config, &emif->emif_zq_config);
179 writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
180 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
924eb369 181
3ac8c0bf 182 if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
bb772a59
S
183 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
184 &emif->emif_l3_config);
185 } else if (omap_revision() >= OMAP4460_ES1_0) {
924eb369
A
186 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
187 &emif->emif_l3_config);
188 } else {
189 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
190 &emif->emif_l3_config);
2ae610f0
A
191 }
192}
193
6c70935d 194static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
784ab7c5
LV
195{
196 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
197
198 /* keep sdram in self-refresh */
199 writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
200 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
201 __udelay(130);
202
203 /*
204 * Set invert_clkout (if activated)--DDR_PHYCTRL_1
6c70935d
S
205 * Invert clock adds an additional half cycle delay on the
206 * command interface. The additional half cycle, is usually
207 * meant to enable leveling in the situation that DQS is later
208 * than CK on the board.It also helps provide some additional
209 * margin for leveling.
784ab7c5 210 */
6c70935d
S
211 writel(regs->emif_ddr_phy_ctlr_1,
212 &emif->emif_ddr_phy_ctrl_1);
213
214 writel(regs->emif_ddr_phy_ctlr_1,
215 &emif->emif_ddr_phy_ctrl_1_shdw);
784ab7c5
LV
216 __udelay(130);
217
218 writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
6c70935d 219 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
784ab7c5
LV
220
221 /* Launch Full leveling */
222 writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
223
224 /* Wait till full leveling is complete */
225 readl(&emif->emif_rd_wr_lvl_ctl);
6c70935d 226 __udelay(130);
784ab7c5
LV
227
228 /* Read data eye leveling no of samples */
229 config_data_eye_leveling_samples(base);
230
6c70935d
S
231 /*
232 * Launch 8 incremental WR_LVL- to compensate for
233 * PHY limitation.
234 */
235 writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
236 &emif->emif_rd_wr_lvl_ctl);
237
784ab7c5
LV
238 __udelay(130);
239
240 /* Launch Incremental leveling */
241 writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
6c70935d 242 __udelay(130);
784ab7c5
LV
243}
244
6213db78 245static void update_hwleveling_output(u32 base, const struct emif_regs *regs)
6c70935d 246{
6213db78
LV
247 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
248 u32 *emif_ext_phy_ctrl_reg, *emif_phy_status;
249 u32 reg, i;
250
251 emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[7];
252
253 /* Update PHY_REG_RDDQS_RATIO */
254 emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_7;
255 for (i = 0; i < PHY_RDDQS_RATIO_REGS; i++) {
256 reg = readl(emif_phy_status++);
257 writel(reg, emif_ext_phy_ctrl_reg++);
258 writel(reg, emif_ext_phy_ctrl_reg++);
259 }
260
261 /* Update PHY_REG_FIFO_WE_SLAVE_RATIO */
262 emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_2;
263 for (i = 0; i < PHY_FIFO_WE_SLAVE_RATIO_REGS; i++) {
264 reg = readl(emif_phy_status++);
265 writel(reg, emif_ext_phy_ctrl_reg++);
266 writel(reg, emif_ext_phy_ctrl_reg++);
267 }
268
269 /* Update PHY_REG_WR_DQ/DQS_SLAVE_RATIO */
270 emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_12;
271 for (i = 0; i < PHY_REG_WR_DQ_SLAVE_RATIO_REGS; i++) {
272 reg = readl(emif_phy_status++);
273 writel(reg, emif_ext_phy_ctrl_reg++);
274 writel(reg, emif_ext_phy_ctrl_reg++);
275 }
276
277 /* Disable Leveling */
278 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
279 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
280 writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
92b0482c
S
281}
282
6213db78
LV
283static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
284{
285 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
286
287 /* Clear Error Status */
288 clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36,
289 EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
290 EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
291
292 clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36_shdw,
293 EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
294 EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
295
296 /* Disable refreshed before leveling */
297 clrsetbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_SHIFT,
298 EMIF_REG_INITREF_DIS_SHIFT);
299
300 /* Start Full leveling */
301 writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
302
303 __udelay(300);
304
305 /* Check for leveling timeout */
306 if (readl(&emif->emif_status) & EMIF_REG_LEVELING_TO_MASK) {
307 printf("Leveling timeout on EMIF%d\n", emif_num(base));
308 return;
309 }
310
311 /* Enable refreshes after leveling */
312 clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_SHIFT);
313
314 debug("HW leveling success\n");
315 /*
316 * Update slave ratios in EXT_PHY_CTRLx registers
317 * as per HW leveling output
318 */
319 update_hwleveling_output(base, regs);
320}
321
322static void dra7_ddr3_init(u32 base, const struct emif_regs *regs)
323{
324 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
325
326 if (warm_reset())
327 emif_reset_phy(base);
328 do_ext_phy_settings(base, regs);
329
330 writel(regs->ref_ctrl | EMIF_REG_INITREF_DIS_MASK,
331 &emif->emif_sdram_ref_ctrl);
332 /* Update timing registers */
333 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
334 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
335 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
336
337 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0, &emif->emif_l3_config);
338 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
339 writel(regs->zq_config, &emif->emif_zq_config);
340 writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
341 writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
342 writel(regs->emif_rd_wr_lvl_ctl, &emif->emif_rd_wr_lvl_ctl);
343
344 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
345 writel(regs->emif_rd_wr_exec_thresh, &emif->emif_rd_wr_exec_thresh);
346
347 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
348
349 writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
350 writel(regs->sdram_config_init, &emif->emif_sdram_config);
351
352 __udelay(1000);
353
354 writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl);
355
356 if (regs->emif_rd_wr_lvl_rmp_ctl & EMIF_REG_RDWRLVL_EN_MASK)
357 dra7_ddr3_leveling(base, regs);
358}
359
360static void omap5_ddr3_init(u32 base, const struct emif_regs *regs)
784ab7c5
LV
361{
362 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
784ab7c5 363
802bb57a
LV
364 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
365 writel(regs->sdram_config_init, &emif->emif_sdram_config);
784ab7c5
LV
366 /*
367 * Set SDRAM_CONFIG and PHY control registers to locked frequency
368 * and RL =7. As the default values of the Mode Registers are not
369 * defined, contents of mode Registers must be fully initialized.
370 * H/W takes care of this initialization
371 */
784ab7c5
LV
372 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
373
374 /* Update timing registers */
375 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
376 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
377 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
378
784ab7c5
LV
379 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
380
6213db78
LV
381 writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
382 writel(regs->sdram_config_init, &emif->emif_sdram_config);
383 do_ext_phy_settings(base, regs);
784ab7c5 384
784ab7c5 385 writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
6213db78
LV
386 omap5_ddr3_leveling(base, regs);
387}
784ab7c5 388
6213db78
LV
389static void ddr3_init(u32 base, const struct emif_regs *regs)
390{
391 if (is_omap54xx())
392 omap5_ddr3_init(base, regs);
393 else
394 dra7_ddr3_init(base, regs);
784ab7c5
LV
395}
396
095aea29
A
397#ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
398#define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
399
095aea29
A
400/*
401 * Organization and refresh requirements for LPDDR2 devices of different
402 * types and densities. Derived from JESD209-2 section 2.4
403 */
404const struct lpddr2_addressing addressing_table[] = {
405 /* Banks tREFIx10 rowx32,rowx16 colx32,colx16 density */
406 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
407 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
408 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
409 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
410 {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
411 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
412 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
413 {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
414 {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
415 {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
416};
417
418static const u32 lpddr2_density_2_size_in_mbytes[] = {
419 8, /* 64Mb */
420 16, /* 128Mb */
421 32, /* 256Mb */
422 64, /* 512Mb */
423 128, /* 1Gb */
424 256, /* 2Gb */
425 512, /* 4Gb */
426 1024, /* 8Gb */
427 2048, /* 16Gb */
428 4096 /* 32Gb */
429};
430
431/*
432 * Calculate the period of DDR clock from frequency value and set the
433 * denominator and numerator in global variables for easy access later
434 */
435static void set_ddr_clk_period(u32 freq)
436{
437 /*
438 * period = 1/freq
439 * period_in_ns = 10^9/freq
440 */
441 *T_num = 1000000000;
442 *T_den = freq;
443 cancel_out(T_num, T_den, 200);
444
445}
446
447/*
448 * Convert time in nano seconds to number of cycles of DDR clock
449 */
450static inline u32 ns_2_cycles(u32 ns)
451{
452 return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
453}
454
455/*
456 * ns_2_cycles with the difference that the time passed is 2 times the actual
457 * value(to avoid fractions). The cycles returned is for the original value of
458 * the timing parameter
459 */
460static inline u32 ns_x2_2_cycles(u32 ns)
461{
462 return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
463}
464
465/*
466 * Find addressing table index based on the device's type(S2 or S4) and
467 * density
468 */
469s8 addressing_table_index(u8 type, u8 density, u8 width)
470{
471 u8 index;
472 if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
473 return -1;
474
475 /*
476 * Look at the way ADDR_TABLE_INDEX* values have been defined
477 * in emif.h compared to LPDDR2_DENSITY_* values
478 * The table is layed out in the increasing order of density
479 * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
480 * at the end
481 */
482 if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
483 index = ADDR_TABLE_INDEX1GS2;
484 else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
485 index = ADDR_TABLE_INDEX2GS2;
486 else
487 index = density;
488
489 debug("emif: addressing table index %d\n", index);
490
491 return index;
492}
493
494/*
495 * Find the the right timing table from the array of timing
496 * tables of the device using DDR clock frequency
497 */
498static const struct lpddr2_ac_timings *get_timings_table(const struct
499 lpddr2_ac_timings const *const *device_timings,
500 u32 freq)
501{
502 u32 i, temp, freq_nearest;
503 const struct lpddr2_ac_timings *timings = 0;
504
505 emif_assert(freq <= MAX_LPDDR2_FREQ);
506 emif_assert(device_timings);
507
508 /*
509 * Start with the maximum allowed frequency - that is always safe
510 */
511 freq_nearest = MAX_LPDDR2_FREQ;
512 /*
513 * Find the timings table that has the max frequency value:
514 * i. Above or equal to the DDR frequency - safe
515 * ii. The lowest that satisfies condition (i) - optimal
516 */
517 for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
518 temp = device_timings[i]->max_freq;
519 if ((temp >= freq) && (temp <= freq_nearest)) {
520 freq_nearest = temp;
521 timings = device_timings[i];
522 }
523 }
524 debug("emif: timings table: %d\n", freq_nearest);
525 return timings;
526}
527
528/*
529 * Finds the value of emif_sdram_config_reg
530 * All parameters are programmed based on the device on CS0.
531 * If there is a device on CS1, it will be same as that on CS0 or
532 * it will be NVM. We don't support NVM yet.
533 * If cs1_device pointer is NULL it is assumed that there is no device
534 * on CS1
535 */
536static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
537 const struct lpddr2_device_details *cs1_device,
538 const struct lpddr2_addressing *addressing,
539 u8 RL)
540{
541 u32 config_reg = 0;
542
bb772a59 543 config_reg |= (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
095aea29 544 config_reg |= EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
bb772a59 545 EMIF_REG_IBANK_POS_SHIFT;
095aea29 546
bb772a59 547 config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
095aea29 548
bb772a59 549 config_reg |= RL << EMIF_REG_CL_SHIFT;
095aea29
A
550
551 config_reg |= addressing->row_sz[cs0_device->io_width] <<
bb772a59 552 EMIF_REG_ROWSIZE_SHIFT;
095aea29 553
bb772a59 554 config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
095aea29
A
555
556 config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
bb772a59 557 EMIF_REG_EBANK_SHIFT;
095aea29
A
558
559 config_reg |= addressing->col_sz[cs0_device->io_width] <<
bb772a59 560 EMIF_REG_PAGESIZE_SHIFT;
095aea29
A
561
562 return config_reg;
563}
564
565static u32 get_sdram_ref_ctrl(u32 freq,
566 const struct lpddr2_addressing *addressing)
567{
568 u32 ref_ctrl = 0, val = 0, freq_khz;
569 freq_khz = freq / 1000;
570 /*
571 * refresh rate to be set is 'tREFI * freq in MHz
572 * division by 10000 to account for khz and x10 in t_REFI_us_x10
573 */
574 val = addressing->t_REFI_us_x10 * freq_khz / 10000;
bb772a59 575 ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
095aea29
A
576
577 return ref_ctrl;
578}
579
580static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
581 const struct lpddr2_min_tck *min_tck,
582 const struct lpddr2_addressing *addressing)
583{
584 u32 tim1 = 0, val = 0;
585 val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
bb772a59 586 tim1 |= val << EMIF_REG_T_WTR_SHIFT;
095aea29
A
587
588 if (addressing->num_banks == BANKS8)
589 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
590 (4 * (*T_num)) - 1;
591 else
592 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
593
bb772a59 594 tim1 |= val << EMIF_REG_T_RRD_SHIFT;
095aea29
A
595
596 val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
bb772a59 597 tim1 |= val << EMIF_REG_T_RC_SHIFT;
095aea29
A
598
599 val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
bb772a59 600 tim1 |= val << EMIF_REG_T_RAS_SHIFT;
095aea29
A
601
602 val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
bb772a59 603 tim1 |= val << EMIF_REG_T_WR_SHIFT;
095aea29
A
604
605 val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
bb772a59 606 tim1 |= val << EMIF_REG_T_RCD_SHIFT;
095aea29
A
607
608 val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
bb772a59 609 tim1 |= val << EMIF_REG_T_RP_SHIFT;
095aea29
A
610
611 return tim1;
612}
613
614static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
615 const struct lpddr2_min_tck *min_tck)
616{
617 u32 tim2 = 0, val = 0;
618 val = max(min_tck->tCKE, timings->tCKE) - 1;
bb772a59 619 tim2 |= val << EMIF_REG_T_CKE_SHIFT;
095aea29
A
620
621 val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
bb772a59 622 tim2 |= val << EMIF_REG_T_RTP_SHIFT;
095aea29
A
623
624 /*
625 * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
626 * same value
627 */
628 val = ns_2_cycles(timings->tXSR) - 1;
bb772a59
S
629 tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
630 tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
095aea29
A
631
632 val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
bb772a59 633 tim2 |= val << EMIF_REG_T_XP_SHIFT;
095aea29
A
634
635 return tim2;
636}
637
638static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
639 const struct lpddr2_min_tck *min_tck,
640 const struct lpddr2_addressing *addressing)
641{
642 u32 tim3 = 0, val = 0;
643 val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
bb772a59 644 tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
095aea29
A
645
646 val = ns_2_cycles(timings->tRFCab) - 1;
bb772a59 647 tim3 |= val << EMIF_REG_T_RFC_SHIFT;
095aea29
A
648
649 val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
bb772a59 650 tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
095aea29
A
651
652 val = ns_2_cycles(timings->tZQCS) - 1;
bb772a59 653 tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
095aea29
A
654
655 val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
bb772a59 656 tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
095aea29
A
657
658 return tim3;
659}
660
661static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
662 const struct lpddr2_addressing *addressing,
663 u8 volt_ramp)
664{
665 u32 zq = 0, val = 0;
666 if (volt_ramp)
667 val =
668 EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
669 addressing->t_REFI_us_x10;
670 else
671 val =
672 EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
673 addressing->t_REFI_us_x10;
bb772a59 674 zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
095aea29 675
bb772a59 676 zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
095aea29 677
bb772a59 678 zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
095aea29 679
bb772a59 680 zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
095aea29
A
681
682 /*
683 * Assuming that two chipselects have a single calibration resistor
684 * If there are indeed two calibration resistors, then this flag should
685 * be enabled to take advantage of dual calibration feature.
686 * This data should ideally come from board files. But considering
687 * that none of the boards today have calibration resistors per CS,
688 * it would be an unnecessary overhead.
689 */
bb772a59 690 zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
095aea29 691
bb772a59 692 zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
095aea29 693
bb772a59 694 zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
095aea29
A
695
696 return zq;
697}
698
699static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
700 const struct lpddr2_addressing *addressing,
701 u8 is_derated)
702{
703 u32 alert = 0, interval;
704 interval =
705 TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
706 if (is_derated)
707 interval *= 4;
bb772a59 708 alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
095aea29 709
bb772a59 710 alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
095aea29 711
bb772a59 712 alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
095aea29 713
bb772a59 714 alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
095aea29 715
bb772a59 716 alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
095aea29 717
bb772a59 718 alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
095aea29
A
719
720 return alert;
721}
722
723static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
724{
725 u32 idle = 0, val = 0;
726 if (volt_ramp)
924eb369 727 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
095aea29
A
728 else
729 /*Maximum value in normal conditions - suggested by hw team */
730 val = 0x1FF;
bb772a59 731 idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
095aea29 732
bb772a59 733 idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
095aea29
A
734
735 return idle;
736}
737
738static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
739{
740 u32 phy = 0, val = 0;
741
bb772a59 742 phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
095aea29
A
743
744 if (freq <= 100000000)
745 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
746 else if (freq <= 200000000)
747 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
748 else
749 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
bb772a59 750 phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
095aea29
A
751
752 /* Other fields are constant magic values. Hardcode them together */
753 phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
bb772a59 754 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
095aea29
A
755
756 return phy;
757}
758
d3d82e9f 759static u32 get_emif_mem_size(u32 base)
095aea29
A
760{
761 u32 size_mbytes = 0, temp;
d3d82e9f
LV
762 struct emif_device_details dev_details;
763 struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
764 u32 emif_nr = emif_num(base);
095aea29 765
d3d82e9f
LV
766 emif_reset_phy(base);
767 dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
768 &cs0_dev_details);
769 dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
770 &cs1_dev_details);
771 emif_reset_phy(base);
095aea29 772
d3d82e9f
LV
773 if (dev_details.cs0_device_details) {
774 temp = dev_details.cs0_device_details->density;
095aea29
A
775 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
776 }
777
d3d82e9f
LV
778 if (dev_details.cs1_device_details) {
779 temp = dev_details.cs1_device_details->density;
095aea29
A
780 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
781 }
782 /* convert to bytes */
783 return size_mbytes << 20;
784}
785
786/* Gets the encoding corresponding to a given DMM section size */
787u32 get_dmm_section_size_map(u32 section_size)
788{
789 /*
790 * Section size mapping:
791 * 0x0: 16-MiB section
792 * 0x1: 32-MiB section
793 * 0x2: 64-MiB section
794 * 0x3: 128-MiB section
795 * 0x4: 256-MiB section
796 * 0x5: 512-MiB section
797 * 0x6: 1-GiB section
798 * 0x7: 2-GiB section
799 */
800 section_size >>= 24; /* divide by 16 MB */
801 return log_2_n_round_down(section_size);
802}
803
804static void emif_calculate_regs(
805 const struct emif_device_details *emif_dev_details,
806 u32 freq, struct emif_regs *regs)
807{
808 u32 temp, sys_freq;
809 const struct lpddr2_addressing *addressing;
810 const struct lpddr2_ac_timings *timings;
811 const struct lpddr2_min_tck *min_tck;
812 const struct lpddr2_device_details *cs0_dev_details =
813 emif_dev_details->cs0_device_details;
814 const struct lpddr2_device_details *cs1_dev_details =
815 emif_dev_details->cs1_device_details;
816 const struct lpddr2_device_timings *cs0_dev_timings =
817 emif_dev_details->cs0_device_timings;
818
819 emif_assert(emif_dev_details);
820 emif_assert(regs);
821 /*
822 * You can not have a device on CS1 without one on CS0
823 * So configuring EMIF without a device on CS0 doesn't
824 * make sense
825 */
826 emif_assert(cs0_dev_details);
827 emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
828 /*
829 * If there is a device on CS1 it should be same type as CS0
830 * (or NVM. But NVM is not supported in this driver yet)
831 */
832 emif_assert((cs1_dev_details == NULL) ||
833 (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
834 (cs0_dev_details->type == cs1_dev_details->type));
835 emif_assert(freq <= MAX_LPDDR2_FREQ);
836
837 set_ddr_clk_period(freq);
838
839 /*
840 * The device on CS0 is used for all timing calculations
841 * There is only one set of registers for timings per EMIF. So, if the
842 * second CS(CS1) has a device, it should have the same timings as the
843 * device on CS0
844 */
845 timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
846 emif_assert(timings);
847 min_tck = cs0_dev_timings->min_tck;
848
849 temp = addressing_table_index(cs0_dev_details->type,
850 cs0_dev_details->density,
851 cs0_dev_details->io_width);
852
853 emif_assert((temp >= 0));
854 addressing = &(addressing_table[temp]);
855 emif_assert(addressing);
856
857 sys_freq = get_sys_clk_freq();
858
859 regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
860 cs1_dev_details,
861 addressing, RL_BOOT);
862
863 regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
864 cs1_dev_details,
865 addressing, RL_FINAL);
866
867 regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
868
869 regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
870
871 regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
872
873 regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
874
875 regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
876
877 regs->temp_alert_config =
878 get_temp_alert_config(cs1_dev_details, addressing, 0);
879
880 regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
881 LPDDR2_VOLTAGE_STABLE);
882
883 regs->emif_ddr_phy_ctlr_1_init =
884 get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
885
886 regs->emif_ddr_phy_ctlr_1 =
887 get_ddr_phy_ctrl_1(freq, RL_FINAL);
888
889 regs->freq = freq;
890
891 print_timing_reg(regs->sdram_config_init);
892 print_timing_reg(regs->sdram_config);
893 print_timing_reg(regs->ref_ctrl);
894 print_timing_reg(regs->sdram_tim1);
895 print_timing_reg(regs->sdram_tim2);
896 print_timing_reg(regs->sdram_tim3);
897 print_timing_reg(regs->read_idle_ctrl);
898 print_timing_reg(regs->temp_alert_config);
899 print_timing_reg(regs->zq_config);
900 print_timing_reg(regs->emif_ddr_phy_ctlr_1);
901 print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
902}
903#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
904
1e463866
A
905#ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
906const char *get_lpddr2_type(u8 type_id)
907{
908 switch (type_id) {
909 case LPDDR2_TYPE_S4:
910 return "LPDDR2-S4";
911 case LPDDR2_TYPE_S2:
912 return "LPDDR2-S2";
913 default:
914 return NULL;
915 }
916}
917
918const char *get_lpddr2_io_width(u8 width_id)
919{
920 switch (width_id) {
921 case LPDDR2_IO_WIDTH_8:
922 return "x8";
923 case LPDDR2_IO_WIDTH_16:
924 return "x16";
925 case LPDDR2_IO_WIDTH_32:
926 return "x32";
927 default:
928 return NULL;
929 }
930}
931
932const char *get_lpddr2_manufacturer(u32 manufacturer)
933{
934 switch (manufacturer) {
935 case LPDDR2_MANUFACTURER_SAMSUNG:
936 return "Samsung";
937 case LPDDR2_MANUFACTURER_QIMONDA:
938 return "Qimonda";
939 case LPDDR2_MANUFACTURER_ELPIDA:
940 return "Elpida";
941 case LPDDR2_MANUFACTURER_ETRON:
942 return "Etron";
943 case LPDDR2_MANUFACTURER_NANYA:
944 return "Nanya";
945 case LPDDR2_MANUFACTURER_HYNIX:
946 return "Hynix";
947 case LPDDR2_MANUFACTURER_MOSEL:
948 return "Mosel";
949 case LPDDR2_MANUFACTURER_WINBOND:
950 return "Winbond";
951 case LPDDR2_MANUFACTURER_ESMT:
952 return "ESMT";
953 case LPDDR2_MANUFACTURER_SPANSION:
954 return "Spansion";
955 case LPDDR2_MANUFACTURER_SST:
956 return "SST";
957 case LPDDR2_MANUFACTURER_ZMOS:
958 return "ZMOS";
959 case LPDDR2_MANUFACTURER_INTEL:
960 return "Intel";
961 case LPDDR2_MANUFACTURER_NUMONYX:
962 return "Numonyx";
963 case LPDDR2_MANUFACTURER_MICRON:
964 return "Micron";
965 default:
966 return NULL;
967 }
968}
969
970static void display_sdram_details(u32 emif_nr, u32 cs,
971 struct lpddr2_device_details *device)
972{
973 const char *mfg_str;
974 const char *type_str;
975 char density_str[10];
976 u32 density;
977
978 debug("EMIF%d CS%d\t", emif_nr, cs);
979
980 if (!device) {
981 debug("None\n");
982 return;
983 }
984
985 mfg_str = get_lpddr2_manufacturer(device->manufacturer);
986 type_str = get_lpddr2_type(device->type);
987
988 density = lpddr2_density_2_size_in_mbytes[device->density];
989 if ((density / 1024 * 1024) == density) {
990 density /= 1024;
991 sprintf(density_str, "%d GB", density);
992 } else
993 sprintf(density_str, "%d MB", density);
994 if (mfg_str && type_str)
995 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
996}
997
998static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
999 struct lpddr2_device_details *lpddr2_device)
1000{
1001 u32 mr = 0, temp;
1002
1003 mr = get_mr(base, cs, LPDDR2_MR0);
1004 if (mr > 0xFF) {
1005 /* Mode register value bigger than 8 bit */
1006 return 0;
1007 }
1008
1009 temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
1010 if (temp) {
1011 /* Not SDRAM */
1012 return 0;
1013 }
1014 temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
1015
1016 if (temp) {
1017 /* DNV supported - But DNV is only supported for NVM */
1018 return 0;
1019 }
1020
1021 mr = get_mr(base, cs, LPDDR2_MR4);
1022 if (mr > 0xFF) {
1023 /* Mode register value bigger than 8 bit */
1024 return 0;
1025 }
1026
1027 mr = get_mr(base, cs, LPDDR2_MR5);
ad0878a7 1028 if (mr > 0xFF) {
1e463866
A
1029 /* Mode register value bigger than 8 bit */
1030 return 0;
1031 }
1032
1033 if (!get_lpddr2_manufacturer(mr)) {
1034 /* Manufacturer not identified */
1035 return 0;
1036 }
1037 lpddr2_device->manufacturer = mr;
1038
1039 mr = get_mr(base, cs, LPDDR2_MR6);
1040 if (mr >= 0xFF) {
1041 /* Mode register value bigger than 8 bit */
1042 return 0;
1043 }
1044
1045 mr = get_mr(base, cs, LPDDR2_MR7);
1046 if (mr >= 0xFF) {
1047 /* Mode register value bigger than 8 bit */
1048 return 0;
1049 }
1050
1051 mr = get_mr(base, cs, LPDDR2_MR8);
1052 if (mr >= 0xFF) {
1053 /* Mode register value bigger than 8 bit */
1054 return 0;
1055 }
1056
1057 temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
1058 if (!get_lpddr2_type(temp)) {
1059 /* Not SDRAM */
1060 return 0;
1061 }
1062 lpddr2_device->type = temp;
1063
1064 temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
1065 if (temp > LPDDR2_DENSITY_32Gb) {
1066 /* Density not supported */
1067 return 0;
1068 }
1069 lpddr2_device->density = temp;
1070
1071 temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
1072 if (!get_lpddr2_io_width(temp)) {
1073 /* IO width unsupported value */
1074 return 0;
1075 }
1076 lpddr2_device->io_width = temp;
1077
1078 /*
1079 * If all the above tests pass we should
1080 * have a device on this chip-select
1081 */
1082 return 1;
1083}
1084
025bc425 1085struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
1e463866
A
1086 struct lpddr2_device_details *lpddr2_dev_details)
1087{
1088 u32 phy;
bb772a59
S
1089 u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
1090
1e463866
A
1091 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1092
1093 if (!lpddr2_dev_details)
1094 return NULL;
1095
1096 /* Do the minimum init for mode register accesses */
784229cc 1097 if (!(running_from_sdram() || warm_reset())) {
1e463866
A
1098 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1099 writel(phy, &emif->emif_ddr_phy_ctrl_1);
1100 }
1101
1102 if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1103 return NULL;
1104
1105 display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1106
1107 return lpddr2_dev_details;
1108}
1e463866
A
1109#endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1110
2ae610f0
A
1111static void do_sdram_init(u32 base)
1112{
1113 const struct emif_regs *regs;
1114 u32 in_sdram, emif_nr;
1115
1116 debug(">>do_sdram_init() %x\n", base);
1117
1118 in_sdram = running_from_sdram();
bb772a59 1119 emif_nr = (base == EMIF1_BASE) ? 1 : 2;
2ae610f0 1120
095aea29 1121#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
2ae610f0
A
1122 emif_get_reg_dump(emif_nr, &regs);
1123 if (!regs) {
1124 debug("EMIF: reg dump not provided\n");
1125 return;
1126 }
095aea29
A
1127#else
1128 /*
1129 * The user has not provided the register values. We need to
1130 * calculate it based on the timings and the DDR frequency
1131 */
1132 struct emif_device_details dev_details;
1133 struct emif_regs calculated_regs;
1134
1135 /*
1136 * Get device details:
1137 * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1138 * - Obtained from user otherwise
1139 */
1140 struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
025bc425 1141 emif_reset_phy(base);
4324c118 1142 dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
025bc425 1143 &cs0_dev_details);
4324c118 1144 dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
025bc425
A
1145 &cs1_dev_details);
1146 emif_reset_phy(base);
095aea29
A
1147
1148 /* Return if no devices on this EMIF */
1149 if (!dev_details.cs0_device_details &&
1150 !dev_details.cs1_device_details) {
095aea29
A
1151 return;
1152 }
1153
095aea29
A
1154 /*
1155 * Get device timings:
1156 * - Default timings specified by JESD209-2 if
1157 * CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1158 * - Obtained from user otherwise
1159 */
1160 emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1161 &dev_details.cs1_device_timings);
1162
1163 /* Calculate the register values */
2e5ba489 1164 emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
095aea29
A
1165 regs = &calculated_regs;
1166#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
2ae610f0
A
1167
1168 /*
1169 * Initializing the LPDDR2 device can not happen from SDRAM.
1170 * Changing the timing registers in EMIF can happen(going from one
1171 * OPP to another)
1172 */
784229cc 1173 if (!(in_sdram || warm_reset())) {
7c352cd3
TR
1174 if (emif_sdram_type(regs->sdram_config) ==
1175 EMIF_SDRAM_TYPE_LPDDR2)
784ab7c5
LV
1176 lpddr2_init(base, regs);
1177 else
1178 ddr3_init(base, regs);
1179 }
7c352cd3
TR
1180 if (warm_reset() && (emif_sdram_type(regs->sdram_config) ==
1181 EMIF_SDRAM_TYPE_DDR3)) {
166e5cc6
LV
1182 set_lpmode_selfrefresh(base);
1183 emif_reset_phy(base);
6213db78 1184 omap5_ddr3_leveling(base, regs);
166e5cc6 1185 }
2ae610f0
A
1186
1187 /* Write to the shadow registers */
1188 emif_update_timings(base, regs);
1189
1190 debug("<<do_sdram_init() %x\n", base);
1191}
1192
bb772a59 1193void emif_post_init_config(u32 base)
2ae610f0
A
1194{
1195 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
bb772a59
S
1196 u32 omap_rev = omap_revision();
1197
2ae610f0 1198 /* reset phy on ES2.0 */
bb772a59 1199 if (omap_rev == OMAP4430_ES2_0)
2ae610f0
A
1200 emif_reset_phy(base);
1201
1202 /* Put EMIF back in smart idle on ES1.0 */
bb772a59 1203 if (omap_rev == OMAP4430_ES1_0)
2ae610f0
A
1204 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1205}
1206
bb772a59 1207void dmm_init(u32 base)
2ae610f0
A
1208{
1209 const struct dmm_lisa_map_regs *lisa_map_regs;
86021143 1210 u32 i, section, valid;
2ae610f0 1211
095aea29 1212#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
2ae610f0 1213 emif_get_dmm_regs(&lisa_map_regs);
095aea29
A
1214#else
1215 u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1216 u32 section_cnt, sys_addr;
1217 struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1218
1219 mapped_size = 0;
1220 section_cnt = 3;
1221 sys_addr = CONFIG_SYS_SDRAM_BASE;
d3d82e9f
LV
1222 emif1_size = get_emif_mem_size(EMIF1_BASE);
1223 emif2_size = get_emif_mem_size(EMIF2_BASE);
095aea29
A
1224 debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1225
1226 if (!emif1_size && !emif2_size)
1227 return;
1228
1229 /* symmetric interleaved section */
1230 if (emif1_size && emif2_size) {
1231 mapped_size = min(emif1_size, emif2_size);
1232 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
bb772a59 1233 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
095aea29
A
1234 /* only MSB */
1235 section_map |= (sys_addr >> 24) <<
bb772a59 1236 EMIF_SYS_ADDR_SHIFT;
095aea29 1237 section_map |= get_dmm_section_size_map(mapped_size * 2)
bb772a59 1238 << EMIF_SYS_SIZE_SHIFT;
095aea29
A
1239 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1240 emif1_size -= mapped_size;
1241 emif2_size -= mapped_size;
1242 sys_addr += (mapped_size * 2);
1243 section_cnt--;
1244 }
1245
1246 /*
1247 * Single EMIF section(we can have a maximum of 1 single EMIF
1248 * section- either EMIF1 or EMIF2 or none, but not both)
1249 */
1250 if (emif1_size) {
1251 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1252 section_map |= get_dmm_section_size_map(emif1_size)
bb772a59 1253 << EMIF_SYS_SIZE_SHIFT;
095aea29
A
1254 /* only MSB */
1255 section_map |= (mapped_size >> 24) <<
bb772a59 1256 EMIF_SDRC_ADDR_SHIFT;
095aea29 1257 /* only MSB */
bb772a59 1258 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
095aea29
A
1259 section_cnt--;
1260 }
1261 if (emif2_size) {
1262 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1263 section_map |= get_dmm_section_size_map(emif2_size) <<
bb772a59 1264 EMIF_SYS_SIZE_SHIFT;
095aea29 1265 /* only MSB */
bb772a59 1266 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
095aea29 1267 /* only MSB */
bb772a59 1268 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
095aea29
A
1269 section_cnt--;
1270 }
1271
1272 if (section_cnt == 2) {
1273 /* Only 1 section - either symmetric or single EMIF */
1274 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1275 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1276 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1277 } else {
1278 /* 2 sections - 1 symmetric, 1 single EMIF */
1279 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1280 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1281 }
1282
1283 /* TRAP for invalid TILER mappings in section 0 */
1284 lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
2ae610f0 1285
e3f53104
LV
1286 if (omap_revision() >= OMAP4460_ES1_0)
1287 lis_map_regs_calculated.is_ma_present = 1;
1288
095aea29
A
1289 lisa_map_regs = &lis_map_regs_calculated;
1290#endif
2ae610f0
A
1291 struct dmm_lisa_map_regs *hw_lisa_map_regs =
1292 (struct dmm_lisa_map_regs *)base;
1293
1294 writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1295 writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1296 writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1297 writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1298
1299 writel(lisa_map_regs->dmm_lisa_map_3,
1300 &hw_lisa_map_regs->dmm_lisa_map_3);
1301 writel(lisa_map_regs->dmm_lisa_map_2,
1302 &hw_lisa_map_regs->dmm_lisa_map_2);
1303 writel(lisa_map_regs->dmm_lisa_map_1,
1304 &hw_lisa_map_regs->dmm_lisa_map_1);
1305 writel(lisa_map_regs->dmm_lisa_map_0,
1306 &hw_lisa_map_regs->dmm_lisa_map_0);
924eb369 1307
7831419d 1308 if (lisa_map_regs->is_ma_present) {
924eb369 1309 hw_lisa_map_regs =
bb772a59 1310 (struct dmm_lisa_map_regs *)MA_BASE;
924eb369
A
1311
1312 writel(lisa_map_regs->dmm_lisa_map_3,
1313 &hw_lisa_map_regs->dmm_lisa_map_3);
1314 writel(lisa_map_regs->dmm_lisa_map_2,
1315 &hw_lisa_map_regs->dmm_lisa_map_2);
1316 writel(lisa_map_regs->dmm_lisa_map_1,
1317 &hw_lisa_map_regs->dmm_lisa_map_1);
1318 writel(lisa_map_regs->dmm_lisa_map_0,
1319 &hw_lisa_map_regs->dmm_lisa_map_0);
1320 }
86021143
LV
1321
1322 /*
1323 * EMIF should be configured only when
1324 * memory is mapped on it. Using emif1_enabled
1325 * and emif2_enabled variables for this.
1326 */
1327 emif1_enabled = 0;
1328 emif2_enabled = 0;
1329 for (i = 0; i < 4; i++) {
1330 section = __raw_readl(DMM_BASE + i*4);
1331 valid = (section & EMIF_SDRC_MAP_MASK) >>
1332 (EMIF_SDRC_MAP_SHIFT);
1333 if (valid == 3) {
1334 emif1_enabled = 1;
1335 emif2_enabled = 1;
1336 break;
dbf02eca
FB
1337 }
1338
1339 if (valid == 1)
86021143 1340 emif1_enabled = 1;
dbf02eca
FB
1341
1342 if (valid == 2)
86021143 1343 emif2_enabled = 1;
86021143 1344 }
2ae610f0
A
1345}
1346
54d022e7
S
1347static void do_bug0039_workaround(u32 base)
1348{
1349 u32 val, i, clkctrl;
1350 struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
1351 const struct read_write_regs *bug_00339_regs;
1352 u32 iterations;
1353 u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
1354 u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;
1355
1356 if (is_dra7xx())
1357 phy_status_base++;
1358
1359 bug_00339_regs = get_bug_regs(&iterations);
1360
1361 /* Put EMIF in to idle */
1362 clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
1363 __raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);
1364
1365 /* Copy the phy status registers in to phy ctrl shadow registers */
1366 for (i = 0; i < iterations; i++) {
1367 val = __raw_readl(phy_status_base +
1368 bug_00339_regs[i].read_reg - 1);
1369
1370 __raw_writel(val, phy_ctrl_base +
1371 ((bug_00339_regs[i].write_reg - 1) << 1));
1372
1373 __raw_writel(val, phy_ctrl_base +
1374 (bug_00339_regs[i].write_reg << 1) - 1);
1375 }
1376
1377 /* Disable leveling */
1378 writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);
1379
1380 __raw_writel(clkctrl, (*prcm)->cm_memif_clkstctrl);
1381}
1382
2ae610f0
A
1383/*
1384 * SDRAM initialization:
1385 * SDRAM initialization has two parts:
1386 * 1. Configuring the SDRAM device
1387 * 2. Update the AC timings related parameters in the EMIF module
1388 * (1) should be done only once and should not be done while we are
1389 * running from SDRAM.
1390 * (2) can and should be done more than once if OPP changes.
1391 * Particularly, this may be needed when we boot without SPL and
1392 * and using Configuration Header(CH). ROM code supports only at 50% OPP
1393 * at boot (low power boot). So u-boot has to switch to OPP100 and update
1394 * the frequency. So,
1395 * Doing (1) and (2) makes sense - first time initialization
1396 * Doing (2) and not (1) makes sense - OPP change (when using CH)
1397 * Doing (1) and not (2) doen't make sense
1398 * See do_sdram_init() for the details
1399 */
1400void sdram_init(void)
1401{
1402 u32 in_sdram, size_prog, size_detect;
7c352cd3
TR
1403 struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
1404 u32 sdram_type = emif_sdram_type(emif->emif_sdram_config);
2ae610f0
A
1405
1406 debug(">>sdram_init()\n");
1407
508a58fa 1408 if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
2ae610f0
A
1409 return;
1410
1411 in_sdram = running_from_sdram();
1412 debug("in_sdram = %d\n", in_sdram);
1413
166e5cc6
LV
1414 if (!in_sdram) {
1415 if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
01b753ff 1416 bypass_dpll((*prcm)->cm_clkmode_dpll_core);
166e5cc6 1417 else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
01b753ff 1418 writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
753bae8c 1419 }
2ae610f0 1420
784229cc 1421 if (!in_sdram)
bb772a59 1422 dmm_init(DMM_BASE);
784229cc 1423
86021143
LV
1424 if (emif1_enabled)
1425 do_sdram_init(EMIF1_BASE);
1426
1427 if (emif2_enabled)
1428 do_sdram_init(EMIF2_BASE);
1429
784229cc 1430 if (!(in_sdram || warm_reset())) {
86021143
LV
1431 if (emif1_enabled)
1432 emif_post_init_config(EMIF1_BASE);
1433 if (emif2_enabled)
1434 emif_post_init_config(EMIF2_BASE);
2ae610f0
A
1435 }
1436
1437 /* for the shadow registers to take effect */
9ca8bfea 1438 if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
753bae8c 1439 freq_update_core();
2ae610f0
A
1440
1441 /* Do some testing after the init */
1442 if (!in_sdram) {
508a58fa 1443 size_prog = omap_sdram_size();
41321fd4
S
1444 size_prog = log_2_n_round_down(size_prog);
1445 size_prog = (1 << size_prog);
1446
2ae610f0
A
1447 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1448 size_prog);
1449 /* Compare with the size programmed */
1450 if (size_detect != size_prog) {
1451 printf("SDRAM: identified size not same as expected"
1452 " size identified: %x expected: %x\n",
1453 size_detect,
1454 size_prog);
1455 } else
1456 debug("get_ram_size() successful");
1457 }
1458
54d022e7 1459 if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
f2a1b93b 1460 (!in_sdram && !warm_reset()) && (!is_dra7xx())) {
9fcf3d3a
LV
1461 if (emif1_enabled)
1462 do_bug0039_workaround(EMIF1_BASE);
1463 if (emif2_enabled)
1464 do_bug0039_workaround(EMIF2_BASE);
54d022e7
S
1465 }
1466
2ae610f0
A
1467 debug("<<sdram_init()\n");
1468}