]> git.ipfire.org Git - people/ms/u-boot.git/blame - arch/arm/mach-tegra/clock.c
Add more SPDX-License-Identifier tags
[people/ms/u-boot.git] / arch / arm / mach-tegra / clock.c
CommitLineData
f29f086a 1/*
7aaa5a60 2 * Copyright (c) 2010-2015, NVIDIA CORPORATION. All rights reserved.
f29f086a 3 *
5b8031cc 4 * SPDX-License-Identifier: GPL-2.0
f29f086a
TW
5 */
6
7/* Tegra SoC common clock control functions */
8
9#include <common.h>
746dc76b 10#include <errno.h>
f29f086a
TW
11#include <asm/io.h>
12#include <asm/arch/clock.h>
13#include <asm/arch/tegra.h>
73c38934 14#include <asm/arch-tegra/ap.h>
f29f086a 15#include <asm/arch-tegra/clk_rst.h>
746dc76b 16#include <asm/arch-tegra/pmc.h>
f29f086a
TW
17#include <asm/arch-tegra/timer.h>
18#include <div64.h>
19#include <fdtdec.h>
20
21/*
22 * This is our record of the current clock rate of each clock. We don't
23 * fill all of these in since we are only really interested in clocks which
24 * we use as parents.
25 */
26static unsigned pll_rate[CLOCK_ID_COUNT];
27
28/*
29 * The oscillator frequency is fixed to one of four set values. Based on this
30 * the other clocks are set up appropriately.
31 */
32static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
33 13000000,
34 19200000,
35 12000000,
36 26000000,
3e8650c0
TW
37 38400000,
38 48000000,
f29f086a
TW
39};
40
41/* return 1 if a peripheral ID is in range */
42#define clock_type_id_isvalid(id) ((id) >= 0 && \
43 (id) < CLOCK_TYPE_COUNT)
44
45char pllp_valid = 1; /* PLLP is set up correctly */
46
47/* return 1 if a periphc_internal_id is in range */
48#define periphc_internal_id_isvalid(id) ((id) >= 0 && \
49 (id) < PERIPHC_COUNT)
50
51/* number of clock outputs of a PLL */
52static const u8 pll_num_clkouts[] = {
53 1, /* PLLC */
54 1, /* PLLM */
55 4, /* PLLP */
56 1, /* PLLA */
57 0, /* PLLU */
58 0, /* PLLD */
59};
60
61int clock_get_osc_bypass(void)
62{
63 struct clk_rst_ctlr *clkrst =
64 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
65 u32 reg;
66
67 reg = readl(&clkrst->crc_osc_ctrl);
68 return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT;
69}
70
71/* Returns a pointer to the registers of the given pll */
72static struct clk_pll *get_pll(enum clock_id clkid)
73{
74 struct clk_rst_ctlr *clkrst =
75 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
76
77 assert(clock_id_is_pll(clkid));
801b05cd 78 if (clkid >= (enum clock_id)TEGRA_CLK_PLLS) {
cd3c6769 79 debug("%s: Invalid PLL %d\n", __func__, clkid);
801b05cd
SG
80 return NULL;
81 }
f29f086a
TW
82 return &clkrst->crc_pll[clkid];
83}
84
801b05cd
SG
85__weak struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid)
86{
87 return NULL;
88}
89
f29f086a
TW
90int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
91 u32 *divp, u32 *cpcon, u32 *lfcon)
92{
93 struct clk_pll *pll = get_pll(clkid);
722e000c 94 struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
f29f086a
TW
95 u32 data;
96
97 assert(clkid != CLOCK_ID_USB);
98
99 /* Safety check, adds to code size but is small */
100 if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB)
101 return -1;
102 data = readl(&pll->pll_base);
722e000c
TW
103 *divm = (data >> pllinfo->m_shift) & pllinfo->m_mask;
104 *divn = (data >> pllinfo->n_shift) & pllinfo->n_mask;
105 *divp = (data >> pllinfo->p_shift) & pllinfo->p_mask;
f29f086a 106 data = readl(&pll->pll_misc);
722e000c
TW
107 /* NOTE: On T210, cpcon/lfcon no longer exist, moved to KCP/KVCO */
108 *cpcon = (data >> pllinfo->kcp_shift) & pllinfo->kcp_mask;
109 *lfcon = (data >> pllinfo->kvco_shift) & pllinfo->kvco_mask;
110
f29f086a
TW
111 return 0;
112}
113
114unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
115 u32 divp, u32 cpcon, u32 lfcon)
116{
cd3c6769 117 struct clk_pll *pll = NULL;
722e000c 118 struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
5a30cee5 119 struct clk_pll_simple *simple_pll = NULL;
801b05cd 120 u32 misc_data, data;
f29f086a 121
5a30cee5 122 if (clkid < (enum clock_id)TEGRA_CLK_PLLS) {
cd3c6769 123 pll = get_pll(clkid);
5a30cee5
SG
124 } else {
125 simple_pll = clock_get_simple_pll(clkid);
126 if (!simple_pll) {
127 debug("%s: Uknown simple PLL %d\n", __func__, clkid);
128 return 0;
129 }
130 }
cd3c6769 131
f29f086a 132 /*
722e000c
TW
133 * pllinfo has the m/n/p and kcp/kvco mask and shift
134 * values for all of the PLLs used in U-Boot, with any
135 * SoC differences accounted for.
5a30cee5
SG
136 *
137 * Preserve EN_LOCKDET, etc.
f29f086a 138 */
5a30cee5
SG
139 if (pll)
140 misc_data = readl(&pll->pll_misc);
141 else
142 misc_data = readl(&simple_pll->pll_misc);
143 misc_data &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift);
144 misc_data |= cpcon << pllinfo->kcp_shift;
145 misc_data &= ~(pllinfo->kvco_mask << pllinfo->kvco_shift);
146 misc_data |= lfcon << pllinfo->kvco_shift;
722e000c
TW
147
148 data = (divm << pllinfo->m_shift) | (divn << pllinfo->n_shift);
149 data |= divp << pllinfo->p_shift;
150 data |= (1 << PLL_ENABLE_SHIFT); /* BYPASS s/b 0 already */
151
801b05cd
SG
152 if (pll) {
153 writel(misc_data, &pll->pll_misc);
154 writel(data, &pll->pll_base);
155 } else {
5a30cee5
SG
156 writel(misc_data, &simple_pll->pll_misc);
157 writel(data, &simple_pll->pll_base);
801b05cd 158 }
f29f086a
TW
159
160 /* calculate the stable time */
161 return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
162}
163
164void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
165 unsigned divisor)
166{
167 u32 *reg = get_periph_source_reg(periph_id);
168 u32 value;
169
170 value = readl(reg);
171
9cb0c6dc
SW
172 value &= ~OUT_CLK_SOURCE_31_30_MASK;
173 value |= source << OUT_CLK_SOURCE_31_30_SHIFT;
f29f086a
TW
174
175 value &= ~OUT_CLK_DIVISOR_MASK;
176 value |= divisor << OUT_CLK_DIVISOR_SHIFT;
177
178 writel(value, reg);
179}
180
7bb6199b
SG
181int clock_ll_set_source_bits(enum periph_id periph_id, int mux_bits,
182 unsigned source)
f29f086a
TW
183{
184 u32 *reg = get_periph_source_reg(periph_id);
185
7bb6199b
SG
186 switch (mux_bits) {
187 case MASK_BITS_31_30:
188 clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK,
189 source << OUT_CLK_SOURCE_31_30_SHIFT);
190 break;
191
192 case MASK_BITS_31_29:
193 clrsetbits_le32(reg, OUT_CLK_SOURCE_31_29_MASK,
194 source << OUT_CLK_SOURCE_31_29_SHIFT);
195 break;
196
197 case MASK_BITS_31_28:
198 clrsetbits_le32(reg, OUT_CLK_SOURCE_31_28_MASK,
199 source << OUT_CLK_SOURCE_31_28_SHIFT);
200 break;
201
202 default:
203 return -1;
204 }
205
206 return 0;
207}
208
209void clock_ll_set_source(enum periph_id periph_id, unsigned source)
210{
211 clock_ll_set_source_bits(periph_id, MASK_BITS_31_30, source);
f29f086a
TW
212}
213
214/**
215 * Given the parent's rate and the required rate for the children, this works
216 * out the peripheral clock divider to use, in 7.1 binary format.
217 *
218 * @param divider_bits number of divider bits (8 or 16)
219 * @param parent_rate clock rate of parent clock in Hz
220 * @param rate required clock rate for this clock
221 * @return divider which should be used
222 */
223static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate,
224 unsigned long rate)
225{
226 u64 divider = parent_rate * 2;
227 unsigned max_divider = 1 << divider_bits;
228
229 divider += rate - 1;
230 do_div(divider, rate);
231
232 if ((s64)divider - 2 < 0)
233 return 0;
234
235 if ((s64)divider - 2 >= max_divider)
236 return -1;
237
238 return divider - 2;
239}
240
241int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate)
242{
243 struct clk_pll *pll = get_pll(clkid);
244 int data = 0, div = 0, offset = 0;
245
246 if (!clock_id_is_pll(clkid))
247 return -1;
248
249 if (pllout + 1 > pll_num_clkouts[clkid])
250 return -1;
251
252 div = clk_get_divider(8, pll_rate[clkid], rate);
253
254 if (div < 0)
255 return -1;
256
257 /* out2 and out4 are in the high part of the register */
258 if (pllout == PLL_OUT2 || pllout == PLL_OUT4)
259 offset = 16;
260
261 data = (div << PLL_OUT_RATIO_SHIFT) |
262 PLL_OUT_OVRRIDE | PLL_OUT_CLKEN | PLL_OUT_RSTN;
263 clrsetbits_le32(&pll->pll_out[pllout >> 1],
264 PLL_OUT_RATIO_MASK << offset, data << offset);
265
266 return 0;
267}
268
269/**
270 * Given the parent's rate and the divider in 7.1 format, this works out the
271 * resulting peripheral clock rate.
272 *
273 * @param parent_rate clock rate of parent clock in Hz
274 * @param divider which should be used in 7.1 format
275 * @return effective clock rate of peripheral
276 */
277static unsigned long get_rate_from_divider(unsigned long parent_rate,
278 int divider)
279{
280 u64 rate;
281
282 rate = (u64)parent_rate * 2;
283 do_div(rate, divider + 2);
284 return rate;
285}
286
287unsigned long clock_get_periph_rate(enum periph_id periph_id,
288 enum clock_id parent)
289{
290 u32 *reg = get_periph_source_reg(periph_id);
291
292 return get_rate_from_divider(pll_rate[parent],
293 (readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT);
294}
295
296/**
297 * Find the best available 7.1 format divisor given a parent clock rate and
298 * required child clock rate. This function assumes that a second-stage
299 * divisor is available which can divide by powers of 2 from 1 to 256.
300 *
301 * @param divider_bits number of divider bits (8 or 16)
302 * @param parent_rate clock rate of parent clock in Hz
303 * @param rate required clock rate for this clock
304 * @param extra_div value for the second-stage divisor (not set if this
305 * function returns -1.
306 * @return divider which should be used, or -1 if nothing is valid
307 *
308 */
309static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
310 unsigned long rate, int *extra_div)
311{
312 int shift;
313 int best_divider = -1;
314 int best_error = rate;
315
316 /* try dividers from 1 to 256 and find closest match */
317 for (shift = 0; shift <= 8 && best_error > 0; shift++) {
318 unsigned divided_parent = parent_rate >> shift;
319 int divider = clk_get_divider(divider_bits, divided_parent,
320 rate);
321 unsigned effective_rate = get_rate_from_divider(divided_parent,
322 divider);
323 int error = rate - effective_rate;
324
325 /* Given a valid divider, look for the lowest error */
326 if (divider != -1 && error < best_error) {
327 best_error = error;
328 *extra_div = 1 << shift;
329 best_divider = divider;
330 }
331 }
332
333 /* return what we found - *extra_div will already be set */
334 return best_divider;
335}
336
337/**
338 * Adjust peripheral PLL to use the given divider and source.
339 *
340 * @param periph_id peripheral to adjust
341 * @param source Source number (0-3 or 0-7)
342 * @param mux_bits Number of mux bits (2 or 4)
343 * @param divider Required divider in 7.1 or 15.1 format
344 * @return 0 if ok, -1 on error (requesting a parent clock which is not valid
345 * for this peripheral)
346 */
347static int adjust_periph_pll(enum periph_id periph_id, int source,
348 int mux_bits, unsigned divider)
349{
350 u32 *reg = get_periph_source_reg(periph_id);
351
352 clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
353 divider << OUT_CLK_DIVISOR_SHIFT);
354 udelay(1);
355
356 /* work out the source clock and set it */
357 if (source < 0)
358 return -1;
c82014da 359
7bb6199b 360 clock_ll_set_source_bits(periph_id, mux_bits, source);
c82014da 361
f29f086a
TW
362 udelay(2);
363 return 0;
364}
365
366unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
367 enum clock_id parent, unsigned rate, int *extra_div)
368{
369 unsigned effective_rate;
370 int mux_bits, divider_bits, source;
371 int divider;
a51f7de1 372 int xdiv = 0;
f29f086a
TW
373
374 /* work out the source clock and set it */
375 source = get_periph_clock_source(periph_id, parent, &mux_bits,
376 &divider_bits);
377
a51f7de1
AM
378 divider = find_best_divider(divider_bits, pll_rate[parent],
379 rate, &xdiv);
f29f086a 380 if (extra_div)
a51f7de1
AM
381 *extra_div = xdiv;
382
f29f086a
TW
383 assert(divider >= 0);
384 if (adjust_periph_pll(periph_id, source, mux_bits, divider))
385 return -1U;
386 debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
387 get_periph_source_reg(periph_id),
388 readl(get_periph_source_reg(periph_id)));
389
390 /* Check what we ended up with. This shouldn't matter though */
391 effective_rate = clock_get_periph_rate(periph_id, parent);
392 if (extra_div)
393 effective_rate /= *extra_div;
394 if (rate != effective_rate)
395 debug("Requested clock rate %u not honored (got %u)\n",
396 rate, effective_rate);
397 return effective_rate;
398}
399
400unsigned clock_start_periph_pll(enum periph_id periph_id,
401 enum clock_id parent, unsigned rate)
402{
403 unsigned effective_rate;
404
405 reset_set_enable(periph_id, 1);
406 clock_enable(periph_id);
407
408 effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
409 NULL);
410
411 reset_set_enable(periph_id, 0);
412 return effective_rate;
413}
414
415void clock_enable(enum periph_id clkid)
416{
417 clock_set_enable(clkid, 1);
418}
419
420void clock_disable(enum periph_id clkid)
421{
422 clock_set_enable(clkid, 0);
423}
424
425void reset_periph(enum periph_id periph_id, int us_delay)
426{
427 /* Put peripheral into reset */
428 reset_set_enable(periph_id, 1);
429 udelay(us_delay);
430
431 /* Remove reset */
432 reset_set_enable(periph_id, 0);
433
434 udelay(us_delay);
435}
436
437void reset_cmplx_set_enable(int cpu, int which, int reset)
438{
439 struct clk_rst_ctlr *clkrst =
440 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
441 u32 mask;
442
443 /* Form the mask, which depends on the cpu chosen (2 or 4) */
444 assert(cpu >= 0 && cpu < MAX_NUM_CPU);
445 mask = which << cpu;
446
447 /* either enable or disable those reset for that CPU */
448 if (reset)
449 writel(mask, &clkrst->crc_cpu_cmplx_set);
450 else
451 writel(mask, &clkrst->crc_cpu_cmplx_clr);
452}
453
c043c025
TR
454unsigned int __weak clk_m_get_rate(unsigned int parent_rate)
455{
456 return parent_rate;
457}
458
f29f086a
TW
459unsigned clock_get_rate(enum clock_id clkid)
460{
461 struct clk_pll *pll;
722e000c
TW
462 u32 base, divm;
463 u64 parent_rate, rate;
464 struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
f29f086a
TW
465
466 parent_rate = osc_freq[clock_get_osc_freq()];
467 if (clkid == CLOCK_ID_OSC)
468 return parent_rate;
469
c043c025
TR
470 if (clkid == CLOCK_ID_CLK_M)
471 return clk_m_get_rate(parent_rate);
472
f29f086a 473 pll = get_pll(clkid);
801b05cd
SG
474 if (!pll)
475 return 0;
f29f086a
TW
476 base = readl(&pll->pll_base);
477
722e000c
TW
478 rate = parent_rate * ((base >> pllinfo->n_shift) & pllinfo->n_mask);
479 divm = (base >> pllinfo->m_shift) & pllinfo->m_mask;
480 /*
481 * PLLU uses p_mask/p_shift for VCO on all but T210,
482 * T210 uses normal DIVP. Handled in pllinfo table.
483 */
6c7dc623
SW
484#ifdef CONFIG_TEGRA210
485 /*
486 * PLLP's primary output (pllP_out0) on T210 is the VCO, and divp is
487 * not applied. pllP_out2 does have divp applied. All other pllP_outN
488 * are divided down from pllP_out0. We only support pllP_out0 in
489 * U-Boot at the time of writing this comment.
490 */
491 if (clkid != CLOCK_ID_PERIPH)
492#endif
493 divm <<= (base >> pllinfo->p_shift) & pllinfo->p_mask;
f29f086a
TW
494 do_div(rate, divm);
495 return rate;
496}
497
498/**
499 * Set the output frequency you want for each PLL clock.
500 * PLL output frequencies are programmed by setting their N, M and P values.
501 * The governing equations are:
502 * VCO = (Fi / m) * n, Fo = VCO / (2^p)
503 * where Fo is the output frequency from the PLL.
504 * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
505 * 216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
506 * Please see Tegra TRM section 5.3 to get the detail for PLL Programming
507 *
508 * @param n PLL feedback divider(DIVN)
509 * @param m PLL input divider(DIVN)
510 * @param p post divider(DIVP)
511 * @param cpcon base PLL charge pump(CPCON)
512 * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
513 * be overriden), 1 if PLL is already correct
514 */
515int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
516{
722e000c 517 u32 base_reg, misc_reg;
f29f086a 518 struct clk_pll *pll;
722e000c 519 struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
f29f086a
TW
520
521 pll = get_pll(clkid);
522
523 base_reg = readl(&pll->pll_base);
524
525 /* Set BYPASS, m, n and p to PLL_BASE */
722e000c
TW
526 base_reg &= ~(pllinfo->m_mask << pllinfo->m_shift);
527 base_reg |= m << pllinfo->m_shift;
f29f086a 528
722e000c
TW
529 base_reg &= ~(pllinfo->n_mask << pllinfo->n_shift);
530 base_reg |= n << pllinfo->n_shift;
f29f086a 531
722e000c
TW
532 base_reg &= ~(pllinfo->p_mask << pllinfo->p_shift);
533 base_reg |= p << pllinfo->p_shift;
f29f086a
TW
534
535 if (clkid == CLOCK_ID_PERIPH) {
536 /*
537 * If the PLL is already set up, check that it is correct
538 * and record this info for clock_verify() to check.
539 */
540 if (base_reg & PLL_BASE_OVRRIDE_MASK) {
541 base_reg |= PLL_ENABLE_MASK;
542 if (base_reg != readl(&pll->pll_base))
543 pllp_valid = 0;
544 return pllp_valid ? 1 : -1;
545 }
546 base_reg |= PLL_BASE_OVRRIDE_MASK;
547 }
548
549 base_reg |= PLL_BYPASS_MASK;
550 writel(base_reg, &pll->pll_base);
551
722e000c 552 /* Set cpcon (KCP) to PLL_MISC */
f29f086a 553 misc_reg = readl(&pll->pll_misc);
722e000c
TW
554 misc_reg &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift);
555 misc_reg |= cpcon << pllinfo->kcp_shift;
f29f086a
TW
556 writel(misc_reg, &pll->pll_misc);
557
558 /* Enable PLL */
559 base_reg |= PLL_ENABLE_MASK;
560 writel(base_reg, &pll->pll_base);
561
562 /* Disable BYPASS */
563 base_reg &= ~PLL_BYPASS_MASK;
564 writel(base_reg, &pll->pll_base);
565
566 return 0;
567}
568
569void clock_ll_start_uart(enum periph_id periph_id)
570{
571 /* Assert UART reset and enable clock */
572 reset_set_enable(periph_id, 1);
573 clock_enable(periph_id);
574 clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */
575
576 /* wait for 2us */
577 udelay(2);
578
579 /* De-assert reset to UART */
580 reset_set_enable(periph_id, 0);
581}
582
0f925822 583#if CONFIG_IS_ENABLED(OF_CONTROL)
f29f086a
TW
584int clock_decode_periph_id(const void *blob, int node)
585{
586 enum periph_id id;
587 u32 cell[2];
588 int err;
589
590 err = fdtdec_get_int_array(blob, node, "clocks", cell,
591 ARRAY_SIZE(cell));
592 if (err)
593 return -1;
594 id = clk_id_to_periph_id(cell[1]);
595 assert(clock_periph_id_isvalid(id));
596 return id;
597}
0f925822 598#endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
f29f086a
TW
599
600int clock_verify(void)
601{
602 struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
603 u32 reg = readl(&pll->pll_base);
604
605 if (!pllp_valid) {
606 printf("Warning: PLLP %x is not correct\n", reg);
607 return -1;
608 }
609 debug("PLLP %x is correct\n", reg);
610 return 0;
611}
612
613void clock_init(void)
614{
3e8650c0 615 pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
f29f086a
TW
616 pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
617 pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
3e8650c0 618 pll_rate[CLOCK_ID_USB] = clock_get_rate(CLOCK_ID_USB);
96e82a25 619 pll_rate[CLOCK_ID_DISPLAY] = clock_get_rate(CLOCK_ID_DISPLAY);
f29f086a 620 pll_rate[CLOCK_ID_XCPU] = clock_get_rate(CLOCK_ID_XCPU);
3e8650c0
TW
621 pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
622 pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
c043c025 623 pll_rate[CLOCK_ID_CLK_M] = clock_get_rate(CLOCK_ID_CLK_M);
3e8650c0 624
f29f086a 625 debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
c043c025 626 debug("CLKM = %d\n", pll_rate[CLOCK_ID_CLK_M]);
3e8650c0 627 debug("PLLC = %d\n", pll_rate[CLOCK_ID_CGENERAL]);
f29f086a
TW
628 debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
629 debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
3e8650c0 630 debug("PLLU = %d\n", pll_rate[CLOCK_ID_USB]);
96e82a25 631 debug("PLLD = %d\n", pll_rate[CLOCK_ID_DISPLAY]);
f29f086a
TW
632 debug("PLLX = %d\n", pll_rate[CLOCK_ID_XCPU]);
633}
b9dd6215
JZ
634
635static void set_avp_clock_source(u32 src)
636{
637 struct clk_rst_ctlr *clkrst =
638 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
639 u32 val;
640
641 val = (src << SCLK_SWAKEUP_FIQ_SOURCE_SHIFT) |
642 (src << SCLK_SWAKEUP_IRQ_SOURCE_SHIFT) |
643 (src << SCLK_SWAKEUP_RUN_SOURCE_SHIFT) |
644 (src << SCLK_SWAKEUP_IDLE_SOURCE_SHIFT) |
645 (SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT);
646 writel(val, &clkrst->crc_sclk_brst_pol);
647 udelay(3);
648}
649
650/*
651 * This function is useful on Tegra30, and any later SoCs that have compatible
652 * PLLP configuration registers.
7aaa5a60 653 * NOTE: Not used on Tegra210 - see tegra210_setup_pllp in T210 clock.c
b9dd6215
JZ
654 */
655void tegra30_set_up_pllp(void)
656{
657 struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
658 u32 reg;
659
660 /*
661 * Based on the Tegra TRM, the system clock (which is the AVP clock) can
662 * run up to 275MHz. On power on, the default sytem clock source is set
663 * to PLLP_OUT0. This function sets PLLP's (hence PLLP_OUT0's) rate to
664 * 408MHz which is beyond system clock's upper limit.
665 *
666 * The fix is to set the system clock to CLK_M before initializing PLLP,
667 * and then switch back to PLLP_OUT4, which has an appropriate divider
668 * configured, after PLLP has been configured
669 */
670 set_avp_clock_source(SCLK_SOURCE_CLKM);
671
672 /*
673 * PLLP output frequency set to 408Mhz
674 * PLLC output frequency set to 228Mhz
675 */
676 switch (clock_get_osc_freq()) {
677 case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
678 clock_set_rate(CLOCK_ID_PERIPH, 408, 12, 0, 8);
679 clock_set_rate(CLOCK_ID_CGENERAL, 456, 12, 1, 8);
680 break;
681
682 case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
683 clock_set_rate(CLOCK_ID_PERIPH, 408, 26, 0, 8);
684 clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
685 break;
686
687 case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
688 clock_set_rate(CLOCK_ID_PERIPH, 408, 13, 0, 8);
689 clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
690 break;
691 case CLOCK_OSC_FREQ_19_2:
692 default:
693 /*
694 * These are not supported. It is too early to print a
695 * message and the UART likely won't work anyway due to the
696 * oscillator being wrong.
697 */
698 break;
699 }
700
701 /* Set PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */
702
703 /* OUT1, 2 */
704 /* Assert RSTN before enable */
705 reg = PLLP_OUT2_RSTN_EN | PLLP_OUT1_RSTN_EN;
706 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
707 /* Set divisor and reenable */
708 reg = (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO)
709 | PLLP_OUT2_OVR | PLLP_OUT2_CLKEN | PLLP_OUT2_RSTN_DIS
710 | (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO)
711 | PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS;
712 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
713
714 /* OUT3, 4 */
715 /* Assert RSTN before enable */
716 reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN;
717 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
718 /* Set divisor and reenable */
719 reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO)
720 | PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS
721 | (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO)
722 | PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS;
723 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
724
725 set_avp_clock_source(SCLK_SOURCE_PLLP_OUT4);
726}
746dc76b
SG
727
728int clock_external_output(int clk_id)
729{
730 struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
731
732 if (clk_id >= 1 && clk_id <= 3) {
733 setbits_le32(&pmc->pmc_clk_out_cntrl,
734 1 << (2 + (clk_id - 1) * 8));
735 } else {
736 printf("%s: Unknown output clock id %d\n", __func__, clk_id);
737 return -EINVAL;
738 }
739
740 return 0;
741}