]> git.ipfire.org Git - people/ms/u-boot.git/blame - board/MAI/AmigaOneG3SE/articiaS.c
* Code cleanup:
[people/ms/u-boot.git] / board / MAI / AmigaOneG3SE / articiaS.c
CommitLineData
c7de829c
WD
1/*
2 * (C) Copyright 2002
8bde7f77 3 * Hyperion Entertainment, ThomasF@hyperion-entertainment.com
c7de829c
WD
4 *
5 * See file CREDITS for list of people who contributed to this
6 * project.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23
24#include <common.h>
25#include <pci.h>
26#include <asm/processor.h>
27#include "memio.h"
28#include "articiaS.h"
29#include "smbus.h"
30#include "via686.h"
31
32#undef DEBUG
33
34struct dimm_bank {
35 uint8 used; /* Bank is populated */
36 uint32 rows; /* Number of row addresses */
37 uint32 columns; /* Number of column addresses */
38 uint8 registered; /* SIMM is registered */
39 uint8 ecc; /* SIMM has ecc */
40 uint8 burst_len; /* Supported burst lengths */
41 uint32 cas_lat; /* Supported CAS latencies */
42 uint32 cas_used; /* CAS to use (not set by user) */
43 uint32 trcd; /* RAS to CAS latency */
44 uint32 trp; /* Precharge latency */
45 uint32 tclk_hi; /* SDRAM cycle time (highest CAS latency) */
46 uint32 tclk_2hi; /* SDRAM second highest CAS latency */
47 uint32 size; /* Size of bank in bytes */
48 uint8 auto_refresh; /* Module supports auto refresh */
49 uint32 refresh_time; /* Refresh time (in ns) */
50};
51
52
53/*
54** Based in part on the evb64260 code
55*/
56
57/*
58 * translate ns.ns/10 coding of SPD timing values
59 * into 10 ps unit values
60 */
61static inline unsigned short NS10to10PS (unsigned char spd_byte)
62{
63 unsigned short ns, ns10;
64
65 /* isolate upper nibble */
66 ns = (spd_byte >> 4) & 0x0F;
67 /* isolate lower nibble */
68 ns10 = (spd_byte & 0x0F);
69
70 return (ns * 100 + ns10 * 10);
71}
72
73/*
74 * translate ns coding of SPD timing values
75 * into 10 ps unit values
76 */
77static inline unsigned short NSto10PS (unsigned char spd_byte)
78{
79 return (spd_byte * 100);
80}
81
82
83long detect_sdram (uint8 * rom, int dimmNum, struct dimm_bank *banks)
84{
7c7a23bd 85 DECLARE_GLOBAL_DATA_PTR;
c7de829c 86 int dimm_address = (dimmNum == 0) ? SM_DIMM0_ADDR : SM_DIMM1_ADDR;
7c7a23bd 87 uint32 busclock = gd->bus_clk;
c7de829c
WD
88 uint32 memclock = busclock;
89 uint32 tmemclock = 1000000000 / (memclock / 100);
90 uint32 datawidth;
91
92 if (sm_get_data (rom, dimm_address) == 0) {
93 /* Nothing in slot, make both banks empty */
94 debug ("Slot %d: vacant\n", dimmNum);
95 banks[0].used = 0;
96 banks[1].used = 0;
97 return 0;
98 }
99
100 if (rom[2] != 0x04) {
101 debug ("Slot %d: No SDRAM\n", dimmNum);
102 banks[0].used = 0;
103 banks[1].used = 0;
104 return 0;
105 }
106
107 /* Determine number of banks/rows */
108 if (rom[5] == 1) {
109 banks[0].used = 1;
110 banks[1].used = 0;
111 } else {
112 banks[0].used = 1;
113 banks[1].used = 1;
114 }
115
116 /* Determine number of row addresses */
117 if (rom[3] & 0xf0) {
118 /* Different banks sizes */
119 banks[0].rows = rom[3] & 0x0f;
120 banks[1].rows = (rom[3] & 0xf0) >> 4;
121 } else {
122 /* Equal sized banks */
123 banks[0].rows = rom[3] & 0x0f;
124 banks[1].rows = banks[0].rows;
125 }
126
127 /* Determine number of column addresses */
128 if (rom[4] & 0xf0) {
129 /* Different bank sizes */
130 banks[0].columns = rom[4] & 0x0f;
131 banks[1].columns = (rom[4] & 0xf0) >> 4;
132 } else {
133 banks[0].columns = rom[4] & 0x0f;
134 banks[1].columns = banks[0].columns;
135 }
136
137 /* Check Jedec revision, and modify row/column accordingly */
138 if (rom[62] > 0x10) {
139 if (banks[0].rows <= 3)
140 banks[0].rows += 15;
141 if (banks[1].rows <= 3)
142 banks[1].rows += 15;
143 if (banks[0].columns <= 3)
144 banks[0].columns += 15;
145 if (banks[0].columns <= 3)
146 banks[0].columns += 15;
147 }
148
149 /* Check registered/unregisterd */
150 if (rom[21] & 0x12) {
151 banks[0].registered = 1;
152 banks[1].registered = 1;
153 } else {
154 banks[0].registered = 0;
155 banks[1].registered = 0;
156 }
157
158#ifdef CONFIG_ECC
159 /* Check parity/ECC */
160 banks[0].ecc = (rom[11] == 0x02);
161 banks[1].ecc = (rom[11] == 0x02);
162#endif
163
164 /* Find burst lengths supported */
165 banks[0].burst_len = rom[16] & 0x8f;
166 banks[1].burst_len = rom[16] & 0x8f;
167
168 /* Find possible cas latencies */
169 banks[0].cas_lat = rom[18] & 0x7F;
170 banks[1].cas_lat = rom[18] & 0x7F;
171
172 /* RAS/CAS latency */
173 banks[0].trcd = (NSto10PS (rom[29]) + (tmemclock - 1)) / tmemclock;
174 banks[1].trcd = (NSto10PS (rom[29]) + (tmemclock - 1)) / tmemclock;
175
176 /* Precharge latency */
177 banks[0].trp = (NSto10PS (rom[27]) + (tmemclock - 1)) / tmemclock;
178 banks[1].trp = (NSto10PS (rom[27]) + (tmemclock - 1)) / tmemclock;
179
180 /* highest CAS latency */
181 banks[0].tclk_hi = NS10to10PS (rom[9]);
182 banks[1].tclk_hi = NS10to10PS (rom[9]);
183
184 /* second highest CAS latency */
185 banks[0].tclk_2hi = NS10to10PS (rom[23]);
186 banks[1].tclk_2hi = NS10to10PS (rom[23]);
187
188 /* bank sizes */
189 datawidth = rom[13] & 0x7f;
190 banks[0].size =
191 (1L << (banks[0].rows + banks[0].columns)) *
192 /* FIXME datawidth */ 8 * rom[17];
193 if (rom[13] & 0x80)
194 banks[1].size = 2 * banks[0].size;
195 else
196 banks[1].size = (1L << (banks[1].rows + banks[1].columns)) *
197 /* FIXME datawidth */ 8 * rom[17];
198
199 /* Refresh */
200 if (rom[12] & 0x80) {
201 banks[0].auto_refresh = 1;
202 banks[1].auto_refresh = 1;
203 } else {
204 banks[0].auto_refresh = 0;
205 banks[1].auto_refresh = 0;
206 }
207
208 switch (rom[12] & 0x7f) {
209 case 0:
210 banks[0].refresh_time = (1562500 + (tmemclock - 1)) / tmemclock;
211 banks[1].refresh_time = (1562500 + (tmemclock - 1)) / tmemclock;
212 break;
213 case 1:
214 banks[0].refresh_time = (390600 + (tmemclock - 1)) / tmemclock;
215 banks[1].refresh_time = (390600 + (tmemclock - 1)) / tmemclock;
216 break;
217 case 2:
218 banks[0].refresh_time = (781200 + (tmemclock - 1)) / tmemclock;
219 banks[1].refresh_time = (781200 + (tmemclock - 1)) / tmemclock;
220 break;
221 case 3:
222 banks[0].refresh_time = (3125000 + (tmemclock - 1)) / tmemclock;
223 banks[1].refresh_time = (3125000 + (tmemclock - 1)) / tmemclock;
224 break;
225 case 4:
226 banks[0].refresh_time = (6250000 + (tmemclock - 1)) / tmemclock;
227 banks[1].refresh_time = (6250000 + (tmemclock - 1)) / tmemclock;
228 break;
229 case 5:
230 banks[0].refresh_time = (12500000 + (tmemclock - 1)) / tmemclock;
231 banks[1].refresh_time = (12500000 + (tmemclock - 1)) / tmemclock;
232 break;
233 default:
234 banks[0].refresh_time = 0x100; /* Default of Articia S */
235 banks[1].refresh_time = 0x100;
236 break;
237 }
238
239#ifdef DEBUG
240 printf ("\nInformation for SIMM bank %ld:\n", dimmNum);
241 printf ("Number of banks: %ld\n", banks[0].used + banks[1].used);
242 printf ("Number of row addresses: %ld\n", banks[0].rows);
243 printf ("Number of coumns addresses: %ld\n", banks[0].columns);
244 printf ("SIMM is %sregistered\n",
245 banks[0].registered == 0 ? "not " : "");
246#ifdef CONFIG_ECC
247 printf ("SIMM %s ECC\n",
248 banks[0].ecc == 1 ? "supports" : "doesn't support");
249#endif
250 printf ("Supported burst lenghts: %s %s %s %s %s\n",
251 banks[0].burst_len & 0x08 ? "8" : " ",
252 banks[0].burst_len & 0x04 ? "4" : " ",
253 banks[0].burst_len & 0x02 ? "2" : " ",
254 banks[0].burst_len & 0x01 ? "1" : " ",
255 banks[0].burst_len & 0x80 ? "PAGE" : " ");
256 printf ("Supported CAS latencies: %s %s %s\n",
257 banks[0].cas_lat & 0x04 ? "CAS 3" : " ",
258 banks[0].cas_lat & 0x02 ? "CAS 2" : " ",
259 banks[0].cas_lat & 0x01 ? "CAS 1" : " ");
260 printf ("RAS to CAS latency: %ld\n", banks[0].trcd);
261 printf ("Precharge latency: %ld\n", banks[0].trp);
262 printf ("SDRAM highest CAS latency: %ld\n", banks[0].tclk_hi);
263 printf ("SDRAM 2nd highest CAS latency: %ld\n", banks[0].tclk_2hi);
264 printf ("SDRAM data width: %ld\n", datawidth);
265 printf ("Auto Refresh %ssupported\n",
266 banks[0].auto_refresh ? "" : "not ");
267 printf ("Refresh time: %ld clocks\n", banks[0].refresh_time);
268 if (banks[0].used)
269 printf ("Bank 0 size: %ld MB\n", banks[0].size / 1024 / 1024);
270 if (banks[1].used)
271 printf ("Bank 1 size: %ld MB\n", banks[1].size / 1024 / 1024);
272
273 printf ("\n");
274#endif
275
276 sm_term ();
277 return 1;
278}
279
280void select_cas (struct dimm_bank *banks, uint8 fast)
281{
282 if (!banks[0].used) {
283 banks[0].cas_used = 0;
284 banks[0].cas_used = 0;
285 return;
286 }
287
288 if (fast) {
289 /* Search for fast CAS */
290 uint32 i;
291 uint32 c = 0x01;
292
293 for (i = 1; i < 5; i++) {
294 if (banks[0].cas_lat & c) {
295 banks[0].cas_used = i;
296 banks[1].cas_used = i;
297 debug ("Using CAS %d (fast)\n", i);
298 return;
299 }
300 c <<= 1;
301 }
302
303 /* Default to CAS 3 */
304 banks[0].cas_used = 3;
305 banks[1].cas_used = 3;
306 debug ("Using CAS 3 (fast)\n");
307
308 return;
309 } else {
310 /* Search for slow cas */
311 uint32 i;
312 uint32 c = 0x08;
313
314 for (i = 4; i > 1; i--) {
315 if (banks[0].cas_lat & c) {
316 banks[0].cas_used = i;
317 banks[1].cas_used = i;
318 debug ("Using CAS %d (slow)\n", i);
319 return;
320 }
321 c >>= 1;
322 }
323
324 /* Default to CAS 3 */
325 banks[0].cas_used = 3;
326 banks[1].cas_used = 3;
327 debug ("Using CAS 3 (slow)\n");
328
329 return;
330 }
331
332 banks[0].cas_used = 3;
333 banks[1].cas_used = 3;
334 debug ("Using CAS 3\n");
335
336 return;
337}
338
339uint32 get_reg_setting (uint32 banks, uint32 rows, uint32 columns, uint32 size)
340{
341 uint32 i;
342
343 struct RowColumnSize {
344 uint32 banks;
345 uint32 rows;
346 uint32 columns;
347 uint32 size;
348 uint32 register_value;
349 };
350
351 struct RowColumnSize rcs_map[] = {
352 /* Sbk Radr Cadr MB Value */
353 {1, 11, 8, 8, 0x00840f00},
354 {1, 11, 9, 16, 0x00925f00},
355 {1, 11, 10, 32, 0x00a64f00},
356 {2, 12, 8, 32, 0x00c55f00},
357 {2, 12, 9, 64, 0x00d66f00},
358 {2, 12, 10, 128, 0x00e77f00},
359 {2, 12, 11, 256, 0x00ff8f00},
360 {2, 13, 11, 512, 0x00ff9f00},
361 {0, 0, 0, 0, 0x00000000}
362 };
363
364
365 i = 0;
366
367 while (rcs_map[i].banks != 0) {
368 if (rows == rcs_map[i].rows
369 && columns == rcs_map[i].columns
370 && (size / 1024 / 1024) == rcs_map[i].size)
371 return rcs_map[i].register_value;
372
373 i++;
374 }
375
376 return 0;
377}
378
379uint32 burst_to_len (uint32 support)
380{
381 if (support & 0x80)
382 return 0x7;
383 else if (support & 0x8)
384 return 0x3;
385 else if (support & 0x4)
386 return 0x2;
387 else if (support & 0x2)
388 return 0x1;
389 else if (support & 0x1)
390 return 0x0;
391
392 return 0;
393}
394
395long articiaS_ram_init (void)
396{
397 DECLARE_GLOBAL_DATA_PTR;
398
399 register uint32 i;
400 register uint32 value1;
401 register uint32 value2;
402 uint8 rom[128];
403 uint32 burst_len;
404 uint32 burst_support;
405 uint32 total_ram = 0;
406
407 struct dimm_bank banks[4]; /* FIXME: Move to initram */
7c7a23bd 408 uint32 busclock = gd->bus_clk;
c7de829c
WD
409 uint32 memclock = busclock;
410 uint32 reg32;
411 uint32 refresh_clocks;
412 uint8 auto_refresh;
413
414 memset (banks, 0, sizeof (struct dimm_bank) * 4);
415
416 detect_sdram (rom, 0, &banks[0]);
417 detect_sdram (rom, 1, &banks[2]);
418
419 for (i = 0; i < 4; i++) {
420 total_ram = total_ram + (banks[i].used * banks[i].size);
421 }
422
423 pci_write_cfg_long (0, 0, GLOBALINFO0, 0x117430c0);
424 pci_write_cfg_long (0, 0, HBUSACR0, 0x1f0100b0);
425 pci_write_cfg_long (0, 0, SRAM_CR, 0x00f12000); /* Note: Might also try 0x00f10000 (original: 0x00f12000) */
426 pci_write_cfg_byte (0, 0, DRAM_RAS_CTL0, 0x3f);
427 pci_write_cfg_byte (0, 0, DRAM_RAS_CTL1, 0x00); /* was: 0x04); */
428 pci_write_cfg_word (0, 0, DRAM_ECC0, 0x2020); /* was: 0x2400); No ECC yet */
429
430 /* FIXME: Move this stuff to seperate function, like setup_dimm_bank */
431 if (banks[0].used) {
432 value1 = get_reg_setting (banks[0].used + banks[1].used,
433 banks[0].rows, banks[0].columns,
434 banks[0].size);
435 } else {
436 value1 = 0;
437 }
438
439 if (banks[1].used) {
440 value2 = get_reg_setting (banks[0].used + banks[1].used,
441 banks[1].rows, banks[1].columns,
442 banks[1].size);
443 } else {
444 value2 = 0;
445 }
446
447 pci_write_cfg_long (0, 0, DIMM0_B0_SCR0, value1);
448 pci_write_cfg_long (0, 0, DIMM0_B1_SCR0, value2);
449
450 debug ("DIMM0_B0_SCR0 = 0x%08x\n", value1);
451 debug ("DIMM0_B1_SCR0 = 0x%08x\n", value2);
452
453 if (banks[2].used) {
454 value1 = get_reg_setting (banks[2].used + banks[3].used,
455 banks[2].rows, banks[2].columns,
456 banks[2].size);
457 } else {
458 value1 = 0;
459 }
460
461 if (banks[3].used) {
462 value2 = get_reg_setting (banks[2].used + banks[3].used,
463 banks[3].rows, banks[3].columns,
464 banks[3].size);
465 } else {
466 value2 = 0;
467 }
468
469 pci_write_cfg_long (0, 0, DIMM1_B2_SCR0, value1);
470 pci_write_cfg_long (0, 0, DIMM1_B3_SCR0, value2);
471
472 debug ("DIMM0_B2_SCR0 = 0x%08x\n", value1);
473 debug ("DIMM0_B3_SCR0 = 0x%08x\n", value2);
474
475 pci_write_cfg_long (0, 0, DIMM2_B4_SCR0, 0);
476 pci_write_cfg_long (0, 0, DIMM2_B5_SCR0, 0);
477 pci_write_cfg_long (0, 0, DIMM3_B6_SCR0, 0);
478 pci_write_cfg_long (0, 0, DIMM3_B7_SCR0, 0);
479
480 /* Determine timing */
481 select_cas (&banks[0], 0);
482 select_cas (&banks[2], 0);
483
484 /* FIXME: What about write recovery */
485 /* Auto refresh Precharge */
486#if 0
487 reg32 = (0x3 << 13) | (0x7 << 10) | ((banks[0].trp - 2) << 8) |
488 /* Write recovery CAS Latency */
489 (0x1 << 6) | (banks[0].cas_used << 4) |
490 /* RAS/CAS latency */
491 ((banks[0].trcd - 1) << 0);
492
493 reg32 |= ((0x3 << 13) | (0x7 << 10) | ((banks[2].trp - 2) << 8) |
494 (0x1 << 6) | (banks[2].cas_used << 4) |
495 ((banks[2].trcd - 1) << 0)) << 16;
496#else
497 if (100000000 == gd->bus_clk)
498 reg32 = 0x71737173;
499 else
500 reg32 = 0x69736973;
501#endif
502 pci_write_cfg_long (0, 0, DIMM0_TCR0, reg32);
503 debug ("DIMM0_TCR0 = 0x%08x\n", reg32);
504
505 /* Write default in DIMM2/3 (not used on A1) */
506 pci_write_cfg_long (0, 0, DIMM2_TCR0, 0x7d737d73);
507
508
509 /* Determine buffered/unbuffered mode for each SIMM. Uses first bank as reference (second, if present, uses the same) */
510 reg32 = pci_read_cfg_long (0, 0, DRAM_GCR0);
511 reg32 &= 0xFF00FFFF;
512
513#if 0
514 if (banks[0].used && banks[0].registered)
515 reg32 |= 0x1 << 16;
516
517 if (banks[2].used && banks[2].registered)
518 reg32 |= 0x1 << 18;
519#else
520 if (banks[0].registered || banks[2].registered)
521 reg32 |= 0x55 << 16;
522#endif
523 pci_write_cfg_long (0, 0, DRAM_GCR0, reg32);
524 debug ("DRAM_GCR0 = 0x%08x\n", reg32);
525
526 /* Determine refresh */
527 refresh_clocks = 0xffffffff;
528 auto_refresh = 1;
529
530 for (i = 0; i < 4; i++) {
531 if (banks[i].used) {
532 if (banks[i].auto_refresh == 0)
533 auto_refresh = 0;
534 if (banks[i].refresh_time < refresh_clocks)
535 refresh_clocks = banks[i].refresh_time;
536 }
537 }
538
539
540#if 1
541 /* It seems this is suggested by the ArticiaS data book */
542 if (100000000 == gd->bus_clk)
543 refresh_clocks = 1561;
544 else
545 refresh_clocks = 2083;
546#endif
547
548
549 debug ("Refresh set to %ld clocks, auto refresh %s\n",
550 refresh_clocks, auto_refresh ? "on" : "off");
551
552 pci_write_cfg_long (0, 0, DRAM_REFRESH0,
553 (1 << 16) | (1 << 15) | (auto_refresh << 12) |
554 (refresh_clocks));
555 debug ("DRAM_REFRESH0 = 0x%08x\n",
556 (1 << 16) | (1 << 15) | (auto_refresh << 12) |
557 (refresh_clocks));
558
559/* pci_write_cfg_long(0, 0, DRAM_REFRESH0, 0x00019400); */
560
561 /* Set mode registers */
562 /* FIXME: For now, set same burst len for all modules. Dunno if that's necessary */
563 /* Find a common burst len */
564 burst_support = 0xff;
565
566 if (banks[0].used)
567 burst_support = banks[0].burst_len;
568 if (banks[1].used)
569 burst_support = banks[1].burst_len;
570 if (banks[2].used)
571 burst_support = banks[2].burst_len;
572 if (banks[3].used)
573 burst_support = banks[3].burst_len;
574
8bde7f77 575 /*
c7de829c
WD
576 ** Mode register:
577 ** Bits Use
578 ** 0-2 Burst len
579 ** 3 Burst type (0 = sequential, 1 = interleave)
580 ** 4-6 CAS latency
581 ** 7-8 Operation mode (0 = default, all others invalid)
582 ** 9 Write burst
583 ** 10-11 Reserved
584 **
585 ** Mode register burst table:
586 ** A2 A1 A0 lenght
587 ** 0 0 0 1
588 ** 0 0 1 2
589 ** 0 1 0 4
590 ** 0 1 1 8
591 ** 1 0 0 invalid
592 ** 1 0 1 invalid
593 ** 1 1 0 invalid
594 ** 1 1 1 page (only valid for non-interleaved)
595 */
596
597 burst_len = burst_to_len (burst_support);
598 burst_len = 2; /* FIXME */
599
600 if (banks[0].used) {
601 pci_write_cfg_word (0, 0, DRAM_PCR0,
602 0x8000 | burst_len | (banks[0].cas_used << 4));
603 debug ("Mode bank 0: 0x%08x\n",
604 0x8000 | burst_len | (banks[0].cas_used << 4));
605 } else {
606 /* Seems to be needed to disable the bank */
607 pci_write_cfg_word (0, 0, DRAM_PCR0, 0x0000 | 0x032);
608 }
609
610 if (banks[1].used) {
611 pci_write_cfg_word (0, 0, DRAM_PCR0,
612 0x9000 | burst_len | (banks[1].cas_used << 4));
613 debug ("Mode bank 1: 0x%08x\n",
614 0x8000 | burst_len | (banks[1].cas_used << 4));
615 } else {
616 /* Seems to be needed to disable the bank */
617 pci_write_cfg_word (0, 0, DRAM_PCR0, 0x1000 | 0x032);
618 }
619
620
621 if (banks[2].used) {
622 pci_write_cfg_word (0, 0, DRAM_PCR0,
623 0xa000 | burst_len | (banks[2].cas_used << 4));
624 debug ("Mode bank 2: 0x%08x\n",
625 0x8000 | burst_len | (banks[2].cas_used << 4));
626 } else {
627 /* Seems to be needed to disable the bank */
628 pci_write_cfg_word (0, 0, DRAM_PCR0, 0x2000 | 0x032);
629 }
630
631
632 if (banks[3].used) {
633 pci_write_cfg_word (0, 0, DRAM_PCR0,
634 0xb000 | burst_len | (banks[3].cas_used << 4));
635 debug ("Mode bank 3: 0x%08x\n",
636 0x8000 | burst_len | (banks[3].cas_used << 4));
637 } else {
638 /* Seems to be needed to disable the bank */
639 pci_write_cfg_word (0, 0, DRAM_PCR0, 0x3000 | 0x032);
640 }
641
642
643 pci_write_cfg_word (0, 0, 0xba, 0x00);
644
645 return total_ram;
646}
647
648extern int drv_isa_kbd_init (void);
649
650int last_stage_init (void)
651{
652 drv_isa_kbd_init ();
653 return 0;
654}
655
656int overwrite_console (void)
657{
658 return (0);
659}
660
661#define in_8 read_byte
662#define out_8 write_byte
663
664static __inline__ unsigned long get_msr (void)
665{
666 unsigned long msr;
667
668 asm volatile ("mfmsr %0":"=r" (msr):);
669
670 return msr;
671}
672
673static __inline__ void set_msr (unsigned long msr)
674{
675 asm volatile ("mtmsr %0"::"r" (msr));
676}
677
678int board_pre_init (void)
679{
680 unsigned char c_value = 0;
681 unsigned long msr;
682
683 /* Basic init of PS/2 keyboard (needed for some reason)... */
684 /* Ripped from John's code */
685 while ((in_8 ((unsigned char *) 0xfe000064) & 0x02) != 0);
686 out_8 ((unsigned char *) 0xfe000064, 0xaa);
687 while ((in_8 ((unsigned char *) 0xfe000064) & 0x01) == 0);
688 c_value = in_8 ((unsigned char *) 0xfe000060);
689 while ((in_8 ((unsigned char *) 0xfe000064) & 0x02) != 0);
690 out_8 ((unsigned char *) 0xfe000064, 0xab);
691 while ((in_8 ((unsigned char *) 0xfe000064) & 0x01) == 0);
692 c_value = in_8 ((unsigned char *) 0xfe000060);
693 while ((in_8 ((unsigned char *) 0xfe000064) & 0x02) != 0);
694 out_8 ((unsigned char *) 0xfe000064, 0xae);
695/* while ((in_8((unsigned char *)0xfe000064) & 0x01) == 0); */
696/* c_value = in_8((unsigned char *)0xfe000060); */
697
698 /* Enable FPU */
699 msr = get_msr ();
700 set_msr (msr | MSR_FP);
701
702 via_calibrate_bus_freq ();
703
704 return 0;
705}