]> git.ipfire.org Git - people/ms/u-boot.git/blame - drivers/mtd/nand/atmel_nand.c
mtd: atmel_nand: alloc memory instead of use static array for pmecc data
[people/ms/u-boot.git] / drivers / mtd / nand / atmel_nand.c
CommitLineData
1079432e
SL
1/*
2 * (C) Copyright 2007-2008
c9e798d3 3 * Stelian Pop <stelian@popies.net>
1079432e
SL
4 * Lead Tech Design <www.leadtechdesign.com>
5 *
6 * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
7 *
bdfd59aa
WJ
8 * Add Programmable Multibit ECC support for various AT91 SoC
9 * (C) Copyright 2012 ATMEL, Hong Xu
10 *
1a459660 11 * SPDX-License-Identifier: GPL-2.0+
1079432e
SL
12 */
13
14#include <common.h>
74c076d6 15#include <asm/arch/hardware.h>
1079432e
SL
16#include <asm/arch/gpio.h>
17#include <asm/arch/at91_pio.h>
18
ddd85974 19#include <malloc.h>
1079432e 20#include <nand.h>
bdfd59aa 21#include <watchdog.h>
1079432e 22
7c27b7b1
NP
23#ifdef CONFIG_ATMEL_NAND_HWECC
24
25/* Register access macros */
26#define ecc_readl(add, reg) \
27 readl(AT91_BASE_SYS + add + ATMEL_ECC_##reg)
28#define ecc_writel(add, reg, value) \
29 writel((value), AT91_BASE_SYS + add + ATMEL_ECC_##reg)
30
31#include "atmel_nand_ecc.h" /* Hardware ECC registers */
32
bdfd59aa
WJ
33#ifdef CONFIG_ATMEL_NAND_HW_PMECC
34
35struct atmel_nand_host {
36 struct pmecc_regs __iomem *pmecc;
37 struct pmecc_errloc_regs __iomem *pmerrloc;
38 void __iomem *pmecc_rom_base;
39
40 u8 pmecc_corr_cap;
41 u16 pmecc_sector_size;
42 u32 pmecc_index_table_offset;
43
44 int pmecc_bytes_per_sector;
45 int pmecc_sector_number;
46 int pmecc_degree; /* Degree of remainders */
47 int pmecc_cw_len; /* Length of codeword */
48
49 /* lookup table for alpha_to and index_of */
50 void __iomem *pmecc_alpha_to;
51 void __iomem *pmecc_index_of;
52
53 /* data for pmecc computation */
ddd85974
WJ
54 int16_t *pmecc_smu;
55 int16_t *pmecc_partial_syn;
56 int16_t *pmecc_si;
57 int16_t *pmecc_lmu; /* polynomal order */
58 int *pmecc_mu;
59 int *pmecc_dmu;
60 int *pmecc_delta;
bdfd59aa
WJ
61};
62
63static struct atmel_nand_host pmecc_host;
64static struct nand_ecclayout atmel_pmecc_oobinfo;
65
66/*
67 * Return number of ecc bytes per sector according to sector size and
68 * correction capability
69 *
70 * Following table shows what at91 PMECC supported:
71 * Correction Capability Sector_512_bytes Sector_1024_bytes
72 * ===================== ================ =================
73 * 2-bits 4-bytes 4-bytes
74 * 4-bits 7-bytes 7-bytes
75 * 8-bits 13-bytes 14-bytes
76 * 12-bits 20-bytes 21-bytes
77 * 24-bits 39-bytes 42-bytes
78 */
79static int pmecc_get_ecc_bytes(int cap, int sector_size)
80{
81 int m = 12 + sector_size / 512;
82 return (m * cap + 7) / 8;
83}
84
85static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
86 int oobsize, int ecc_len)
87{
88 int i;
89
90 layout->eccbytes = ecc_len;
91
92 /* ECC will occupy the last ecc_len bytes continuously */
93 for (i = 0; i < ecc_len; i++)
94 layout->eccpos[i] = oobsize - ecc_len + i;
95
96 layout->oobfree[0].offset = 2;
97 layout->oobfree[0].length =
98 oobsize - ecc_len - layout->oobfree[0].offset;
99}
100
101static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
102{
103 int table_size;
104
105 table_size = host->pmecc_sector_size == 512 ?
106 PMECC_INDEX_TABLE_SIZE_512 : PMECC_INDEX_TABLE_SIZE_1024;
107
108 /* the ALPHA lookup table is right behind the INDEX lookup table. */
109 return host->pmecc_rom_base + host->pmecc_index_table_offset +
110 table_size * sizeof(int16_t);
111}
112
ddd85974
WJ
113static void pmecc_data_free(struct atmel_nand_host *host)
114{
115 free(host->pmecc_partial_syn);
116 free(host->pmecc_si);
117 free(host->pmecc_lmu);
118 free(host->pmecc_smu);
119 free(host->pmecc_mu);
120 free(host->pmecc_dmu);
121 free(host->pmecc_delta);
122}
123
124static int pmecc_data_alloc(struct atmel_nand_host *host)
125{
126 const int cap = host->pmecc_corr_cap;
127 int size;
128
129 size = (2 * cap + 1) * sizeof(int16_t);
130 host->pmecc_partial_syn = malloc(size);
131 host->pmecc_si = malloc(size);
132 host->pmecc_lmu = malloc((cap + 1) * sizeof(int16_t));
133 host->pmecc_smu = malloc((cap + 2) * size);
134
135 size = (cap + 1) * sizeof(int);
136 host->pmecc_mu = malloc(size);
137 host->pmecc_dmu = malloc(size);
138 host->pmecc_delta = malloc(size);
139
140 if (host->pmecc_partial_syn &&
141 host->pmecc_si &&
142 host->pmecc_lmu &&
143 host->pmecc_smu &&
144 host->pmecc_mu &&
145 host->pmecc_dmu &&
146 host->pmecc_delta)
147 return 0;
148
149 /* error happened */
150 pmecc_data_free(host);
151 return -ENOMEM;
152
153}
154
bdfd59aa
WJ
155static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
156{
157 struct nand_chip *nand_chip = mtd->priv;
158 struct atmel_nand_host *host = nand_chip->priv;
159 int i;
160 uint32_t value;
161
162 /* Fill odd syndromes */
163 for (i = 0; i < host->pmecc_corr_cap; i++) {
164 value = readl(&host->pmecc->rem_port[sector].rem[i / 2]);
165 if (i & 1)
166 value >>= 16;
167 value &= 0xffff;
168 host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
169 }
170}
171
172static void pmecc_substitute(struct mtd_info *mtd)
173{
174 struct nand_chip *nand_chip = mtd->priv;
175 struct atmel_nand_host *host = nand_chip->priv;
176 int16_t __iomem *alpha_to = host->pmecc_alpha_to;
177 int16_t __iomem *index_of = host->pmecc_index_of;
178 int16_t *partial_syn = host->pmecc_partial_syn;
179 const int cap = host->pmecc_corr_cap;
180 int16_t *si;
181 int i, j;
182
183 /* si[] is a table that holds the current syndrome value,
184 * an element of that table belongs to the field
185 */
186 si = host->pmecc_si;
187
188 memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
189
190 /* Computation 2t syndromes based on S(x) */
191 /* Odd syndromes */
192 for (i = 1; i < 2 * cap; i += 2) {
193 for (j = 0; j < host->pmecc_degree; j++) {
194 if (partial_syn[i] & (0x1 << j))
195 si[i] = readw(alpha_to + i * j) ^ si[i];
196 }
197 }
198 /* Even syndrome = (Odd syndrome) ** 2 */
199 for (i = 2, j = 1; j <= cap; i = ++j << 1) {
200 if (si[j] == 0) {
201 si[i] = 0;
202 } else {
203 int16_t tmp;
204
205 tmp = readw(index_of + si[j]);
206 tmp = (tmp * 2) % host->pmecc_cw_len;
207 si[i] = readw(alpha_to + tmp);
208 }
209 }
210}
211
212/*
213 * This function defines a Berlekamp iterative procedure for
214 * finding the value of the error location polynomial.
215 * The input is si[], initialize by pmecc_substitute().
216 * The output is smu[][].
217 *
218 * This function is written according to chip datasheet Chapter:
219 * Find the Error Location Polynomial Sigma(x) of Section:
220 * Programmable Multibit ECC Control (PMECC).
221 */
222static void pmecc_get_sigma(struct mtd_info *mtd)
223{
224 struct nand_chip *nand_chip = mtd->priv;
225 struct atmel_nand_host *host = nand_chip->priv;
226
227 int16_t *lmu = host->pmecc_lmu;
228 int16_t *si = host->pmecc_si;
229 int *mu = host->pmecc_mu;
230 int *dmu = host->pmecc_dmu; /* Discrepancy */
231 int *delta = host->pmecc_delta; /* Delta order */
232 int cw_len = host->pmecc_cw_len;
233 const int16_t cap = host->pmecc_corr_cap;
234 const int num = 2 * cap + 1;
235 int16_t __iomem *index_of = host->pmecc_index_of;
236 int16_t __iomem *alpha_to = host->pmecc_alpha_to;
237 int i, j, k;
238 uint32_t dmu_0_count, tmp;
239 int16_t *smu = host->pmecc_smu;
240
241 /* index of largest delta */
242 int ro;
243 int largest;
244 int diff;
245
246 /* Init the Sigma(x) */
247 memset(smu, 0, sizeof(int16_t) * ARRAY_SIZE(smu));
248
249 dmu_0_count = 0;
250
251 /* First Row */
252
253 /* Mu */
254 mu[0] = -1;
255
256 smu[0] = 1;
257
258 /* discrepancy set to 1 */
259 dmu[0] = 1;
260 /* polynom order set to 0 */
261 lmu[0] = 0;
262 /* delta[0] = (mu[0] * 2 - lmu[0]) >> 1; */
263 delta[0] = -1;
264
265 /* Second Row */
266
267 /* Mu */
268 mu[1] = 0;
269 /* Sigma(x) set to 1 */
270 smu[num] = 1;
271
272 /* discrepancy set to S1 */
273 dmu[1] = si[1];
274
275 /* polynom order set to 0 */
276 lmu[1] = 0;
277
278 /* delta[1] = (mu[1] * 2 - lmu[1]) >> 1; */
279 delta[1] = 0;
280
281 for (i = 1; i <= cap; i++) {
282 mu[i + 1] = i << 1;
283 /* Begin Computing Sigma (Mu+1) and L(mu) */
284 /* check if discrepancy is set to 0 */
285 if (dmu[i] == 0) {
286 dmu_0_count++;
287
288 tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
289 if ((cap - (lmu[i] >> 1) - 1) & 0x1)
290 tmp += 2;
291 else
292 tmp += 1;
293
294 if (dmu_0_count == tmp) {
295 for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
296 smu[(cap + 1) * num + j] =
297 smu[i * num + j];
298
299 lmu[cap + 1] = lmu[i];
300 return;
301 }
302
303 /* copy polynom */
304 for (j = 0; j <= lmu[i] >> 1; j++)
305 smu[(i + 1) * num + j] = smu[i * num + j];
306
307 /* copy previous polynom order to the next */
308 lmu[i + 1] = lmu[i];
309 } else {
310 ro = 0;
311 largest = -1;
312 /* find largest delta with dmu != 0 */
313 for (j = 0; j < i; j++) {
314 if ((dmu[j]) && (delta[j] > largest)) {
315 largest = delta[j];
316 ro = j;
317 }
318 }
319
320 /* compute difference */
321 diff = (mu[i] - mu[ro]);
322
323 /* Compute degree of the new smu polynomial */
324 if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
325 lmu[i + 1] = lmu[i];
326 else
327 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
328
329 /* Init smu[i+1] with 0 */
330 for (k = 0; k < num; k++)
331 smu[(i + 1) * num + k] = 0;
332
333 /* Compute smu[i+1] */
334 for (k = 0; k <= lmu[ro] >> 1; k++) {
335 int16_t a, b, c;
336
337 if (!(smu[ro * num + k] && dmu[i]))
338 continue;
339 a = readw(index_of + dmu[i]);
340 b = readw(index_of + dmu[ro]);
341 c = readw(index_of + smu[ro * num + k]);
342 tmp = a + (cw_len - b) + c;
343 a = readw(alpha_to + tmp % cw_len);
344 smu[(i + 1) * num + (k + diff)] = a;
345 }
346
347 for (k = 0; k <= lmu[i] >> 1; k++)
348 smu[(i + 1) * num + k] ^= smu[i * num + k];
349 }
350
351 /* End Computing Sigma (Mu+1) and L(mu) */
352 /* In either case compute delta */
353 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
354
355 /* Do not compute discrepancy for the last iteration */
356 if (i >= cap)
357 continue;
358
359 for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
360 tmp = 2 * (i - 1);
361 if (k == 0) {
362 dmu[i + 1] = si[tmp + 3];
363 } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
364 int16_t a, b, c;
365 a = readw(index_of +
366 smu[(i + 1) * num + k]);
367 b = si[2 * (i - 1) + 3 - k];
368 c = readw(index_of + b);
369 tmp = a + c;
370 tmp %= cw_len;
371 dmu[i + 1] = readw(alpha_to + tmp) ^
372 dmu[i + 1];
373 }
374 }
375 }
376}
377
378static int pmecc_err_location(struct mtd_info *mtd)
379{
380 struct nand_chip *nand_chip = mtd->priv;
381 struct atmel_nand_host *host = nand_chip->priv;
382 const int cap = host->pmecc_corr_cap;
383 const int num = 2 * cap + 1;
384 int sector_size = host->pmecc_sector_size;
385 int err_nbr = 0; /* number of error */
386 int roots_nbr; /* number of roots */
387 int i;
388 uint32_t val;
389 int16_t *smu = host->pmecc_smu;
390 int timeout = PMECC_MAX_TIMEOUT_US;
391
392 writel(PMERRLOC_DISABLE, &host->pmerrloc->eldis);
393
394 for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
395 writel(smu[(cap + 1) * num + i], &host->pmerrloc->sigma[i]);
396 err_nbr++;
397 }
398
399 val = PMERRLOC_ELCFG_NUM_ERRORS(err_nbr - 1);
400 if (sector_size == 1024)
401 val |= PMERRLOC_ELCFG_SECTOR_1024;
402
403 writel(val, &host->pmerrloc->elcfg);
404 writel(sector_size * 8 + host->pmecc_degree * cap,
405 &host->pmerrloc->elen);
406
407 while (--timeout) {
408 if (readl(&host->pmerrloc->elisr) & PMERRLOC_CALC_DONE)
409 break;
410 WATCHDOG_RESET();
411 udelay(1);
412 }
413
414 if (!timeout) {
415 printk(KERN_ERR "atmel_nand : Timeout to calculate PMECC error location\n");
416 return -1;
417 }
418
419 roots_nbr = (readl(&host->pmerrloc->elisr) & PMERRLOC_ERR_NUM_MASK)
420 >> 8;
421 /* Number of roots == degree of smu hence <= cap */
422 if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
423 return err_nbr - 1;
424
425 /* Number of roots does not match the degree of smu
426 * unable to correct error */
427 return -1;
428}
429
430static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
431 int sector_num, int extra_bytes, int err_nbr)
432{
433 struct nand_chip *nand_chip = mtd->priv;
434 struct atmel_nand_host *host = nand_chip->priv;
435 int i = 0;
436 int byte_pos, bit_pos, sector_size, pos;
437 uint32_t tmp;
438 uint8_t err_byte;
439
440 sector_size = host->pmecc_sector_size;
441
442 while (err_nbr) {
443 tmp = readl(&host->pmerrloc->el[i]) - 1;
444 byte_pos = tmp / 8;
445 bit_pos = tmp % 8;
446
447 if (byte_pos >= (sector_size + extra_bytes))
448 BUG(); /* should never happen */
449
450 if (byte_pos < sector_size) {
451 err_byte = *(buf + byte_pos);
452 *(buf + byte_pos) ^= (1 << bit_pos);
453
454 pos = sector_num * host->pmecc_sector_size + byte_pos;
455 printk(KERN_INFO "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
456 pos, bit_pos, err_byte, *(buf + byte_pos));
457 } else {
458 /* Bit flip in OOB area */
459 tmp = sector_num * host->pmecc_bytes_per_sector
460 + (byte_pos - sector_size);
461 err_byte = ecc[tmp];
462 ecc[tmp] ^= (1 << bit_pos);
463
464 pos = tmp + nand_chip->ecc.layout->eccpos[0];
465 printk(KERN_INFO "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
466 pos, bit_pos, err_byte, ecc[tmp]);
467 }
468
469 i++;
470 err_nbr--;
471 }
472
473 return;
474}
475
476static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
477 u8 *ecc)
478{
479 struct nand_chip *nand_chip = mtd->priv;
480 struct atmel_nand_host *host = nand_chip->priv;
481 int i, err_nbr, eccbytes;
482 uint8_t *buf_pos;
483
484 eccbytes = nand_chip->ecc.bytes;
485 for (i = 0; i < eccbytes; i++)
486 if (ecc[i] != 0xff)
487 goto normal_check;
488 /* Erased page, return OK */
489 return 0;
490
491normal_check:
492 for (i = 0; i < host->pmecc_sector_number; i++) {
493 err_nbr = 0;
494 if (pmecc_stat & 0x1) {
495 buf_pos = buf + i * host->pmecc_sector_size;
496
497 pmecc_gen_syndrome(mtd, i);
498 pmecc_substitute(mtd);
499 pmecc_get_sigma(mtd);
500
501 err_nbr = pmecc_err_location(mtd);
502 if (err_nbr == -1) {
503 printk(KERN_ERR "PMECC: Too many errors\n");
504 mtd->ecc_stats.failed++;
505 return -EIO;
506 } else {
507 pmecc_correct_data(mtd, buf_pos, ecc, i,
508 host->pmecc_bytes_per_sector, err_nbr);
509 mtd->ecc_stats.corrected += err_nbr;
510 }
511 }
512 pmecc_stat >>= 1;
513 }
514
515 return 0;
516}
517
518static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
dfe64e2c 519 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
bdfd59aa
WJ
520{
521 struct atmel_nand_host *host = chip->priv;
522 int eccsize = chip->ecc.size;
523 uint8_t *oob = chip->oob_poi;
524 uint32_t *eccpos = chip->ecc.layout->eccpos;
525 uint32_t stat;
526 int timeout = PMECC_MAX_TIMEOUT_US;
527
528 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
529 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
530 pmecc_writel(host->pmecc, cfg, ((pmecc_readl(host->pmecc, cfg))
531 & ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);
532
533 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
534 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
535
536 chip->read_buf(mtd, buf, eccsize);
537 chip->read_buf(mtd, oob, mtd->oobsize);
538
539 while (--timeout) {
540 if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
541 break;
542 WATCHDOG_RESET();
543 udelay(1);
544 }
545
546 if (!timeout) {
547 printk(KERN_ERR "atmel_nand : Timeout to read PMECC page\n");
548 return -1;
549 }
550
551 stat = pmecc_readl(host->pmecc, isr);
552 if (stat != 0)
553 if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0)
554 return -EIO;
555
556 return 0;
557}
558
dfe64e2c
SL
559static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
560 struct nand_chip *chip, const uint8_t *buf,
561 int oob_required)
bdfd59aa
WJ
562{
563 struct atmel_nand_host *host = chip->priv;
564 uint32_t *eccpos = chip->ecc.layout->eccpos;
565 int i, j;
566 int timeout = PMECC_MAX_TIMEOUT_US;
567
568 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
569 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
570
571 pmecc_writel(host->pmecc, cfg, (pmecc_readl(host->pmecc, cfg) |
572 PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);
573
574 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
575 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
576
577 chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
578
579 while (--timeout) {
580 if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
581 break;
582 WATCHDOG_RESET();
583 udelay(1);
584 }
585
586 if (!timeout) {
587 printk(KERN_ERR "atmel_nand : Timeout to read PMECC status, fail to write PMECC in oob\n");
dfe64e2c 588 goto out;
bdfd59aa
WJ
589 }
590
591 for (i = 0; i < host->pmecc_sector_number; i++) {
592 for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
593 int pos;
594
595 pos = i * host->pmecc_bytes_per_sector + j;
596 chip->oob_poi[eccpos[pos]] =
597 readb(&host->pmecc->ecc_port[i].ecc[j]);
598 }
599 }
600 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
dfe64e2c
SL
601out:
602 return 0;
bdfd59aa
WJ
603}
604
605static void atmel_pmecc_core_init(struct mtd_info *mtd)
606{
607 struct nand_chip *nand_chip = mtd->priv;
608 struct atmel_nand_host *host = nand_chip->priv;
609 uint32_t val = 0;
610 struct nand_ecclayout *ecc_layout;
611
612 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
613 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
614
615 switch (host->pmecc_corr_cap) {
616 case 2:
617 val = PMECC_CFG_BCH_ERR2;
618 break;
619 case 4:
620 val = PMECC_CFG_BCH_ERR4;
621 break;
622 case 8:
623 val = PMECC_CFG_BCH_ERR8;
624 break;
625 case 12:
626 val = PMECC_CFG_BCH_ERR12;
627 break;
628 case 24:
629 val = PMECC_CFG_BCH_ERR24;
630 break;
631 }
632
633 if (host->pmecc_sector_size == 512)
634 val |= PMECC_CFG_SECTOR512;
635 else if (host->pmecc_sector_size == 1024)
636 val |= PMECC_CFG_SECTOR1024;
637
638 switch (host->pmecc_sector_number) {
639 case 1:
640 val |= PMECC_CFG_PAGE_1SECTOR;
641 break;
642 case 2:
643 val |= PMECC_CFG_PAGE_2SECTORS;
644 break;
645 case 4:
646 val |= PMECC_CFG_PAGE_4SECTORS;
647 break;
648 case 8:
649 val |= PMECC_CFG_PAGE_8SECTORS;
650 break;
651 }
652
653 val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
654 | PMECC_CFG_AUTO_DISABLE);
655 pmecc_writel(host->pmecc, cfg, val);
656
657 ecc_layout = nand_chip->ecc.layout;
658 pmecc_writel(host->pmecc, sarea, mtd->oobsize - 1);
659 pmecc_writel(host->pmecc, saddr, ecc_layout->eccpos[0]);
660 pmecc_writel(host->pmecc, eaddr,
661 ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
662 /* See datasheet about PMECC Clock Control Register */
663 pmecc_writel(host->pmecc, clk, PMECC_CLK_133MHZ);
664 pmecc_writel(host->pmecc, idr, 0xff);
665 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
666}
667
668static int atmel_pmecc_nand_init_params(struct nand_chip *nand,
669 struct mtd_info *mtd)
670{
671 struct atmel_nand_host *host;
672 int cap, sector_size;
673
674 host = nand->priv = &pmecc_host;
675
676 nand->ecc.mode = NAND_ECC_HW;
677 nand->ecc.calculate = NULL;
678 nand->ecc.correct = NULL;
679 nand->ecc.hwctl = NULL;
680
681 cap = host->pmecc_corr_cap = CONFIG_PMECC_CAP;
682 sector_size = host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
b2d96dc2
WJ
683 if (host->pmecc_sector_size == 512)
684 host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_512;
685 else
686 host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_1024;
bdfd59aa 687
b9c83c68
WJ
688 MTDDEBUG(MTD_DEBUG_LEVEL1,
689 "Initialize PMECC params, cap: %d, sector: %d\n",
690 cap, sector_size);
bdfd59aa
WJ
691
692 host->pmecc = (struct pmecc_regs __iomem *) ATMEL_BASE_PMECC;
693 host->pmerrloc = (struct pmecc_errloc_regs __iomem *)
694 ATMEL_BASE_PMERRLOC;
695 host->pmecc_rom_base = (void __iomem *) ATMEL_BASE_ROM;
696
697 /* ECC is calculated for the whole page (1 step) */
698 nand->ecc.size = mtd->writesize;
699
700 /* set ECC page size and oob layout */
701 switch (mtd->writesize) {
702 case 2048:
703 case 4096:
704 host->pmecc_degree = PMECC_GF_DIMENSION_13;
705 host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
706 host->pmecc_sector_number = mtd->writesize / sector_size;
707 host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
708 cap, sector_size);
709 host->pmecc_alpha_to = pmecc_get_alpha_to(host);
710 host->pmecc_index_of = host->pmecc_rom_base +
711 host->pmecc_index_table_offset;
712
713 nand->ecc.steps = 1;
714 nand->ecc.bytes = host->pmecc_bytes_per_sector *
715 host->pmecc_sector_number;
716 if (nand->ecc.bytes > mtd->oobsize - 2) {
717 printk(KERN_ERR "No room for ECC bytes\n");
718 return -EINVAL;
719 }
720 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
721 mtd->oobsize,
722 nand->ecc.bytes);
723 nand->ecc.layout = &atmel_pmecc_oobinfo;
724 break;
725 case 512:
726 case 1024:
727 /* TODO */
728 printk(KERN_ERR "Unsupported page size for PMECC, use Software ECC\n");
729 default:
730 /* page size not handled by HW ECC */
731 /* switching back to soft ECC */
732 nand->ecc.mode = NAND_ECC_SOFT;
733 nand->ecc.read_page = NULL;
734 nand->ecc.postpad = 0;
735 nand->ecc.prepad = 0;
736 nand->ecc.bytes = 0;
737 return 0;
738 }
739
ddd85974
WJ
740 /* Allocate data for PMECC computation */
741 if (pmecc_data_alloc(host)) {
742 dev_err(host->dev, "Cannot allocate memory for PMECC computation!\n");
743 return -ENOMEM;
744 }
745
bdfd59aa
WJ
746 nand->ecc.read_page = atmel_nand_pmecc_read_page;
747 nand->ecc.write_page = atmel_nand_pmecc_write_page;
dfe64e2c 748 nand->ecc.strength = cap;
bdfd59aa
WJ
749
750 atmel_pmecc_core_init(mtd);
751
752 return 0;
753}
754
755#else
756
7c27b7b1
NP
757/* oob layout for large page size
758 * bad block info is on bytes 0 and 1
759 * the bytes have to be consecutives to avoid
760 * several NAND_CMD_RNDOUT during read
761 */
762static struct nand_ecclayout atmel_oobinfo_large = {
763 .eccbytes = 4,
764 .eccpos = {60, 61, 62, 63},
765 .oobfree = {
766 {2, 58}
767 },
768};
769
770/* oob layout for small page size
771 * bad block info is on bytes 4 and 5
772 * the bytes have to be consecutives to avoid
773 * several NAND_CMD_RNDOUT during read
774 */
775static struct nand_ecclayout atmel_oobinfo_small = {
776 .eccbytes = 4,
777 .eccpos = {0, 1, 2, 3},
778 .oobfree = {
779 {6, 10}
780 },
781};
782
783/*
784 * Calculate HW ECC
785 *
786 * function called after a write
787 *
788 * mtd: MTD block structure
789 * dat: raw data (unused)
790 * ecc_code: buffer for ECC
791 */
792static int atmel_nand_calculate(struct mtd_info *mtd,
793 const u_char *dat, unsigned char *ecc_code)
794{
7c27b7b1
NP
795 unsigned int ecc_value;
796
797 /* get the first 2 ECC bytes */
798 ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR);
799
800 ecc_code[0] = ecc_value & 0xFF;
801 ecc_code[1] = (ecc_value >> 8) & 0xFF;
802
803 /* get the last 2 ECC bytes */
804 ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, NPR) & ATMEL_ECC_NPARITY;
805
806 ecc_code[2] = ecc_value & 0xFF;
807 ecc_code[3] = (ecc_value >> 8) & 0xFF;
808
809 return 0;
810}
811
812/*
813 * HW ECC read page function
814 *
815 * mtd: mtd info structure
816 * chip: nand chip info structure
817 * buf: buffer to store read data
dfe64e2c 818 * oob_required: caller expects OOB data read to chip->oob_poi
7c27b7b1 819 */
dfe64e2c
SL
820static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
821 uint8_t *buf, int oob_required, int page)
7c27b7b1
NP
822{
823 int eccsize = chip->ecc.size;
824 int eccbytes = chip->ecc.bytes;
825 uint32_t *eccpos = chip->ecc.layout->eccpos;
826 uint8_t *p = buf;
827 uint8_t *oob = chip->oob_poi;
828 uint8_t *ecc_pos;
829 int stat;
830
831 /* read the page */
832 chip->read_buf(mtd, p, eccsize);
833
834 /* move to ECC position if needed */
835 if (eccpos[0] != 0) {
836 /* This only works on large pages
837 * because the ECC controller waits for
838 * NAND_CMD_RNDOUTSTART after the
839 * NAND_CMD_RNDOUT.
840 * anyway, for small pages, the eccpos[0] == 0
841 */
842 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
843 mtd->writesize + eccpos[0], -1);
844 }
845
846 /* the ECC controller needs to read the ECC just after the data */
847 ecc_pos = oob + eccpos[0];
848 chip->read_buf(mtd, ecc_pos, eccbytes);
849
850 /* check if there's an error */
851 stat = chip->ecc.correct(mtd, p, oob, NULL);
852
853 if (stat < 0)
854 mtd->ecc_stats.failed++;
855 else
856 mtd->ecc_stats.corrected += stat;
857
858 /* get back to oob start (end of page) */
859 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
860
861 /* read the oob */
862 chip->read_buf(mtd, oob, mtd->oobsize);
863
864 return 0;
865}
866
867/*
868 * HW ECC Correction
869 *
870 * function called after a read
871 *
872 * mtd: MTD block structure
873 * dat: raw data read from the chip
874 * read_ecc: ECC from the chip (unused)
875 * isnull: unused
876 *
877 * Detect and correct a 1 bit error for a page
878 */
879static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
880 u_char *read_ecc, u_char *isnull)
881{
882 struct nand_chip *nand_chip = mtd->priv;
ae79794e 883 unsigned int ecc_status;
7c27b7b1
NP
884 unsigned int ecc_word, ecc_bit;
885
886 /* get the status from the Status Register */
887 ecc_status = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, SR);
888
889 /* if there's no error */
890 if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
891 return 0;
892
893 /* get error bit offset (4 bits) */
894 ecc_bit = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_BITADDR;
895 /* get word address (12 bits) */
896 ecc_word = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_WORDADDR;
897 ecc_word >>= 4;
898
899 /* if there are multiple errors */
900 if (ecc_status & ATMEL_ECC_MULERR) {
901 /* check if it is a freshly erased block
902 * (filled with 0xff) */
903 if ((ecc_bit == ATMEL_ECC_BITADDR)
904 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
905 /* the block has just been erased, return OK */
906 return 0;
907 }
908 /* it doesn't seems to be a freshly
909 * erased block.
910 * We can't correct so many errors */
911 printk(KERN_WARNING "atmel_nand : multiple errors detected."
912 " Unable to correct.\n");
913 return -EIO;
914 }
915
916 /* if there's a single bit error : we can correct it */
917 if (ecc_status & ATMEL_ECC_ECCERR) {
918 /* there's nothing much to do here.
919 * the bit error is on the ECC itself.
920 */
921 printk(KERN_WARNING "atmel_nand : one bit error on ECC code."
922 " Nothing to correct\n");
923 return 0;
924 }
925
926 printk(KERN_WARNING "atmel_nand : one bit error on data."
927 " (word offset in the page :"
928 " 0x%x bit offset : 0x%x)\n",
929 ecc_word, ecc_bit);
930 /* correct the error */
931 if (nand_chip->options & NAND_BUSWIDTH_16) {
932 /* 16 bits words */
933 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
934 } else {
935 /* 8 bits words */
936 dat[ecc_word] ^= (1 << ecc_bit);
937 }
938 printk(KERN_WARNING "atmel_nand : error corrected\n");
939 return 1;
940}
941
942/*
943 * Enable HW ECC : unused on most chips
944 */
945static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
946{
947}
fe2185ea
WJ
948
949int atmel_hwecc_nand_init_param(struct nand_chip *nand, struct mtd_info *mtd)
950{
951 nand->ecc.mode = NAND_ECC_HW;
952 nand->ecc.calculate = atmel_nand_calculate;
953 nand->ecc.correct = atmel_nand_correct;
954 nand->ecc.hwctl = atmel_nand_hwctl;
955 nand->ecc.read_page = atmel_nand_read_page;
956 nand->ecc.bytes = 4;
957
958 if (nand->ecc.mode == NAND_ECC_HW) {
959 /* ECC is calculated for the whole page (1 step) */
960 nand->ecc.size = mtd->writesize;
961
962 /* set ECC page size and oob layout */
963 switch (mtd->writesize) {
964 case 512:
965 nand->ecc.layout = &atmel_oobinfo_small;
966 ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
967 ATMEL_ECC_PAGESIZE_528);
968 break;
969 case 1024:
970 nand->ecc.layout = &atmel_oobinfo_large;
971 ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
972 ATMEL_ECC_PAGESIZE_1056);
973 break;
974 case 2048:
975 nand->ecc.layout = &atmel_oobinfo_large;
976 ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
977 ATMEL_ECC_PAGESIZE_2112);
978 break;
979 case 4096:
980 nand->ecc.layout = &atmel_oobinfo_large;
981 ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
982 ATMEL_ECC_PAGESIZE_4224);
983 break;
984 default:
985 /* page size not handled by HW ECC */
986 /* switching back to soft ECC */
987 nand->ecc.mode = NAND_ECC_SOFT;
988 nand->ecc.calculate = NULL;
989 nand->ecc.correct = NULL;
990 nand->ecc.hwctl = NULL;
991 nand->ecc.read_page = NULL;
992 nand->ecc.postpad = 0;
993 nand->ecc.prepad = 0;
994 nand->ecc.bytes = 0;
995 break;
996 }
997 }
998
999 return 0;
1000}
1001
bdfd59aa
WJ
1002#endif /* CONFIG_ATMEL_NAND_HW_PMECC */
1003
1004#endif /* CONFIG_ATMEL_NAND_HWECC */
7c27b7b1 1005
74c076d6 1006static void at91_nand_hwcontrol(struct mtd_info *mtd,
1079432e
SL
1007 int cmd, unsigned int ctrl)
1008{
1009 struct nand_chip *this = mtd->priv;
1010
1011 if (ctrl & NAND_CTRL_CHANGE) {
1012 ulong IO_ADDR_W = (ulong) this->IO_ADDR_W;
74c076d6
JCPV
1013 IO_ADDR_W &= ~(CONFIG_SYS_NAND_MASK_ALE
1014 | CONFIG_SYS_NAND_MASK_CLE);
1079432e
SL
1015
1016 if (ctrl & NAND_CLE)
74c076d6 1017 IO_ADDR_W |= CONFIG_SYS_NAND_MASK_CLE;
1079432e 1018 if (ctrl & NAND_ALE)
74c076d6 1019 IO_ADDR_W |= CONFIG_SYS_NAND_MASK_ALE;
1079432e 1020
67a490d6 1021#ifdef CONFIG_SYS_NAND_ENABLE_PIN
74c076d6
JCPV
1022 at91_set_gpio_value(CONFIG_SYS_NAND_ENABLE_PIN,
1023 !(ctrl & NAND_NCE));
67a490d6 1024#endif
1079432e
SL
1025 this->IO_ADDR_W = (void *) IO_ADDR_W;
1026 }
1027
1028 if (cmd != NAND_CMD_NONE)
1029 writeb(cmd, this->IO_ADDR_W);
1030}
1031
74c076d6
JCPV
1032#ifdef CONFIG_SYS_NAND_READY_PIN
1033static int at91_nand_ready(struct mtd_info *mtd)
1079432e 1034{
74c076d6 1035 return at91_get_gpio_value(CONFIG_SYS_NAND_READY_PIN);
1079432e 1036}
74c076d6 1037#endif
1079432e 1038
fe2185ea
WJ
1039#ifndef CONFIG_SYS_NAND_BASE_LIST
1040#define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }
7c27b7b1 1041#endif
fe2185ea
WJ
1042static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
1043static ulong base_addr[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST;
1044
1045int atmel_nand_chip_init(int devnum, ulong base_addr)
1046{
1047 int ret;
1048 struct mtd_info *mtd = &nand_info[devnum];
1049 struct nand_chip *nand = &nand_chip[devnum];
1050
1051 mtd->priv = nand;
1052 nand->IO_ADDR_R = nand->IO_ADDR_W = (void __iomem *)base_addr;
7c27b7b1 1053
1079432e
SL
1054 nand->ecc.mode = NAND_ECC_SOFT;
1055#ifdef CONFIG_SYS_NAND_DBW_16
1056 nand->options = NAND_BUSWIDTH_16;
1057#endif
74c076d6
JCPV
1058 nand->cmd_ctrl = at91_nand_hwcontrol;
1059#ifdef CONFIG_SYS_NAND_READY_PIN
1060 nand->dev_ready = at91_nand_ready;
1061#endif
1079432e
SL
1062 nand->chip_delay = 20;
1063
fe2185ea
WJ
1064 ret = nand_scan_ident(mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
1065 if (ret)
1066 return ret;
7c27b7b1
NP
1067
1068#ifdef CONFIG_ATMEL_NAND_HWECC
bdfd59aa
WJ
1069#ifdef CONFIG_ATMEL_NAND_HW_PMECC
1070 ret = atmel_pmecc_nand_init_params(nand, mtd);
1071#else
fe2185ea 1072 ret = atmel_hwecc_nand_init_param(nand, mtd);
bdfd59aa 1073#endif
fe2185ea
WJ
1074 if (ret)
1075 return ret;
1076#endif
7c27b7b1 1077
fe2185ea
WJ
1078 ret = nand_scan_tail(mtd);
1079 if (!ret)
1080 nand_register(devnum);
7c27b7b1 1081
fe2185ea
WJ
1082 return ret;
1083}
7c27b7b1 1084
fe2185ea
WJ
1085void board_nand_init(void)
1086{
1087 int i;
1088 for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
1089 if (atmel_nand_chip_init(i, base_addr[i]))
1090 printk(KERN_ERR "atmel_nand: Fail to initialize #%d chip",
1091 i);
1079432e 1092}