]> git.ipfire.org Git - people/ms/u-boot.git/blame - drivers/mtd/nand/denali.c
mtd: nand: Add page argument to write_page() etc.
[people/ms/u-boot.git] / drivers / mtd / nand / denali.c
CommitLineData
3eb3e72a
CLS
1/*
2 * Copyright (C) 2014 Panasonic Corporation
3 * Copyright (C) 2013-2014, Altera Corporation <www.altera.com>
4 * Copyright (C) 2009-2010, Intel Corporation and its suppliers.
5 *
6 * SPDX-License-Identifier: GPL-2.0+
7 */
8
9#include <common.h>
10#include <malloc.h>
11#include <nand.h>
12#include <asm/errno.h>
13#include <asm/io.h>
14
15#include "denali.h"
16
17#define NAND_DEFAULT_TIMINGS -1
18
19static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
20
d3963721
SW
21/*
22 * We define a macro here that combines all interrupts this driver uses into
23 * a single constant value, for convenience.
24 */
3eb3e72a
CLS
25#define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \
26 INTR_STATUS__ECC_TRANSACTION_DONE | \
27 INTR_STATUS__ECC_ERR | \
28 INTR_STATUS__PROGRAM_FAIL | \
29 INTR_STATUS__LOAD_COMP | \
30 INTR_STATUS__PROGRAM_COMP | \
31 INTR_STATUS__TIME_OUT | \
32 INTR_STATUS__ERASE_FAIL | \
33 INTR_STATUS__RST_COMP | \
34 INTR_STATUS__ERASE_COMP | \
35 INTR_STATUS__ECC_UNCOR_ERR | \
36 INTR_STATUS__INT_ACT | \
37 INTR_STATUS__LOCKED_BLK)
38
d3963721
SW
39/*
40 * indicates whether or not the internal value for the flash bank is
41 * valid or not
42 */
3eb3e72a
CLS
43#define CHIP_SELECT_INVALID -1
44
45#define SUPPORT_8BITECC 1
46
47/*
48 * this macro allows us to convert from an MTD structure to our own
49 * device context (denali) structure.
50 */
17cb4b8f
SW
51#define mtd_to_denali(m) \
52 container_of(mtd_to_nand(m), struct denali_nand_info, nand)
3eb3e72a 53
d3963721
SW
54/*
55 * These constants are defined by the driver to enable common driver
56 * configuration options.
57 */
3eb3e72a
CLS
58#define SPARE_ACCESS 0x41
59#define MAIN_ACCESS 0x42
60#define MAIN_SPARE_ACCESS 0x43
d3963721 61#define PIPELINE_ACCESS 0x2000
3eb3e72a
CLS
62
63#define DENALI_UNLOCK_START 0x10
64#define DENALI_UNLOCK_END 0x11
65#define DENALI_LOCK 0x21
66#define DENALI_LOCK_TIGHT 0x31
67#define DENALI_BUFFER_LOAD 0x60
68#define DENALI_BUFFER_WRITE 0x62
69
70#define DENALI_READ 0
71#define DENALI_WRITE 0x100
72
73/* types of device accesses. We can issue commands and get status */
74#define COMMAND_CYCLE 0
75#define ADDR_CYCLE 1
76#define STATUS_CYCLE 2
77
d3963721
SW
78/*
79 * this is a helper macro that allows us to
80 * format the bank into the proper bits for the controller
81 */
3eb3e72a
CLS
82#define BANK(x) ((x) << 24)
83
84/* Interrupts are cleared by writing a 1 to the appropriate status bit */
85static inline void clear_interrupt(struct denali_nand_info *denali,
86 uint32_t irq_mask)
87{
88 uint32_t intr_status_reg;
89
90 intr_status_reg = INTR_STATUS(denali->flash_bank);
91
92 writel(irq_mask, denali->flash_reg + intr_status_reg);
93}
94
95static uint32_t read_interrupt_status(struct denali_nand_info *denali)
96{
97 uint32_t intr_status_reg;
98
99 intr_status_reg = INTR_STATUS(denali->flash_bank);
100
101 return readl(denali->flash_reg + intr_status_reg);
102}
103
104static void clear_interrupts(struct denali_nand_info *denali)
105{
106 uint32_t status;
107
108 status = read_interrupt_status(denali);
109 clear_interrupt(denali, status);
110
111 denali->irq_status = 0;
112}
113
114static void denali_irq_enable(struct denali_nand_info *denali,
115 uint32_t int_mask)
116{
117 int i;
118
119 for (i = 0; i < denali->max_banks; ++i)
120 writel(int_mask, denali->flash_reg + INTR_EN(i));
121}
122
123static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
124{
125 unsigned long timeout = 1000000;
126 uint32_t intr_status;
127
128 do {
129 intr_status = read_interrupt_status(denali) & DENALI_IRQ_ALL;
130 if (intr_status & irq_mask) {
131 denali->irq_status &= ~irq_mask;
132 /* our interrupt was detected */
133 break;
134 }
135 udelay(1);
136 timeout--;
137 } while (timeout != 0);
138
139 if (timeout == 0) {
140 /* timeout */
141 printf("Denali timeout with interrupt status %08x\n",
142 read_interrupt_status(denali));
143 intr_status = 0;
144 }
145 return intr_status;
146}
147
148/*
149 * Certain operations for the denali NAND controller use an indexed mode to
150 * read/write data. The operation is performed by writing the address value
151 * of the command to the device memory followed by the data. This function
152 * abstracts this common operation.
d3963721 153 */
3eb3e72a
CLS
154static void index_addr(struct denali_nand_info *denali,
155 uint32_t address, uint32_t data)
156{
157 writel(address, denali->flash_mem + INDEX_CTRL_REG);
158 writel(data, denali->flash_mem + INDEX_DATA_REG);
159}
160
161/* Perform an indexed read of the device */
162static void index_addr_read_data(struct denali_nand_info *denali,
163 uint32_t address, uint32_t *pdata)
164{
165 writel(address, denali->flash_mem + INDEX_CTRL_REG);
166 *pdata = readl(denali->flash_mem + INDEX_DATA_REG);
167}
168
d3963721
SW
169/*
170 * We need to buffer some data for some of the NAND core routines.
171 * The operations manage buffering that data.
172 */
3eb3e72a
CLS
173static void reset_buf(struct denali_nand_info *denali)
174{
175 denali->buf.head = 0;
176 denali->buf.tail = 0;
177}
178
179static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
180{
181 denali->buf.buf[denali->buf.tail++] = byte;
182}
183
184/* resets a specific device connected to the core */
185static void reset_bank(struct denali_nand_info *denali)
186{
187 uint32_t irq_status;
d3963721 188 uint32_t irq_mask = INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT;
3eb3e72a
CLS
189
190 clear_interrupts(denali);
191
192 writel(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
193
194 irq_status = wait_for_irq(denali, irq_mask);
195 if (irq_status & INTR_STATUS__TIME_OUT)
196 debug("reset bank failed.\n");
197}
198
199/* Reset the flash controller */
200static uint32_t denali_nand_reset(struct denali_nand_info *denali)
201{
d3963721 202 int i;
3eb3e72a
CLS
203
204 for (i = 0; i < denali->max_banks; i++)
205 writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
206 denali->flash_reg + INTR_STATUS(i));
207
208 for (i = 0; i < denali->max_banks; i++) {
209 writel(1 << i, denali->flash_reg + DEVICE_RESET);
210 while (!(readl(denali->flash_reg + INTR_STATUS(i)) &
211 (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
212 if (readl(denali->flash_reg + INTR_STATUS(i)) &
213 INTR_STATUS__TIME_OUT)
214 debug("NAND Reset operation timed out on bank"
215 " %d\n", i);
216 }
217
218 for (i = 0; i < denali->max_banks; i++)
219 writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
220 denali->flash_reg + INTR_STATUS(i));
221
222 return 0;
223}
224
225/*
226 * this routine calculates the ONFI timing values for a given mode and
227 * programs the clocking register accordingly. The mode is determined by
228 * the get_onfi_nand_para routine.
229 */
230static void nand_onfi_timing_set(struct denali_nand_info *denali,
231 uint16_t mode)
232{
233 uint32_t trea[6] = {40, 30, 25, 20, 20, 16};
234 uint32_t trp[6] = {50, 25, 17, 15, 12, 10};
235 uint32_t treh[6] = {30, 15, 15, 10, 10, 7};
236 uint32_t trc[6] = {100, 50, 35, 30, 25, 20};
237 uint32_t trhoh[6] = {0, 15, 15, 15, 15, 15};
238 uint32_t trloh[6] = {0, 0, 0, 0, 5, 5};
239 uint32_t tcea[6] = {100, 45, 30, 25, 25, 25};
240 uint32_t tadl[6] = {200, 100, 100, 100, 70, 70};
241 uint32_t trhw[6] = {200, 100, 100, 100, 100, 100};
242 uint32_t trhz[6] = {200, 100, 100, 100, 100, 100};
243 uint32_t twhr[6] = {120, 80, 80, 60, 60, 60};
244 uint32_t tcs[6] = {70, 35, 25, 25, 20, 15};
245
3eb3e72a
CLS
246 uint32_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
247 uint32_t dv_window = 0;
248 uint32_t en_lo, en_hi;
249 uint32_t acc_clks;
250 uint32_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
251
252 en_lo = DIV_ROUND_UP(trp[mode], CLK_X);
253 en_hi = DIV_ROUND_UP(treh[mode], CLK_X);
254 if ((en_hi * CLK_X) < (treh[mode] + 2))
255 en_hi++;
256
257 if ((en_lo + en_hi) * CLK_X < trc[mode])
258 en_lo += DIV_ROUND_UP((trc[mode] - (en_lo + en_hi) * CLK_X),
259 CLK_X);
260
261 if ((en_lo + en_hi) < CLK_MULTI)
262 en_lo += CLK_MULTI - en_lo - en_hi;
263
264 while (dv_window < 8) {
265 data_invalid_rhoh = en_lo * CLK_X + trhoh[mode];
266
267 data_invalid_rloh = (en_lo + en_hi) * CLK_X + trloh[mode];
268
d3963721
SW
269 data_invalid = data_invalid_rhoh < data_invalid_rloh ?
270 data_invalid_rhoh : data_invalid_rloh;
3eb3e72a
CLS
271
272 dv_window = data_invalid - trea[mode];
273
274 if (dv_window < 8)
275 en_lo++;
276 }
277
278 acc_clks = DIV_ROUND_UP(trea[mode], CLK_X);
279
d3963721 280 while (acc_clks * CLK_X - trea[mode] < 3)
3eb3e72a
CLS
281 acc_clks++;
282
d3963721 283 if (data_invalid - acc_clks * CLK_X < 2)
3eb3e72a
CLS
284 debug("%s, Line %d: Warning!\n", __FILE__, __LINE__);
285
286 addr_2_data = DIV_ROUND_UP(tadl[mode], CLK_X);
287 re_2_we = DIV_ROUND_UP(trhw[mode], CLK_X);
288 re_2_re = DIV_ROUND_UP(trhz[mode], CLK_X);
289 we_2_re = DIV_ROUND_UP(twhr[mode], CLK_X);
290 cs_cnt = DIV_ROUND_UP((tcs[mode] - trp[mode]), CLK_X);
3eb3e72a
CLS
291 if (cs_cnt == 0)
292 cs_cnt = 1;
293
294 if (tcea[mode]) {
d3963721 295 while (cs_cnt * CLK_X + trea[mode] < tcea[mode])
3eb3e72a
CLS
296 cs_cnt++;
297 }
298
299 /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
d3963721
SW
300 if (readl(denali->flash_reg + MANUFACTURER_ID) == 0 &&
301 readl(denali->flash_reg + DEVICE_ID) == 0x88)
3eb3e72a
CLS
302 acc_clks = 6;
303
304 writel(acc_clks, denali->flash_reg + ACC_CLKS);
305 writel(re_2_we, denali->flash_reg + RE_2_WE);
306 writel(re_2_re, denali->flash_reg + RE_2_RE);
307 writel(we_2_re, denali->flash_reg + WE_2_RE);
308 writel(addr_2_data, denali->flash_reg + ADDR_2_DATA);
309 writel(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
310 writel(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
311 writel(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
312}
313
314/* queries the NAND device to see what ONFI modes it supports. */
315static uint32_t get_onfi_nand_para(struct denali_nand_info *denali)
316{
317 int i;
d3963721 318
3eb3e72a
CLS
319 /*
320 * we needn't to do a reset here because driver has already
321 * reset all the banks before
322 */
323 if (!(readl(denali->flash_reg + ONFI_TIMING_MODE) &
324 ONFI_TIMING_MODE__VALUE))
325 return -EIO;
326
327 for (i = 5; i > 0; i--) {
328 if (readl(denali->flash_reg + ONFI_TIMING_MODE) &
329 (0x01 << i))
330 break;
331 }
332
333 nand_onfi_timing_set(denali, i);
334
d3963721
SW
335 /*
336 * By now, all the ONFI devices we know support the page cache
337 * rw feature. So here we enable the pipeline_rw_ahead feature
338 */
339
3eb3e72a
CLS
340 return 0;
341}
342
343static void get_samsung_nand_para(struct denali_nand_info *denali,
344 uint8_t device_id)
345{
346 if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
347 /* Set timing register values according to datasheet */
348 writel(5, denali->flash_reg + ACC_CLKS);
349 writel(20, denali->flash_reg + RE_2_WE);
350 writel(12, denali->flash_reg + WE_2_RE);
351 writel(14, denali->flash_reg + ADDR_2_DATA);
352 writel(3, denali->flash_reg + RDWR_EN_LO_CNT);
353 writel(2, denali->flash_reg + RDWR_EN_HI_CNT);
354 writel(2, denali->flash_reg + CS_SETUP_CNT);
355 }
356}
357
358static void get_toshiba_nand_para(struct denali_nand_info *denali)
359{
360 uint32_t tmp;
361
d3963721
SW
362 /*
363 * Workaround to fix a controller bug which reports a wrong
364 * spare area size for some kind of Toshiba NAND device
365 */
3eb3e72a
CLS
366 if ((readl(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
367 (readl(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
368 writel(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
369 tmp = readl(denali->flash_reg + DEVICES_CONNECTED) *
370 readl(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
371 writel(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
372 }
373}
374
375static void get_hynix_nand_para(struct denali_nand_info *denali,
376 uint8_t device_id)
377{
378 uint32_t main_size, spare_size;
379
380 switch (device_id) {
381 case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
382 case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
383 writel(128, denali->flash_reg + PAGES_PER_BLOCK);
384 writel(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
385 writel(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
386 main_size = 4096 *
387 readl(denali->flash_reg + DEVICES_CONNECTED);
388 spare_size = 224 *
389 readl(denali->flash_reg + DEVICES_CONNECTED);
390 writel(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
391 writel(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
392 writel(0, denali->flash_reg + DEVICE_WIDTH);
393 break;
394 default:
d3963721 395 debug("Spectra: Unknown Hynix NAND (Device ID: 0x%x).\n"
3eb3e72a
CLS
396 "Will use default parameter values instead.\n",
397 device_id);
398 }
399}
400
401/*
402 * determines how many NAND chips are connected to the controller. Note for
403 * Intel CE4100 devices we don't support more than one device.
404 */
405static void find_valid_banks(struct denali_nand_info *denali)
406{
407 uint32_t id[denali->max_banks];
408 int i;
409
410 denali->total_used_banks = 1;
411 for (i = 0; i < denali->max_banks; i++) {
d3963721
SW
412 index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
413 index_addr(denali, MODE_11 | (i << 24) | 1, 0);
414 index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]);
3eb3e72a
CLS
415
416 if (i == 0) {
417 if (!(id[i] & 0x0ff))
418 break;
419 } else {
420 if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
421 denali->total_used_banks++;
422 else
423 break;
424 }
425 }
426}
427
428/*
429 * Use the configuration feature register to determine the maximum number of
430 * banks that the hardware supports.
431 */
432static void detect_max_banks(struct denali_nand_info *denali)
433{
434 uint32_t features = readl(denali->flash_reg + FEATURES);
15305c2f
GM
435 /*
436 * Read the revision register, so we can calculate the max_banks
437 * properly: the encoding changed from rev 5.0 to 5.1
438 */
439 u32 revision = MAKE_COMPARABLE_REVISION(
440 readl(denali->flash_reg + REVISION));
441 if (revision < REVISION_5_1)
442 denali->max_banks = 2 << (features & FEATURES__N_BANKS);
443 else
444 denali->max_banks = 1 << (features & FEATURES__N_BANKS);
3eb3e72a
CLS
445}
446
447static void detect_partition_feature(struct denali_nand_info *denali)
448{
449 /*
450 * For MRST platform, denali->fwblks represent the
451 * number of blocks firmware is taken,
452 * FW is in protect partition and MTD driver has no
453 * permission to access it. So let driver know how many
454 * blocks it can't touch.
455 */
456 if (readl(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
457 if ((readl(denali->flash_reg + PERM_SRC_ID(1)) &
458 PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
459 denali->fwblks =
460 ((readl(denali->flash_reg + MIN_MAX_BANK(1)) &
461 MIN_MAX_BANK__MIN_VALUE) *
462 denali->blksperchip)
463 +
464 (readl(denali->flash_reg + MIN_BLK_ADDR(1)) &
465 MIN_BLK_ADDR__VALUE);
466 } else {
467 denali->fwblks = SPECTRA_START_BLOCK;
468 }
469 } else {
470 denali->fwblks = SPECTRA_START_BLOCK;
471 }
472}
473
474static uint32_t denali_nand_timing_set(struct denali_nand_info *denali)
475{
d3963721
SW
476 uint32_t id_bytes[8], addr;
477 uint8_t maf_id, device_id;
478 int i;
479
480 /*
481 * Use read id method to get device ID and other params.
482 * For some NAND chips, controller can't report the correct
483 * device ID by reading from DEVICE_ID register
484 */
485 addr = MODE_11 | BANK(denali->flash_bank);
486 index_addr(denali, addr | 0, 0x90);
487 index_addr(denali, addr | 1, 0);
488 for (i = 0; i < 8; i++)
3eb3e72a
CLS
489 index_addr_read_data(denali, addr | 2, &id_bytes[i]);
490 maf_id = id_bytes[0];
491 device_id = id_bytes[1];
492
493 if (readl(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
494 ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
495 if (get_onfi_nand_para(denali))
496 return -EIO;
497 } else if (maf_id == 0xEC) { /* Samsung NAND */
498 get_samsung_nand_para(denali, device_id);
499 } else if (maf_id == 0x98) { /* Toshiba NAND */
500 get_toshiba_nand_para(denali);
501 } else if (maf_id == 0xAD) { /* Hynix NAND */
502 get_hynix_nand_para(denali, device_id);
503 }
504
505 find_valid_banks(denali);
506
507 detect_partition_feature(denali);
508
d3963721
SW
509 /*
510 * If the user specified to override the default timings
3eb3e72a
CLS
511 * with a specific ONFI mode, we apply those changes here.
512 */
513 if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
514 nand_onfi_timing_set(denali, onfi_timing_mode);
515
516 return 0;
517}
518
d3963721
SW
519/*
520 * validation function to verify that the controlling software is making
3eb3e72a
CLS
521 * a valid request
522 */
523static inline bool is_flash_bank_valid(int flash_bank)
524{
525 return flash_bank >= 0 && flash_bank < 4;
526}
527
528static void denali_irq_init(struct denali_nand_info *denali)
529{
d3963721 530 uint32_t int_mask;
3eb3e72a
CLS
531 int i;
532
533 /* Disable global interrupts */
534 writel(0, denali->flash_reg + GLOBAL_INT_ENABLE);
535
536 int_mask = DENALI_IRQ_ALL;
537
538 /* Clear all status bits */
539 for (i = 0; i < denali->max_banks; ++i)
540 writel(0xFFFF, denali->flash_reg + INTR_STATUS(i));
541
542 denali_irq_enable(denali, int_mask);
543}
544
d3963721
SW
545/*
546 * This helper function setups the registers for ECC and whether or not
547 * the spare area will be transferred.
548 */
3eb3e72a
CLS
549static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
550 bool transfer_spare)
551{
d3963721 552 int ecc_en_flag, transfer_spare_flag;
3eb3e72a
CLS
553
554 /* set ECC, transfer spare bits if needed */
555 ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
556 transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
557
558 /* Enable spare area/ECC per user's request. */
559 writel(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
560 /* applicable for MAP01 only */
561 writel(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
562}
563
d3963721
SW
564/*
565 * sends a pipeline command operation to the controller. See the Denali NAND
3eb3e72a
CLS
566 * controller's user guide for more information (section 4.2.3.6).
567 */
568static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
d3963721
SW
569 bool ecc_en, bool transfer_spare,
570 int access_type, int op)
3eb3e72a
CLS
571{
572 uint32_t addr, cmd, irq_status;
573 static uint32_t page_count = 1;
574
575 setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
576
3eb3e72a
CLS
577 clear_interrupts(denali);
578
579 addr = BANK(denali->flash_bank) | denali->page;
580
581 /* setup the acccess type */
582 cmd = MODE_10 | addr;
583 index_addr(denali, cmd, access_type);
584
585 /* setup the pipeline command */
586 index_addr(denali, cmd, 0x2000 | op | page_count);
587
588 cmd = MODE_01 | addr;
589 writel(cmd, denali->flash_mem + INDEX_CTRL_REG);
590
591 if (op == DENALI_READ) {
592 /* wait for command to be accepted */
593 irq_status = wait_for_irq(denali, INTR_STATUS__LOAD_COMP);
594
595 if (irq_status == 0)
596 return -EIO;
597 }
598
599 return 0;
600}
601
602/* helper function that simply writes a buffer to the flash */
603static int write_data_to_flash_mem(struct denali_nand_info *denali,
d3963721 604 const uint8_t *buf, int len)
3eb3e72a 605{
d3963721
SW
606 uint32_t *buf32;
607 int i;
3eb3e72a 608
d3963721
SW
609 /*
610 * verify that the len is a multiple of 4.
611 * see comment in read_data_from_flash_mem()
612 */
3eb3e72a
CLS
613 BUG_ON((len % 4) != 0);
614
615 /* write the data to the flash memory */
616 buf32 = (uint32_t *)buf;
617 for (i = 0; i < len / 4; i++)
618 writel(*buf32++, denali->flash_mem + INDEX_DATA_REG);
619 return i * 4; /* intent is to return the number of bytes read */
620}
621
622/* helper function that simply reads a buffer from the flash */
623static int read_data_from_flash_mem(struct denali_nand_info *denali,
d3963721 624 uint8_t *buf, int len)
3eb3e72a 625{
d3963721
SW
626 uint32_t *buf32;
627 int i;
3eb3e72a
CLS
628
629 /*
d3963721
SW
630 * we assume that len will be a multiple of 4, if not it would be nice
631 * to know about it ASAP rather than have random failures...
632 * This assumption is based on the fact that this function is designed
633 * to be used to read flash pages, which are typically multiples of 4.
3eb3e72a 634 */
3eb3e72a
CLS
635 BUG_ON((len % 4) != 0);
636
637 /* transfer the data from the flash */
638 buf32 = (uint32_t *)buf;
639 for (i = 0; i < len / 4; i++)
640 *buf32++ = readl(denali->flash_mem + INDEX_DATA_REG);
641
642 return i * 4; /* intent is to return the number of bytes read */
643}
644
645static void denali_mode_main_access(struct denali_nand_info *denali)
646{
647 uint32_t addr, cmd;
648
649 addr = BANK(denali->flash_bank) | denali->page;
650 cmd = MODE_10 | addr;
651 index_addr(denali, cmd, MAIN_ACCESS);
652}
653
654static void denali_mode_main_spare_access(struct denali_nand_info *denali)
655{
656 uint32_t addr, cmd;
657
658 addr = BANK(denali->flash_bank) | denali->page;
659 cmd = MODE_10 | addr;
660 index_addr(denali, cmd, MAIN_SPARE_ACCESS);
661}
662
663/* writes OOB data to the device */
664static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
665{
666 struct denali_nand_info *denali = mtd_to_denali(mtd);
667 uint32_t irq_status;
668 uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
669 INTR_STATUS__PROGRAM_FAIL;
670 int status = 0;
671
672 denali->page = page;
673
674 if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
675 DENALI_WRITE) == 0) {
676 write_data_to_flash_mem(denali, buf, mtd->oobsize);
677
678 /* wait for operation to complete */
679 irq_status = wait_for_irq(denali, irq_mask);
680
681 if (irq_status == 0) {
682 dev_err(denali->dev, "OOB write failed\n");
683 status = -EIO;
684 }
685 } else {
686 printf("unable to send pipeline command\n");
687 status = -EIO;
688 }
689 return status;
690}
691
692/* reads OOB data from the device */
693static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
694{
695 struct denali_nand_info *denali = mtd_to_denali(mtd);
d3963721
SW
696 uint32_t irq_mask = INTR_STATUS__LOAD_COMP;
697 uint32_t irq_status, addr, cmd;
3eb3e72a
CLS
698
699 denali->page = page;
700
701 if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
702 DENALI_READ) == 0) {
703 read_data_from_flash_mem(denali, buf, mtd->oobsize);
704
d3963721
SW
705 /*
706 * wait for command to be accepted
707 * can always use status0 bit as the
708 * mask is identical for each bank.
709 */
3eb3e72a
CLS
710 irq_status = wait_for_irq(denali, irq_mask);
711
712 if (irq_status == 0)
713 printf("page on OOB timeout %d\n", denali->page);
714
d3963721
SW
715 /*
716 * We set the device back to MAIN_ACCESS here as I observed
3eb3e72a
CLS
717 * instability with the controller if you do a block erase
718 * and the last transaction was a SPARE_ACCESS. Block erase
719 * is reliable (according to the MTD test infrastructure)
720 * if you are in MAIN_ACCESS.
721 */
722 addr = BANK(denali->flash_bank) | denali->page;
723 cmd = MODE_10 | addr;
724 index_addr(denali, cmd, MAIN_ACCESS);
725 }
726}
727
d3963721
SW
728/*
729 * this function examines buffers to see if they contain data that
3eb3e72a
CLS
730 * indicate that the buffer is part of an erased region of flash.
731 */
732static bool is_erased(uint8_t *buf, int len)
733{
d3963721
SW
734 int i;
735
3eb3e72a
CLS
736 for (i = 0; i < len; i++)
737 if (buf[i] != 0xFF)
738 return false;
739 return true;
740}
741
742/* programs the controller to either enable/disable DMA transfers */
743static void denali_enable_dma(struct denali_nand_info *denali, bool en)
744{
d3963721 745 writel(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
3eb3e72a
CLS
746 readl(denali->flash_reg + DMA_ENABLE);
747}
748
749/* setups the HW to perform the data DMA */
750static void denali_setup_dma(struct denali_nand_info *denali, int op)
751{
752 uint32_t mode;
753 const int page_count = 1;
73b5b27b 754 uint64_t addr = (unsigned long)denali->buf.dma_buf;
3eb3e72a
CLS
755
756 flush_dcache_range(addr, addr + sizeof(denali->buf.dma_buf));
757
758/* For Denali controller that is 64 bit bus IP core */
759#ifdef CONFIG_SYS_NAND_DENALI_64BIT
760 mode = MODE_10 | BANK(denali->flash_bank) | denali->page;
761
762 /* DMA is a three step process */
763
764 /* 1. setup transfer type, interrupt when complete,
765 burst len = 64 bytes, the number of pages */
766 index_addr(denali, mode, 0x01002000 | (64 << 16) | op | page_count);
767
768 /* 2. set memory low address bits 31:0 */
769 index_addr(denali, mode, addr);
770
771 /* 3. set memory high address bits 64:32 */
73b5b27b 772 index_addr(denali, mode, addr >> 32);
3eb3e72a
CLS
773#else
774 mode = MODE_10 | BANK(denali->flash_bank);
775
776 /* DMA is a four step process */
777
778 /* 1. setup transfer type and # of pages */
779 index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
780
781 /* 2. set memory high address bits 23:8 */
73b5b27b 782 index_addr(denali, mode | (((addr >> 16) & 0xffff) << 8), 0x2200);
3eb3e72a
CLS
783
784 /* 3. set memory low address bits 23:8 */
d3963721 785 index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300);
3eb3e72a 786
d3963721 787 /* 4. interrupt when complete, burst len = 64 bytes */
3eb3e72a
CLS
788 index_addr(denali, mode | 0x14000, 0x2400);
789#endif
790}
791
792/* Common DMA function */
793static uint32_t denali_dma_configuration(struct denali_nand_info *denali,
794 uint32_t ops, bool raw_xfer,
795 uint32_t irq_mask, int oob_required)
796{
797 uint32_t irq_status = 0;
798 /* setup_ecc_for_xfer(bool ecc_en, bool transfer_spare) */
799 setup_ecc_for_xfer(denali, !raw_xfer, oob_required);
800
801 /* clear any previous interrupt flags */
802 clear_interrupts(denali);
803
804 /* enable the DMA */
805 denali_enable_dma(denali, true);
806
807 /* setup the DMA */
808 denali_setup_dma(denali, ops);
809
810 /* wait for operation to complete */
811 irq_status = wait_for_irq(denali, irq_mask);
812
813 /* if ECC fault happen, seems we need delay before turning off DMA.
814 * If not, the controller will go into non responsive condition */
815 if (irq_status & INTR_STATUS__ECC_UNCOR_ERR)
816 udelay(100);
817
818 /* disable the DMA */
819 denali_enable_dma(denali, false);
820
821 return irq_status;
822}
823
824static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
825 const uint8_t *buf, bool raw_xfer, int oob_required)
826{
827 struct denali_nand_info *denali = mtd_to_denali(mtd);
828
829 uint32_t irq_status = 0;
830 uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
831
832 denali->status = 0;
833
834 /* copy buffer into DMA buffer */
835 memcpy(denali->buf.dma_buf, buf, mtd->writesize);
836
837 /* need extra memcpy for raw transfer */
838 if (raw_xfer)
839 memcpy(denali->buf.dma_buf + mtd->writesize,
840 chip->oob_poi, mtd->oobsize);
841
842 /* setting up DMA */
843 irq_status = denali_dma_configuration(denali, DENALI_WRITE, raw_xfer,
844 irq_mask, oob_required);
845
846 /* if timeout happen, error out */
847 if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) {
848 debug("DMA timeout for denali write_page\n");
849 denali->status = NAND_STATUS_FAIL;
850 return -EIO;
851 }
852
853 if (irq_status & INTR_STATUS__LOCKED_BLK) {
854 debug("Failed as write to locked block\n");
855 denali->status = NAND_STATUS_FAIL;
856 return -EIO;
857 }
858 return 0;
859}
860
861/* NAND core entry points */
862
863/*
864 * this is the callback that the NAND core calls to write a page. Since
865 * writing a page with ECC or without is similar, all the work is done
866 * by write_page above.
867 */
868static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
81c77252
SW
869 const uint8_t *buf, int oob_required,
870 int page)
3eb3e72a
CLS
871{
872 struct denali_nand_info *denali = mtd_to_denali(mtd);
873
874 /*
875 * for regular page writes, we let HW handle all the ECC
876 * data written to the device.
877 */
878 if (oob_required)
879 /* switch to main + spare access */
880 denali_mode_main_spare_access(denali);
881 else
882 /* switch to main access only */
883 denali_mode_main_access(denali);
884
885 return write_page(mtd, chip, buf, false, oob_required);
886}
887
888/*
889 * This is the callback that the NAND core calls to write a page without ECC.
890 * raw access is similar to ECC page writes, so all the work is done in the
891 * write_page() function above.
892 */
893static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
81c77252
SW
894 const uint8_t *buf, int oob_required,
895 int page)
3eb3e72a
CLS
896{
897 struct denali_nand_info *denali = mtd_to_denali(mtd);
898
899 /*
900 * for raw page writes, we want to disable ECC and simply write
901 * whatever data is in the buffer.
902 */
903
904 if (oob_required)
905 /* switch to main + spare access */
906 denali_mode_main_spare_access(denali);
907 else
908 /* switch to main access only */
909 denali_mode_main_access(denali);
910
911 return write_page(mtd, chip, buf, true, oob_required);
912}
913
914static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
915 int page)
916{
917 return write_oob_data(mtd, chip->oob_poi, page);
918}
919
920/* raw include ECC value and all the spare area */
921static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
922 uint8_t *buf, int oob_required, int page)
923{
924 struct denali_nand_info *denali = mtd_to_denali(mtd);
925
926 uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP;
927
928 if (denali->page != page) {
929 debug("Missing NAND_CMD_READ0 command\n");
930 return -EIO;
931 }
932
933 if (oob_required)
934 /* switch to main + spare access */
935 denali_mode_main_spare_access(denali);
936 else
937 /* switch to main access only */
938 denali_mode_main_access(denali);
939
940 /* setting up the DMA where ecc_enable is false */
941 irq_status = denali_dma_configuration(denali, DENALI_READ, true,
942 irq_mask, oob_required);
943
944 /* if timeout happen, error out */
945 if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) {
946 debug("DMA timeout for denali_read_page_raw\n");
947 return -EIO;
948 }
949
950 /* splitting the content to destination buffer holder */
951 memcpy(chip->oob_poi, (denali->buf.dma_buf + mtd->writesize),
952 mtd->oobsize);
953 memcpy(buf, denali->buf.dma_buf, mtd->writesize);
954
955 return 0;
956}
957
958static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
959 uint8_t *buf, int oob_required, int page)
960{
961 struct denali_nand_info *denali = mtd_to_denali(mtd);
962 uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP;
963
964 if (denali->page != page) {
965 debug("Missing NAND_CMD_READ0 command\n");
966 return -EIO;
967 }
968
969 if (oob_required)
970 /* switch to main + spare access */
971 denali_mode_main_spare_access(denali);
972 else
973 /* switch to main access only */
974 denali_mode_main_access(denali);
975
976 /* setting up the DMA where ecc_enable is true */
977 irq_status = denali_dma_configuration(denali, DENALI_READ, false,
978 irq_mask, oob_required);
979
980 memcpy(buf, denali->buf.dma_buf, mtd->writesize);
981
982 /* check whether any ECC error */
983 if (irq_status & INTR_STATUS__ECC_UNCOR_ERR) {
984 /* is the ECC cause by erase page, check using read_page_raw */
985 debug(" Uncorrected ECC detected\n");
986 denali_read_page_raw(mtd, chip, buf, oob_required,
987 denali->page);
988
989 if (is_erased(buf, mtd->writesize) == true &&
990 is_erased(chip->oob_poi, mtd->oobsize) == true) {
991 debug(" ECC error cause by erased block\n");
992 /* false alarm, return the 0xFF */
993 } else {
994 return -EIO;
995 }
996 }
997 memcpy(buf, denali->buf.dma_buf, mtd->writesize);
998 return 0;
999}
1000
1001static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1002 int page)
1003{
1004 read_oob_data(mtd, chip->oob_poi, page);
1005
1006 return 0;
1007}
1008
1009static uint8_t denali_read_byte(struct mtd_info *mtd)
1010{
1011 struct denali_nand_info *denali = mtd_to_denali(mtd);
1012 uint32_t addr, result;
1013
1014 addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
1015 index_addr_read_data(denali, addr | 2, &result);
1016 return (uint8_t)result & 0xFF;
1017}
1018
1019static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1020{
1021 struct denali_nand_info *denali = mtd_to_denali(mtd);
1022 uint32_t i, addr, result;
1023
1024 /* delay for tR (data transfer from Flash array to data register) */
1025 udelay(25);
1026
1027 /* ensure device completed else additional delay and polling */
1028 wait_for_irq(denali, INTR_STATUS__INT_ACT);
1029
1030 addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
1031 for (i = 0; i < len; i++) {
1032 index_addr_read_data(denali, (uint32_t)addr | 2, &result);
1033 write_byte_to_buf(denali, result);
1034 }
1035 memcpy(buf, denali->buf.buf, len);
1036}
1037
1038static void denali_select_chip(struct mtd_info *mtd, int chip)
1039{
1040 struct denali_nand_info *denali = mtd_to_denali(mtd);
1041
1042 denali->flash_bank = chip;
1043}
1044
1045static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
1046{
1047 struct denali_nand_info *denali = mtd_to_denali(mtd);
1048 int status = denali->status;
d3963721 1049
3eb3e72a
CLS
1050 denali->status = 0;
1051
1052 return status;
1053}
1054
d3963721 1055static int denali_erase(struct mtd_info *mtd, int page)
3eb3e72a
CLS
1056{
1057 struct denali_nand_info *denali = mtd_to_denali(mtd);
d3963721 1058
3eb3e72a
CLS
1059 uint32_t cmd, irq_status;
1060
3eb3e72a
CLS
1061 clear_interrupts(denali);
1062
1063 /* setup page read request for access type */
1064 cmd = MODE_10 | BANK(denali->flash_bank) | page;
1065 index_addr(denali, cmd, 0x1);
1066
1067 /* wait for erase to complete or failure to occur */
1068 irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
1069 INTR_STATUS__ERASE_FAIL);
1070
1071 if (irq_status & INTR_STATUS__ERASE_FAIL ||
1072 irq_status & INTR_STATUS__LOCKED_BLK)
d3963721
SW
1073 return NAND_STATUS_FAIL;
1074
1075 return 0;
3eb3e72a
CLS
1076}
1077
1078static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1079 int page)
1080{
1081 struct denali_nand_info *denali = mtd_to_denali(mtd);
1082 uint32_t addr;
1083
1084 switch (cmd) {
1085 case NAND_CMD_PAGEPROG:
1086 break;
1087 case NAND_CMD_STATUS:
1088 addr = MODE_11 | BANK(denali->flash_bank);
1089 index_addr(denali, addr | 0, cmd);
1090 break;
3eb3e72a 1091 case NAND_CMD_READID:
05968e7c 1092 case NAND_CMD_PARAM:
3eb3e72a 1093 reset_buf(denali);
d3963721
SW
1094 /*
1095 * sometimes ManufactureId read from register is not right
3eb3e72a
CLS
1096 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1097 * So here we send READID cmd to NAND insteand
d3963721 1098 */
3eb3e72a
CLS
1099 addr = MODE_11 | BANK(denali->flash_bank);
1100 index_addr(denali, addr | 0, cmd);
1101 index_addr(denali, addr | 1, col & 0xFF);
05968e7c
MY
1102 if (cmd == NAND_CMD_PARAM)
1103 udelay(50);
3eb3e72a 1104 break;
ed3c980b
MY
1105 case NAND_CMD_RNDOUT:
1106 addr = MODE_11 | BANK(denali->flash_bank);
1107 index_addr(denali, addr | 0, cmd);
1108 index_addr(denali, addr | 1, col & 0xFF);
1109 index_addr(denali, addr | 1, col >> 8);
1110 index_addr(denali, addr | 0, NAND_CMD_RNDOUTSTART);
1111 break;
3eb3e72a
CLS
1112 case NAND_CMD_READ0:
1113 case NAND_CMD_SEQIN:
1114 denali->page = page;
1115 break;
1116 case NAND_CMD_RESET:
1117 reset_bank(denali);
1118 break;
1119 case NAND_CMD_READOOB:
1120 /* TODO: Read OOB data */
1121 break;
1122 case NAND_CMD_ERASE1:
1123 /*
1124 * supporting block erase only, not multiblock erase as
1125 * it will cross plane and software need complex calculation
1126 * to identify the block count for the cross plane
1127 */
1128 denali_erase(mtd, page);
1129 break;
1130 case NAND_CMD_ERASE2:
1131 /* nothing to do here as it was done during NAND_CMD_ERASE1 */
1132 break;
1133 case NAND_CMD_UNLOCK1:
1134 addr = MODE_10 | BANK(denali->flash_bank) | page;
1135 index_addr(denali, addr | 0, DENALI_UNLOCK_START);
1136 break;
1137 case NAND_CMD_UNLOCK2:
1138 addr = MODE_10 | BANK(denali->flash_bank) | page;
1139 index_addr(denali, addr | 0, DENALI_UNLOCK_END);
1140 break;
1141 case NAND_CMD_LOCK:
1142 addr = MODE_10 | BANK(denali->flash_bank);
1143 index_addr(denali, addr | 0, DENALI_LOCK);
1144 break;
1145 default:
1146 printf(": unsupported command received 0x%x\n", cmd);
1147 break;
1148 }
1149}
1150/* end NAND core entry points */
1151
1152/* Initialization code to bring the device up to a known good state */
1153static void denali_hw_init(struct denali_nand_info *denali)
1154{
1155 /*
1156 * tell driver how many bit controller will skip before writing
1157 * ECC code in OOB. This is normally used for bad block marker
1158 */
1159 writel(CONFIG_NAND_DENALI_SPARE_AREA_SKIP_BYTES,
1160 denali->flash_reg + SPARE_AREA_SKIP_BYTES);
1161 detect_max_banks(denali);
1162 denali_nand_reset(denali);
1163 writel(0x0F, denali->flash_reg + RB_PIN_ENABLED);
1164 writel(CHIP_EN_DONT_CARE__FLAG,
1165 denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1166 writel(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1167
1168 /* Should set value for these registers when init */
1169 writel(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
1170 writel(1, denali->flash_reg + ECC_ENABLE);
1171 denali_nand_timing_set(denali);
1172 denali_irq_init(denali);
1173}
1174
1175static struct nand_ecclayout nand_oob;
1176
65e4145a 1177static int denali_init(struct denali_nand_info *denali)
3eb3e72a 1178{
65e4145a 1179 int ret;
3eb3e72a 1180
65e4145a 1181 denali_hw_init(denali);
3eb3e72a 1182
65e4145a
MY
1183 denali->mtd->name = "denali-nand";
1184 denali->mtd->owner = THIS_MODULE;
3eb3e72a 1185
65e4145a
MY
1186 /* register the driver with the NAND core subsystem */
1187 denali->nand.select_chip = denali_select_chip;
1188 denali->nand.cmdfunc = denali_cmdfunc;
1189 denali->nand.read_byte = denali_read_byte;
1190 denali->nand.read_buf = denali_read_buf;
1191 denali->nand.waitfunc = denali_waitfunc;
1192
1193 /*
1194 * scan for NAND devices attached to the controller
1195 * this is the first stage in a two step process to register
1196 * with the nand subsystem
1197 */
1198 if (nand_scan_ident(denali->mtd, denali->max_banks, NULL)) {
1199 ret = -ENXIO;
1200 goto fail;
1201 }
3eb3e72a
CLS
1202
1203#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1204 /* check whether flash got BBT table (located at end of flash). As we
1205 * use NAND_BBT_NO_OOB, the BBT page will start with
1206 * bbt_pattern. We will have mirror pattern too */
65e4145a 1207 denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
3eb3e72a
CLS
1208 /*
1209 * We are using main + spare with ECC support. As BBT need ECC support,
1210 * we need to ensure BBT code don't write to OOB for the BBT pattern.
1211 * All BBT info will be stored into data area with ECC support.
1212 */
65e4145a 1213 denali->nand.bbt_options |= NAND_BBT_NO_OOB;
3eb3e72a
CLS
1214#endif
1215
65e4145a
MY
1216 denali->nand.ecc.mode = NAND_ECC_HW;
1217 denali->nand.ecc.size = CONFIG_NAND_DENALI_ECC_SIZE;
1218
d3963721
SW
1219 /* no subpage writes on denali */
1220 denali->nand.options |= NAND_NO_SUBPAGE_WRITE;
1221
3eb3e72a
CLS
1222 /*
1223 * Tell driver the ecc strength. This register may be already set
1224 * correctly. So we read this value out.
1225 */
65e4145a
MY
1226 denali->nand.ecc.strength = readl(denali->flash_reg + ECC_CORRECTION);
1227 switch (denali->nand.ecc.size) {
3eb3e72a 1228 case 512:
65e4145a
MY
1229 denali->nand.ecc.bytes =
1230 (denali->nand.ecc.strength * 13 + 15) / 16 * 2;
3eb3e72a
CLS
1231 break;
1232 case 1024:
65e4145a
MY
1233 denali->nand.ecc.bytes =
1234 (denali->nand.ecc.strength * 14 + 15) / 16 * 2;
3eb3e72a
CLS
1235 break;
1236 default:
1237 pr_err("Unsupported ECC size\n");
65e4145a
MY
1238 ret = -EINVAL;
1239 goto fail;
3eb3e72a 1240 }
65e4145a
MY
1241 nand_oob.eccbytes = denali->nand.ecc.bytes;
1242 denali->nand.ecc.layout = &nand_oob;
1243
f09eb52b
MY
1244 writel(denali->mtd->erasesize / denali->mtd->writesize,
1245 denali->flash_reg + PAGES_PER_BLOCK);
1246 writel(denali->nand.options & NAND_BUSWIDTH_16 ? 1 : 0,
1247 denali->flash_reg + DEVICE_WIDTH);
1248 writel(denali->mtd->writesize,
1249 denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
1250 writel(denali->mtd->oobsize,
1251 denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
1252 if (readl(denali->flash_reg + DEVICES_CONNECTED) == 0)
1253 writel(1, denali->flash_reg + DEVICES_CONNECTED);
1254
65e4145a
MY
1255 /* override the default operations */
1256 denali->nand.ecc.read_page = denali_read_page;
1257 denali->nand.ecc.read_page_raw = denali_read_page_raw;
1258 denali->nand.ecc.write_page = denali_write_page;
1259 denali->nand.ecc.write_page_raw = denali_write_page_raw;
1260 denali->nand.ecc.read_oob = denali_read_oob;
1261 denali->nand.ecc.write_oob = denali_write_oob;
1262
1263 if (nand_scan_tail(denali->mtd)) {
1264 ret = -ENXIO;
1265 goto fail;
1266 }
1267
b616d9b0 1268 ret = nand_register(0, denali->mtd);
65e4145a
MY
1269
1270fail:
1271 return ret;
1272}
1273
1274static int __board_nand_init(void)
1275{
1276 struct denali_nand_info *denali;
1277
1278 denali = kzalloc(sizeof(*denali), GFP_KERNEL);
1279 if (!denali)
1280 return -ENOMEM;
1281
1282 /*
1283 * If CONFIG_SYS_NAND_SELF_INIT is defined, each driver is responsible
1284 * for instantiating struct nand_chip, while drivers/mtd/nand/nand.c
1285 * still provides a "struct mtd_info nand_info" instance.
1286 */
b616d9b0 1287 denali->mtd = &denali->nand.mtd;
65e4145a
MY
1288
1289 /*
1290 * In the future, these base addresses should be taken from
1291 * Device Tree or platform data.
1292 */
1293 denali->flash_reg = (void __iomem *)CONFIG_SYS_NAND_REGS_BASE;
1294 denali->flash_mem = (void __iomem *)CONFIG_SYS_NAND_DATA_BASE;
1295
1296 return denali_init(denali);
3eb3e72a
CLS
1297}
1298
65e4145a 1299void board_nand_init(void)
3eb3e72a 1300{
65e4145a
MY
1301 if (__board_nand_init() < 0)
1302 pr_warn("Failed to initialize Denali NAND controller.\n");
3eb3e72a 1303}