]> git.ipfire.org Git - people/ms/u-boot.git/blame - drivers/net/fec_mxc.c
NET: kirkwood-egiga smi access fix
[people/ms/u-boot.git] / drivers / net / fec_mxc.c
CommitLineData
0b23fb36
IY
1/*
2 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4 * (C) Copyright 2008 Armadeus Systems nc
5 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23
24#include <common.h>
25#include <malloc.h>
26#include <net.h>
27#include <miiphy.h>
28#include "fec_mxc.h"
29
30#include <asm/arch/clock.h>
31#include <asm/arch/imx-regs.h>
32#include <asm/io.h>
33#include <asm/errno.h>
34
35DECLARE_GLOBAL_DATA_PTR;
36
37#ifndef CONFIG_MII
38#error "CONFIG_MII has to be defined!"
39#endif
40
41#undef DEBUG
42
43struct nbuf {
44 uint8_t data[1500]; /**< actual data */
45 int length; /**< actual length */
46 int used; /**< buffer in use or not */
47 uint8_t head[16]; /**< MAC header(6 + 6 + 2) + 2(aligned) */
48};
49
50struct fec_priv gfec = {
51 .eth = (struct ethernet_regs *)IMX_FEC_BASE,
52 .xcv_type = MII100,
53 .rbd_base = NULL,
54 .rbd_index = 0,
55 .tbd_base = NULL,
56 .tbd_index = 0,
57 .bd = NULL,
651ef90f
M
58 .rdb_ptr = NULL,
59 .base_ptr = NULL,
0b23fb36
IY
60};
61
62/*
63 * MII-interface related functions
64 */
65static int fec_miiphy_read(char *dev, uint8_t phyAddr, uint8_t regAddr,
66 uint16_t *retVal)
67{
68 struct eth_device *edev = eth_get_dev_by_name(dev);
69 struct fec_priv *fec = (struct fec_priv *)edev->priv;
70
71 uint32_t reg; /* convenient holder for the PHY register */
72 uint32_t phy; /* convenient holder for the PHY */
73 uint32_t start;
74
75 /*
76 * reading from any PHY's register is done by properly
77 * programming the FEC's MII data register.
78 */
79 writel(FEC_IEVENT_MII, &fec->eth->ievent);
80 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
81 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
82
83 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
84 phy | reg, &fec->eth->mii_data);
85
86 /*
87 * wait for the related interrupt
88 */
89 start = get_timer_masked();
90 while (!(readl(&fec->eth->ievent) & FEC_IEVENT_MII)) {
91 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
92 printf("Read MDIO failed...\n");
93 return -1;
94 }
95 }
96
97 /*
98 * clear mii interrupt bit
99 */
100 writel(FEC_IEVENT_MII, &fec->eth->ievent);
101
102 /*
103 * it's now safe to read the PHY's register
104 */
105 *retVal = readl(&fec->eth->mii_data);
106 debug("fec_miiphy_read: phy: %02x reg:%02x val:%#x\n", phyAddr,
107 regAddr, *retVal);
108 return 0;
109}
110
111static int fec_miiphy_write(char *dev, uint8_t phyAddr, uint8_t regAddr,
112 uint16_t data)
113{
114 struct eth_device *edev = eth_get_dev_by_name(dev);
115 struct fec_priv *fec = (struct fec_priv *)edev->priv;
116
117 uint32_t reg; /* convenient holder for the PHY register */
118 uint32_t phy; /* convenient holder for the PHY */
119 uint32_t start;
120
121 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
122 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
123
124 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
125 FEC_MII_DATA_TA | phy | reg | data, &fec->eth->mii_data);
126
127 /*
128 * wait for the MII interrupt
129 */
130 start = get_timer_masked();
131 while (!(readl(&fec->eth->ievent) & FEC_IEVENT_MII)) {
132 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
133 printf("Write MDIO failed...\n");
134 return -1;
135 }
136 }
137
138 /*
139 * clear MII interrupt bit
140 */
141 writel(FEC_IEVENT_MII, &fec->eth->ievent);
142 debug("fec_miiphy_write: phy: %02x reg:%02x val:%#x\n", phyAddr,
143 regAddr, data);
144
145 return 0;
146}
147
148static int miiphy_restart_aneg(struct eth_device *dev)
149{
150 /*
151 * Wake up from sleep if necessary
152 * Reset PHY, then delay 300ns
153 */
154 miiphy_write(dev->name, CONFIG_FEC_MXC_PHYADDR, PHY_MIPGSR, 0x00FF);
155 miiphy_write(dev->name, CONFIG_FEC_MXC_PHYADDR, PHY_BMCR,
156 PHY_BMCR_RESET);
157 udelay(1000);
158
159 /*
160 * Set the auto-negotiation advertisement register bits
161 */
e8f1546a
M
162 miiphy_write(dev->name, CONFIG_FEC_MXC_PHYADDR, PHY_ANAR,
163 PHY_ANLPAR_TXFD | PHY_ANLPAR_TX | PHY_ANLPAR_10FD |
164 PHY_ANLPAR_10 | PHY_ANLPAR_PSB_802_3);
0b23fb36
IY
165 miiphy_write(dev->name, CONFIG_FEC_MXC_PHYADDR, PHY_BMCR,
166 PHY_BMCR_AUTON | PHY_BMCR_RST_NEG);
167
168 return 0;
169}
170
171static int miiphy_wait_aneg(struct eth_device *dev)
172{
173 uint32_t start;
174 uint16_t status;
175
176 /*
177 * Wait for AN completion
178 */
179 start = get_timer_masked();
180 do {
181 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
182 printf("%s: Autonegotiation timeout\n", dev->name);
183 return -1;
184 }
185
186 if (miiphy_read(dev->name, CONFIG_FEC_MXC_PHYADDR,
187 PHY_BMSR, &status)) {
188 printf("%s: Autonegotiation failed. status: 0x%04x\n",
189 dev->name, status);
190 return -1;
191 }
192 } while (!(status & PHY_BMSR_LS));
193
194 return 0;
195}
196static int fec_rx_task_enable(struct fec_priv *fec)
197{
198 writel(1 << 24, &fec->eth->r_des_active);
199 return 0;
200}
201
202static int fec_rx_task_disable(struct fec_priv *fec)
203{
204 return 0;
205}
206
207static int fec_tx_task_enable(struct fec_priv *fec)
208{
209 writel(1 << 24, &fec->eth->x_des_active);
210 return 0;
211}
212
213static int fec_tx_task_disable(struct fec_priv *fec)
214{
215 return 0;
216}
217
218/**
219 * Initialize receive task's buffer descriptors
220 * @param[in] fec all we know about the device yet
221 * @param[in] count receive buffer count to be allocated
222 * @param[in] size size of each receive buffer
223 * @return 0 on success
224 *
225 * For this task we need additional memory for the data buffers. And each
226 * data buffer requires some alignment. Thy must be aligned to a specific
227 * boundary each (DB_DATA_ALIGNMENT).
228 */
229static int fec_rbd_init(struct fec_priv *fec, int count, int size)
230{
231 int ix;
232 uint32_t p = 0;
233
234 /* reserve data memory and consider alignment */
651ef90f
M
235 if (fec->rdb_ptr == NULL)
236 fec->rdb_ptr = malloc(size * count + DB_DATA_ALIGNMENT);
0b23fb36
IY
237 p = (uint32_t)fec->rdb_ptr;
238 if (!p) {
239 puts("fec_imx27: not enough malloc memory!\n");
240 return -ENOMEM;
241 }
242 memset((void *)p, 0, size * count + DB_DATA_ALIGNMENT);
243 p += DB_DATA_ALIGNMENT-1;
244 p &= ~(DB_DATA_ALIGNMENT-1);
245
246 for (ix = 0; ix < count; ix++) {
247 writel(p, &fec->rbd_base[ix].data_pointer);
248 p += size;
249 writew(FEC_RBD_EMPTY, &fec->rbd_base[ix].status);
250 writew(0, &fec->rbd_base[ix].data_length);
251 }
252 /*
253 * mark the last RBD to close the ring
254 */
255 writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[ix - 1].status);
256 fec->rbd_index = 0;
257
258 return 0;
259}
260
261/**
262 * Initialize transmit task's buffer descriptors
263 * @param[in] fec all we know about the device yet
264 *
265 * Transmit buffers are created externally. We only have to init the BDs here.\n
266 * Note: There is a race condition in the hardware. When only one BD is in
267 * use it must be marked with the WRAP bit to use it for every transmitt.
268 * This bit in combination with the READY bit results into double transmit
269 * of each data buffer. It seems the state machine checks READY earlier then
270 * resetting it after the first transfer.
271 * Using two BDs solves this issue.
272 */
273static void fec_tbd_init(struct fec_priv *fec)
274{
275 writew(0x0000, &fec->tbd_base[0].status);
276 writew(FEC_TBD_WRAP, &fec->tbd_base[1].status);
277 fec->tbd_index = 0;
278}
279
280/**
281 * Mark the given read buffer descriptor as free
282 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
283 * @param[in] pRbd buffer descriptor to mark free again
284 */
285static void fec_rbd_clean(int last, struct fec_bd *pRbd)
286{
287 /*
288 * Reset buffer descriptor as empty
289 */
290 if (last)
291 writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &pRbd->status);
292 else
293 writew(FEC_RBD_EMPTY, &pRbd->status);
294 /*
295 * no data in it
296 */
297 writew(0, &pRbd->data_length);
298}
299
300static int fec_get_hwaddr(struct eth_device *dev, unsigned char *mac)
301{
302 struct iim_regs *iim = (struct iim_regs *)IMX_IIM_BASE;
303 int i;
304
305 for (i = 0; i < 6; i++)
306 mac[6-1-i] = readl(&iim->iim_bank_area0[IIM0_MAC + i]);
307
308 return is_valid_ether_addr(mac);
309}
310
311static int fec_set_hwaddr(struct eth_device *dev, unsigned char *mac)
312{
313 struct fec_priv *fec = (struct fec_priv *)dev->priv;
314
315 writel(0, &fec->eth->iaddr1);
316 writel(0, &fec->eth->iaddr2);
317 writel(0, &fec->eth->gaddr1);
318 writel(0, &fec->eth->gaddr2);
319
320 /*
321 * Set physical address
322 */
323 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
324 &fec->eth->paddr1);
325 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
326
327 return 0;
328}
329
330/**
331 * Start the FEC engine
332 * @param[in] dev Our device to handle
333 */
334static int fec_open(struct eth_device *edev)
335{
336 struct fec_priv *fec = (struct fec_priv *)edev->priv;
337
338 debug("fec_open: fec_open(dev)\n");
339 /* full-duplex, heartbeat disabled */
340 writel(1 << 2, &fec->eth->x_cntrl);
341 fec->rbd_index = 0;
342
343 /*
344 * Enable FEC-Lite controller
345 */
346 writel(FEC_ECNTRL_ETHER_EN, &fec->eth->ecntrl);
347
348 miiphy_wait_aneg(edev);
e8f1546a
M
349 miiphy_speed(edev->name, CONFIG_FEC_MXC_PHYADDR);
350 miiphy_duplex(edev->name, CONFIG_FEC_MXC_PHYADDR);
0b23fb36
IY
351
352 /*
353 * Enable SmartDMA receive task
354 */
355 fec_rx_task_enable(fec);
356
357 udelay(100000);
358 return 0;
359}
360
361static int fec_init(struct eth_device *dev, bd_t* bd)
362{
363 uint32_t base;
364 struct fec_priv *fec = (struct fec_priv *)dev->priv;
365
366 /*
367 * reserve memory for both buffer descriptor chains at once
368 * Datasheet forces the startaddress of each chain is 16 byte
369 * aligned
370 */
651ef90f
M
371 if (fec->base_ptr == NULL)
372 fec->base_ptr = malloc((2 + FEC_RBD_NUM) *
373 sizeof(struct fec_bd) + DB_ALIGNMENT);
0b23fb36
IY
374 base = (uint32_t)fec->base_ptr;
375 if (!base) {
376 puts("fec_imx27: not enough malloc memory!\n");
377 return -ENOMEM;
378 }
379 memset((void *)base, 0, (2 + FEC_RBD_NUM) *
380 sizeof(struct fec_bd) + DB_ALIGNMENT);
381 base += (DB_ALIGNMENT-1);
382 base &= ~(DB_ALIGNMENT-1);
383
384 fec->rbd_base = (struct fec_bd *)base;
385
386 base += FEC_RBD_NUM * sizeof(struct fec_bd);
387
388 fec->tbd_base = (struct fec_bd *)base;
389
390 /*
391 * Set interrupt mask register
392 */
393 writel(0x00000000, &fec->eth->imask);
394
395 /*
396 * Clear FEC-Lite interrupt event register(IEVENT)
397 */
398 writel(0xffffffff, &fec->eth->ievent);
399
400
401 /*
402 * Set FEC-Lite receive control register(R_CNTRL):
403 */
404 if (fec->xcv_type == SEVENWIRE) {
405 /*
406 * Frame length=1518; 7-wire mode
407 */
408 writel(0x05ee0020, &fec->eth->r_cntrl); /* FIXME 0x05ee0000 */
409 } else {
410 /*
411 * Frame length=1518; MII mode;
412 */
413 writel(0x05ee0024, &fec->eth->r_cntrl); /* FIXME 0x05ee0004 */
414 /*
415 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
416 * and do not drop the Preamble.
417 */
418 writel((((imx_get_ahbclk() / 1000000) + 2) / 5) << 1,
419 &fec->eth->mii_speed);
420 debug("fec_init: mii_speed %#lx\n",
421 (((imx_get_ahbclk() / 1000000) + 2) / 5) << 1);
422 }
423 /*
424 * Set Opcode/Pause Duration Register
425 */
426 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
427 writel(0x2, &fec->eth->x_wmrk);
428 /*
429 * Set multicast address filter
430 */
431 writel(0x00000000, &fec->eth->gaddr1);
432 writel(0x00000000, &fec->eth->gaddr2);
433
434
435 /* clear MIB RAM */
436 long *mib_ptr = (long *)(IMX_FEC_BASE + 0x200);
437 while (mib_ptr <= (long *)(IMX_FEC_BASE + 0x2FC))
438 *mib_ptr++ = 0;
439
440 /* FIFO receive start register */
441 writel(0x520, &fec->eth->r_fstart);
442
443 /* size and address of each buffer */
444 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
445 writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
446 writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
447
448 /*
449 * Initialize RxBD/TxBD rings
450 */
451 if (fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE) < 0) {
452 free(fec->base_ptr);
c179a289 453 fec->base_ptr = NULL;
0b23fb36
IY
454 return -ENOMEM;
455 }
456 fec_tbd_init(fec);
457
458
459 if (fec->xcv_type != SEVENWIRE)
460 miiphy_restart_aneg(dev);
461
462 fec_open(dev);
463 return 0;
464}
465
466/**
467 * Halt the FEC engine
468 * @param[in] dev Our device to handle
469 */
470static void fec_halt(struct eth_device *dev)
471{
472 struct fec_priv *fec = &gfec;
473 int counter = 0xffff;
474
475 /*
476 * issue graceful stop command to the FEC transmitter if necessary
477 */
478 writel(FEC_ECNTRL_RESET | readl(&fec->eth->x_cntrl),
479 &fec->eth->x_cntrl);
480
481 debug("eth_halt: wait for stop regs\n");
482 /*
483 * wait for graceful stop to register
484 */
485 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
486 ; /* FIXME ensure time */
487
488 /*
489 * Disable SmartDMA tasks
490 */
491 fec_tx_task_disable(fec);
492 fec_rx_task_disable(fec);
493
494 /*
495 * Disable the Ethernet Controller
496 * Note: this will also reset the BD index counter!
497 */
498 writel(0, &fec->eth->ecntrl);
499 fec->rbd_index = 0;
500 fec->tbd_index = 0;
0b23fb36
IY
501 debug("eth_halt: done\n");
502}
503
504/**
505 * Transmit one frame
506 * @param[in] dev Our ethernet device to handle
507 * @param[in] packet Pointer to the data to be transmitted
508 * @param[in] length Data count in bytes
509 * @return 0 on success
510 */
511static int fec_send(struct eth_device *dev, volatile void* packet, int length)
512{
513 unsigned int status;
514
515 /*
516 * This routine transmits one frame. This routine only accepts
517 * 6-byte Ethernet addresses.
518 */
519 struct fec_priv *fec = (struct fec_priv *)dev->priv;
520
521 /*
522 * Check for valid length of data.
523 */
524 if ((length > 1500) || (length <= 0)) {
525 printf("Payload (%d) to large!\n", length);
526 return -1;
527 }
528
529 /*
530 * Setup the transmit buffer
531 * Note: We are always using the first buffer for transmission,
532 * the second will be empty and only used to stop the DMA engine
533 */
534 writew(length, &fec->tbd_base[fec->tbd_index].data_length);
535 writel((uint32_t)packet, &fec->tbd_base[fec->tbd_index].data_pointer);
536 /*
537 * update BD's status now
538 * This block:
539 * - is always the last in a chain (means no chain)
540 * - should transmitt the CRC
541 * - might be the last BD in the list, so the address counter should
542 * wrap (-> keep the WRAP flag)
543 */
544 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
545 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
546 writew(status, &fec->tbd_base[fec->tbd_index].status);
547
548 /*
549 * Enable SmartDMA transmit task
550 */
551 fec_tx_task_enable(fec);
552
553 /*
554 * wait until frame is sent .
555 */
556 while (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY) {
557 /* FIXME: Timeout */
558 }
559 debug("fec_send: status 0x%x index %d\n",
560 readw(&fec->tbd_base[fec->tbd_index].status),
561 fec->tbd_index);
562 /* for next transmission use the other buffer */
563 if (fec->tbd_index)
564 fec->tbd_index = 0;
565 else
566 fec->tbd_index = 1;
567
568 return 0;
569}
570
571/**
572 * Pull one frame from the card
573 * @param[in] dev Our ethernet device to handle
574 * @return Length of packet read
575 */
576static int fec_recv(struct eth_device *dev)
577{
578 struct fec_priv *fec = (struct fec_priv *)dev->priv;
579 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
580 unsigned long ievent;
581 int frame_length, len = 0;
582 struct nbuf *frame;
583 uint16_t bd_status;
584 uchar buff[FEC_MAX_PKT_SIZE];
585
586 /*
587 * Check if any critical events have happened
588 */
589 ievent = readl(&fec->eth->ievent);
590 writel(ievent, &fec->eth->ievent);
591 debug("fec_recv: ievent 0x%x\n", ievent);
592 if (ievent & FEC_IEVENT_BABR) {
593 fec_halt(dev);
594 fec_init(dev, fec->bd);
595 printf("some error: 0x%08lx\n", ievent);
596 return 0;
597 }
598 if (ievent & FEC_IEVENT_HBERR) {
599 /* Heartbeat error */
600 writel(0x00000001 | readl(&fec->eth->x_cntrl),
601 &fec->eth->x_cntrl);
602 }
603 if (ievent & FEC_IEVENT_GRA) {
604 /* Graceful stop complete */
605 if (readl(&fec->eth->x_cntrl) & 0x00000001) {
606 fec_halt(dev);
607 writel(~0x00000001 & readl(&fec->eth->x_cntrl),
608 &fec->eth->x_cntrl);
609 fec_init(dev, fec->bd);
610 }
611 }
612
613 /*
614 * ensure reading the right buffer status
615 */
616 bd_status = readw(&rbd->status);
617 debug("fec_recv: status 0x%x\n", bd_status);
618
619 if (!(bd_status & FEC_RBD_EMPTY)) {
620 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
621 ((readw(&rbd->data_length) - 4) > 14)) {
622 /*
623 * Get buffer address and size
624 */
625 frame = (struct nbuf *)readl(&rbd->data_pointer);
626 frame_length = readw(&rbd->data_length) - 4;
627 /*
628 * Fill the buffer and pass it to upper layers
629 */
630 memcpy(buff, frame->data, frame_length);
631 NetReceive(buff, frame_length);
632 len = frame_length;
633 } else {
634 if (bd_status & FEC_RBD_ERR)
635 printf("error frame: 0x%08lx 0x%08x\n",
636 (ulong)rbd->data_pointer,
637 bd_status);
638 }
639 /*
640 * free the current buffer, restart the engine
641 * and move forward to the next buffer
642 */
643 fec_rbd_clean(fec->rbd_index == (FEC_RBD_NUM - 1) ? 1 : 0, rbd);
644 fec_rx_task_enable(fec);
645 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
646 }
647 debug("fec_recv: stop\n");
648
649 return len;
650}
651
652static int fec_probe(bd_t *bd)
653{
654 struct pll_regs *pll = (struct pll_regs *)IMX_PLL_BASE;
655 struct eth_device *edev;
656 struct fec_priv *fec = &gfec;
657 unsigned char ethaddr_str[20];
658 unsigned char ethaddr[6];
659 char *tmp = getenv("ethaddr");
660 char *end;
661
662 /* enable FEC clock */
663 writel(readl(&pll->pccr1) | PCCR1_HCLK_FEC, &pll->pccr1);
664 writel(readl(&pll->pccr0) | PCCR0_FEC_EN, &pll->pccr0);
665
666 /* create and fill edev struct */
667 edev = (struct eth_device *)malloc(sizeof(struct eth_device));
668 if (!edev) {
669 puts("fec_imx27: not enough malloc memory!\n");
670 return -ENOMEM;
671 }
672 edev->priv = fec;
673 edev->init = fec_init;
674 edev->send = fec_send;
675 edev->recv = fec_recv;
676 edev->halt = fec_halt;
677
678 fec->eth = (struct ethernet_regs *)IMX_FEC_BASE;
679 fec->bd = bd;
680
681 fec->xcv_type = MII100;
682
683 /* Reset chip. */
684 writel(FEC_ECNTRL_RESET, &fec->eth->ecntrl);
685 while (readl(&fec->eth->ecntrl) & 1)
686 udelay(10);
687
688 /*
689 * Set interrupt mask register
690 */
691 writel(0x00000000, &fec->eth->imask);
692
693 /*
694 * Clear FEC-Lite interrupt event register(IEVENT)
695 */
696 writel(0xffffffff, &fec->eth->ievent);
697
698 /*
699 * Set FEC-Lite receive control register(R_CNTRL):
700 */
701 /*
702 * Frame length=1518; MII mode;
703 */
704 writel(0x05ee0024, &fec->eth->r_cntrl); /* FIXME 0x05ee0004 */
705 /*
706 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
707 * and do not drop the Preamble.
708 */
709 writel((((imx_get_ahbclk() / 1000000) + 2) / 5) << 1,
710 &fec->eth->mii_speed);
711 debug("fec_init: mii_speed %#lx\n",
712 (((imx_get_ahbclk() / 1000000) + 2) / 5) << 1);
713
714 sprintf(edev->name, "FEC_MXC");
715
716 miiphy_register(edev->name, fec_miiphy_read, fec_miiphy_write);
717
718 eth_register(edev);
719
720 if ((NULL != tmp) && (12 <= strlen(tmp))) {
721 int i;
722 /* convert MAC from string to int */
723 for (i = 0; i < 6; i++) {
724 ethaddr[i] = tmp ? simple_strtoul(tmp, &end, 16) : 0;
725 if (tmp)
726 tmp = (*end) ? end + 1 : end;
727 }
728 } else if (fec_get_hwaddr(edev, ethaddr) == 0) {
729 printf("got MAC address from EEPROM: %pM\n", ethaddr);
730 setenv("ethaddr", (char *)ethaddr_str);
731 }
732 memcpy(edev->enetaddr, ethaddr, 6);
733 fec_set_hwaddr(edev, ethaddr);
734
735 return 0;
736}
737
738int fecmxc_initialize(bd_t *bd)
739{
740 int lout = 1;
741
742 debug("eth_init: fec_probe(bd)\n");
743 lout = fec_probe(bd);
744
745 return lout;
746}