]> git.ipfire.org Git - people/ms/u-boot.git/blame - fs/ubifs/debug.c
arcv2: Set IOC aperture so it covers available DDR
[people/ms/u-boot.git] / fs / ubifs / debug.c
CommitLineData
9eefe2a2
SR
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation
5 *
ff94bc40 6 * SPDX-License-Identifier: GPL-2.0+
9eefe2a2
SR
7 *
8 * Authors: Artem Bityutskiy (Битюцкий Артём)
9 * Adrian Hunter
10 */
11
12/*
13 * This file implements most of the debugging stuff which is compiled in only
14 * when it is enabled. But some debugging check functions are implemented in
15 * corresponding subsystem, just because they are closely related and utilize
16 * various local functions of those subsystems.
17 */
18
ff94bc40
HS
19#ifndef __UBOOT__
20#include <linux/module.h>
21#include <linux/debugfs.h>
22#include <linux/math64.h>
23#include <linux/uaccess.h>
24#include <linux/random.h>
25#else
26#include <linux/compat.h>
27#include <linux/err.h>
28#endif
9eefe2a2
SR
29#include "ubifs.h"
30
ff94bc40
HS
31#ifndef __UBOOT__
32static DEFINE_SPINLOCK(dbg_lock);
33#endif
9eefe2a2 34
ff94bc40
HS
35static const char *get_key_fmt(int fmt)
36{
37 switch (fmt) {
38 case UBIFS_SIMPLE_KEY_FMT:
39 return "simple";
40 default:
41 return "unknown/invalid format";
42 }
43}
9eefe2a2 44
ff94bc40
HS
45static const char *get_key_hash(int hash)
46{
47 switch (hash) {
48 case UBIFS_KEY_HASH_R5:
49 return "R5";
50 case UBIFS_KEY_HASH_TEST:
51 return "test";
52 default:
53 return "unknown/invalid name hash";
54 }
55}
9eefe2a2
SR
56
57static const char *get_key_type(int type)
58{
59 switch (type) {
60 case UBIFS_INO_KEY:
61 return "inode";
62 case UBIFS_DENT_KEY:
63 return "direntry";
64 case UBIFS_XENT_KEY:
65 return "xentry";
66 case UBIFS_DATA_KEY:
67 return "data";
68 case UBIFS_TRUN_KEY:
69 return "truncate";
70 default:
71 return "unknown/invalid key";
72 }
73}
74
ff94bc40
HS
75#ifndef __UBOOT__
76static const char *get_dent_type(int type)
77{
78 switch (type) {
79 case UBIFS_ITYPE_REG:
80 return "file";
81 case UBIFS_ITYPE_DIR:
82 return "dir";
83 case UBIFS_ITYPE_LNK:
84 return "symlink";
85 case UBIFS_ITYPE_BLK:
86 return "blkdev";
87 case UBIFS_ITYPE_CHR:
88 return "char dev";
89 case UBIFS_ITYPE_FIFO:
90 return "fifo";
91 case UBIFS_ITYPE_SOCK:
92 return "socket";
93 default:
94 return "unknown/invalid type";
95 }
96}
97#endif
98
99const char *dbg_snprintf_key(const struct ubifs_info *c,
100 const union ubifs_key *key, char *buffer, int len)
9eefe2a2
SR
101{
102 char *p = buffer;
103 int type = key_type(c, key);
104
105 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
106 switch (type) {
107 case UBIFS_INO_KEY:
ff94bc40
HS
108 len -= snprintf(p, len, "(%lu, %s)",
109 (unsigned long)key_inum(c, key),
110 get_key_type(type));
9eefe2a2
SR
111 break;
112 case UBIFS_DENT_KEY:
113 case UBIFS_XENT_KEY:
ff94bc40
HS
114 len -= snprintf(p, len, "(%lu, %s, %#08x)",
115 (unsigned long)key_inum(c, key),
116 get_key_type(type), key_hash(c, key));
9eefe2a2
SR
117 break;
118 case UBIFS_DATA_KEY:
ff94bc40
HS
119 len -= snprintf(p, len, "(%lu, %s, %u)",
120 (unsigned long)key_inum(c, key),
121 get_key_type(type), key_block(c, key));
9eefe2a2
SR
122 break;
123 case UBIFS_TRUN_KEY:
ff94bc40
HS
124 len -= snprintf(p, len, "(%lu, %s)",
125 (unsigned long)key_inum(c, key),
126 get_key_type(type));
9eefe2a2
SR
127 break;
128 default:
ff94bc40
HS
129 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
130 key->u32[0], key->u32[1]);
9eefe2a2
SR
131 }
132 } else
ff94bc40
HS
133 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
134 ubifs_assert(len > 0);
135 return p;
136}
137
138const char *dbg_ntype(int type)
139{
140 switch (type) {
141 case UBIFS_PAD_NODE:
142 return "padding node";
143 case UBIFS_SB_NODE:
144 return "superblock node";
145 case UBIFS_MST_NODE:
146 return "master node";
147 case UBIFS_REF_NODE:
148 return "reference node";
149 case UBIFS_INO_NODE:
150 return "inode node";
151 case UBIFS_DENT_NODE:
152 return "direntry node";
153 case UBIFS_XENT_NODE:
154 return "xentry node";
155 case UBIFS_DATA_NODE:
156 return "data node";
157 case UBIFS_TRUN_NODE:
158 return "truncate node";
159 case UBIFS_IDX_NODE:
160 return "indexing node";
161 case UBIFS_CS_NODE:
162 return "commit start node";
163 case UBIFS_ORPH_NODE:
164 return "orphan node";
165 default:
166 return "unknown node";
167 }
168}
169
170static const char *dbg_gtype(int type)
171{
172 switch (type) {
173 case UBIFS_NO_NODE_GROUP:
174 return "no node group";
175 case UBIFS_IN_NODE_GROUP:
176 return "in node group";
177 case UBIFS_LAST_OF_NODE_GROUP:
178 return "last of node group";
179 default:
180 return "unknown";
181 }
182}
183
184const char *dbg_cstate(int cmt_state)
185{
186 switch (cmt_state) {
187 case COMMIT_RESTING:
188 return "commit resting";
189 case COMMIT_BACKGROUND:
190 return "background commit requested";
191 case COMMIT_REQUIRED:
192 return "commit required";
193 case COMMIT_RUNNING_BACKGROUND:
194 return "BACKGROUND commit running";
195 case COMMIT_RUNNING_REQUIRED:
196 return "commit running and required";
197 case COMMIT_BROKEN:
198 return "broken commit";
199 default:
200 return "unknown commit state";
201 }
202}
203
204const char *dbg_jhead(int jhead)
205{
206 switch (jhead) {
207 case GCHD:
208 return "0 (GC)";
209 case BASEHD:
210 return "1 (base)";
211 case DATAHD:
212 return "2 (data)";
213 default:
214 return "unknown journal head";
215 }
216}
217
218static void dump_ch(const struct ubifs_ch *ch)
219{
220 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic));
221 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc));
222 pr_err("\tnode_type %d (%s)\n", ch->node_type,
223 dbg_ntype(ch->node_type));
224 pr_err("\tgroup_type %d (%s)\n", ch->group_type,
225 dbg_gtype(ch->group_type));
226 pr_err("\tsqnum %llu\n",
227 (unsigned long long)le64_to_cpu(ch->sqnum));
228 pr_err("\tlen %u\n", le32_to_cpu(ch->len));
229}
230
231void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
232{
233#ifndef __UBOOT__
234 const struct ubifs_inode *ui = ubifs_inode(inode);
235 struct qstr nm = { .name = NULL };
236 union ubifs_key key;
237 struct ubifs_dent_node *dent, *pdent = NULL;
238 int count = 2;
239
240 pr_err("Dump in-memory inode:");
241 pr_err("\tinode %lu\n", inode->i_ino);
242 pr_err("\tsize %llu\n",
243 (unsigned long long)i_size_read(inode));
244 pr_err("\tnlink %u\n", inode->i_nlink);
245 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode));
246 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode));
247 pr_err("\tatime %u.%u\n",
248 (unsigned int)inode->i_atime.tv_sec,
249 (unsigned int)inode->i_atime.tv_nsec);
250 pr_err("\tmtime %u.%u\n",
251 (unsigned int)inode->i_mtime.tv_sec,
252 (unsigned int)inode->i_mtime.tv_nsec);
253 pr_err("\tctime %u.%u\n",
254 (unsigned int)inode->i_ctime.tv_sec,
255 (unsigned int)inode->i_ctime.tv_nsec);
256 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum);
257 pr_err("\txattr_size %u\n", ui->xattr_size);
258 pr_err("\txattr_cnt %u\n", ui->xattr_cnt);
259 pr_err("\txattr_names %u\n", ui->xattr_names);
260 pr_err("\tdirty %u\n", ui->dirty);
261 pr_err("\txattr %u\n", ui->xattr);
262 pr_err("\tbulk_read %u\n", ui->xattr);
263 pr_err("\tsynced_i_size %llu\n",
264 (unsigned long long)ui->synced_i_size);
265 pr_err("\tui_size %llu\n",
266 (unsigned long long)ui->ui_size);
267 pr_err("\tflags %d\n", ui->flags);
268 pr_err("\tcompr_type %d\n", ui->compr_type);
269 pr_err("\tlast_page_read %lu\n", ui->last_page_read);
270 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row);
271 pr_err("\tdata_len %d\n", ui->data_len);
272
273 if (!S_ISDIR(inode->i_mode))
274 return;
275
276 pr_err("List of directory entries:\n");
277 ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
278
279 lowest_dent_key(c, &key, inode->i_ino);
280 while (1) {
281 dent = ubifs_tnc_next_ent(c, &key, &nm);
282 if (IS_ERR(dent)) {
283 if (PTR_ERR(dent) != -ENOENT)
284 pr_err("error %ld\n", PTR_ERR(dent));
285 break;
286 }
287
288 pr_err("\t%d: %s (%s)\n",
289 count++, dent->name, get_dent_type(dent->type));
290
291 nm.name = dent->name;
292 nm.len = le16_to_cpu(dent->nlen);
293 kfree(pdent);
294 pdent = dent;
295 key_read(c, &dent->key, &key);
296 }
297 kfree(pdent);
298#endif
299}
300
301void ubifs_dump_node(const struct ubifs_info *c, const void *node)
302{
303 int i, n;
304 union ubifs_key key;
305 const struct ubifs_ch *ch = node;
306 char key_buf[DBG_KEY_BUF_LEN];
307
308 /* If the magic is incorrect, just hexdump the first bytes */
309 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
310 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
311 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
312 (void *)node, UBIFS_CH_SZ, 1);
313 return;
314 }
315
316 spin_lock(&dbg_lock);
317 dump_ch(node);
318
319 switch (ch->node_type) {
320 case UBIFS_PAD_NODE:
321 {
322 const struct ubifs_pad_node *pad = node;
323
324 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len));
325 break;
326 }
327 case UBIFS_SB_NODE:
328 {
329 const struct ubifs_sb_node *sup = node;
330 unsigned int sup_flags = le32_to_cpu(sup->flags);
331
332 pr_err("\tkey_hash %d (%s)\n",
333 (int)sup->key_hash, get_key_hash(sup->key_hash));
334 pr_err("\tkey_fmt %d (%s)\n",
335 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
336 pr_err("\tflags %#x\n", sup_flags);
0195a7bb 337 pr_err("\tbig_lpt %u\n",
ff94bc40 338 !!(sup_flags & UBIFS_FLG_BIGLPT));
0195a7bb 339 pr_err("\tspace_fixup %u\n",
ff94bc40
HS
340 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
341 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size));
342 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size));
343 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt));
344 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt));
345 pr_err("\tmax_bud_bytes %llu\n",
346 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
347 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs));
348 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs));
349 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs));
350 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt));
351 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout));
352 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt));
353 pr_err("\tdefault_compr %u\n",
354 (int)le16_to_cpu(sup->default_compr));
355 pr_err("\trp_size %llu\n",
356 (unsigned long long)le64_to_cpu(sup->rp_size));
357 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid));
358 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid));
359 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version));
360 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran));
361 pr_err("\tUUID %pUB\n", sup->uuid);
362 break;
363 }
364 case UBIFS_MST_NODE:
365 {
366 const struct ubifs_mst_node *mst = node;
367
368 pr_err("\thighest_inum %llu\n",
369 (unsigned long long)le64_to_cpu(mst->highest_inum));
370 pr_err("\tcommit number %llu\n",
371 (unsigned long long)le64_to_cpu(mst->cmt_no));
372 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags));
373 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum));
374 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum));
375 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs));
376 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len));
377 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum));
378 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum));
379 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs));
380 pr_err("\tindex_size %llu\n",
381 (unsigned long long)le64_to_cpu(mst->index_size));
382 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum));
383 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs));
384 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum));
385 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs));
386 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum));
387 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs));
388 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum));
389 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs));
390 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum));
391 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt));
392 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs));
393 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs));
394 pr_err("\ttotal_free %llu\n",
395 (unsigned long long)le64_to_cpu(mst->total_free));
396 pr_err("\ttotal_dirty %llu\n",
397 (unsigned long long)le64_to_cpu(mst->total_dirty));
398 pr_err("\ttotal_used %llu\n",
399 (unsigned long long)le64_to_cpu(mst->total_used));
400 pr_err("\ttotal_dead %llu\n",
401 (unsigned long long)le64_to_cpu(mst->total_dead));
402 pr_err("\ttotal_dark %llu\n",
403 (unsigned long long)le64_to_cpu(mst->total_dark));
404 break;
405 }
406 case UBIFS_REF_NODE:
407 {
408 const struct ubifs_ref_node *ref = node;
409
410 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum));
411 pr_err("\toffs %u\n", le32_to_cpu(ref->offs));
412 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead));
413 break;
414 }
415 case UBIFS_INO_NODE:
416 {
417 const struct ubifs_ino_node *ino = node;
418
419 key_read(c, &ino->key, &key);
420 pr_err("\tkey %s\n",
421 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
422 pr_err("\tcreat_sqnum %llu\n",
423 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
424 pr_err("\tsize %llu\n",
425 (unsigned long long)le64_to_cpu(ino->size));
426 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink));
427 pr_err("\tatime %lld.%u\n",
428 (long long)le64_to_cpu(ino->atime_sec),
429 le32_to_cpu(ino->atime_nsec));
430 pr_err("\tmtime %lld.%u\n",
431 (long long)le64_to_cpu(ino->mtime_sec),
432 le32_to_cpu(ino->mtime_nsec));
433 pr_err("\tctime %lld.%u\n",
434 (long long)le64_to_cpu(ino->ctime_sec),
435 le32_to_cpu(ino->ctime_nsec));
436 pr_err("\tuid %u\n", le32_to_cpu(ino->uid));
437 pr_err("\tgid %u\n", le32_to_cpu(ino->gid));
438 pr_err("\tmode %u\n", le32_to_cpu(ino->mode));
439 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags));
440 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt));
441 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size));
442 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names));
443 pr_err("\tcompr_type %#x\n",
444 (int)le16_to_cpu(ino->compr_type));
445 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len));
446 break;
447 }
448 case UBIFS_DENT_NODE:
449 case UBIFS_XENT_NODE:
450 {
451 const struct ubifs_dent_node *dent = node;
452 int nlen = le16_to_cpu(dent->nlen);
453
454 key_read(c, &dent->key, &key);
455 pr_err("\tkey %s\n",
456 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
457 pr_err("\tinum %llu\n",
458 (unsigned long long)le64_to_cpu(dent->inum));
459 pr_err("\ttype %d\n", (int)dent->type);
460 pr_err("\tnlen %d\n", nlen);
461 pr_err("\tname ");
462
463 if (nlen > UBIFS_MAX_NLEN)
464 pr_err("(bad name length, not printing, bad or corrupted node)");
465 else {
466 for (i = 0; i < nlen && dent->name[i]; i++)
467 pr_cont("%c", dent->name[i]);
468 }
469 pr_cont("\n");
470
471 break;
472 }
473 case UBIFS_DATA_NODE:
474 {
475 const struct ubifs_data_node *dn = node;
476 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
477
478 key_read(c, &dn->key, &key);
479 pr_err("\tkey %s\n",
480 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
481 pr_err("\tsize %u\n", le32_to_cpu(dn->size));
482 pr_err("\tcompr_typ %d\n",
483 (int)le16_to_cpu(dn->compr_type));
484 pr_err("\tdata size %d\n", dlen);
485 pr_err("\tdata:\n");
486 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
487 (void *)&dn->data, dlen, 0);
488 break;
489 }
490 case UBIFS_TRUN_NODE:
491 {
492 const struct ubifs_trun_node *trun = node;
493
494 pr_err("\tinum %u\n", le32_to_cpu(trun->inum));
495 pr_err("\told_size %llu\n",
496 (unsigned long long)le64_to_cpu(trun->old_size));
497 pr_err("\tnew_size %llu\n",
498 (unsigned long long)le64_to_cpu(trun->new_size));
499 break;
500 }
501 case UBIFS_IDX_NODE:
502 {
503 const struct ubifs_idx_node *idx = node;
504
505 n = le16_to_cpu(idx->child_cnt);
506 pr_err("\tchild_cnt %d\n", n);
507 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level));
508 pr_err("\tBranches:\n");
509
510 for (i = 0; i < n && i < c->fanout - 1; i++) {
511 const struct ubifs_branch *br;
512
513 br = ubifs_idx_branch(c, idx, i);
514 key_read(c, &br->key, &key);
515 pr_err("\t%d: LEB %d:%d len %d key %s\n",
516 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
517 le32_to_cpu(br->len),
518 dbg_snprintf_key(c, &key, key_buf,
519 DBG_KEY_BUF_LEN));
520 }
521 break;
522 }
523 case UBIFS_CS_NODE:
524 break;
525 case UBIFS_ORPH_NODE:
526 {
527 const struct ubifs_orph_node *orph = node;
528
529 pr_err("\tcommit number %llu\n",
530 (unsigned long long)
531 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
532 pr_err("\tlast node flag %llu\n",
533 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
534 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
535 pr_err("\t%d orphan inode numbers:\n", n);
536 for (i = 0; i < n; i++)
537 pr_err("\t ino %llu\n",
538 (unsigned long long)le64_to_cpu(orph->inos[i]));
539 break;
540 }
541 default:
542 pr_err("node type %d was not recognized\n",
543 (int)ch->node_type);
544 }
545 spin_unlock(&dbg_lock);
546}
547
548void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
549{
550 spin_lock(&dbg_lock);
551 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
552 req->new_ino, req->dirtied_ino);
553 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n",
554 req->new_ino_d, req->dirtied_ino_d);
555 pr_err("\tnew_page %d, dirtied_page %d\n",
556 req->new_page, req->dirtied_page);
557 pr_err("\tnew_dent %d, mod_dent %d\n",
558 req->new_dent, req->mod_dent);
559 pr_err("\tidx_growth %d\n", req->idx_growth);
560 pr_err("\tdata_growth %d dd_growth %d\n",
561 req->data_growth, req->dd_growth);
562 spin_unlock(&dbg_lock);
563}
564
565void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
566{
567 spin_lock(&dbg_lock);
568 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n",
569 current->pid, lst->empty_lebs, lst->idx_lebs);
570 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
571 lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
572 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
573 lst->total_used, lst->total_dark, lst->total_dead);
574 spin_unlock(&dbg_lock);
575}
576
577#ifndef __UBOOT__
578void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
579{
580 int i;
581 struct rb_node *rb;
582 struct ubifs_bud *bud;
583 struct ubifs_gced_idx_leb *idx_gc;
584 long long available, outstanding, free;
585
586 spin_lock(&c->space_lock);
587 spin_lock(&dbg_lock);
588 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
589 current->pid, bi->data_growth + bi->dd_growth,
590 bi->data_growth + bi->dd_growth + bi->idx_growth);
591 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
592 bi->data_growth, bi->dd_growth, bi->idx_growth);
593 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
594 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
595 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
596 bi->page_budget, bi->inode_budget, bi->dent_budget);
597 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
598 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
599 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
600
601 if (bi != &c->bi)
602 /*
603 * If we are dumping saved budgeting data, do not print
604 * additional information which is about the current state, not
605 * the old one which corresponded to the saved budgeting data.
606 */
607 goto out_unlock;
608
609 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
610 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
611 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
612 atomic_long_read(&c->dirty_pg_cnt),
613 atomic_long_read(&c->dirty_zn_cnt),
614 atomic_long_read(&c->clean_zn_cnt));
615 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
616
617 /* If we are in R/O mode, journal heads do not exist */
618 if (c->jheads)
619 for (i = 0; i < c->jhead_cnt; i++)
620 pr_err("\tjhead %s\t LEB %d\n",
621 dbg_jhead(c->jheads[i].wbuf.jhead),
622 c->jheads[i].wbuf.lnum);
623 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
624 bud = rb_entry(rb, struct ubifs_bud, rb);
625 pr_err("\tbud LEB %d\n", bud->lnum);
626 }
627 list_for_each_entry(bud, &c->old_buds, list)
628 pr_err("\told bud LEB %d\n", bud->lnum);
629 list_for_each_entry(idx_gc, &c->idx_gc, list)
630 pr_err("\tGC'ed idx LEB %d unmap %d\n",
631 idx_gc->lnum, idx_gc->unmap);
632 pr_err("\tcommit state %d\n", c->cmt_state);
633
634 /* Print budgeting predictions */
635 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
636 outstanding = c->bi.data_growth + c->bi.dd_growth;
637 free = ubifs_get_free_space_nolock(c);
638 pr_err("Budgeting predictions:\n");
639 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
640 available, outstanding, free);
641out_unlock:
642 spin_unlock(&dbg_lock);
643 spin_unlock(&c->space_lock);
644}
645#else
646void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
647{
648}
649#endif
650
651void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
652{
653 int i, spc, dark = 0, dead = 0;
654 struct rb_node *rb;
655 struct ubifs_bud *bud;
656
657 spc = lp->free + lp->dirty;
658 if (spc < c->dead_wm)
659 dead = spc;
660 else
661 dark = ubifs_calc_dark(c, spc);
662
663 if (lp->flags & LPROPS_INDEX)
664 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
665 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
666 lp->flags);
667 else
668 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
669 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
670 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
671
672 if (lp->flags & LPROPS_TAKEN) {
673 if (lp->flags & LPROPS_INDEX)
674 pr_cont("index, taken");
675 else
676 pr_cont("taken");
677 } else {
678 const char *s;
679
680 if (lp->flags & LPROPS_INDEX) {
681 switch (lp->flags & LPROPS_CAT_MASK) {
682 case LPROPS_DIRTY_IDX:
683 s = "dirty index";
684 break;
685 case LPROPS_FRDI_IDX:
686 s = "freeable index";
687 break;
688 default:
689 s = "index";
690 }
691 } else {
692 switch (lp->flags & LPROPS_CAT_MASK) {
693 case LPROPS_UNCAT:
694 s = "not categorized";
695 break;
696 case LPROPS_DIRTY:
697 s = "dirty";
698 break;
699 case LPROPS_FREE:
700 s = "free";
701 break;
702 case LPROPS_EMPTY:
703 s = "empty";
704 break;
705 case LPROPS_FREEABLE:
706 s = "freeable";
707 break;
708 default:
709 s = NULL;
710 break;
711 }
712 }
713 pr_cont("%s", s);
714 }
715
716 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
717 bud = rb_entry(rb, struct ubifs_bud, rb);
718 if (bud->lnum == lp->lnum) {
719 int head = 0;
720 for (i = 0; i < c->jhead_cnt; i++) {
721 /*
722 * Note, if we are in R/O mode or in the middle
723 * of mounting/re-mounting, the write-buffers do
724 * not exist.
725 */
726 if (c->jheads &&
727 lp->lnum == c->jheads[i].wbuf.lnum) {
728 pr_cont(", jhead %s", dbg_jhead(i));
729 head = 1;
730 }
731 }
732 if (!head)
733 pr_cont(", bud of jhead %s",
734 dbg_jhead(bud->jhead));
735 }
736 }
737 if (lp->lnum == c->gc_lnum)
738 pr_cont(", GC LEB");
739 pr_cont(")\n");
740}
741
742void ubifs_dump_lprops(struct ubifs_info *c)
743{
744 int lnum, err;
745 struct ubifs_lprops lp;
746 struct ubifs_lp_stats lst;
747
748 pr_err("(pid %d) start dumping LEB properties\n", current->pid);
749 ubifs_get_lp_stats(c, &lst);
750 ubifs_dump_lstats(&lst);
751
752 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
753 err = ubifs_read_one_lp(c, lnum, &lp);
0195a7bb
HS
754 if (err) {
755 ubifs_err(c, "cannot read lprops for LEB %d", lnum);
756 continue;
757 }
ff94bc40
HS
758
759 ubifs_dump_lprop(c, &lp);
760 }
761 pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
9eefe2a2
SR
762}
763
ff94bc40 764void ubifs_dump_lpt_info(struct ubifs_info *c)
9eefe2a2 765{
ff94bc40
HS
766 int i;
767
768 spin_lock(&dbg_lock);
769 pr_err("(pid %d) dumping LPT information\n", current->pid);
770 pr_err("\tlpt_sz: %lld\n", c->lpt_sz);
771 pr_err("\tpnode_sz: %d\n", c->pnode_sz);
772 pr_err("\tnnode_sz: %d\n", c->nnode_sz);
773 pr_err("\tltab_sz: %d\n", c->ltab_sz);
774 pr_err("\tlsave_sz: %d\n", c->lsave_sz);
775 pr_err("\tbig_lpt: %d\n", c->big_lpt);
776 pr_err("\tlpt_hght: %d\n", c->lpt_hght);
777 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt);
778 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt);
779 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
780 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
781 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt);
782 pr_err("\tspace_bits: %d\n", c->space_bits);
783 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
784 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
785 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
786 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits);
787 pr_err("\tlnum_bits: %d\n", c->lnum_bits);
788 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
789 pr_err("\tLPT head is at %d:%d\n",
790 c->nhead_lnum, c->nhead_offs);
791 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
792 if (c->big_lpt)
793 pr_err("\tLPT lsave is at %d:%d\n",
794 c->lsave_lnum, c->lsave_offs);
795 for (i = 0; i < c->lpt_lebs; i++)
796 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
797 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
798 c->ltab[i].tgc, c->ltab[i].cmt);
799 spin_unlock(&dbg_lock);
800}
801
802void ubifs_dump_sleb(const struct ubifs_info *c,
803 const struct ubifs_scan_leb *sleb, int offs)
804{
805 struct ubifs_scan_node *snod;
806
807 pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
808 current->pid, sleb->lnum, offs);
809
810 list_for_each_entry(snod, &sleb->nodes, list) {
811 cond_resched();
812 pr_err("Dumping node at LEB %d:%d len %d\n",
813 sleb->lnum, snod->offs, snod->len);
814 ubifs_dump_node(c, snod->node);
815 }
816}
817
818void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
819{
820 struct ubifs_scan_leb *sleb;
821 struct ubifs_scan_node *snod;
822 void *buf;
823
824 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
825
826 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
827 if (!buf) {
0195a7bb 828 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
ff94bc40
HS
829 return;
830 }
831
832 sleb = ubifs_scan(c, lnum, 0, buf, 0);
833 if (IS_ERR(sleb)) {
0195a7bb 834 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
ff94bc40
HS
835 goto out;
836 }
837
838 pr_err("LEB %d has %d nodes ending at %d\n", lnum,
839 sleb->nodes_cnt, sleb->endpt);
840
841 list_for_each_entry(snod, &sleb->nodes, list) {
842 cond_resched();
843 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
844 snod->offs, snod->len);
845 ubifs_dump_node(c, snod->node);
846 }
847
848 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
849 ubifs_scan_destroy(sleb);
850
851out:
852 vfree(buf);
853 return;
854}
855
856void ubifs_dump_znode(const struct ubifs_info *c,
857 const struct ubifs_znode *znode)
858{
859 int n;
860 const struct ubifs_zbranch *zbr;
861 char key_buf[DBG_KEY_BUF_LEN];
862
863 spin_lock(&dbg_lock);
864 if (znode->parent)
865 zbr = &znode->parent->zbranch[znode->iip];
866 else
867 zbr = &c->zroot;
868
869 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
870 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
871 znode->level, znode->child_cnt, znode->flags);
872
873 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
874 spin_unlock(&dbg_lock);
875 return;
876 }
877
878 pr_err("zbranches:\n");
879 for (n = 0; n < znode->child_cnt; n++) {
880 zbr = &znode->zbranch[n];
881 if (znode->level > 0)
882 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
883 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
884 dbg_snprintf_key(c, &zbr->key, key_buf,
885 DBG_KEY_BUF_LEN));
886 else
887 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
888 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
889 dbg_snprintf_key(c, &zbr->key, key_buf,
890 DBG_KEY_BUF_LEN));
891 }
892 spin_unlock(&dbg_lock);
893}
894
895void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
896{
897 int i;
898
899 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
900 current->pid, cat, heap->cnt);
901 for (i = 0; i < heap->cnt; i++) {
902 struct ubifs_lprops *lprops = heap->arr[i];
903
904 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
905 i, lprops->lnum, lprops->hpos, lprops->free,
906 lprops->dirty, lprops->flags);
907 }
908 pr_err("(pid %d) finish dumping heap\n", current->pid);
909}
910
911void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
912 struct ubifs_nnode *parent, int iip)
913{
914 int i;
915
916 pr_err("(pid %d) dumping pnode:\n", current->pid);
917 pr_err("\taddress %zx parent %zx cnext %zx\n",
918 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
919 pr_err("\tflags %lu iip %d level %d num %d\n",
920 pnode->flags, iip, pnode->level, pnode->num);
921 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
922 struct ubifs_lprops *lp = &pnode->lprops[i];
923
924 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
925 i, lp->free, lp->dirty, lp->flags, lp->lnum);
926 }
927}
928
929void ubifs_dump_tnc(struct ubifs_info *c)
930{
931 struct ubifs_znode *znode;
932 int level;
933
934 pr_err("\n");
935 pr_err("(pid %d) start dumping TNC tree\n", current->pid);
936 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
937 level = znode->level;
938 pr_err("== Level %d ==\n", level);
939 while (znode) {
940 if (level != znode->level) {
941 level = znode->level;
942 pr_err("== Level %d ==\n", level);
943 }
944 ubifs_dump_znode(c, znode);
945 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
946 }
947 pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
9eefe2a2
SR
948}
949
ff94bc40
HS
950static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
951 void *priv)
9eefe2a2 952{
ff94bc40
HS
953 ubifs_dump_znode(c, znode);
954 return 0;
9eefe2a2
SR
955}
956
957/**
ff94bc40 958 * ubifs_dump_index - dump the on-flash index.
9eefe2a2
SR
959 * @c: UBIFS file-system description object
960 *
ff94bc40
HS
961 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
962 * which dumps only in-memory znodes and does not read znodes which from flash.
9eefe2a2 963 */
ff94bc40 964void ubifs_dump_index(struct ubifs_info *c)
9eefe2a2 965{
ff94bc40
HS
966 dbg_walk_index(c, NULL, dump_znode, NULL);
967}
968
969#ifndef __UBOOT__
970/**
971 * dbg_save_space_info - save information about flash space.
972 * @c: UBIFS file-system description object
973 *
974 * This function saves information about UBIFS free space, dirty space, etc, in
975 * order to check it later.
976 */
977void dbg_save_space_info(struct ubifs_info *c)
978{
979 struct ubifs_debug_info *d = c->dbg;
980 int freeable_cnt;
981
982 spin_lock(&c->space_lock);
983 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
984 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
985 d->saved_idx_gc_cnt = c->idx_gc_cnt;
986
987 /*
988 * We use a dirty hack here and zero out @c->freeable_cnt, because it
989 * affects the free space calculations, and UBIFS might not know about
990 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
991 * only when we read their lprops, and we do this only lazily, upon the
992 * need. So at any given point of time @c->freeable_cnt might be not
993 * exactly accurate.
994 *
995 * Just one example about the issue we hit when we did not zero
996 * @c->freeable_cnt.
997 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
998 * amount of free space in @d->saved_free
999 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1000 * information from flash, where we cache LEBs from various
1001 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1002 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1003 * -> 'ubifs_get_pnode()' -> 'update_cats()'
1004 * -> 'ubifs_add_to_cat()').
1005 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1006 * becomes %1.
1007 * 4. We calculate the amount of free space when the re-mount is
1008 * finished in 'dbg_check_space_info()' and it does not match
1009 * @d->saved_free.
1010 */
1011 freeable_cnt = c->freeable_cnt;
1012 c->freeable_cnt = 0;
1013 d->saved_free = ubifs_get_free_space_nolock(c);
1014 c->freeable_cnt = freeable_cnt;
1015 spin_unlock(&c->space_lock);
1016}
1017
1018/**
1019 * dbg_check_space_info - check flash space information.
1020 * @c: UBIFS file-system description object
1021 *
1022 * This function compares current flash space information with the information
1023 * which was saved when the 'dbg_save_space_info()' function was called.
1024 * Returns zero if the information has not changed, and %-EINVAL it it has
1025 * changed.
1026 */
1027int dbg_check_space_info(struct ubifs_info *c)
1028{
1029 struct ubifs_debug_info *d = c->dbg;
1030 struct ubifs_lp_stats lst;
1031 long long free;
1032 int freeable_cnt;
9eefe2a2 1033
ff94bc40
HS
1034 spin_lock(&c->space_lock);
1035 freeable_cnt = c->freeable_cnt;
1036 c->freeable_cnt = 0;
1037 free = ubifs_get_free_space_nolock(c);
1038 c->freeable_cnt = freeable_cnt;
1039 spin_unlock(&c->space_lock);
1040
1041 if (free != d->saved_free) {
0195a7bb 1042 ubifs_err(c, "free space changed from %lld to %lld",
ff94bc40 1043 d->saved_free, free);
9eefe2a2 1044 goto out;
ff94bc40 1045 }
9eefe2a2
SR
1046
1047 return 0;
1048
1049out:
0195a7bb 1050 ubifs_msg(c, "saved lprops statistics dump");
ff94bc40 1051 ubifs_dump_lstats(&d->saved_lst);
0195a7bb 1052 ubifs_msg(c, "saved budgeting info dump");
ff94bc40 1053 ubifs_dump_budg(c, &d->saved_bi);
0195a7bb
HS
1054 ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1055 ubifs_msg(c, "current lprops statistics dump");
ff94bc40
HS
1056 ubifs_get_lp_stats(c, &lst);
1057 ubifs_dump_lstats(&lst);
0195a7bb 1058 ubifs_msg(c, "current budgeting info dump");
ff94bc40
HS
1059 ubifs_dump_budg(c, &c->bi);
1060 dump_stack();
1061 return -EINVAL;
9eefe2a2
SR
1062}
1063
1064/**
ff94bc40 1065 * dbg_check_synced_i_size - check synchronized inode size.
9eefe2a2 1066 * @c: UBIFS file-system description object
ff94bc40
HS
1067 * @inode: inode to check
1068 *
1069 * If inode is clean, synchronized inode size has to be equivalent to current
1070 * inode size. This function has to be called only for locked inodes (@i_mutex
1071 * has to be locked). Returns %0 if synchronized inode size if correct, and
1072 * %-EINVAL if not.
9eefe2a2 1073 */
ff94bc40 1074int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
9eefe2a2 1075{
ff94bc40
HS
1076 int err = 0;
1077 struct ubifs_inode *ui = ubifs_inode(inode);
1078
1079 if (!dbg_is_chk_gen(c))
1080 return 0;
1081 if (!S_ISREG(inode->i_mode))
1082 return 0;
1083
1084 mutex_lock(&ui->ui_mutex);
1085 spin_lock(&ui->ui_lock);
1086 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
0195a7bb 1087 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
ff94bc40 1088 ui->ui_size, ui->synced_i_size);
0195a7bb 1089 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
ff94bc40
HS
1090 inode->i_mode, i_size_read(inode));
1091 dump_stack();
1092 err = -EINVAL;
1093 }
1094 spin_unlock(&ui->ui_lock);
1095 mutex_unlock(&ui->ui_mutex);
1096 return err;
1097}
1098
1099/*
1100 * dbg_check_dir - check directory inode size and link count.
1101 * @c: UBIFS file-system description object
1102 * @dir: the directory to calculate size for
1103 * @size: the result is returned here
1104 *
1105 * This function makes sure that directory size and link count are correct.
1106 * Returns zero in case of success and a negative error code in case of
1107 * failure.
1108 *
1109 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1110 * calling this function.
1111 */
1112int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1113{
1114 unsigned int nlink = 2;
1115 union ubifs_key key;
1116 struct ubifs_dent_node *dent, *pdent = NULL;
1117 struct qstr nm = { .name = NULL };
1118 loff_t size = UBIFS_INO_NODE_SZ;
1119
1120 if (!dbg_is_chk_gen(c))
1121 return 0;
1122
1123 if (!S_ISDIR(dir->i_mode))
1124 return 0;
1125
1126 lowest_dent_key(c, &key, dir->i_ino);
1127 while (1) {
1128 int err;
1129
1130 dent = ubifs_tnc_next_ent(c, &key, &nm);
1131 if (IS_ERR(dent)) {
1132 err = PTR_ERR(dent);
1133 if (err == -ENOENT)
1134 break;
1135 return err;
1136 }
1137
1138 nm.name = dent->name;
1139 nm.len = le16_to_cpu(dent->nlen);
1140 size += CALC_DENT_SIZE(nm.len);
1141 if (dent->type == UBIFS_ITYPE_DIR)
1142 nlink += 1;
1143 kfree(pdent);
1144 pdent = dent;
1145 key_read(c, &dent->key, &key);
1146 }
1147 kfree(pdent);
1148
1149 if (i_size_read(dir) != size) {
0195a7bb 1150 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
ff94bc40
HS
1151 dir->i_ino, (unsigned long long)i_size_read(dir),
1152 (unsigned long long)size);
1153 ubifs_dump_inode(c, dir);
1154 dump_stack();
1155 return -EINVAL;
1156 }
1157 if (dir->i_nlink != nlink) {
0195a7bb 1158 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
ff94bc40
HS
1159 dir->i_ino, dir->i_nlink, nlink);
1160 ubifs_dump_inode(c, dir);
1161 dump_stack();
1162 return -EINVAL;
1163 }
1164
1165 return 0;
1166}
1167
1168/**
1169 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1170 * @c: UBIFS file-system description object
1171 * @zbr1: first zbranch
1172 * @zbr2: following zbranch
1173 *
1174 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1175 * names of the direntries/xentries which are referred by the keys. This
1176 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1177 * sure the name of direntry/xentry referred by @zbr1 is less than
1178 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1179 * and a negative error code in case of failure.
1180 */
1181static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1182 struct ubifs_zbranch *zbr2)
1183{
1184 int err, nlen1, nlen2, cmp;
1185 struct ubifs_dent_node *dent1, *dent2;
1186 union ubifs_key key;
1187 char key_buf[DBG_KEY_BUF_LEN];
1188
1189 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1190 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1191 if (!dent1)
1192 return -ENOMEM;
1193 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1194 if (!dent2) {
1195 err = -ENOMEM;
1196 goto out_free;
1197 }
1198
1199 err = ubifs_tnc_read_node(c, zbr1, dent1);
1200 if (err)
1201 goto out_free;
1202 err = ubifs_validate_entry(c, dent1);
1203 if (err)
1204 goto out_free;
1205
1206 err = ubifs_tnc_read_node(c, zbr2, dent2);
1207 if (err)
1208 goto out_free;
1209 err = ubifs_validate_entry(c, dent2);
1210 if (err)
1211 goto out_free;
1212
1213 /* Make sure node keys are the same as in zbranch */
1214 err = 1;
1215 key_read(c, &dent1->key, &key);
1216 if (keys_cmp(c, &zbr1->key, &key)) {
0195a7bb 1217 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
ff94bc40
HS
1218 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1219 DBG_KEY_BUF_LEN));
0195a7bb 1220 ubifs_err(c, "but it should have key %s according to tnc",
ff94bc40
HS
1221 dbg_snprintf_key(c, &zbr1->key, key_buf,
1222 DBG_KEY_BUF_LEN));
1223 ubifs_dump_node(c, dent1);
1224 goto out_free;
1225 }
1226
1227 key_read(c, &dent2->key, &key);
1228 if (keys_cmp(c, &zbr2->key, &key)) {
0195a7bb 1229 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
ff94bc40
HS
1230 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1231 DBG_KEY_BUF_LEN));
0195a7bb 1232 ubifs_err(c, "but it should have key %s according to tnc",
ff94bc40
HS
1233 dbg_snprintf_key(c, &zbr2->key, key_buf,
1234 DBG_KEY_BUF_LEN));
1235 ubifs_dump_node(c, dent2);
1236 goto out_free;
1237 }
1238
1239 nlen1 = le16_to_cpu(dent1->nlen);
1240 nlen2 = le16_to_cpu(dent2->nlen);
1241
1242 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1243 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1244 err = 0;
1245 goto out_free;
1246 }
1247 if (cmp == 0 && nlen1 == nlen2)
0195a7bb 1248 ubifs_err(c, "2 xent/dent nodes with the same name");
ff94bc40 1249 else
0195a7bb 1250 ubifs_err(c, "bad order of colliding key %s",
ff94bc40
HS
1251 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1252
0195a7bb 1253 ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
ff94bc40 1254 ubifs_dump_node(c, dent1);
0195a7bb 1255 ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
ff94bc40
HS
1256 ubifs_dump_node(c, dent2);
1257
1258out_free:
1259 kfree(dent2);
1260 kfree(dent1);
1261 return err;
9eefe2a2
SR
1262}
1263
ff94bc40
HS
1264/**
1265 * dbg_check_znode - check if znode is all right.
1266 * @c: UBIFS file-system description object
1267 * @zbr: zbranch which points to this znode
1268 *
1269 * This function makes sure that znode referred to by @zbr is all right.
1270 * Returns zero if it is, and %-EINVAL if it is not.
1271 */
1272static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1273{
1274 struct ubifs_znode *znode = zbr->znode;
1275 struct ubifs_znode *zp = znode->parent;
1276 int n, err, cmp;
1277
1278 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1279 err = 1;
1280 goto out;
1281 }
1282 if (znode->level < 0) {
1283 err = 2;
1284 goto out;
1285 }
1286 if (znode->iip < 0 || znode->iip >= c->fanout) {
1287 err = 3;
1288 goto out;
1289 }
1290
1291 if (zbr->len == 0)
1292 /* Only dirty zbranch may have no on-flash nodes */
1293 if (!ubifs_zn_dirty(znode)) {
1294 err = 4;
1295 goto out;
1296 }
1297
1298 if (ubifs_zn_dirty(znode)) {
1299 /*
1300 * If znode is dirty, its parent has to be dirty as well. The
1301 * order of the operation is important, so we have to have
1302 * memory barriers.
1303 */
1304 smp_mb();
1305 if (zp && !ubifs_zn_dirty(zp)) {
1306 /*
1307 * The dirty flag is atomic and is cleared outside the
1308 * TNC mutex, so znode's dirty flag may now have
1309 * been cleared. The child is always cleared before the
1310 * parent, so we just need to check again.
1311 */
1312 smp_mb();
1313 if (ubifs_zn_dirty(znode)) {
1314 err = 5;
1315 goto out;
1316 }
1317 }
1318 }
1319
1320 if (zp) {
1321 const union ubifs_key *min, *max;
1322
1323 if (znode->level != zp->level - 1) {
1324 err = 6;
1325 goto out;
1326 }
1327
1328 /* Make sure the 'parent' pointer in our znode is correct */
1329 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1330 if (!err) {
1331 /* This zbranch does not exist in the parent */
1332 err = 7;
1333 goto out;
1334 }
1335
1336 if (znode->iip >= zp->child_cnt) {
1337 err = 8;
1338 goto out;
1339 }
1340
1341 if (znode->iip != n) {
1342 /* This may happen only in case of collisions */
1343 if (keys_cmp(c, &zp->zbranch[n].key,
1344 &zp->zbranch[znode->iip].key)) {
1345 err = 9;
1346 goto out;
1347 }
1348 n = znode->iip;
1349 }
1350
1351 /*
1352 * Make sure that the first key in our znode is greater than or
1353 * equal to the key in the pointing zbranch.
1354 */
1355 min = &zbr->key;
1356 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1357 if (cmp == 1) {
1358 err = 10;
1359 goto out;
1360 }
1361
1362 if (n + 1 < zp->child_cnt) {
1363 max = &zp->zbranch[n + 1].key;
1364
1365 /*
1366 * Make sure the last key in our znode is less or
1367 * equivalent than the key in the zbranch which goes
1368 * after our pointing zbranch.
1369 */
1370 cmp = keys_cmp(c, max,
1371 &znode->zbranch[znode->child_cnt - 1].key);
1372 if (cmp == -1) {
1373 err = 11;
1374 goto out;
1375 }
1376 }
1377 } else {
1378 /* This may only be root znode */
1379 if (zbr != &c->zroot) {
1380 err = 12;
1381 goto out;
1382 }
1383 }
1384
1385 /*
1386 * Make sure that next key is greater or equivalent then the previous
1387 * one.
1388 */
1389 for (n = 1; n < znode->child_cnt; n++) {
1390 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1391 &znode->zbranch[n].key);
1392 if (cmp > 0) {
1393 err = 13;
1394 goto out;
1395 }
1396 if (cmp == 0) {
1397 /* This can only be keys with colliding hash */
1398 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1399 err = 14;
1400 goto out;
1401 }
1402
1403 if (znode->level != 0 || c->replaying)
1404 continue;
1405
1406 /*
1407 * Colliding keys should follow binary order of
1408 * corresponding xentry/dentry names.
1409 */
1410 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1411 &znode->zbranch[n]);
1412 if (err < 0)
1413 return err;
1414 if (err) {
1415 err = 15;
1416 goto out;
1417 }
1418 }
1419 }
1420
1421 for (n = 0; n < znode->child_cnt; n++) {
1422 if (!znode->zbranch[n].znode &&
1423 (znode->zbranch[n].lnum == 0 ||
1424 znode->zbranch[n].len == 0)) {
1425 err = 16;
1426 goto out;
1427 }
1428
1429 if (znode->zbranch[n].lnum != 0 &&
1430 znode->zbranch[n].len == 0) {
1431 err = 17;
1432 goto out;
1433 }
1434
1435 if (znode->zbranch[n].lnum == 0 &&
1436 znode->zbranch[n].len != 0) {
1437 err = 18;
1438 goto out;
1439 }
1440
1441 if (znode->zbranch[n].lnum == 0 &&
1442 znode->zbranch[n].offs != 0) {
1443 err = 19;
1444 goto out;
1445 }
1446
1447 if (znode->level != 0 && znode->zbranch[n].znode)
1448 if (znode->zbranch[n].znode->parent != znode) {
1449 err = 20;
1450 goto out;
1451 }
1452 }
1453
1454 return 0;
1455
1456out:
0195a7bb
HS
1457 ubifs_err(c, "failed, error %d", err);
1458 ubifs_msg(c, "dump of the znode");
ff94bc40
HS
1459 ubifs_dump_znode(c, znode);
1460 if (zp) {
0195a7bb 1461 ubifs_msg(c, "dump of the parent znode");
ff94bc40
HS
1462 ubifs_dump_znode(c, zp);
1463 }
1464 dump_stack();
1465 return -EINVAL;
1466}
1467#else
1468
1469int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1470{
1471 return 0;
1472}
1473
1474void dbg_debugfs_exit_fs(struct ubifs_info *c)
1475{
1476 return;
1477}
1478
1479int ubifs_debugging_init(struct ubifs_info *c)
1480{
1481 return 0;
1482}
1483void ubifs_debugging_exit(struct ubifs_info *c)
1484{
1485}
1486int dbg_check_filesystem(struct ubifs_info *c)
1487{
1488 return 0;
1489}
1490int dbg_debugfs_init_fs(struct ubifs_info *c)
1491{
1492 return 0;
1493}
1494#endif
1495
1496#ifndef __UBOOT__
1497/**
1498 * dbg_check_tnc - check TNC tree.
1499 * @c: UBIFS file-system description object
1500 * @extra: do extra checks that are possible at start commit
1501 *
1502 * This function traverses whole TNC tree and checks every znode. Returns zero
1503 * if everything is all right and %-EINVAL if something is wrong with TNC.
1504 */
1505int dbg_check_tnc(struct ubifs_info *c, int extra)
1506{
1507 struct ubifs_znode *znode;
1508 long clean_cnt = 0, dirty_cnt = 0;
1509 int err, last;
1510
1511 if (!dbg_is_chk_index(c))
1512 return 0;
1513
1514 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1515 if (!c->zroot.znode)
1516 return 0;
1517
1518 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1519 while (1) {
1520 struct ubifs_znode *prev;
1521 struct ubifs_zbranch *zbr;
1522
1523 if (!znode->parent)
1524 zbr = &c->zroot;
1525 else
1526 zbr = &znode->parent->zbranch[znode->iip];
1527
1528 err = dbg_check_znode(c, zbr);
1529 if (err)
1530 return err;
1531
1532 if (extra) {
1533 if (ubifs_zn_dirty(znode))
1534 dirty_cnt += 1;
1535 else
1536 clean_cnt += 1;
1537 }
1538
1539 prev = znode;
1540 znode = ubifs_tnc_postorder_next(znode);
1541 if (!znode)
1542 break;
1543
1544 /*
1545 * If the last key of this znode is equivalent to the first key
1546 * of the next znode (collision), then check order of the keys.
1547 */
1548 last = prev->child_cnt - 1;
1549 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1550 !keys_cmp(c, &prev->zbranch[last].key,
1551 &znode->zbranch[0].key)) {
1552 err = dbg_check_key_order(c, &prev->zbranch[last],
1553 &znode->zbranch[0]);
1554 if (err < 0)
1555 return err;
1556 if (err) {
0195a7bb 1557 ubifs_msg(c, "first znode");
ff94bc40 1558 ubifs_dump_znode(c, prev);
0195a7bb 1559 ubifs_msg(c, "second znode");
ff94bc40
HS
1560 ubifs_dump_znode(c, znode);
1561 return -EINVAL;
1562 }
1563 }
1564 }
1565
1566 if (extra) {
1567 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
0195a7bb 1568 ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
ff94bc40
HS
1569 atomic_long_read(&c->clean_zn_cnt),
1570 clean_cnt);
1571 return -EINVAL;
1572 }
1573 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
0195a7bb 1574 ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
ff94bc40
HS
1575 atomic_long_read(&c->dirty_zn_cnt),
1576 dirty_cnt);
1577 return -EINVAL;
1578 }
1579 }
1580
1581 return 0;
1582}
1583#else
1584int dbg_check_tnc(struct ubifs_info *c, int extra)
1585{
1586 return 0;
1587}
1588#endif
1589
1590/**
1591 * dbg_walk_index - walk the on-flash index.
1592 * @c: UBIFS file-system description object
1593 * @leaf_cb: called for each leaf node
1594 * @znode_cb: called for each indexing node
1595 * @priv: private data which is passed to callbacks
1596 *
1597 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1598 * node and @znode_cb for each indexing node. Returns zero in case of success
1599 * and a negative error code in case of failure.
1600 *
1601 * It would be better if this function removed every znode it pulled to into
1602 * the TNC, so that the behavior more closely matched the non-debugging
1603 * behavior.
1604 */
1605int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1606 dbg_znode_callback znode_cb, void *priv)
1607{
1608 int err;
1609 struct ubifs_zbranch *zbr;
1610 struct ubifs_znode *znode, *child;
1611
1612 mutex_lock(&c->tnc_mutex);
1613 /* If the root indexing node is not in TNC - pull it */
1614 if (!c->zroot.znode) {
1615 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1616 if (IS_ERR(c->zroot.znode)) {
1617 err = PTR_ERR(c->zroot.znode);
1618 c->zroot.znode = NULL;
1619 goto out_unlock;
1620 }
1621 }
1622
1623 /*
1624 * We are going to traverse the indexing tree in the postorder manner.
1625 * Go down and find the leftmost indexing node where we are going to
1626 * start from.
1627 */
1628 znode = c->zroot.znode;
1629 while (znode->level > 0) {
1630 zbr = &znode->zbranch[0];
1631 child = zbr->znode;
1632 if (!child) {
1633 child = ubifs_load_znode(c, zbr, znode, 0);
1634 if (IS_ERR(child)) {
1635 err = PTR_ERR(child);
1636 goto out_unlock;
1637 }
1638 zbr->znode = child;
1639 }
1640
1641 znode = child;
1642 }
1643
1644 /* Iterate over all indexing nodes */
1645 while (1) {
1646 int idx;
1647
1648 cond_resched();
1649
1650 if (znode_cb) {
1651 err = znode_cb(c, znode, priv);
1652 if (err) {
0195a7bb 1653 ubifs_err(c, "znode checking function returned error %d",
ff94bc40
HS
1654 err);
1655 ubifs_dump_znode(c, znode);
1656 goto out_dump;
1657 }
1658 }
1659 if (leaf_cb && znode->level == 0) {
1660 for (idx = 0; idx < znode->child_cnt; idx++) {
1661 zbr = &znode->zbranch[idx];
1662 err = leaf_cb(c, zbr, priv);
1663 if (err) {
0195a7bb 1664 ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
ff94bc40
HS
1665 err, zbr->lnum, zbr->offs);
1666 goto out_dump;
1667 }
1668 }
1669 }
1670
1671 if (!znode->parent)
1672 break;
1673
1674 idx = znode->iip + 1;
1675 znode = znode->parent;
1676 if (idx < znode->child_cnt) {
1677 /* Switch to the next index in the parent */
1678 zbr = &znode->zbranch[idx];
1679 child = zbr->znode;
1680 if (!child) {
1681 child = ubifs_load_znode(c, zbr, znode, idx);
1682 if (IS_ERR(child)) {
1683 err = PTR_ERR(child);
1684 goto out_unlock;
1685 }
1686 zbr->znode = child;
1687 }
1688 znode = child;
1689 } else
1690 /*
1691 * This is the last child, switch to the parent and
1692 * continue.
1693 */
1694 continue;
1695
1696 /* Go to the lowest leftmost znode in the new sub-tree */
1697 while (znode->level > 0) {
1698 zbr = &znode->zbranch[0];
1699 child = zbr->znode;
1700 if (!child) {
1701 child = ubifs_load_znode(c, zbr, znode, 0);
1702 if (IS_ERR(child)) {
1703 err = PTR_ERR(child);
1704 goto out_unlock;
1705 }
1706 zbr->znode = child;
1707 }
1708 znode = child;
1709 }
1710 }
1711
1712 mutex_unlock(&c->tnc_mutex);
1713 return 0;
1714
1715out_dump:
1716 if (znode->parent)
1717 zbr = &znode->parent->zbranch[znode->iip];
1718 else
1719 zbr = &c->zroot;
0195a7bb 1720 ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
ff94bc40
HS
1721 ubifs_dump_znode(c, znode);
1722out_unlock:
1723 mutex_unlock(&c->tnc_mutex);
1724 return err;
1725}
1726
1727/**
1728 * add_size - add znode size to partially calculated index size.
1729 * @c: UBIFS file-system description object
1730 * @znode: znode to add size for
1731 * @priv: partially calculated index size
1732 *
1733 * This is a helper function for 'dbg_check_idx_size()' which is called for
1734 * every indexing node and adds its size to the 'long long' variable pointed to
1735 * by @priv.
1736 */
1737static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1738{
1739 long long *idx_size = priv;
1740 int add;
1741
1742 add = ubifs_idx_node_sz(c, znode->child_cnt);
1743 add = ALIGN(add, 8);
1744 *idx_size += add;
1745 return 0;
1746}
1747
1748/**
1749 * dbg_check_idx_size - check index size.
1750 * @c: UBIFS file-system description object
1751 * @idx_size: size to check
1752 *
1753 * This function walks the UBIFS index, calculates its size and checks that the
1754 * size is equivalent to @idx_size. Returns zero in case of success and a
1755 * negative error code in case of failure.
1756 */
1757int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1758{
1759 int err;
1760 long long calc = 0;
1761
1762 if (!dbg_is_chk_index(c))
1763 return 0;
1764
1765 err = dbg_walk_index(c, NULL, add_size, &calc);
1766 if (err) {
0195a7bb 1767 ubifs_err(c, "error %d while walking the index", err);
ff94bc40
HS
1768 return err;
1769 }
1770
1771 if (calc != idx_size) {
0195a7bb 1772 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
ff94bc40
HS
1773 calc, idx_size);
1774 dump_stack();
1775 return -EINVAL;
1776 }
1777
1778 return 0;
1779}
1780
1781#ifndef __UBOOT__
1782/**
1783 * struct fsck_inode - information about an inode used when checking the file-system.
1784 * @rb: link in the RB-tree of inodes
1785 * @inum: inode number
1786 * @mode: inode type, permissions, etc
1787 * @nlink: inode link count
1788 * @xattr_cnt: count of extended attributes
1789 * @references: how many directory/xattr entries refer this inode (calculated
1790 * while walking the index)
1791 * @calc_cnt: for directory inode count of child directories
1792 * @size: inode size (read from on-flash inode)
1793 * @xattr_sz: summary size of all extended attributes (read from on-flash
1794 * inode)
1795 * @calc_sz: for directories calculated directory size
1796 * @calc_xcnt: count of extended attributes
1797 * @calc_xsz: calculated summary size of all extended attributes
1798 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1799 * inode (read from on-flash inode)
1800 * @calc_xnms: calculated sum of lengths of all extended attribute names
1801 */
1802struct fsck_inode {
1803 struct rb_node rb;
1804 ino_t inum;
1805 umode_t mode;
1806 unsigned int nlink;
1807 unsigned int xattr_cnt;
1808 int references;
1809 int calc_cnt;
1810 long long size;
1811 unsigned int xattr_sz;
1812 long long calc_sz;
1813 long long calc_xcnt;
1814 long long calc_xsz;
1815 unsigned int xattr_nms;
1816 long long calc_xnms;
1817};
1818
1819/**
1820 * struct fsck_data - private FS checking information.
1821 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1822 */
1823struct fsck_data {
1824 struct rb_root inodes;
1825};
1826
1827/**
1828 * add_inode - add inode information to RB-tree of inodes.
1829 * @c: UBIFS file-system description object
1830 * @fsckd: FS checking information
1831 * @ino: raw UBIFS inode to add
1832 *
1833 * This is a helper function for 'check_leaf()' which adds information about
1834 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1835 * case of success and a negative error code in case of failure.
1836 */
1837static struct fsck_inode *add_inode(struct ubifs_info *c,
1838 struct fsck_data *fsckd,
1839 struct ubifs_ino_node *ino)
1840{
1841 struct rb_node **p, *parent = NULL;
1842 struct fsck_inode *fscki;
1843 ino_t inum = key_inum_flash(c, &ino->key);
1844 struct inode *inode;
1845 struct ubifs_inode *ui;
1846
1847 p = &fsckd->inodes.rb_node;
1848 while (*p) {
1849 parent = *p;
1850 fscki = rb_entry(parent, struct fsck_inode, rb);
1851 if (inum < fscki->inum)
1852 p = &(*p)->rb_left;
1853 else if (inum > fscki->inum)
1854 p = &(*p)->rb_right;
1855 else
1856 return fscki;
1857 }
1858
1859 if (inum > c->highest_inum) {
0195a7bb 1860 ubifs_err(c, "too high inode number, max. is %lu",
ff94bc40
HS
1861 (unsigned long)c->highest_inum);
1862 return ERR_PTR(-EINVAL);
1863 }
1864
1865 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1866 if (!fscki)
1867 return ERR_PTR(-ENOMEM);
1868
1869 inode = ilookup(c->vfs_sb, inum);
1870
1871 fscki->inum = inum;
1872 /*
1873 * If the inode is present in the VFS inode cache, use it instead of
1874 * the on-flash inode which might be out-of-date. E.g., the size might
1875 * be out-of-date. If we do not do this, the following may happen, for
1876 * example:
1877 * 1. A power cut happens
1878 * 2. We mount the file-system R/O, the replay process fixes up the
1879 * inode size in the VFS cache, but on on-flash.
1880 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1881 * size.
1882 */
1883 if (!inode) {
1884 fscki->nlink = le32_to_cpu(ino->nlink);
1885 fscki->size = le64_to_cpu(ino->size);
1886 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1887 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1888 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1889 fscki->mode = le32_to_cpu(ino->mode);
1890 } else {
1891 ui = ubifs_inode(inode);
1892 fscki->nlink = inode->i_nlink;
1893 fscki->size = inode->i_size;
1894 fscki->xattr_cnt = ui->xattr_cnt;
1895 fscki->xattr_sz = ui->xattr_size;
1896 fscki->xattr_nms = ui->xattr_names;
1897 fscki->mode = inode->i_mode;
1898 iput(inode);
1899 }
1900
1901 if (S_ISDIR(fscki->mode)) {
1902 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1903 fscki->calc_cnt = 2;
1904 }
1905
1906 rb_link_node(&fscki->rb, parent, p);
1907 rb_insert_color(&fscki->rb, &fsckd->inodes);
1908
1909 return fscki;
1910}
1911
1912/**
1913 * search_inode - search inode in the RB-tree of inodes.
1914 * @fsckd: FS checking information
1915 * @inum: inode number to search
1916 *
1917 * This is a helper function for 'check_leaf()' which searches inode @inum in
1918 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1919 * the inode was not found.
1920 */
1921static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1922{
1923 struct rb_node *p;
1924 struct fsck_inode *fscki;
1925
1926 p = fsckd->inodes.rb_node;
1927 while (p) {
1928 fscki = rb_entry(p, struct fsck_inode, rb);
1929 if (inum < fscki->inum)
1930 p = p->rb_left;
1931 else if (inum > fscki->inum)
1932 p = p->rb_right;
1933 else
1934 return fscki;
1935 }
1936 return NULL;
1937}
1938
1939/**
1940 * read_add_inode - read inode node and add it to RB-tree of inodes.
1941 * @c: UBIFS file-system description object
1942 * @fsckd: FS checking information
1943 * @inum: inode number to read
1944 *
1945 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1946 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1947 * information pointer in case of success and a negative error code in case of
1948 * failure.
1949 */
1950static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1951 struct fsck_data *fsckd, ino_t inum)
1952{
1953 int n, err;
1954 union ubifs_key key;
1955 struct ubifs_znode *znode;
1956 struct ubifs_zbranch *zbr;
1957 struct ubifs_ino_node *ino;
1958 struct fsck_inode *fscki;
1959
1960 fscki = search_inode(fsckd, inum);
1961 if (fscki)
1962 return fscki;
1963
1964 ino_key_init(c, &key, inum);
1965 err = ubifs_lookup_level0(c, &key, &znode, &n);
1966 if (!err) {
0195a7bb 1967 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
ff94bc40
HS
1968 return ERR_PTR(-ENOENT);
1969 } else if (err < 0) {
0195a7bb 1970 ubifs_err(c, "error %d while looking up inode %lu",
ff94bc40
HS
1971 err, (unsigned long)inum);
1972 return ERR_PTR(err);
1973 }
1974
1975 zbr = &znode->zbranch[n];
1976 if (zbr->len < UBIFS_INO_NODE_SZ) {
0195a7bb 1977 ubifs_err(c, "bad node %lu node length %d",
ff94bc40
HS
1978 (unsigned long)inum, zbr->len);
1979 return ERR_PTR(-EINVAL);
1980 }
1981
1982 ino = kmalloc(zbr->len, GFP_NOFS);
1983 if (!ino)
1984 return ERR_PTR(-ENOMEM);
1985
1986 err = ubifs_tnc_read_node(c, zbr, ino);
1987 if (err) {
0195a7bb 1988 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
ff94bc40
HS
1989 zbr->lnum, zbr->offs, err);
1990 kfree(ino);
1991 return ERR_PTR(err);
1992 }
1993
1994 fscki = add_inode(c, fsckd, ino);
1995 kfree(ino);
1996 if (IS_ERR(fscki)) {
0195a7bb 1997 ubifs_err(c, "error %ld while adding inode %lu node",
ff94bc40
HS
1998 PTR_ERR(fscki), (unsigned long)inum);
1999 return fscki;
2000 }
2001
2002 return fscki;
2003}
2004
2005/**
2006 * check_leaf - check leaf node.
2007 * @c: UBIFS file-system description object
2008 * @zbr: zbranch of the leaf node to check
2009 * @priv: FS checking information
2010 *
2011 * This is a helper function for 'dbg_check_filesystem()' which is called for
2012 * every single leaf node while walking the indexing tree. It checks that the
2013 * leaf node referred from the indexing tree exists, has correct CRC, and does
2014 * some other basic validation. This function is also responsible for building
2015 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2016 * calculates reference count, size, etc for each inode in order to later
2017 * compare them to the information stored inside the inodes and detect possible
2018 * inconsistencies. Returns zero in case of success and a negative error code
2019 * in case of failure.
2020 */
2021static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2022 void *priv)
2023{
2024 ino_t inum;
2025 void *node;
2026 struct ubifs_ch *ch;
2027 int err, type = key_type(c, &zbr->key);
2028 struct fsck_inode *fscki;
2029
2030 if (zbr->len < UBIFS_CH_SZ) {
0195a7bb 2031 ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
ff94bc40
HS
2032 zbr->len, zbr->lnum, zbr->offs);
2033 return -EINVAL;
2034 }
2035
2036 node = kmalloc(zbr->len, GFP_NOFS);
2037 if (!node)
2038 return -ENOMEM;
2039
2040 err = ubifs_tnc_read_node(c, zbr, node);
2041 if (err) {
0195a7bb 2042 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
ff94bc40
HS
2043 zbr->lnum, zbr->offs, err);
2044 goto out_free;
2045 }
2046
2047 /* If this is an inode node, add it to RB-tree of inodes */
2048 if (type == UBIFS_INO_KEY) {
2049 fscki = add_inode(c, priv, node);
2050 if (IS_ERR(fscki)) {
2051 err = PTR_ERR(fscki);
0195a7bb 2052 ubifs_err(c, "error %d while adding inode node", err);
ff94bc40
HS
2053 goto out_dump;
2054 }
2055 goto out;
2056 }
2057
2058 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2059 type != UBIFS_DATA_KEY) {
0195a7bb 2060 ubifs_err(c, "unexpected node type %d at LEB %d:%d",
ff94bc40
HS
2061 type, zbr->lnum, zbr->offs);
2062 err = -EINVAL;
2063 goto out_free;
2064 }
2065
2066 ch = node;
2067 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
0195a7bb 2068 ubifs_err(c, "too high sequence number, max. is %llu",
ff94bc40
HS
2069 c->max_sqnum);
2070 err = -EINVAL;
2071 goto out_dump;
2072 }
2073
2074 if (type == UBIFS_DATA_KEY) {
2075 long long blk_offs;
2076 struct ubifs_data_node *dn = node;
2077
0195a7bb
HS
2078 ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ);
2079
ff94bc40
HS
2080 /*
2081 * Search the inode node this data node belongs to and insert
2082 * it to the RB-tree of inodes.
2083 */
2084 inum = key_inum_flash(c, &dn->key);
2085 fscki = read_add_inode(c, priv, inum);
2086 if (IS_ERR(fscki)) {
2087 err = PTR_ERR(fscki);
0195a7bb 2088 ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
ff94bc40
HS
2089 err, (unsigned long)inum);
2090 goto out_dump;
2091 }
2092
2093 /* Make sure the data node is within inode size */
2094 blk_offs = key_block_flash(c, &dn->key);
2095 blk_offs <<= UBIFS_BLOCK_SHIFT;
2096 blk_offs += le32_to_cpu(dn->size);
2097 if (blk_offs > fscki->size) {
0195a7bb 2098 ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
ff94bc40
HS
2099 zbr->lnum, zbr->offs, fscki->size);
2100 err = -EINVAL;
2101 goto out_dump;
2102 }
2103 } else {
2104 int nlen;
2105 struct ubifs_dent_node *dent = node;
2106 struct fsck_inode *fscki1;
2107
0195a7bb
HS
2108 ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ);
2109
ff94bc40
HS
2110 err = ubifs_validate_entry(c, dent);
2111 if (err)
2112 goto out_dump;
2113
2114 /*
2115 * Search the inode node this entry refers to and the parent
2116 * inode node and insert them to the RB-tree of inodes.
2117 */
2118 inum = le64_to_cpu(dent->inum);
2119 fscki = read_add_inode(c, priv, inum);
2120 if (IS_ERR(fscki)) {
2121 err = PTR_ERR(fscki);
0195a7bb 2122 ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
ff94bc40
HS
2123 err, (unsigned long)inum);
2124 goto out_dump;
2125 }
2126
2127 /* Count how many direntries or xentries refers this inode */
2128 fscki->references += 1;
2129
2130 inum = key_inum_flash(c, &dent->key);
2131 fscki1 = read_add_inode(c, priv, inum);
2132 if (IS_ERR(fscki1)) {
2133 err = PTR_ERR(fscki1);
0195a7bb 2134 ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
ff94bc40
HS
2135 err, (unsigned long)inum);
2136 goto out_dump;
2137 }
2138
2139 nlen = le16_to_cpu(dent->nlen);
2140 if (type == UBIFS_XENT_KEY) {
2141 fscki1->calc_xcnt += 1;
2142 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2143 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2144 fscki1->calc_xnms += nlen;
2145 } else {
2146 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2147 if (dent->type == UBIFS_ITYPE_DIR)
2148 fscki1->calc_cnt += 1;
2149 }
2150 }
2151
2152out:
2153 kfree(node);
2154 return 0;
2155
2156out_dump:
0195a7bb 2157 ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
ff94bc40
HS
2158 ubifs_dump_node(c, node);
2159out_free:
2160 kfree(node);
2161 return err;
2162}
2163
2164/**
2165 * free_inodes - free RB-tree of inodes.
2166 * @fsckd: FS checking information
2167 */
2168static void free_inodes(struct fsck_data *fsckd)
2169{
2170 struct fsck_inode *fscki, *n;
2171
2172 rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2173 kfree(fscki);
2174}
2175
2176/**
2177 * check_inodes - checks all inodes.
2178 * @c: UBIFS file-system description object
2179 * @fsckd: FS checking information
2180 *
2181 * This is a helper function for 'dbg_check_filesystem()' which walks the
2182 * RB-tree of inodes after the index scan has been finished, and checks that
2183 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2184 * %-EINVAL if not, and a negative error code in case of failure.
2185 */
2186static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2187{
2188 int n, err;
2189 union ubifs_key key;
2190 struct ubifs_znode *znode;
2191 struct ubifs_zbranch *zbr;
2192 struct ubifs_ino_node *ino;
2193 struct fsck_inode *fscki;
2194 struct rb_node *this = rb_first(&fsckd->inodes);
2195
2196 while (this) {
2197 fscki = rb_entry(this, struct fsck_inode, rb);
2198 this = rb_next(this);
2199
2200 if (S_ISDIR(fscki->mode)) {
2201 /*
2202 * Directories have to have exactly one reference (they
2203 * cannot have hardlinks), although root inode is an
2204 * exception.
2205 */
2206 if (fscki->inum != UBIFS_ROOT_INO &&
2207 fscki->references != 1) {
0195a7bb 2208 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
ff94bc40
HS
2209 (unsigned long)fscki->inum,
2210 fscki->references);
2211 goto out_dump;
2212 }
2213 if (fscki->inum == UBIFS_ROOT_INO &&
2214 fscki->references != 0) {
0195a7bb 2215 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
ff94bc40
HS
2216 (unsigned long)fscki->inum,
2217 fscki->references);
2218 goto out_dump;
2219 }
2220 if (fscki->calc_sz != fscki->size) {
0195a7bb 2221 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
ff94bc40
HS
2222 (unsigned long)fscki->inum,
2223 fscki->size, fscki->calc_sz);
2224 goto out_dump;
2225 }
2226 if (fscki->calc_cnt != fscki->nlink) {
0195a7bb 2227 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
ff94bc40
HS
2228 (unsigned long)fscki->inum,
2229 fscki->nlink, fscki->calc_cnt);
2230 goto out_dump;
2231 }
2232 } else {
2233 if (fscki->references != fscki->nlink) {
0195a7bb 2234 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
ff94bc40
HS
2235 (unsigned long)fscki->inum,
2236 fscki->nlink, fscki->references);
2237 goto out_dump;
2238 }
2239 }
2240 if (fscki->xattr_sz != fscki->calc_xsz) {
0195a7bb 2241 ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
ff94bc40
HS
2242 (unsigned long)fscki->inum, fscki->xattr_sz,
2243 fscki->calc_xsz);
2244 goto out_dump;
2245 }
2246 if (fscki->xattr_cnt != fscki->calc_xcnt) {
0195a7bb 2247 ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
ff94bc40
HS
2248 (unsigned long)fscki->inum,
2249 fscki->xattr_cnt, fscki->calc_xcnt);
2250 goto out_dump;
2251 }
2252 if (fscki->xattr_nms != fscki->calc_xnms) {
0195a7bb 2253 ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
ff94bc40
HS
2254 (unsigned long)fscki->inum, fscki->xattr_nms,
2255 fscki->calc_xnms);
2256 goto out_dump;
2257 }
2258 }
2259
2260 return 0;
2261
2262out_dump:
2263 /* Read the bad inode and dump it */
2264 ino_key_init(c, &key, fscki->inum);
2265 err = ubifs_lookup_level0(c, &key, &znode, &n);
2266 if (!err) {
0195a7bb 2267 ubifs_err(c, "inode %lu not found in index",
ff94bc40
HS
2268 (unsigned long)fscki->inum);
2269 return -ENOENT;
2270 } else if (err < 0) {
0195a7bb 2271 ubifs_err(c, "error %d while looking up inode %lu",
ff94bc40
HS
2272 err, (unsigned long)fscki->inum);
2273 return err;
2274 }
2275
2276 zbr = &znode->zbranch[n];
2277 ino = kmalloc(zbr->len, GFP_NOFS);
2278 if (!ino)
2279 return -ENOMEM;
2280
2281 err = ubifs_tnc_read_node(c, zbr, ino);
2282 if (err) {
0195a7bb 2283 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
ff94bc40
HS
2284 zbr->lnum, zbr->offs, err);
2285 kfree(ino);
2286 return err;
2287 }
2288
0195a7bb 2289 ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
ff94bc40
HS
2290 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2291 ubifs_dump_node(c, ino);
2292 kfree(ino);
2293 return -EINVAL;
2294}
2295
2296/**
2297 * dbg_check_filesystem - check the file-system.
2298 * @c: UBIFS file-system description object
2299 *
2300 * This function checks the file system, namely:
2301 * o makes sure that all leaf nodes exist and their CRCs are correct;
2302 * o makes sure inode nlink, size, xattr size/count are correct (for all
2303 * inodes).
2304 *
2305 * The function reads whole indexing tree and all nodes, so it is pretty
2306 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2307 * not, and a negative error code in case of failure.
2308 */
2309int dbg_check_filesystem(struct ubifs_info *c)
2310{
2311 int err;
2312 struct fsck_data fsckd;
2313
2314 if (!dbg_is_chk_fs(c))
2315 return 0;
2316
2317 fsckd.inodes = RB_ROOT;
2318 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2319 if (err)
2320 goto out_free;
2321
2322 err = check_inodes(c, &fsckd);
2323 if (err)
2324 goto out_free;
2325
2326 free_inodes(&fsckd);
2327 return 0;
2328
2329out_free:
0195a7bb 2330 ubifs_err(c, "file-system check failed with error %d", err);
ff94bc40
HS
2331 dump_stack();
2332 free_inodes(&fsckd);
2333 return err;
2334}
2335
2336/**
2337 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2338 * @c: UBIFS file-system description object
2339 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2340 *
2341 * This function returns zero if the list of data nodes is sorted correctly,
2342 * and %-EINVAL if not.
2343 */
2344int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2345{
2346 struct list_head *cur;
2347 struct ubifs_scan_node *sa, *sb;
2348
2349 if (!dbg_is_chk_gen(c))
2350 return 0;
2351
2352 for (cur = head->next; cur->next != head; cur = cur->next) {
2353 ino_t inuma, inumb;
2354 uint32_t blka, blkb;
2355
2356 cond_resched();
2357 sa = container_of(cur, struct ubifs_scan_node, list);
2358 sb = container_of(cur->next, struct ubifs_scan_node, list);
2359
2360 if (sa->type != UBIFS_DATA_NODE) {
0195a7bb 2361 ubifs_err(c, "bad node type %d", sa->type);
ff94bc40
HS
2362 ubifs_dump_node(c, sa->node);
2363 return -EINVAL;
2364 }
2365 if (sb->type != UBIFS_DATA_NODE) {
0195a7bb 2366 ubifs_err(c, "bad node type %d", sb->type);
ff94bc40
HS
2367 ubifs_dump_node(c, sb->node);
2368 return -EINVAL;
2369 }
2370
2371 inuma = key_inum(c, &sa->key);
2372 inumb = key_inum(c, &sb->key);
2373
2374 if (inuma < inumb)
2375 continue;
2376 if (inuma > inumb) {
0195a7bb 2377 ubifs_err(c, "larger inum %lu goes before inum %lu",
ff94bc40
HS
2378 (unsigned long)inuma, (unsigned long)inumb);
2379 goto error_dump;
2380 }
2381
2382 blka = key_block(c, &sa->key);
2383 blkb = key_block(c, &sb->key);
2384
2385 if (blka > blkb) {
0195a7bb 2386 ubifs_err(c, "larger block %u goes before %u", blka, blkb);
ff94bc40
HS
2387 goto error_dump;
2388 }
2389 if (blka == blkb) {
0195a7bb 2390 ubifs_err(c, "two data nodes for the same block");
ff94bc40
HS
2391 goto error_dump;
2392 }
2393 }
2394
2395 return 0;
2396
2397error_dump:
2398 ubifs_dump_node(c, sa->node);
2399 ubifs_dump_node(c, sb->node);
2400 return -EINVAL;
2401}
2402
2403/**
2404 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2405 * @c: UBIFS file-system description object
2406 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2407 *
2408 * This function returns zero if the list of non-data nodes is sorted correctly,
2409 * and %-EINVAL if not.
2410 */
2411int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2412{
2413 struct list_head *cur;
2414 struct ubifs_scan_node *sa, *sb;
2415
2416 if (!dbg_is_chk_gen(c))
2417 return 0;
2418
2419 for (cur = head->next; cur->next != head; cur = cur->next) {
2420 ino_t inuma, inumb;
2421 uint32_t hasha, hashb;
2422
2423 cond_resched();
2424 sa = container_of(cur, struct ubifs_scan_node, list);
2425 sb = container_of(cur->next, struct ubifs_scan_node, list);
2426
2427 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2428 sa->type != UBIFS_XENT_NODE) {
0195a7bb 2429 ubifs_err(c, "bad node type %d", sa->type);
ff94bc40
HS
2430 ubifs_dump_node(c, sa->node);
2431 return -EINVAL;
2432 }
2433 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2434 sa->type != UBIFS_XENT_NODE) {
0195a7bb 2435 ubifs_err(c, "bad node type %d", sb->type);
ff94bc40
HS
2436 ubifs_dump_node(c, sb->node);
2437 return -EINVAL;
2438 }
2439
2440 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
0195a7bb 2441 ubifs_err(c, "non-inode node goes before inode node");
ff94bc40
HS
2442 goto error_dump;
2443 }
2444
2445 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2446 continue;
2447
2448 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2449 /* Inode nodes are sorted in descending size order */
2450 if (sa->len < sb->len) {
0195a7bb 2451 ubifs_err(c, "smaller inode node goes first");
ff94bc40
HS
2452 goto error_dump;
2453 }
2454 continue;
2455 }
2456
2457 /*
2458 * This is either a dentry or xentry, which should be sorted in
2459 * ascending (parent ino, hash) order.
2460 */
2461 inuma = key_inum(c, &sa->key);
2462 inumb = key_inum(c, &sb->key);
2463
2464 if (inuma < inumb)
2465 continue;
2466 if (inuma > inumb) {
0195a7bb 2467 ubifs_err(c, "larger inum %lu goes before inum %lu",
ff94bc40
HS
2468 (unsigned long)inuma, (unsigned long)inumb);
2469 goto error_dump;
2470 }
2471
2472 hasha = key_block(c, &sa->key);
2473 hashb = key_block(c, &sb->key);
2474
2475 if (hasha > hashb) {
0195a7bb 2476 ubifs_err(c, "larger hash %u goes before %u",
ff94bc40
HS
2477 hasha, hashb);
2478 goto error_dump;
2479 }
2480 }
2481
2482 return 0;
2483
2484error_dump:
0195a7bb 2485 ubifs_msg(c, "dumping first node");
ff94bc40 2486 ubifs_dump_node(c, sa->node);
0195a7bb 2487 ubifs_msg(c, "dumping second node");
ff94bc40
HS
2488 ubifs_dump_node(c, sb->node);
2489 return -EINVAL;
2490 return 0;
2491}
2492
2493static inline int chance(unsigned int n, unsigned int out_of)
2494{
2495 return !!((prandom_u32() % out_of) + 1 <= n);
2496
2497}
2498
2499static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2500{
2501 struct ubifs_debug_info *d = c->dbg;
2502
2503 ubifs_assert(dbg_is_tst_rcvry(c));
2504
2505 if (!d->pc_cnt) {
2506 /* First call - decide delay to the power cut */
2507 if (chance(1, 2)) {
2508 unsigned long delay;
2509
2510 if (chance(1, 2)) {
2511 d->pc_delay = 1;
0195a7bb 2512 /* Fail within 1 minute */
ff94bc40
HS
2513 delay = prandom_u32() % 60000;
2514 d->pc_timeout = jiffies;
2515 d->pc_timeout += msecs_to_jiffies(delay);
0195a7bb 2516 ubifs_warn(c, "failing after %lums", delay);
ff94bc40
HS
2517 } else {
2518 d->pc_delay = 2;
2519 delay = prandom_u32() % 10000;
2520 /* Fail within 10000 operations */
2521 d->pc_cnt_max = delay;
0195a7bb 2522 ubifs_warn(c, "failing after %lu calls", delay);
ff94bc40
HS
2523 }
2524 }
2525
2526 d->pc_cnt += 1;
2527 }
2528
2529 /* Determine if failure delay has expired */
2530 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2531 return 0;
2532 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2533 return 0;
2534
2535 if (lnum == UBIFS_SB_LNUM) {
2536 if (write && chance(1, 2))
2537 return 0;
2538 if (chance(19, 20))
2539 return 0;
0195a7bb 2540 ubifs_warn(c, "failing in super block LEB %d", lnum);
ff94bc40
HS
2541 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2542 if (chance(19, 20))
2543 return 0;
0195a7bb 2544 ubifs_warn(c, "failing in master LEB %d", lnum);
ff94bc40
HS
2545 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2546 if (write && chance(99, 100))
2547 return 0;
2548 if (chance(399, 400))
2549 return 0;
0195a7bb 2550 ubifs_warn(c, "failing in log LEB %d", lnum);
ff94bc40
HS
2551 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2552 if (write && chance(7, 8))
2553 return 0;
2554 if (chance(19, 20))
2555 return 0;
0195a7bb 2556 ubifs_warn(c, "failing in LPT LEB %d", lnum);
ff94bc40
HS
2557 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2558 if (write && chance(1, 2))
2559 return 0;
2560 if (chance(9, 10))
2561 return 0;
0195a7bb 2562 ubifs_warn(c, "failing in orphan LEB %d", lnum);
ff94bc40
HS
2563 } else if (lnum == c->ihead_lnum) {
2564 if (chance(99, 100))
2565 return 0;
0195a7bb 2566 ubifs_warn(c, "failing in index head LEB %d", lnum);
ff94bc40
HS
2567 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2568 if (chance(9, 10))
2569 return 0;
0195a7bb 2570 ubifs_warn(c, "failing in GC head LEB %d", lnum);
ff94bc40
HS
2571 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2572 !ubifs_search_bud(c, lnum)) {
2573 if (chance(19, 20))
2574 return 0;
0195a7bb 2575 ubifs_warn(c, "failing in non-bud LEB %d", lnum);
ff94bc40
HS
2576 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2577 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2578 if (chance(999, 1000))
2579 return 0;
0195a7bb 2580 ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
ff94bc40
HS
2581 } else {
2582 if (chance(9999, 10000))
2583 return 0;
0195a7bb 2584 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
ff94bc40
HS
2585 }
2586
2587 d->pc_happened = 1;
0195a7bb 2588 ubifs_warn(c, "========== Power cut emulated ==========");
ff94bc40
HS
2589 dump_stack();
2590 return 1;
2591}
2592
2593static int corrupt_data(const struct ubifs_info *c, const void *buf,
2594 unsigned int len)
2595{
2596 unsigned int from, to, ffs = chance(1, 2);
2597 unsigned char *p = (void *)buf;
2598
2599 from = prandom_u32() % len;
2600 /* Corruption span max to end of write unit */
2601 to = min(len, ALIGN(from + 1, c->max_write_size));
2602
0195a7bb 2603 ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
ff94bc40
HS
2604 ffs ? "0xFFs" : "random data");
2605
2606 if (ffs)
2607 memset(p + from, 0xFF, to - from);
2608 else
2609 prandom_bytes(p + from, to - from);
2610
2611 return to;
2612}
2613
2614int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2615 int offs, int len)
2616{
2617 int err, failing;
2618
2619 if (c->dbg->pc_happened)
2620 return -EROFS;
2621
2622 failing = power_cut_emulated(c, lnum, 1);
2623 if (failing) {
2624 len = corrupt_data(c, buf, len);
0195a7bb 2625 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
ff94bc40
HS
2626 len, lnum, offs);
2627 }
2628 err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2629 if (err)
2630 return err;
2631 if (failing)
2632 return -EROFS;
2633 return 0;
2634}
2635
2636int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2637 int len)
2638{
2639 int err;
2640
2641 if (c->dbg->pc_happened)
2642 return -EROFS;
2643 if (power_cut_emulated(c, lnum, 1))
2644 return -EROFS;
2645 err = ubi_leb_change(c->ubi, lnum, buf, len);
2646 if (err)
2647 return err;
2648 if (power_cut_emulated(c, lnum, 1))
2649 return -EROFS;
2650 return 0;
2651}
2652
2653int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2654{
2655 int err;
2656
2657 if (c->dbg->pc_happened)
2658 return -EROFS;
2659 if (power_cut_emulated(c, lnum, 0))
2660 return -EROFS;
2661 err = ubi_leb_unmap(c->ubi, lnum);
2662 if (err)
2663 return err;
2664 if (power_cut_emulated(c, lnum, 0))
2665 return -EROFS;
2666 return 0;
2667}
2668
2669int dbg_leb_map(struct ubifs_info *c, int lnum)
2670{
2671 int err;
2672
2673 if (c->dbg->pc_happened)
2674 return -EROFS;
2675 if (power_cut_emulated(c, lnum, 0))
2676 return -EROFS;
2677 err = ubi_leb_map(c->ubi, lnum);
2678 if (err)
2679 return err;
2680 if (power_cut_emulated(c, lnum, 0))
2681 return -EROFS;
2682 return 0;
2683}
2684
2685/*
2686 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2687 * contain the stuff specific to particular file-system mounts.
2688 */
2689static struct dentry *dfs_rootdir;
2690
2691static int dfs_file_open(struct inode *inode, struct file *file)
2692{
2693 file->private_data = inode->i_private;
2694 return nonseekable_open(inode, file);
2695}
2696
2697/**
2698 * provide_user_output - provide output to the user reading a debugfs file.
2699 * @val: boolean value for the answer
2700 * @u: the buffer to store the answer at
2701 * @count: size of the buffer
2702 * @ppos: position in the @u output buffer
2703 *
2704 * This is a simple helper function which stores @val boolean value in the user
2705 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2706 * bytes written to @u in case of success and a negative error code in case of
2707 * failure.
2708 */
2709static int provide_user_output(int val, char __user *u, size_t count,
2710 loff_t *ppos)
2711{
2712 char buf[3];
2713
2714 if (val)
2715 buf[0] = '1';
2716 else
2717 buf[0] = '0';
2718 buf[1] = '\n';
2719 buf[2] = 0x00;
2720
2721 return simple_read_from_buffer(u, count, ppos, buf, 2);
2722}
2723
2724static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2725 loff_t *ppos)
2726{
2727 struct dentry *dent = file->f_path.dentry;
2728 struct ubifs_info *c = file->private_data;
2729 struct ubifs_debug_info *d = c->dbg;
2730 int val;
2731
2732 if (dent == d->dfs_chk_gen)
2733 val = d->chk_gen;
2734 else if (dent == d->dfs_chk_index)
2735 val = d->chk_index;
2736 else if (dent == d->dfs_chk_orph)
2737 val = d->chk_orph;
2738 else if (dent == d->dfs_chk_lprops)
2739 val = d->chk_lprops;
2740 else if (dent == d->dfs_chk_fs)
2741 val = d->chk_fs;
2742 else if (dent == d->dfs_tst_rcvry)
2743 val = d->tst_rcvry;
2744 else if (dent == d->dfs_ro_error)
2745 val = c->ro_error;
2746 else
2747 return -EINVAL;
2748
2749 return provide_user_output(val, u, count, ppos);
2750}
2751
2752/**
2753 * interpret_user_input - interpret user debugfs file input.
2754 * @u: user-provided buffer with the input
2755 * @count: buffer size
2756 *
2757 * This is a helper function which interpret user input to a boolean UBIFS
2758 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2759 * in case of failure.
2760 */
2761static int interpret_user_input(const char __user *u, size_t count)
2762{
2763 size_t buf_size;
2764 char buf[8];
2765
2766 buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2767 if (copy_from_user(buf, u, buf_size))
2768 return -EFAULT;
2769
2770 if (buf[0] == '1')
2771 return 1;
2772 else if (buf[0] == '0')
2773 return 0;
2774
2775 return -EINVAL;
2776}
2777
2778static ssize_t dfs_file_write(struct file *file, const char __user *u,
2779 size_t count, loff_t *ppos)
2780{
2781 struct ubifs_info *c = file->private_data;
2782 struct ubifs_debug_info *d = c->dbg;
2783 struct dentry *dent = file->f_path.dentry;
2784 int val;
2785
2786 /*
2787 * TODO: this is racy - the file-system might have already been
2788 * unmounted and we'd oops in this case. The plan is to fix it with
2789 * help of 'iterate_supers_type()' which we should have in v3.0: when
2790 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2791 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2792 * superblocks and fine the one with the same UUID, and take the
2793 * locking right.
2794 *
2795 * The other way to go suggested by Al Viro is to create a separate
2796 * 'ubifs-debug' file-system instead.
2797 */
2798 if (file->f_path.dentry == d->dfs_dump_lprops) {
2799 ubifs_dump_lprops(c);
2800 return count;
2801 }
2802 if (file->f_path.dentry == d->dfs_dump_budg) {
2803 ubifs_dump_budg(c, &c->bi);
2804 return count;
2805 }
2806 if (file->f_path.dentry == d->dfs_dump_tnc) {
2807 mutex_lock(&c->tnc_mutex);
2808 ubifs_dump_tnc(c);
2809 mutex_unlock(&c->tnc_mutex);
2810 return count;
2811 }
2812
2813 val = interpret_user_input(u, count);
2814 if (val < 0)
2815 return val;
2816
2817 if (dent == d->dfs_chk_gen)
2818 d->chk_gen = val;
2819 else if (dent == d->dfs_chk_index)
2820 d->chk_index = val;
2821 else if (dent == d->dfs_chk_orph)
2822 d->chk_orph = val;
2823 else if (dent == d->dfs_chk_lprops)
2824 d->chk_lprops = val;
2825 else if (dent == d->dfs_chk_fs)
2826 d->chk_fs = val;
2827 else if (dent == d->dfs_tst_rcvry)
2828 d->tst_rcvry = val;
2829 else if (dent == d->dfs_ro_error)
2830 c->ro_error = !!val;
2831 else
2832 return -EINVAL;
2833
2834 return count;
2835}
2836
2837static const struct file_operations dfs_fops = {
2838 .open = dfs_file_open,
2839 .read = dfs_file_read,
2840 .write = dfs_file_write,
2841 .owner = THIS_MODULE,
2842 .llseek = no_llseek,
2843};
2844
2845/**
2846 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2847 * @c: UBIFS file-system description object
2848 *
2849 * This function creates all debugfs files for this instance of UBIFS. Returns
2850 * zero in case of success and a negative error code in case of failure.
2851 *
2852 * Note, the only reason we have not merged this function with the
2853 * 'ubifs_debugging_init()' function is because it is better to initialize
2854 * debugfs interfaces at the very end of the mount process, and remove them at
2855 * the very beginning of the mount process.
2856 */
2857int dbg_debugfs_init_fs(struct ubifs_info *c)
2858{
2859 int err, n;
2860 const char *fname;
2861 struct dentry *dent;
2862 struct ubifs_debug_info *d = c->dbg;
2863
2864 if (!IS_ENABLED(CONFIG_DEBUG_FS))
2865 return 0;
2866
2867 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2868 c->vi.ubi_num, c->vi.vol_id);
2869 if (n == UBIFS_DFS_DIR_LEN) {
2870 /* The array size is too small */
2871 fname = UBIFS_DFS_DIR_NAME;
2872 dent = ERR_PTR(-EINVAL);
2873 goto out;
2874 }
2875
2876 fname = d->dfs_dir_name;
2877 dent = debugfs_create_dir(fname, dfs_rootdir);
2878 if (IS_ERR_OR_NULL(dent))
2879 goto out;
2880 d->dfs_dir = dent;
2881
2882 fname = "dump_lprops";
2883 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2884 if (IS_ERR_OR_NULL(dent))
2885 goto out_remove;
2886 d->dfs_dump_lprops = dent;
2887
2888 fname = "dump_budg";
2889 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2890 if (IS_ERR_OR_NULL(dent))
2891 goto out_remove;
2892 d->dfs_dump_budg = dent;
2893
2894 fname = "dump_tnc";
2895 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2896 if (IS_ERR_OR_NULL(dent))
2897 goto out_remove;
2898 d->dfs_dump_tnc = dent;
2899
2900 fname = "chk_general";
2901 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2902 &dfs_fops);
2903 if (IS_ERR_OR_NULL(dent))
2904 goto out_remove;
2905 d->dfs_chk_gen = dent;
2906
2907 fname = "chk_index";
2908 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2909 &dfs_fops);
2910 if (IS_ERR_OR_NULL(dent))
2911 goto out_remove;
2912 d->dfs_chk_index = dent;
2913
2914 fname = "chk_orphans";
2915 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2916 &dfs_fops);
2917 if (IS_ERR_OR_NULL(dent))
2918 goto out_remove;
2919 d->dfs_chk_orph = dent;
2920
2921 fname = "chk_lprops";
2922 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2923 &dfs_fops);
2924 if (IS_ERR_OR_NULL(dent))
2925 goto out_remove;
2926 d->dfs_chk_lprops = dent;
2927
2928 fname = "chk_fs";
2929 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2930 &dfs_fops);
2931 if (IS_ERR_OR_NULL(dent))
2932 goto out_remove;
2933 d->dfs_chk_fs = dent;
2934
2935 fname = "tst_recovery";
2936 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2937 &dfs_fops);
2938 if (IS_ERR_OR_NULL(dent))
2939 goto out_remove;
2940 d->dfs_tst_rcvry = dent;
2941
2942 fname = "ro_error";
2943 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2944 &dfs_fops);
2945 if (IS_ERR_OR_NULL(dent))
2946 goto out_remove;
2947 d->dfs_ro_error = dent;
2948
2949 return 0;
2950
2951out_remove:
2952 debugfs_remove_recursive(d->dfs_dir);
2953out:
2954 err = dent ? PTR_ERR(dent) : -ENODEV;
0195a7bb 2955 ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
ff94bc40
HS
2956 fname, err);
2957 return err;
2958}
2959
2960/**
2961 * dbg_debugfs_exit_fs - remove all debugfs files.
2962 * @c: UBIFS file-system description object
2963 */
2964void dbg_debugfs_exit_fs(struct ubifs_info *c)
2965{
2966 if (IS_ENABLED(CONFIG_DEBUG_FS))
2967 debugfs_remove_recursive(c->dbg->dfs_dir);
2968}
2969
2970struct ubifs_global_debug_info ubifs_dbg;
2971
2972static struct dentry *dfs_chk_gen;
2973static struct dentry *dfs_chk_index;
2974static struct dentry *dfs_chk_orph;
2975static struct dentry *dfs_chk_lprops;
2976static struct dentry *dfs_chk_fs;
2977static struct dentry *dfs_tst_rcvry;
2978
2979static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2980 size_t count, loff_t *ppos)
2981{
2982 struct dentry *dent = file->f_path.dentry;
2983 int val;
2984
2985 if (dent == dfs_chk_gen)
2986 val = ubifs_dbg.chk_gen;
2987 else if (dent == dfs_chk_index)
2988 val = ubifs_dbg.chk_index;
2989 else if (dent == dfs_chk_orph)
2990 val = ubifs_dbg.chk_orph;
2991 else if (dent == dfs_chk_lprops)
2992 val = ubifs_dbg.chk_lprops;
2993 else if (dent == dfs_chk_fs)
2994 val = ubifs_dbg.chk_fs;
2995 else if (dent == dfs_tst_rcvry)
2996 val = ubifs_dbg.tst_rcvry;
2997 else
2998 return -EINVAL;
2999
3000 return provide_user_output(val, u, count, ppos);
3001}
3002
3003static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3004 size_t count, loff_t *ppos)
3005{
3006 struct dentry *dent = file->f_path.dentry;
3007 int val;
3008
3009 val = interpret_user_input(u, count);
3010 if (val < 0)
3011 return val;
3012
3013 if (dent == dfs_chk_gen)
3014 ubifs_dbg.chk_gen = val;
3015 else if (dent == dfs_chk_index)
3016 ubifs_dbg.chk_index = val;
3017 else if (dent == dfs_chk_orph)
3018 ubifs_dbg.chk_orph = val;
3019 else if (dent == dfs_chk_lprops)
3020 ubifs_dbg.chk_lprops = val;
3021 else if (dent == dfs_chk_fs)
3022 ubifs_dbg.chk_fs = val;
3023 else if (dent == dfs_tst_rcvry)
3024 ubifs_dbg.tst_rcvry = val;
3025 else
3026 return -EINVAL;
3027
3028 return count;
3029}
3030
3031static const struct file_operations dfs_global_fops = {
3032 .read = dfs_global_file_read,
3033 .write = dfs_global_file_write,
3034 .owner = THIS_MODULE,
3035 .llseek = no_llseek,
3036};
3037
3038/**
3039 * dbg_debugfs_init - initialize debugfs file-system.
3040 *
3041 * UBIFS uses debugfs file-system to expose various debugging knobs to
3042 * user-space. This function creates "ubifs" directory in the debugfs
3043 * file-system. Returns zero in case of success and a negative error code in
3044 * case of failure.
3045 */
3046int dbg_debugfs_init(void)
3047{
3048 int err;
3049 const char *fname;
3050 struct dentry *dent;
3051
3052 if (!IS_ENABLED(CONFIG_DEBUG_FS))
3053 return 0;
3054
3055 fname = "ubifs";
3056 dent = debugfs_create_dir(fname, NULL);
3057 if (IS_ERR_OR_NULL(dent))
3058 goto out;
3059 dfs_rootdir = dent;
3060
3061 fname = "chk_general";
3062 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3063 &dfs_global_fops);
3064 if (IS_ERR_OR_NULL(dent))
3065 goto out_remove;
3066 dfs_chk_gen = dent;
3067
3068 fname = "chk_index";
3069 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3070 &dfs_global_fops);
3071 if (IS_ERR_OR_NULL(dent))
3072 goto out_remove;
3073 dfs_chk_index = dent;
3074
3075 fname = "chk_orphans";
3076 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3077 &dfs_global_fops);
3078 if (IS_ERR_OR_NULL(dent))
3079 goto out_remove;
3080 dfs_chk_orph = dent;
3081
3082 fname = "chk_lprops";
3083 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3084 &dfs_global_fops);
3085 if (IS_ERR_OR_NULL(dent))
3086 goto out_remove;
3087 dfs_chk_lprops = dent;
3088
3089 fname = "chk_fs";
3090 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3091 &dfs_global_fops);
3092 if (IS_ERR_OR_NULL(dent))
3093 goto out_remove;
3094 dfs_chk_fs = dent;
3095
3096 fname = "tst_recovery";
3097 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3098 &dfs_global_fops);
3099 if (IS_ERR_OR_NULL(dent))
3100 goto out_remove;
3101 dfs_tst_rcvry = dent;
3102
3103 return 0;
3104
3105out_remove:
3106 debugfs_remove_recursive(dfs_rootdir);
3107out:
3108 err = dent ? PTR_ERR(dent) : -ENODEV;
0195a7bb
HS
3109 pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
3110 current->pid, fname, err);
ff94bc40
HS
3111 return err;
3112}
3113
3114/**
3115 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3116 */
3117void dbg_debugfs_exit(void)
3118{
3119 if (IS_ENABLED(CONFIG_DEBUG_FS))
3120 debugfs_remove_recursive(dfs_rootdir);
3121}
3122
3123/**
3124 * ubifs_debugging_init - initialize UBIFS debugging.
3125 * @c: UBIFS file-system description object
3126 *
3127 * This function initializes debugging-related data for the file system.
3128 * Returns zero in case of success and a negative error code in case of
3129 * failure.
3130 */
3131int ubifs_debugging_init(struct ubifs_info *c)
3132{
3133 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3134 if (!c->dbg)
3135 return -ENOMEM;
3136
3137 return 0;
3138}
3139
3140/**
3141 * ubifs_debugging_exit - free debugging data.
3142 * @c: UBIFS file-system description object
3143 */
3144void ubifs_debugging_exit(struct ubifs_info *c)
3145{
3146 kfree(c->dbg);
3147}
3148#endif