]> git.ipfire.org Git - people/ms/u-boot.git/blame - fs/ubifs/replay.c
arcv2: Set IOC aperture so it covers available DDR
[people/ms/u-boot.git] / fs / ubifs / replay.c
CommitLineData
9eefe2a2
SR
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
ff94bc40 6 * SPDX-License-Identifier: GPL-2.0+
9eefe2a2
SR
7 *
8 * Authors: Adrian Hunter
9 * Artem Bityutskiy (Битюцкий Артём)
10 */
11
12/*
13 * This file contains journal replay code. It runs when the file-system is being
14 * mounted and requires no locking.
15 *
16 * The larger is the journal, the longer it takes to scan it, so the longer it
17 * takes to mount UBIFS. This is why the journal has limited size which may be
18 * changed depending on the system requirements. But a larger journal gives
19 * faster I/O speed because it writes the index less frequently. So this is a
20 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
21 * larger is the journal, the more memory its index may consume.
22 */
23
ff94bc40
HS
24#ifdef __UBOOT__
25#include <linux/compat.h>
26#include <linux/err.h>
27#endif
9eefe2a2 28#include "ubifs.h"
84b8bf6d 29#include <linux/bug.h>
ff94bc40 30#include <linux/list_sort.h>
9eefe2a2
SR
31
32/**
ff94bc40 33 * struct replay_entry - replay list entry.
9eefe2a2
SR
34 * @lnum: logical eraseblock number of the node
35 * @offs: node offset
36 * @len: node length
ff94bc40 37 * @deletion: non-zero if this entry corresponds to a node deletion
9eefe2a2 38 * @sqnum: node sequence number
ff94bc40 39 * @list: links the replay list
9eefe2a2
SR
40 * @key: node key
41 * @nm: directory entry name
42 * @old_size: truncation old size
43 * @new_size: truncation new size
9eefe2a2 44 *
ff94bc40
HS
45 * The replay process first scans all buds and builds the replay list, then
46 * sorts the replay list in nodes sequence number order, and then inserts all
47 * the replay entries to the TNC.
9eefe2a2
SR
48 */
49struct replay_entry {
50 int lnum;
51 int offs;
52 int len;
ff94bc40 53 unsigned int deletion:1;
9eefe2a2 54 unsigned long long sqnum;
ff94bc40 55 struct list_head list;
9eefe2a2
SR
56 union ubifs_key key;
57 union {
58 struct qstr nm;
59 struct {
60 loff_t old_size;
61 loff_t new_size;
62 };
9eefe2a2
SR
63 };
64};
65
66/**
67 * struct bud_entry - entry in the list of buds to replay.
68 * @list: next bud in the list
69 * @bud: bud description object
9eefe2a2 70 * @sqnum: reference node sequence number
ff94bc40
HS
71 * @free: free bytes in the bud
72 * @dirty: dirty bytes in the bud
9eefe2a2
SR
73 */
74struct bud_entry {
75 struct list_head list;
76 struct ubifs_bud *bud;
9eefe2a2 77 unsigned long long sqnum;
ff94bc40
HS
78 int free;
79 int dirty;
9eefe2a2
SR
80};
81
82/**
83 * set_bud_lprops - set free and dirty space used by a bud.
84 * @c: UBIFS file-system description object
ff94bc40
HS
85 * @b: bud entry which describes the bud
86 *
87 * This function makes sure the LEB properties of bud @b are set correctly
88 * after the replay. Returns zero in case of success and a negative error code
89 * in case of failure.
9eefe2a2 90 */
ff94bc40 91static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
9eefe2a2
SR
92{
93 const struct ubifs_lprops *lp;
94 int err = 0, dirty;
95
96 ubifs_get_lprops(c);
97
ff94bc40 98 lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
9eefe2a2
SR
99 if (IS_ERR(lp)) {
100 err = PTR_ERR(lp);
101 goto out;
102 }
103
104 dirty = lp->dirty;
ff94bc40 105 if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
9eefe2a2
SR
106 /*
107 * The LEB was added to the journal with a starting offset of
108 * zero which means the LEB must have been empty. The LEB
ff94bc40
HS
109 * property values should be @lp->free == @c->leb_size and
110 * @lp->dirty == 0, but that is not the case. The reason is that
111 * the LEB had been garbage collected before it became the bud,
112 * and there was not commit inbetween. The garbage collector
113 * resets the free and dirty space without recording it
114 * anywhere except lprops, so if there was no commit then
115 * lprops does not have that information.
9eefe2a2
SR
116 *
117 * We do not need to adjust free space because the scan has told
118 * us the exact value which is recorded in the replay entry as
ff94bc40 119 * @b->free.
9eefe2a2
SR
120 *
121 * However we do need to subtract from the dirty space the
122 * amount of space that the garbage collector reclaimed, which
123 * is the whole LEB minus the amount of space that was free.
124 */
ff94bc40 125 dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
9eefe2a2 126 lp->free, lp->dirty);
ff94bc40 127 dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
9eefe2a2
SR
128 lp->free, lp->dirty);
129 dirty -= c->leb_size - lp->free;
130 /*
131 * If the replay order was perfect the dirty space would now be
ff94bc40 132 * zero. The order is not perfect because the journal heads
9eefe2a2
SR
133 * race with each other. This is not a problem but is does mean
134 * that the dirty space may temporarily exceed c->leb_size
135 * during the replay.
136 */
137 if (dirty != 0)
ff94bc40
HS
138 dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty",
139 b->bud->lnum, lp->free, lp->dirty, b->free,
140 b->dirty);
9eefe2a2 141 }
ff94bc40 142 lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
9eefe2a2
SR
143 lp->flags | LPROPS_TAKEN, 0);
144 if (IS_ERR(lp)) {
145 err = PTR_ERR(lp);
146 goto out;
147 }
ff94bc40
HS
148
149 /* Make sure the journal head points to the latest bud */
150 err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
151 b->bud->lnum, c->leb_size - b->free);
152
9eefe2a2
SR
153out:
154 ubifs_release_lprops(c);
155 return err;
156}
157
ff94bc40
HS
158/**
159 * set_buds_lprops - set free and dirty space for all replayed buds.
160 * @c: UBIFS file-system description object
161 *
162 * This function sets LEB properties for all replayed buds. Returns zero in
163 * case of success and a negative error code in case of failure.
164 */
165static int set_buds_lprops(struct ubifs_info *c)
166{
167 struct bud_entry *b;
168 int err;
169
170 list_for_each_entry(b, &c->replay_buds, list) {
171 err = set_bud_lprops(c, b);
172 if (err)
173 return err;
174 }
175
176 return 0;
177}
178
9eefe2a2
SR
179/**
180 * trun_remove_range - apply a replay entry for a truncation to the TNC.
181 * @c: UBIFS file-system description object
182 * @r: replay entry of truncation
183 */
184static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
185{
186 unsigned min_blk, max_blk;
187 union ubifs_key min_key, max_key;
188 ino_t ino;
189
190 min_blk = r->new_size / UBIFS_BLOCK_SIZE;
191 if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
192 min_blk += 1;
193
194 max_blk = r->old_size / UBIFS_BLOCK_SIZE;
195 if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
196 max_blk -= 1;
197
198 ino = key_inum(c, &r->key);
199
200 data_key_init(c, &min_key, ino, min_blk);
201 data_key_init(c, &max_key, ino, max_blk);
202
203 return ubifs_tnc_remove_range(c, &min_key, &max_key);
204}
205
206/**
207 * apply_replay_entry - apply a replay entry to the TNC.
208 * @c: UBIFS file-system description object
209 * @r: replay entry to apply
210 *
211 * Apply a replay entry to the TNC.
212 */
213static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
214{
ff94bc40 215 int err;
9eefe2a2 216
ff94bc40
HS
217 dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
218 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
9eefe2a2
SR
219
220 /* Set c->replay_sqnum to help deal with dangling branches. */
221 c->replay_sqnum = r->sqnum;
222
ff94bc40
HS
223 if (is_hash_key(c, &r->key)) {
224 if (r->deletion)
9eefe2a2
SR
225 err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
226 else
227 err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
228 r->len, &r->nm);
229 } else {
ff94bc40 230 if (r->deletion)
9eefe2a2
SR
231 switch (key_type(c, &r->key)) {
232 case UBIFS_INO_KEY:
233 {
234 ino_t inum = key_inum(c, &r->key);
235
236 err = ubifs_tnc_remove_ino(c, inum);
237 break;
238 }
239 case UBIFS_TRUN_KEY:
240 err = trun_remove_range(c, r);
241 break;
242 default:
243 err = ubifs_tnc_remove(c, &r->key);
244 break;
245 }
246 else
247 err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
248 r->len);
249 if (err)
250 return err;
251
252 if (c->need_recovery)
ff94bc40 253 err = ubifs_recover_size_accum(c, &r->key, r->deletion,
9eefe2a2
SR
254 r->new_size);
255 }
256
257 return err;
258}
259
260/**
ff94bc40
HS
261 * replay_entries_cmp - compare 2 replay entries.
262 * @priv: UBIFS file-system description object
263 * @a: first replay entry
264 * @a: second replay entry
9eefe2a2 265 *
ff94bc40
HS
266 * This is a comparios function for 'list_sort()' which compares 2 replay
267 * entries @a and @b by comparing their sequence numer. Returns %1 if @a has
268 * greater sequence number and %-1 otherwise.
9eefe2a2 269 */
ff94bc40
HS
270static int replay_entries_cmp(void *priv, struct list_head *a,
271 struct list_head *b)
9eefe2a2 272{
ff94bc40
HS
273 struct replay_entry *ra, *rb;
274
275 cond_resched();
276 if (a == b)
277 return 0;
278
279 ra = list_entry(a, struct replay_entry, list);
280 rb = list_entry(b, struct replay_entry, list);
281 ubifs_assert(ra->sqnum != rb->sqnum);
282 if (ra->sqnum > rb->sqnum)
283 return 1;
284 return -1;
9eefe2a2
SR
285}
286
287/**
ff94bc40 288 * apply_replay_list - apply the replay list to the TNC.
9eefe2a2
SR
289 * @c: UBIFS file-system description object
290 *
ff94bc40
HS
291 * Apply all entries in the replay list to the TNC. Returns zero in case of
292 * success and a negative error code in case of failure.
9eefe2a2 293 */
ff94bc40 294static int apply_replay_list(struct ubifs_info *c)
9eefe2a2 295{
ff94bc40
HS
296 struct replay_entry *r;
297 int err;
9eefe2a2 298
ff94bc40 299 list_sort(c, &c->replay_list, &replay_entries_cmp);
9eefe2a2 300
ff94bc40 301 list_for_each_entry(r, &c->replay_list, list) {
9eefe2a2
SR
302 cond_resched();
303
9eefe2a2
SR
304 err = apply_replay_entry(c, r);
305 if (err)
306 return err;
9eefe2a2 307 }
ff94bc40 308
9eefe2a2
SR
309 return 0;
310}
311
312/**
ff94bc40
HS
313 * destroy_replay_list - destroy the replay.
314 * @c: UBIFS file-system description object
315 *
316 * Destroy the replay list.
317 */
318static void destroy_replay_list(struct ubifs_info *c)
319{
320 struct replay_entry *r, *tmp;
321
322 list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
323 if (is_hash_key(c, &r->key))
324 kfree(r->nm.name);
325 list_del(&r->list);
326 kfree(r);
327 }
328}
329
330/**
331 * insert_node - insert a node to the replay list
9eefe2a2
SR
332 * @c: UBIFS file-system description object
333 * @lnum: node logical eraseblock number
334 * @offs: node offset
335 * @len: node length
336 * @key: node key
337 * @sqnum: sequence number
338 * @deletion: non-zero if this is a deletion
339 * @used: number of bytes in use in a LEB
340 * @old_size: truncation old size
341 * @new_size: truncation new size
342 *
ff94bc40
HS
343 * This function inserts a scanned non-direntry node to the replay list. The
344 * replay list contains @struct replay_entry elements, and we sort this list in
345 * sequence number order before applying it. The replay list is applied at the
346 * very end of the replay process. Since the list is sorted in sequence number
347 * order, the older modifications are applied first. This function returns zero
348 * in case of success and a negative error code in case of failure.
9eefe2a2
SR
349 */
350static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
351 union ubifs_key *key, unsigned long long sqnum,
352 int deletion, int *used, loff_t old_size,
353 loff_t new_size)
354{
9eefe2a2
SR
355 struct replay_entry *r;
356
ff94bc40
HS
357 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
358
9eefe2a2
SR
359 if (key_inum(c, key) >= c->highest_inum)
360 c->highest_inum = key_inum(c, key);
361
9eefe2a2
SR
362 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
363 if (!r)
364 return -ENOMEM;
365
366 if (!deletion)
367 *used += ALIGN(len, 8);
368 r->lnum = lnum;
369 r->offs = offs;
370 r->len = len;
ff94bc40 371 r->deletion = !!deletion;
9eefe2a2 372 r->sqnum = sqnum;
ff94bc40 373 key_copy(c, key, &r->key);
9eefe2a2
SR
374 r->old_size = old_size;
375 r->new_size = new_size;
9eefe2a2 376
ff94bc40 377 list_add_tail(&r->list, &c->replay_list);
9eefe2a2
SR
378 return 0;
379}
380
381/**
ff94bc40 382 * insert_dent - insert a directory entry node into the replay list.
9eefe2a2
SR
383 * @c: UBIFS file-system description object
384 * @lnum: node logical eraseblock number
385 * @offs: node offset
386 * @len: node length
387 * @key: node key
388 * @name: directory entry name
389 * @nlen: directory entry name length
390 * @sqnum: sequence number
391 * @deletion: non-zero if this is a deletion
392 * @used: number of bytes in use in a LEB
393 *
ff94bc40
HS
394 * This function inserts a scanned directory entry node or an extended
395 * attribute entry to the replay list. Returns zero in case of success and a
396 * negative error code in case of failure.
9eefe2a2
SR
397 */
398static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
399 union ubifs_key *key, const char *name, int nlen,
400 unsigned long long sqnum, int deletion, int *used)
401{
9eefe2a2
SR
402 struct replay_entry *r;
403 char *nbuf;
404
ff94bc40 405 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
9eefe2a2
SR
406 if (key_inum(c, key) >= c->highest_inum)
407 c->highest_inum = key_inum(c, key);
408
9eefe2a2
SR
409 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
410 if (!r)
411 return -ENOMEM;
ff94bc40 412
9eefe2a2
SR
413 nbuf = kmalloc(nlen + 1, GFP_KERNEL);
414 if (!nbuf) {
415 kfree(r);
416 return -ENOMEM;
417 }
418
419 if (!deletion)
420 *used += ALIGN(len, 8);
421 r->lnum = lnum;
422 r->offs = offs;
423 r->len = len;
ff94bc40 424 r->deletion = !!deletion;
9eefe2a2 425 r->sqnum = sqnum;
ff94bc40 426 key_copy(c, key, &r->key);
9eefe2a2
SR
427 r->nm.len = nlen;
428 memcpy(nbuf, name, nlen);
429 nbuf[nlen] = '\0';
430 r->nm.name = nbuf;
9eefe2a2 431
ff94bc40 432 list_add_tail(&r->list, &c->replay_list);
9eefe2a2
SR
433 return 0;
434}
435
436/**
437 * ubifs_validate_entry - validate directory or extended attribute entry node.
438 * @c: UBIFS file-system description object
439 * @dent: the node to validate
440 *
441 * This function validates directory or extended attribute entry node @dent.
442 * Returns zero if the node is all right and a %-EINVAL if not.
443 */
444int ubifs_validate_entry(struct ubifs_info *c,
445 const struct ubifs_dent_node *dent)
446{
447 int key_type = key_type_flash(c, dent->key);
448 int nlen = le16_to_cpu(dent->nlen);
449
450 if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
451 dent->type >= UBIFS_ITYPES_CNT ||
452 nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
ff94bc40 453 strnlen(dent->name, nlen) != nlen ||
9eefe2a2 454 le64_to_cpu(dent->inum) > MAX_INUM) {
0195a7bb 455 ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ?
9eefe2a2
SR
456 "directory entry" : "extended attribute entry");
457 return -EINVAL;
458 }
459
460 if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
0195a7bb 461 ubifs_err(c, "bad key type %d", key_type);
9eefe2a2
SR
462 return -EINVAL;
463 }
464
465 return 0;
466}
467
ff94bc40
HS
468/**
469 * is_last_bud - check if the bud is the last in the journal head.
470 * @c: UBIFS file-system description object
471 * @bud: bud description object
472 *
473 * This function checks if bud @bud is the last bud in its journal head. This
474 * information is then used by 'replay_bud()' to decide whether the bud can
475 * have corruptions or not. Indeed, only last buds can be corrupted by power
476 * cuts. Returns %1 if this is the last bud, and %0 if not.
477 */
478static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
479{
480 struct ubifs_jhead *jh = &c->jheads[bud->jhead];
481 struct ubifs_bud *next;
482 uint32_t data;
483 int err;
484
485 if (list_is_last(&bud->list, &jh->buds_list))
486 return 1;
487
488 /*
489 * The following is a quirk to make sure we work correctly with UBIFS
490 * images used with older UBIFS.
491 *
492 * Normally, the last bud will be the last in the journal head's list
493 * of bud. However, there is one exception if the UBIFS image belongs
494 * to older UBIFS. This is fairly unlikely: one would need to use old
495 * UBIFS, then have a power cut exactly at the right point, and then
496 * try to mount this image with new UBIFS.
497 *
498 * The exception is: it is possible to have 2 buds A and B, A goes
499 * before B, and B is the last, bud B is contains no data, and bud A is
500 * corrupted at the end. The reason is that in older versions when the
501 * journal code switched the next bud (from A to B), it first added a
502 * log reference node for the new bud (B), and only after this it
503 * synchronized the write-buffer of current bud (A). But later this was
504 * changed and UBIFS started to always synchronize the write-buffer of
505 * the bud (A) before writing the log reference for the new bud (B).
506 *
507 * But because older UBIFS always synchronized A's write-buffer before
508 * writing to B, we can recognize this exceptional situation but
509 * checking the contents of bud B - if it is empty, then A can be
510 * treated as the last and we can recover it.
511 *
512 * TODO: remove this piece of code in a couple of years (today it is
513 * 16.05.2011).
514 */
515 next = list_entry(bud->list.next, struct ubifs_bud, list);
516 if (!list_is_last(&next->list, &jh->buds_list))
517 return 0;
518
519 err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
520 if (err)
521 return 0;
522
523 return data == 0xFFFFFFFF;
524}
525
9eefe2a2
SR
526/**
527 * replay_bud - replay a bud logical eraseblock.
528 * @c: UBIFS file-system description object
ff94bc40 529 * @b: bud entry which describes the bud
9eefe2a2 530 *
ff94bc40
HS
531 * This function replays bud @bud, recovers it if needed, and adds all nodes
532 * from this bud to the replay list. Returns zero in case of success and a
533 * negative error code in case of failure.
9eefe2a2 534 */
ff94bc40 535static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
9eefe2a2 536{
ff94bc40
HS
537 int is_last = is_last_bud(c, b->bud);
538 int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
9eefe2a2
SR
539 struct ubifs_scan_leb *sleb;
540 struct ubifs_scan_node *snod;
9eefe2a2 541
ff94bc40
HS
542 dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
543 lnum, b->bud->jhead, offs, is_last);
544
545 if (c->need_recovery && is_last)
546 /*
547 * Recover only last LEBs in the journal heads, because power
548 * cuts may cause corruptions only in these LEBs, because only
549 * these LEBs could possibly be written to at the power cut
550 * time.
551 */
552 sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
9eefe2a2 553 else
ff94bc40 554 sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
9eefe2a2
SR
555 if (IS_ERR(sleb))
556 return PTR_ERR(sleb);
557
558 /*
559 * The bud does not have to start from offset zero - the beginning of
560 * the 'lnum' LEB may contain previously committed data. One of the
561 * things we have to do in replay is to correctly update lprops with
562 * newer information about this LEB.
563 *
564 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
565 * bytes of free space because it only contain information about
566 * committed data.
567 *
568 * But we know that real amount of free space is 'c->leb_size -
569 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
570 * 'sleb->endpt' is used by bud data. We have to correctly calculate
571 * how much of these data are dirty and update lprops with this
572 * information.
573 *
574 * The dirt in that LEB region is comprised of padding nodes, deletion
575 * nodes, truncation nodes and nodes which are obsoleted by subsequent
576 * nodes in this LEB. So instead of calculating clean space, we
577 * calculate used space ('used' variable).
578 */
579
580 list_for_each_entry(snod, &sleb->nodes, list) {
581 int deletion = 0;
582
583 cond_resched();
584
585 if (snod->sqnum >= SQNUM_WATERMARK) {
0195a7bb 586 ubifs_err(c, "file system's life ended");
9eefe2a2
SR
587 goto out_dump;
588 }
589
590 if (snod->sqnum > c->max_sqnum)
591 c->max_sqnum = snod->sqnum;
592
593 switch (snod->type) {
594 case UBIFS_INO_NODE:
595 {
596 struct ubifs_ino_node *ino = snod->node;
597 loff_t new_size = le64_to_cpu(ino->size);
598
599 if (le32_to_cpu(ino->nlink) == 0)
600 deletion = 1;
601 err = insert_node(c, lnum, snod->offs, snod->len,
602 &snod->key, snod->sqnum, deletion,
603 &used, 0, new_size);
604 break;
605 }
606 case UBIFS_DATA_NODE:
607 {
608 struct ubifs_data_node *dn = snod->node;
609 loff_t new_size = le32_to_cpu(dn->size) +
610 key_block(c, &snod->key) *
611 UBIFS_BLOCK_SIZE;
612
613 err = insert_node(c, lnum, snod->offs, snod->len,
614 &snod->key, snod->sqnum, deletion,
615 &used, 0, new_size);
616 break;
617 }
618 case UBIFS_DENT_NODE:
619 case UBIFS_XENT_NODE:
620 {
621 struct ubifs_dent_node *dent = snod->node;
622
623 err = ubifs_validate_entry(c, dent);
624 if (err)
625 goto out_dump;
626
627 err = insert_dent(c, lnum, snod->offs, snod->len,
ff94bc40 628 &snod->key, dent->name,
9eefe2a2
SR
629 le16_to_cpu(dent->nlen), snod->sqnum,
630 !le64_to_cpu(dent->inum), &used);
631 break;
632 }
633 case UBIFS_TRUN_NODE:
634 {
635 struct ubifs_trun_node *trun = snod->node;
636 loff_t old_size = le64_to_cpu(trun->old_size);
637 loff_t new_size = le64_to_cpu(trun->new_size);
638 union ubifs_key key;
639
640 /* Validate truncation node */
641 if (old_size < 0 || old_size > c->max_inode_sz ||
642 new_size < 0 || new_size > c->max_inode_sz ||
643 old_size <= new_size) {
0195a7bb 644 ubifs_err(c, "bad truncation node");
9eefe2a2
SR
645 goto out_dump;
646 }
647
648 /*
649 * Create a fake truncation key just to use the same
650 * functions which expect nodes to have keys.
651 */
652 trun_key_init(c, &key, le32_to_cpu(trun->inum));
653 err = insert_node(c, lnum, snod->offs, snod->len,
654 &key, snod->sqnum, 1, &used,
655 old_size, new_size);
656 break;
657 }
658 default:
0195a7bb 659 ubifs_err(c, "unexpected node type %d in bud LEB %d:%d",
9eefe2a2
SR
660 snod->type, lnum, snod->offs);
661 err = -EINVAL;
662 goto out_dump;
663 }
664 if (err)
665 goto out;
666 }
667
ff94bc40 668 ubifs_assert(ubifs_search_bud(c, lnum));
9eefe2a2
SR
669 ubifs_assert(sleb->endpt - offs >= used);
670 ubifs_assert(sleb->endpt % c->min_io_size == 0);
671
ff94bc40
HS
672 b->dirty = sleb->endpt - offs - used;
673 b->free = c->leb_size - sleb->endpt;
674 dbg_mnt("bud LEB %d replied: dirty %d, free %d",
675 lnum, b->dirty, b->free);
9eefe2a2
SR
676
677out:
678 ubifs_scan_destroy(sleb);
679 return err;
680
681out_dump:
0195a7bb 682 ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs);
ff94bc40 683 ubifs_dump_node(c, snod->node);
9eefe2a2
SR
684 ubifs_scan_destroy(sleb);
685 return -EINVAL;
686}
687
9eefe2a2
SR
688/**
689 * replay_buds - replay all buds.
690 * @c: UBIFS file-system description object
691 *
692 * This function returns zero in case of success and a negative error code in
693 * case of failure.
694 */
695static int replay_buds(struct ubifs_info *c)
696{
697 struct bud_entry *b;
ff94bc40
HS
698 int err;
699 unsigned long long prev_sqnum = 0;
9eefe2a2
SR
700
701 list_for_each_entry(b, &c->replay_buds, list) {
ff94bc40 702 err = replay_bud(c, b);
9eefe2a2
SR
703 if (err)
704 return err;
ff94bc40
HS
705
706 ubifs_assert(b->sqnum > prev_sqnum);
707 prev_sqnum = b->sqnum;
9eefe2a2
SR
708 }
709
710 return 0;
711}
712
713/**
714 * destroy_bud_list - destroy the list of buds to replay.
715 * @c: UBIFS file-system description object
716 */
717static void destroy_bud_list(struct ubifs_info *c)
718{
719 struct bud_entry *b;
720
721 while (!list_empty(&c->replay_buds)) {
722 b = list_entry(c->replay_buds.next, struct bud_entry, list);
723 list_del(&b->list);
724 kfree(b);
725 }
726}
727
728/**
729 * add_replay_bud - add a bud to the list of buds to replay.
730 * @c: UBIFS file-system description object
731 * @lnum: bud logical eraseblock number to replay
732 * @offs: bud start offset
733 * @jhead: journal head to which this bud belongs
734 * @sqnum: reference node sequence number
735 *
736 * This function returns zero in case of success and a negative error code in
737 * case of failure.
738 */
739static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
740 unsigned long long sqnum)
741{
742 struct ubifs_bud *bud;
743 struct bud_entry *b;
744
745 dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
746
747 bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
748 if (!bud)
749 return -ENOMEM;
750
751 b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
752 if (!b) {
753 kfree(bud);
754 return -ENOMEM;
755 }
756
757 bud->lnum = lnum;
758 bud->start = offs;
759 bud->jhead = jhead;
760 ubifs_add_bud(c, bud);
761
762 b->bud = bud;
763 b->sqnum = sqnum;
764 list_add_tail(&b->list, &c->replay_buds);
765
766 return 0;
767}
768
769/**
770 * validate_ref - validate a reference node.
771 * @c: UBIFS file-system description object
772 * @ref: the reference node to validate
773 * @ref_lnum: LEB number of the reference node
774 * @ref_offs: reference node offset
775 *
776 * This function returns %1 if a bud reference already exists for the LEB. %0 is
777 * returned if the reference node is new, otherwise %-EINVAL is returned if
778 * validation failed.
779 */
780static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
781{
782 struct ubifs_bud *bud;
783 int lnum = le32_to_cpu(ref->lnum);
784 unsigned int offs = le32_to_cpu(ref->offs);
785 unsigned int jhead = le32_to_cpu(ref->jhead);
786
787 /*
788 * ref->offs may point to the end of LEB when the journal head points
789 * to the end of LEB and we write reference node for it during commit.
790 * So this is why we require 'offs > c->leb_size'.
791 */
792 if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
793 lnum < c->main_first || offs > c->leb_size ||
794 offs & (c->min_io_size - 1))
795 return -EINVAL;
796
797 /* Make sure we have not already looked at this bud */
798 bud = ubifs_search_bud(c, lnum);
799 if (bud) {
800 if (bud->jhead == jhead && bud->start <= offs)
801 return 1;
0195a7bb 802 ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs);
9eefe2a2
SR
803 return -EINVAL;
804 }
805
806 return 0;
807}
808
809/**
810 * replay_log_leb - replay a log logical eraseblock.
811 * @c: UBIFS file-system description object
812 * @lnum: log logical eraseblock to replay
813 * @offs: offset to start replaying from
814 * @sbuf: scan buffer
815 *
816 * This function replays a log LEB and returns zero in case of success, %1 if
817 * this is the last LEB in the log, and a negative error code in case of
818 * failure.
819 */
820static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
821{
822 int err;
823 struct ubifs_scan_leb *sleb;
824 struct ubifs_scan_node *snod;
825 const struct ubifs_cs_node *node;
826
827 dbg_mnt("replay log LEB %d:%d", lnum, offs);
ff94bc40 828 sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
9eefe2a2 829 if (IS_ERR(sleb)) {
ff94bc40
HS
830 if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
831 return PTR_ERR(sleb);
832 /*
833 * Note, the below function will recover this log LEB only if
834 * it is the last, because unclean reboots can possibly corrupt
835 * only the tail of the log.
836 */
837 sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
9eefe2a2
SR
838 if (IS_ERR(sleb))
839 return PTR_ERR(sleb);
840 }
841
842 if (sleb->nodes_cnt == 0) {
843 err = 1;
844 goto out;
845 }
846
847 node = sleb->buf;
9eefe2a2
SR
848 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
849 if (c->cs_sqnum == 0) {
850 /*
851 * This is the first log LEB we are looking at, make sure that
852 * the first node is a commit start node. Also record its
853 * sequence number so that UBIFS can determine where the log
854 * ends, because all nodes which were have higher sequence
855 * numbers.
856 */
857 if (snod->type != UBIFS_CS_NODE) {
0195a7bb 858 ubifs_err(c, "first log node at LEB %d:%d is not CS node",
ff94bc40 859 lnum, offs);
9eefe2a2
SR
860 goto out_dump;
861 }
862 if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
0195a7bb 863 ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu",
ff94bc40
HS
864 lnum, offs,
865 (unsigned long long)le64_to_cpu(node->cmt_no),
866 c->cmt_no);
9eefe2a2
SR
867 goto out_dump;
868 }
869
870 c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
871 dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
872 }
873
874 if (snod->sqnum < c->cs_sqnum) {
875 /*
876 * This means that we reached end of log and now
877 * look to the older log data, which was already
878 * committed but the eraseblock was not erased (UBIFS
879 * only un-maps it). So this basically means we have to
880 * exit with "end of log" code.
881 */
882 err = 1;
883 goto out;
884 }
885
886 /* Make sure the first node sits at offset zero of the LEB */
887 if (snod->offs != 0) {
0195a7bb 888 ubifs_err(c, "first node is not at zero offset");
9eefe2a2
SR
889 goto out_dump;
890 }
891
892 list_for_each_entry(snod, &sleb->nodes, list) {
9eefe2a2
SR
893 cond_resched();
894
895 if (snod->sqnum >= SQNUM_WATERMARK) {
0195a7bb 896 ubifs_err(c, "file system's life ended");
9eefe2a2
SR
897 goto out_dump;
898 }
899
900 if (snod->sqnum < c->cs_sqnum) {
0195a7bb 901 ubifs_err(c, "bad sqnum %llu, commit sqnum %llu",
ff94bc40 902 snod->sqnum, c->cs_sqnum);
9eefe2a2
SR
903 goto out_dump;
904 }
905
906 if (snod->sqnum > c->max_sqnum)
907 c->max_sqnum = snod->sqnum;
908
909 switch (snod->type) {
910 case UBIFS_REF_NODE: {
911 const struct ubifs_ref_node *ref = snod->node;
912
913 err = validate_ref(c, ref);
914 if (err == 1)
915 break; /* Already have this bud */
916 if (err)
917 goto out_dump;
918
919 err = add_replay_bud(c, le32_to_cpu(ref->lnum),
920 le32_to_cpu(ref->offs),
921 le32_to_cpu(ref->jhead),
922 snod->sqnum);
923 if (err)
924 goto out;
925
926 break;
927 }
928 case UBIFS_CS_NODE:
929 /* Make sure it sits at the beginning of LEB */
930 if (snod->offs != 0) {
0195a7bb 931 ubifs_err(c, "unexpected node in log");
9eefe2a2
SR
932 goto out_dump;
933 }
934 break;
935 default:
0195a7bb 936 ubifs_err(c, "unexpected node in log");
9eefe2a2
SR
937 goto out_dump;
938 }
939 }
940
941 if (sleb->endpt || c->lhead_offs >= c->leb_size) {
942 c->lhead_lnum = lnum;
943 c->lhead_offs = sleb->endpt;
944 }
945
946 err = !sleb->endpt;
947out:
948 ubifs_scan_destroy(sleb);
949 return err;
950
951out_dump:
0195a7bb 952 ubifs_err(c, "log error detected while replaying the log at LEB %d:%d",
9eefe2a2 953 lnum, offs + snod->offs);
ff94bc40 954 ubifs_dump_node(c, snod->node);
9eefe2a2
SR
955 ubifs_scan_destroy(sleb);
956 return -EINVAL;
957}
958
959/**
960 * take_ihead - update the status of the index head in lprops to 'taken'.
961 * @c: UBIFS file-system description object
962 *
963 * This function returns the amount of free space in the index head LEB or a
964 * negative error code.
965 */
966static int take_ihead(struct ubifs_info *c)
967{
968 const struct ubifs_lprops *lp;
969 int err, free;
970
971 ubifs_get_lprops(c);
972
973 lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
974 if (IS_ERR(lp)) {
975 err = PTR_ERR(lp);
976 goto out;
977 }
978
979 free = lp->free;
980
981 lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
982 lp->flags | LPROPS_TAKEN, 0);
983 if (IS_ERR(lp)) {
984 err = PTR_ERR(lp);
985 goto out;
986 }
987
988 err = free;
989out:
990 ubifs_release_lprops(c);
991 return err;
992}
993
994/**
995 * ubifs_replay_journal - replay journal.
996 * @c: UBIFS file-system description object
997 *
998 * This function scans the journal, replays and cleans it up. It makes sure all
999 * memory data structures related to uncommitted journal are built (dirty TNC
1000 * tree, tree of buds, modified lprops, etc).
1001 */
1002int ubifs_replay_journal(struct ubifs_info *c)
1003{
ff94bc40 1004 int err, lnum, free;
9eefe2a2
SR
1005
1006 BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1007
1008 /* Update the status of the index head in lprops to 'taken' */
ff94bc40
HS
1009 free = take_ihead(c);
1010 if (free < 0)
1011 return free; /* Error code */
9eefe2a2 1012
ff94bc40 1013 if (c->ihead_offs != c->leb_size - free) {
0195a7bb 1014 ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum,
9eefe2a2
SR
1015 c->ihead_offs);
1016 return -EINVAL;
1017 }
1018
9eefe2a2 1019 dbg_mnt("start replaying the journal");
9eefe2a2 1020 c->replaying = 1;
9eefe2a2 1021 lnum = c->ltail_lnum = c->lhead_lnum;
9eefe2a2 1022
ff94bc40
HS
1023 do {
1024 err = replay_log_leb(c, lnum, 0, c->sbuf);
0195a7bb
HS
1025 if (err == 1) {
1026 if (lnum != c->lhead_lnum)
1027 /* We hit the end of the log */
1028 break;
1029
1030 /*
1031 * The head of the log must always start with the
1032 * "commit start" node on a properly formatted UBIFS.
1033 * But we found no nodes at all, which means that
1034 * someting went wrong and we cannot proceed mounting
1035 * the file-system.
1036 */
1037 ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted",
1038 lnum, 0);
1039 err = -EINVAL;
1040 }
9eefe2a2
SR
1041 if (err)
1042 goto out;
ff94bc40
HS
1043 lnum = ubifs_next_log_lnum(c, lnum);
1044 } while (lnum != c->ltail_lnum);
9eefe2a2
SR
1045
1046 err = replay_buds(c);
1047 if (err)
1048 goto out;
1049
ff94bc40 1050 err = apply_replay_list(c);
9eefe2a2
SR
1051 if (err)
1052 goto out;
1053
ff94bc40
HS
1054 err = set_buds_lprops(c);
1055 if (err)
1056 goto out;
1057
1058 /*
1059 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1060 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1061 * depend on it. This means we have to initialize it to make sure
1062 * budgeting works properly.
1063 */
1064 c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1065 c->bi.uncommitted_idx *= c->max_idx_node_sz;
1066
9eefe2a2 1067 ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
ff94bc40
HS
1068 dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu",
1069 c->lhead_lnum, c->lhead_offs, c->max_sqnum,
9eefe2a2
SR
1070 (unsigned long)c->highest_inum);
1071out:
ff94bc40 1072 destroy_replay_list(c);
9eefe2a2 1073 destroy_bud_list(c);
9eefe2a2
SR
1074 c->replaying = 0;
1075 return err;
1076}