]> git.ipfire.org Git - people/ms/u-boot.git/blame - lib/hashtable.c
README: udate Coding Style description to current status quo
[people/ms/u-boot.git] / lib / hashtable.c
CommitLineData
a6826fbc
WD
1/*
2 * This implementation is based on code from uClibc-0.9.30.3 but was
3 * modified and extended for use within U-Boot.
4 *
5 * Copyright (C) 2010 Wolfgang Denk <wd@denx.de>
6 *
7 * Original license header:
8 *
9 * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc.
10 * This file is part of the GNU C Library.
11 * Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993.
12 *
13 * The GNU C Library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2.1 of the License, or (at your option) any later version.
17 *
18 * The GNU C Library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
22 *
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with the GNU C Library; if not, write to the Free
25 * Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
26 * 02111-1307 USA.
27 */
28
29#include <errno.h>
30#include <malloc.h>
31
32#ifdef USE_HOSTCC /* HOST build */
33# include <string.h>
34# include <assert.h>
35
36# ifndef debug
37# ifdef DEBUG
38# define debug(fmt,args...) printf(fmt ,##args)
39# else
40# define debug(fmt,args...)
41# endif
42# endif
43#else /* U-Boot build */
44# include <common.h>
45# include <linux/string.h>
46#endif
47
fc5fc76b
AB
48#ifndef CONFIG_ENV_MIN_ENTRIES /* minimum number of entries */
49#define CONFIG_ENV_MIN_ENTRIES 64
50#endif
ea882baf
WD
51#ifndef CONFIG_ENV_MAX_ENTRIES /* maximum number of entries */
52#define CONFIG_ENV_MAX_ENTRIES 512
53#endif
54
a6826fbc
WD
55#include "search.h"
56
57/*
58 * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986
071bc923 59 * [Knuth] The Art of Computer Programming, part 3 (6.4)
a6826fbc
WD
60 */
61
a6826fbc
WD
62/*
63 * The reentrant version has no static variables to maintain the state.
64 * Instead the interface of all functions is extended to take an argument
65 * which describes the current status.
66 */
67typedef struct _ENTRY {
c81c1222 68 int used;
a6826fbc
WD
69 ENTRY entry;
70} _ENTRY;
71
72
73/*
74 * hcreate()
75 */
76
77/*
78 * For the used double hash method the table size has to be a prime. To
79 * correct the user given table size we need a prime test. This trivial
80 * algorithm is adequate because
81 * a) the code is (most probably) called a few times per program run and
82 * b) the number is small because the table must fit in the core
83 * */
84static int isprime(unsigned int number)
85{
86 /* no even number will be passed */
87 unsigned int div = 3;
88
89 while (div * div < number && number % div != 0)
90 div += 2;
91
92 return number % div != 0;
93}
94
a6826fbc
WD
95/*
96 * Before using the hash table we must allocate memory for it.
97 * Test for an existing table are done. We allocate one element
98 * more as the found prime number says. This is done for more effective
99 * indexing as explained in the comment for the hsearch function.
100 * The contents of the table is zeroed, especially the field used
101 * becomes zero.
102 */
2eb1573f 103
a6826fbc
WD
104int hcreate_r(size_t nel, struct hsearch_data *htab)
105{
106 /* Test for correct arguments. */
107 if (htab == NULL) {
108 __set_errno(EINVAL);
109 return 0;
110 }
111
112 /* There is still another table active. Return with error. */
113 if (htab->table != NULL)
114 return 0;
115
116 /* Change nel to the first prime number not smaller as nel. */
117 nel |= 1; /* make odd */
118 while (!isprime(nel))
119 nel += 2;
120
121 htab->size = nel;
122 htab->filled = 0;
123
124 /* allocate memory and zero out */
125 htab->table = (_ENTRY *) calloc(htab->size + 1, sizeof(_ENTRY));
126 if (htab->table == NULL)
127 return 0;
128
129 /* everything went alright */
130 return 1;
131}
132
133
134/*
135 * hdestroy()
136 */
a6826fbc
WD
137
138/*
139 * After using the hash table it has to be destroyed. The used memory can
140 * be freed and the local static variable can be marked as not used.
141 */
2eb1573f 142
a6826fbc
WD
143void hdestroy_r(struct hsearch_data *htab)
144{
145 int i;
146
147 /* Test for correct arguments. */
148 if (htab == NULL) {
149 __set_errno(EINVAL);
150 return;
151 }
152
153 /* free used memory */
154 for (i = 1; i <= htab->size; ++i) {
c81c1222 155 if (htab->table[i].used > 0) {
a6826fbc
WD
156 ENTRY *ep = &htab->table[i].entry;
157
158 free(ep->key);
159 free(ep->data);
160 }
161 }
162 free(htab->table);
163
164 /* the sign for an existing table is an value != NULL in htable */
165 htab->table = NULL;
166}
167
168/*
169 * hsearch()
170 */
171
172/*
173 * This is the search function. It uses double hashing with open addressing.
174 * The argument item.key has to be a pointer to an zero terminated, most
175 * probably strings of chars. The function for generating a number of the
176 * strings is simple but fast. It can be replaced by a more complex function
177 * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown.
178 *
179 * We use an trick to speed up the lookup. The table is created by hcreate
180 * with one more element available. This enables us to use the index zero
181 * special. This index will never be used because we store the first hash
182 * index in the field used where zero means not used. Every other value
183 * means used. The used field can be used as a first fast comparison for
184 * equality of the stored and the parameter value. This helps to prevent
185 * unnecessary expensive calls of strcmp.
186 *
187 * This implementation differs from the standard library version of
188 * this function in a number of ways:
189 *
190 * - While the standard version does not make any assumptions about
191 * the type of the stored data objects at all, this implementation
192 * works with NUL terminated strings only.
193 * - Instead of storing just pointers to the original objects, we
194 * create local copies so the caller does not need to care about the
195 * data any more.
196 * - The standard implementation does not provide a way to update an
197 * existing entry. This version will create a new entry or update an
198 * existing one when both "action == ENTER" and "item.data != NULL".
199 * - Instead of returning 1 on success, we return the index into the
200 * internal hash table, which is also guaranteed to be positive.
201 * This allows us direct access to the found hash table slot for
202 * example for functions like hdelete().
203 */
204
a000b795
KP
205/*
206 * hstrstr_r - return index to entry whose key and/or data contains match
207 */
208int hstrstr_r(const char *match, int last_idx, ENTRY ** retval,
209 struct hsearch_data *htab)
210{
211 unsigned int idx;
212
213 for (idx = last_idx + 1; idx < htab->size; ++idx) {
214 if (htab->table[idx].used <= 0)
215 continue;
216 if (strstr(htab->table[idx].entry.key, match) ||
217 strstr(htab->table[idx].entry.data, match)) {
218 *retval = &htab->table[idx].entry;
219 return idx;
220 }
221 }
222
223 __set_errno(ESRCH);
224 *retval = NULL;
225 return 0;
226}
227
560d424b
MF
228int hmatch_r(const char *match, int last_idx, ENTRY ** retval,
229 struct hsearch_data *htab)
230{
231 unsigned int idx;
232 size_t key_len = strlen(match);
233
234 for (idx = last_idx + 1; idx < htab->size; ++idx) {
af4d9074 235 if (htab->table[idx].used <= 0)
560d424b
MF
236 continue;
237 if (!strncmp(match, htab->table[idx].entry.key, key_len)) {
238 *retval = &htab->table[idx].entry;
239 return idx;
240 }
241 }
242
243 __set_errno(ESRCH);
244 *retval = NULL;
245 return 0;
246}
247
a6826fbc
WD
248int hsearch_r(ENTRY item, ACTION action, ENTRY ** retval,
249 struct hsearch_data *htab)
250{
251 unsigned int hval;
252 unsigned int count;
253 unsigned int len = strlen(item.key);
254 unsigned int idx;
c81c1222 255 unsigned int first_deleted = 0;
a6826fbc
WD
256
257 /* Compute an value for the given string. Perhaps use a better method. */
258 hval = len;
259 count = len;
260 while (count-- > 0) {
261 hval <<= 4;
262 hval += item.key[count];
263 }
264
265 /*
266 * First hash function:
267 * simply take the modul but prevent zero.
268 */
269 hval %= htab->size;
270 if (hval == 0)
271 ++hval;
272
273 /* The first index tried. */
274 idx = hval;
275
276 if (htab->table[idx].used) {
277 /*
071bc923 278 * Further action might be required according to the
a6826fbc
WD
279 * action value.
280 */
281 unsigned hval2;
282
c81c1222
PB
283 if (htab->table[idx].used == -1
284 && !first_deleted)
285 first_deleted = idx;
286
a6826fbc
WD
287 if (htab->table[idx].used == hval
288 && strcmp(item.key, htab->table[idx].entry.key) == 0) {
289 /* Overwrite existing value? */
290 if ((action == ENTER) && (item.data != NULL)) {
291 free(htab->table[idx].entry.data);
292 htab->table[idx].entry.data =
293 strdup(item.data);
294 if (!htab->table[idx].entry.data) {
295 __set_errno(ENOMEM);
296 *retval = NULL;
297 return 0;
298 }
299 }
300 /* return found entry */
301 *retval = &htab->table[idx].entry;
302 return idx;
303 }
304
305 /*
306 * Second hash function:
307 * as suggested in [Knuth]
308 */
309 hval2 = 1 + hval % (htab->size - 2);
310
311 do {
312 /*
071bc923
WD
313 * Because SIZE is prime this guarantees to
314 * step through all available indices.
a6826fbc
WD
315 */
316 if (idx <= hval2)
317 idx = htab->size + idx - hval2;
318 else
319 idx -= hval2;
320
321 /*
322 * If we visited all entries leave the loop
323 * unsuccessfully.
324 */
325 if (idx == hval)
326 break;
327
328 /* If entry is found use it. */
329 if ((htab->table[idx].used == hval)
330 && strcmp(item.key, htab->table[idx].entry.key) == 0) {
331 /* Overwrite existing value? */
332 if ((action == ENTER) && (item.data != NULL)) {
333 free(htab->table[idx].entry.data);
334 htab->table[idx].entry.data =
335 strdup(item.data);
336 if (!htab->table[idx].entry.data) {
337 __set_errno(ENOMEM);
338 *retval = NULL;
339 return 0;
340 }
341 }
342 /* return found entry */
343 *retval = &htab->table[idx].entry;
344 return idx;
345 }
346 }
347 while (htab->table[idx].used);
348 }
349
350 /* An empty bucket has been found. */
351 if (action == ENTER) {
352 /*
071bc923
WD
353 * If table is full and another entry should be
354 * entered return with error.
a6826fbc
WD
355 */
356 if (htab->filled == htab->size) {
357 __set_errno(ENOMEM);
358 *retval = NULL;
359 return 0;
360 }
361
362 /*
363 * Create new entry;
364 * create copies of item.key and item.data
365 */
c81c1222
PB
366 if (first_deleted)
367 idx = first_deleted;
368
a6826fbc
WD
369 htab->table[idx].used = hval;
370 htab->table[idx].entry.key = strdup(item.key);
371 htab->table[idx].entry.data = strdup(item.data);
372 if (!htab->table[idx].entry.key ||
373 !htab->table[idx].entry.data) {
374 __set_errno(ENOMEM);
375 *retval = NULL;
376 return 0;
377 }
378
379 ++htab->filled;
380
381 /* return new entry */
382 *retval = &htab->table[idx].entry;
383 return 1;
384 }
385
386 __set_errno(ESRCH);
387 *retval = NULL;
388 return 0;
389}
390
391
392/*
393 * hdelete()
394 */
395
396/*
397 * The standard implementation of hsearch(3) does not provide any way
398 * to delete any entries from the hash table. We extend the code to
399 * do that.
400 */
401
a6826fbc
WD
402int hdelete_r(const char *key, struct hsearch_data *htab)
403{
404 ENTRY e, *ep;
405 int idx;
406
407 debug("hdelete: DELETE key \"%s\"\n", key);
408
409 e.key = (char *)key;
410
411 if ((idx = hsearch_r(e, FIND, &ep, htab)) == 0) {
412 __set_errno(ESRCH);
413 return 0; /* not found */
414 }
415
416 /* free used ENTRY */
417 debug("hdelete: DELETING key \"%s\"\n", key);
418
419 free(ep->key);
420 free(ep->data);
c81c1222 421 htab->table[idx].used = -1;
a6826fbc
WD
422
423 --htab->filled;
424
425 return 1;
426}
427
428/*
429 * hexport()
430 */
431
432/*
433 * Export the data stored in the hash table in linearized form.
434 *
435 * Entries are exported as "name=value" strings, separated by an
436 * arbitrary (non-NUL, of course) separator character. This allows to
437 * use this function both when formatting the U-Boot environment for
438 * external storage (using '\0' as separator), but also when using it
439 * for the "printenv" command to print all variables, simply by using
440 * as '\n" as separator. This can also be used for new features like
441 * exporting the environment data as text file, including the option
442 * for later re-import.
443 *
444 * The entries in the result list will be sorted by ascending key
445 * values.
446 *
447 * If the separator character is different from NUL, then any
448 * separator characters and backslash characters in the values will
449 * be escaped by a preceeding backslash in output. This is needed for
450 * example to enable multi-line values, especially when the output
451 * shall later be parsed (for example, for re-import).
452 *
453 * There are several options how the result buffer is handled:
454 *
455 * *resp size
456 * -----------
457 * NULL 0 A string of sufficient length will be allocated.
458 * NULL >0 A string of the size given will be
459 * allocated. An error will be returned if the size is
460 * not sufficient. Any unused bytes in the string will
461 * be '\0'-padded.
462 * !NULL 0 The user-supplied buffer will be used. No length
463 * checking will be performed, i. e. it is assumed that
464 * the buffer size will always be big enough. DANGEROUS.
465 * !NULL >0 The user-supplied buffer will be used. An error will
466 * be returned if the size is not sufficient. Any unused
467 * bytes in the string will be '\0'-padded.
468 */
469
a6826fbc
WD
470static int cmpkey(const void *p1, const void *p2)
471{
472 ENTRY *e1 = *(ENTRY **) p1;
473 ENTRY *e2 = *(ENTRY **) p2;
474
475 return (strcmp(e1->key, e2->key));
476}
477
478ssize_t hexport_r(struct hsearch_data *htab, const char sep,
479 char **resp, size_t size)
480{
481 ENTRY *list[htab->size];
482 char *res, *p;
483 size_t totlen;
484 int i, n;
485
486 /* Test for correct arguments. */
487 if ((resp == NULL) || (htab == NULL)) {
488 __set_errno(EINVAL);
489 return (-1);
490 }
491
492 debug("EXPORT table = %p, htab.size = %d, htab.filled = %d, size = %d\n",
493 htab, htab->size, htab->filled, size);
494 /*
495 * Pass 1:
496 * search used entries,
497 * save addresses and compute total length
498 */
499 for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) {
500
c81c1222 501 if (htab->table[i].used > 0) {
a6826fbc
WD
502 ENTRY *ep = &htab->table[i].entry;
503
504 list[n++] = ep;
505
506 totlen += strlen(ep->key) + 2;
507
508 if (sep == '\0') {
509 totlen += strlen(ep->data);
510 } else { /* check if escapes are needed */
511 char *s = ep->data;
512
513 while (*s) {
514 ++totlen;
515 /* add room for needed escape chars */
516 if ((*s == sep) || (*s == '\\'))
517 ++totlen;
518 ++s;
519 }
520 }
521 totlen += 2; /* for '=' and 'sep' char */
522 }
523 }
524
525#ifdef DEBUG
526 /* Pass 1a: print unsorted list */
527 printf("Unsorted: n=%d\n", n);
528 for (i = 0; i < n; ++i) {
529 printf("\t%3d: %p ==> %-10s => %s\n",
530 i, list[i], list[i]->key, list[i]->data);
531 }
532#endif
533
534 /* Sort list by keys */
535 qsort(list, n, sizeof(ENTRY *), cmpkey);
536
537 /* Check if the user supplied buffer size is sufficient */
538 if (size) {
539 if (size < totlen + 1) { /* provided buffer too small */
540 debug("### buffer too small: %d, but need %d\n",
541 size, totlen + 1);
542 __set_errno(ENOMEM);
543 return (-1);
544 }
545 } else {
546 size = totlen + 1;
547 }
548
549 /* Check if the user provided a buffer */
550 if (*resp) {
551 /* yes; clear it */
552 res = *resp;
553 memset(res, '\0', size);
554 } else {
555 /* no, allocate and clear one */
556 *resp = res = calloc(1, size);
557 if (res == NULL) {
558 __set_errno(ENOMEM);
559 return (-1);
560 }
561 }
562 /*
563 * Pass 2:
564 * export sorted list of result data
565 */
566 for (i = 0, p = res; i < n; ++i) {
567 char *s;
568
569 s = list[i]->key;
570 while (*s)
571 *p++ = *s++;
572 *p++ = '=';
573
574 s = list[i]->data;
575
576 while (*s) {
577 if ((*s == sep) || (*s == '\\'))
578 *p++ = '\\'; /* escape */
579 *p++ = *s++;
580 }
581 *p++ = sep;
582 }
583 *p = '\0'; /* terminate result */
584
585 return size;
586}
587
588
589/*
590 * himport()
591 */
592
593/*
594 * Import linearized data into hash table.
595 *
596 * This is the inverse function to hexport(): it takes a linear list
597 * of "name=value" pairs and creates hash table entries from it.
598 *
599 * Entries without "value", i. e. consisting of only "name" or
600 * "name=", will cause this entry to be deleted from the hash table.
601 *
602 * The "flag" argument can be used to control the behaviour: when the
603 * H_NOCLEAR bit is set, then an existing hash table will kept, i. e.
604 * new data will be added to an existing hash table; otherwise, old
605 * data will be discarded and a new hash table will be created.
606 *
607 * The separator character for the "name=value" pairs can be selected,
608 * so we both support importing from externally stored environment
609 * data (separated by NUL characters) and from plain text files
610 * (entries separated by newline characters).
611 *
612 * To allow for nicely formatted text input, leading white space
613 * (sequences of SPACE and TAB chars) is ignored, and entries starting
614 * (after removal of any leading white space) with a '#' character are
615 * considered comments and ignored.
616 *
617 * [NOTE: this means that a variable name cannot start with a '#'
618 * character.]
619 *
620 * When using a non-NUL separator character, backslash is used as
621 * escape character in the value part, allowing for example for
622 * multi-line values.
623 *
624 * In theory, arbitrary separator characters can be used, but only
625 * '\0' and '\n' have really been tested.
626 */
627
a6826fbc
WD
628int himport_r(struct hsearch_data *htab,
629 const char *env, size_t size, const char sep, int flag)
630{
631 char *data, *sp, *dp, *name, *value;
632
633 /* Test for correct arguments. */
634 if (htab == NULL) {
635 __set_errno(EINVAL);
636 return 0;
637 }
638
639 /* we allocate new space to make sure we can write to the array */
640 if ((data = malloc(size)) == NULL) {
641 debug("himport_r: can't malloc %d bytes\n", size);
642 __set_errno(ENOMEM);
643 return 0;
644 }
645 memcpy(data, env, size);
646 dp = data;
647
648 if ((flag & H_NOCLEAR) == 0) {
649 /* Destroy old hash table if one exists */
650 debug("Destroy Hash Table: %p table = %p\n", htab,
651 htab->table);
652 if (htab->table)
653 hdestroy_r(htab);
654 }
655
656 /*
657 * Create new hash table (if needed). The computation of the hash
658 * table size is based on heuristics: in a sample of some 70+
659 * existing systems we found an average size of 39+ bytes per entry
660 * in the environment (for the whole key=value pair). Assuming a
ea882baf
WD
661 * size of 8 per entry (= safety factor of ~5) should provide enough
662 * safety margin for any existing environment definitions and still
a6826fbc
WD
663 * allow for more than enough dynamic additions. Note that the
664 * "size" argument is supposed to give the maximum enviroment size
ea882baf
WD
665 * (CONFIG_ENV_SIZE). This heuristics will result in
666 * unreasonably large numbers (and thus memory footprint) for
667 * big flash environments (>8,000 entries for 64 KB
fc5fc76b
AB
668 * envrionment size), so we clip it to a reasonable value.
669 * On the other hand we need to add some more entries for free
670 * space when importing very small buffers. Both boundaries can
671 * be overwritten in the board config file if needed.
a6826fbc
WD
672 */
673
674 if (!htab->table) {
fc5fc76b 675 int nent = CONFIG_ENV_MIN_ENTRIES + size / 8;
ea882baf
WD
676
677 if (nent > CONFIG_ENV_MAX_ENTRIES)
678 nent = CONFIG_ENV_MAX_ENTRIES;
a6826fbc
WD
679
680 debug("Create Hash Table: N=%d\n", nent);
681
682 if (hcreate_r(nent, htab) == 0) {
683 free(data);
684 return 0;
685 }
686 }
687
688 /* Parse environment; allow for '\0' and 'sep' as separators */
689 do {
690 ENTRY e, *rv;
691
692 /* skip leading white space */
693 while ((*dp == ' ') || (*dp == '\t'))
694 ++dp;
695
696 /* skip comment lines */
697 if (*dp == '#') {
698 while (*dp && (*dp != sep))
699 ++dp;
700 ++dp;
701 continue;
702 }
703
704 /* parse name */
705 for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp)
706 ;
707
708 /* deal with "name" and "name=" entries (delete var) */
709 if (*dp == '\0' || *(dp + 1) == '\0' ||
710 *dp == sep || *(dp + 1) == sep) {
711 if (*dp == '=')
712 *dp++ = '\0';
713 *dp++ = '\0'; /* terminate name */
714
715 debug("DELETE CANDIDATE: \"%s\"\n", name);
716
717 if (hdelete_r(name, htab) == 0)
718 debug("DELETE ERROR ##############################\n");
719
720 continue;
721 }
722 *dp++ = '\0'; /* terminate name */
723
724 /* parse value; deal with escapes */
725 for (value = sp = dp; *dp && (*dp != sep); ++dp) {
726 if ((*dp == '\\') && *(dp + 1))
727 ++dp;
728 *sp++ = *dp;
729 }
730 *sp++ = '\0'; /* terminate value */
731 ++dp;
732
733 /* enter into hash table */
734 e.key = name;
735 e.data = value;
736
737 hsearch_r(e, ENTER, &rv, htab);
738 if (rv == NULL) {
ea882baf
WD
739 printf("himport_r: can't insert \"%s=%s\" into hash table\n",
740 name, value);
a6826fbc
WD
741 return 0;
742 }
743
ea882baf
WD
744 debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n",
745 htab, htab->filled, htab->size,
746 rv, name, value);
a6826fbc
WD
747 } while ((dp < data + size) && *dp); /* size check needed for text */
748 /* without '\0' termination */
ea882baf 749 debug("INSERT: free(data = %p)\n", data);
a6826fbc
WD
750 free(data);
751
ea882baf 752 debug("INSERT: done\n");
a6826fbc
WD
753 return 1; /* everything OK */
754}