]> git.ipfire.org Git - people/ms/u-boot.git/blob - board/gdsys/p1022/controlcenterd-id.c
env: Rename getenv_hex(), getenv_yesno(), getenv_ulong()
[people/ms/u-boot.git] / board / gdsys / p1022 / controlcenterd-id.c
1 /*
2 * (C) Copyright 2013
3 * Reinhard Pfau, Guntermann & Drunck GmbH, reinhard.pfau@gdsys.cc
4 *
5 * SPDX-License-Identifier: GPL-2.0+
6 */
7
8 /* TODO: some more #ifdef's to avoid unneeded code for stage 1 / stage 2 */
9
10 #ifdef CCDM_ID_DEBUG
11 #define DEBUG
12 #endif
13
14 #include <common.h>
15 #include <malloc.h>
16 #include <fs.h>
17 #include <i2c.h>
18 #include <mmc.h>
19 #include <tpm.h>
20 #include <u-boot/sha1.h>
21 #include <asm/byteorder.h>
22 #include <asm/unaligned.h>
23 #include <pca9698.h>
24
25 #undef CCDM_FIRST_STAGE
26 #undef CCDM_SECOND_STAGE
27 #undef CCDM_AUTO_FIRST_STAGE
28
29 #ifdef CONFIG_DEVELOP
30 #define CCDM_DEVELOP
31 #endif
32
33 #ifdef CONFIG_TRAILBLAZER
34 #define CCDM_FIRST_STAGE
35 #undef CCDM_SECOND_STAGE
36 #else
37 #undef CCDM_FIRST_STAGE
38 #define CCDM_SECOND_STAGE
39 #endif
40
41 #if defined(CCDM_DEVELOP) && defined(CCDM_SECOND_STAGE) && \
42 !defined(CCCM_FIRST_STAGE)
43 #define CCDM_AUTO_FIRST_STAGE
44 #endif
45
46 /* CCDM specific contants */
47 enum {
48 /* NV indices */
49 NV_COMMON_DATA_INDEX = 0x40000001,
50 /* magics for key blob chains */
51 MAGIC_KEY_PROGRAM = 0x68726500,
52 MAGIC_HMAC = 0x68616300,
53 MAGIC_END_OF_CHAIN = 0x00000000,
54 /* sizes */
55 NV_COMMON_DATA_MIN_SIZE = 3 * sizeof(uint64_t) + 2 * sizeof(uint16_t),
56 };
57
58 /* other constants */
59 enum {
60 ESDHC_BOOT_IMAGE_SIG_OFS = 0x40,
61 ESDHC_BOOT_IMAGE_SIZE_OFS = 0x48,
62 ESDHC_BOOT_IMAGE_ADDR_OFS = 0x50,
63 ESDHC_BOOT_IMAGE_TARGET_OFS = 0x58,
64 ESDHC_BOOT_IMAGE_ENTRY_OFS = 0x60,
65 };
66
67 enum {
68 I2C_SOC_0 = 0,
69 I2C_SOC_1 = 1,
70 };
71
72 struct key_program {
73 uint32_t magic;
74 uint32_t code_crc;
75 uint32_t code_size;
76 uint8_t code[];
77 };
78
79 struct h_reg {
80 bool valid;
81 uint8_t digest[20];
82 };
83
84
85 enum access_mode {
86 HREG_NONE = 0,
87 HREG_RD = 1,
88 HREG_WR = 2,
89 HREG_RDWR = 3,
90 };
91
92 /* register constants */
93 enum {
94 FIX_HREG_DEVICE_ID_HASH = 0,
95 FIX_HREG_SELF_HASH = 1,
96 FIX_HREG_STAGE2_HASH = 2,
97 FIX_HREG_VENDOR = 3,
98 COUNT_FIX_HREGS
99 };
100
101
102 /* hre opcodes */
103 enum {
104 /* opcodes w/o data */
105 HRE_NOP = 0x00,
106 HRE_SYNC = HRE_NOP,
107 HRE_CHECK0 = 0x01,
108 /* opcodes w/o data, w/ sync dst */
109 /* opcodes w/ data */
110 HRE_LOAD = 0x81,
111 /* opcodes w/data, w/sync dst */
112 HRE_XOR = 0xC1,
113 HRE_AND = 0xC2,
114 HRE_OR = 0xC3,
115 HRE_EXTEND = 0xC4,
116 HRE_LOADKEY = 0xC5,
117 };
118
119 /* hre errors */
120 enum {
121 HRE_E_OK = 0,
122 HRE_E_TPM_FAILURE,
123 HRE_E_INVALID_HREG,
124 };
125
126 static uint64_t device_id;
127 static uint64_t device_cl;
128 static uint64_t device_type;
129
130 static uint32_t platform_key_handle;
131
132 static void(*bl2_entry)(void);
133
134 static struct h_reg pcr_hregs[24];
135 static struct h_reg fix_hregs[COUNT_FIX_HREGS];
136 static struct h_reg var_hregs[8];
137 static uint32_t hre_tpm_err;
138 static int hre_err = HRE_E_OK;
139
140 #define IS_PCR_HREG(spec) ((spec) & 0x20)
141 #define IS_FIX_HREG(spec) (((spec) & 0x38) == 0x08)
142 #define IS_VAR_HREG(spec) (((spec) & 0x38) == 0x10)
143 #define HREG_IDX(spec) ((spec) & (IS_PCR_HREG(spec) ? 0x1f : 0x7))
144
145 static const uint8_t vendor[] = "Guntermann & Drunck";
146
147 /**
148 * @brief read a bunch of data from MMC into memory.
149 *
150 * @param mmc pointer to the mmc structure to use.
151 * @param src offset where the data starts on MMC/SD device (in bytes).
152 * @param dst pointer to the location where the read data should be stored.
153 * @param size number of bytes to read from the MMC/SD device.
154 * @return number of bytes read or -1 on error.
155 */
156 static int ccdm_mmc_read(struct mmc *mmc, u64 src, u8 *dst, int size)
157 {
158 int result = 0;
159 u32 blk_len, ofs;
160 ulong block_no, n, cnt;
161 u8 *tmp_buf = NULL;
162
163 if (size <= 0)
164 goto end;
165
166 blk_len = mmc->read_bl_len;
167 tmp_buf = malloc(blk_len);
168 if (!tmp_buf)
169 goto failure;
170 block_no = src / blk_len;
171 ofs = src % blk_len;
172
173 if (ofs) {
174 n = mmc->block_dev.block_read(&mmc->block_dev, block_no++, 1,
175 tmp_buf);
176 if (!n)
177 goto failure;
178 result = min(size, (int)(blk_len - ofs));
179 memcpy(dst, tmp_buf + ofs, result);
180 dst += result;
181 size -= result;
182 }
183 cnt = size / blk_len;
184 if (cnt) {
185 n = mmc->block_dev.block_read(&mmc->block_dev, block_no, cnt,
186 dst);
187 if (n != cnt)
188 goto failure;
189 size -= cnt * blk_len;
190 result += cnt * blk_len;
191 dst += cnt * blk_len;
192 block_no += cnt;
193 }
194 if (size) {
195 n = mmc->block_dev.block_read(&mmc->block_dev, block_no++, 1,
196 tmp_buf);
197 if (!n)
198 goto failure;
199 memcpy(dst, tmp_buf, size);
200 result += size;
201 }
202 goto end;
203 failure:
204 result = -1;
205 end:
206 if (tmp_buf)
207 free(tmp_buf);
208 return result;
209 }
210
211 /**
212 * @brief returns a location where the 2nd stage bootloader can be(/ is) placed.
213 *
214 * @return pointer to the location for/of the 2nd stage bootloader
215 */
216 static u8 *get_2nd_stage_bl_location(ulong target_addr)
217 {
218 ulong addr;
219 #ifdef CCDM_SECOND_STAGE
220 addr = env_get_ulong("loadaddr", 16, CONFIG_LOADADDR);
221 #else
222 addr = target_addr;
223 #endif
224 return (u8 *)(addr);
225 }
226
227
228 #ifdef CCDM_SECOND_STAGE
229 /**
230 * @brief returns a location where the image can be(/ is) placed.
231 *
232 * @return pointer to the location for/of the image
233 */
234 static u8 *get_image_location(void)
235 {
236 ulong addr;
237 /* TODO use other area? */
238 addr = env_get_ulong("loadaddr", 16, CONFIG_LOADADDR);
239 return (u8 *)(addr);
240 }
241 #endif
242
243 /**
244 * @brief get the size of a given (TPM) NV area
245 * @param index NV index of the area to get size for
246 * @param size pointer to the size
247 * @return 0 on success, != 0 on error
248 */
249 static int get_tpm_nv_size(uint32_t index, uint32_t *size)
250 {
251 uint32_t err;
252 uint8_t info[72];
253 uint8_t *ptr;
254 uint16_t v16;
255
256 err = tpm_get_capability(TPM_CAP_NV_INDEX, index,
257 info, sizeof(info));
258 if (err) {
259 printf("tpm_get_capability(CAP_NV_INDEX, %08x) failed: %u\n",
260 index, err);
261 return 1;
262 }
263
264 /* skip tag and nvIndex */
265 ptr = info + 6;
266 /* skip 2 pcr info fields */
267 v16 = get_unaligned_be16(ptr);
268 ptr += 2 + v16 + 1 + 20;
269 v16 = get_unaligned_be16(ptr);
270 ptr += 2 + v16 + 1 + 20;
271 /* skip permission and flags */
272 ptr += 6 + 3;
273
274 *size = get_unaligned_be32(ptr);
275 return 0;
276 }
277
278 /**
279 * @brief search for a key by usage auth and pub key hash.
280 * @param auth usage auth of the key to search for
281 * @param pubkey_digest (SHA1) hash of the pub key structure of the key
282 * @param[out] handle the handle of the key iff found
283 * @return 0 if key was found in TPM; != 0 if not.
284 */
285 static int find_key(const uint8_t auth[20], const uint8_t pubkey_digest[20],
286 uint32_t *handle)
287 {
288 uint16_t key_count;
289 uint32_t key_handles[10];
290 uint8_t buf[288];
291 uint8_t *ptr;
292 uint32_t err;
293 uint8_t digest[20];
294 size_t buf_len;
295 unsigned int i;
296
297 /* fetch list of already loaded keys in the TPM */
298 err = tpm_get_capability(TPM_CAP_HANDLE, TPM_RT_KEY, buf, sizeof(buf));
299 if (err)
300 return -1;
301 key_count = get_unaligned_be16(buf);
302 ptr = buf + 2;
303 for (i = 0; i < key_count; ++i, ptr += 4)
304 key_handles[i] = get_unaligned_be32(ptr);
305
306 /* now search a(/ the) key which we can access with the given auth */
307 for (i = 0; i < key_count; ++i) {
308 buf_len = sizeof(buf);
309 err = tpm_get_pub_key_oiap(key_handles[i], auth, buf, &buf_len);
310 if (err && err != TPM_AUTHFAIL)
311 return -1;
312 if (err)
313 continue;
314 sha1_csum(buf, buf_len, digest);
315 if (!memcmp(digest, pubkey_digest, 20)) {
316 *handle = key_handles[i];
317 return 0;
318 }
319 }
320 return 1;
321 }
322
323 /**
324 * @brief read CCDM common data from TPM NV
325 * @return 0 if CCDM common data was found and read, !=0 if something failed.
326 */
327 static int read_common_data(void)
328 {
329 uint32_t size;
330 uint32_t err;
331 uint8_t buf[256];
332 sha1_context ctx;
333
334 if (get_tpm_nv_size(NV_COMMON_DATA_INDEX, &size) ||
335 size < NV_COMMON_DATA_MIN_SIZE)
336 return 1;
337 err = tpm_nv_read_value(NV_COMMON_DATA_INDEX,
338 buf, min(sizeof(buf), size));
339 if (err) {
340 printf("tpm_nv_read_value() failed: %u\n", err);
341 return 1;
342 }
343
344 device_id = get_unaligned_be64(buf);
345 device_cl = get_unaligned_be64(buf + 8);
346 device_type = get_unaligned_be64(buf + 16);
347
348 sha1_starts(&ctx);
349 sha1_update(&ctx, buf, 24);
350 sha1_finish(&ctx, fix_hregs[FIX_HREG_DEVICE_ID_HASH].digest);
351 fix_hregs[FIX_HREG_DEVICE_ID_HASH].valid = true;
352
353 platform_key_handle = get_unaligned_be32(buf + 24);
354
355 return 0;
356 }
357
358 /**
359 * @brief compute hash of bootloader itself.
360 * @param[out] dst hash register where the hash should be stored
361 * @return 0 on success, != 0 on failure.
362 *
363 * @note MUST be called at a time where the boot loader is accessible at the
364 * configured location (; so take care when code is reallocated).
365 */
366 static int compute_self_hash(struct h_reg *dst)
367 {
368 sha1_csum((const uint8_t *)CONFIG_SYS_MONITOR_BASE,
369 CONFIG_SYS_MONITOR_LEN, dst->digest);
370 dst->valid = true;
371 return 0;
372 }
373
374 int ccdm_compute_self_hash(void)
375 {
376 if (!fix_hregs[FIX_HREG_SELF_HASH].valid)
377 compute_self_hash(&fix_hregs[FIX_HREG_SELF_HASH]);
378 return 0;
379 }
380
381 /**
382 * @brief compute the hash of the 2nd stage boot loader (on SD card)
383 * @param[out] dst hash register to store the computed hash
384 * @return 0 on success, != 0 on failure
385 *
386 * Determines the size and location of the 2nd stage boot loader on SD card,
387 * loads the 2nd stage boot loader and computes the (SHA1) hash value.
388 * Within the 1st stage boot loader, the 2nd stage boot loader is loaded at
389 * the desired memory location and the variable @a bl2_entry is set.
390 *
391 * @note This sets the variable @a bl2_entry to the entry point when the
392 * 2nd stage boot loader is loaded at its configured memory location.
393 */
394 static int compute_second_stage_hash(struct h_reg *dst)
395 {
396 int result = 0;
397 u32 code_len, code_offset, target_addr, exec_entry;
398 struct mmc *mmc;
399 u8 *load_addr = NULL;
400 u8 buf[128];
401
402 mmc = find_mmc_device(0);
403 if (!mmc)
404 goto failure;
405 mmc_init(mmc);
406
407 if (ccdm_mmc_read(mmc, 0, buf, sizeof(buf)) < 0)
408 goto failure;
409
410 code_offset = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ADDR_OFS);
411 code_len = *(u32 *)(buf + ESDHC_BOOT_IMAGE_SIZE_OFS);
412 target_addr = *(u32 *)(buf + ESDHC_BOOT_IMAGE_TARGET_OFS);
413 exec_entry = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ENTRY_OFS);
414
415 load_addr = get_2nd_stage_bl_location(target_addr);
416 if (load_addr == (u8 *)target_addr)
417 bl2_entry = (void(*)(void))exec_entry;
418
419 if (ccdm_mmc_read(mmc, code_offset, load_addr, code_len) < 0)
420 goto failure;
421
422 sha1_csum(load_addr, code_len, dst->digest);
423 dst->valid = true;
424
425 goto end;
426 failure:
427 result = 1;
428 bl2_entry = NULL;
429 end:
430 return result;
431 }
432
433 /**
434 * @brief get pointer to hash register by specification
435 * @param spec specification of a hash register
436 * @return pointer to hash register or NULL if @a spec does not qualify a
437 * valid hash register; NULL else.
438 */
439 static struct h_reg *get_hreg(uint8_t spec)
440 {
441 uint8_t idx;
442
443 idx = HREG_IDX(spec);
444 if (IS_FIX_HREG(spec)) {
445 if (idx < ARRAY_SIZE(fix_hregs))
446 return fix_hregs + idx;
447 hre_err = HRE_E_INVALID_HREG;
448 } else if (IS_PCR_HREG(spec)) {
449 if (idx < ARRAY_SIZE(pcr_hregs))
450 return pcr_hregs + idx;
451 hre_err = HRE_E_INVALID_HREG;
452 } else if (IS_VAR_HREG(spec)) {
453 if (idx < ARRAY_SIZE(var_hregs))
454 return var_hregs + idx;
455 hre_err = HRE_E_INVALID_HREG;
456 }
457 return NULL;
458 }
459
460 /**
461 * @brief get pointer of a hash register by specification and usage.
462 * @param spec specification of a hash register
463 * @param mode access mode (read or write or read/write)
464 * @return pointer to hash register if found and valid; NULL else.
465 *
466 * This func uses @a get_reg() to determine the hash register for a given spec.
467 * If a register is found it is validated according to the desired access mode.
468 * The value of automatic registers (PCR register and fixed registers) is
469 * loaded or computed on read access.
470 */
471 static struct h_reg *access_hreg(uint8_t spec, enum access_mode mode)
472 {
473 struct h_reg *result;
474
475 result = get_hreg(spec);
476 if (!result)
477 return NULL;
478
479 if (mode & HREG_WR) {
480 if (IS_FIX_HREG(spec)) {
481 hre_err = HRE_E_INVALID_HREG;
482 return NULL;
483 }
484 }
485 if (mode & HREG_RD) {
486 if (!result->valid) {
487 if (IS_PCR_HREG(spec)) {
488 hre_tpm_err = tpm_pcr_read(HREG_IDX(spec),
489 result->digest, 20);
490 result->valid = (hre_tpm_err == TPM_SUCCESS);
491 } else if (IS_FIX_HREG(spec)) {
492 switch (HREG_IDX(spec)) {
493 case FIX_HREG_DEVICE_ID_HASH:
494 read_common_data();
495 break;
496 case FIX_HREG_SELF_HASH:
497 ccdm_compute_self_hash();
498 break;
499 case FIX_HREG_STAGE2_HASH:
500 compute_second_stage_hash(result);
501 break;
502 case FIX_HREG_VENDOR:
503 memcpy(result->digest, vendor, 20);
504 result->valid = true;
505 break;
506 }
507 } else {
508 result->valid = true;
509 }
510 }
511 if (!result->valid) {
512 hre_err = HRE_E_INVALID_HREG;
513 return NULL;
514 }
515 }
516
517 return result;
518 }
519
520 static void *compute_and(void *_dst, const void *_src, size_t n)
521 {
522 uint8_t *dst = _dst;
523 const uint8_t *src = _src;
524 size_t i;
525
526 for (i = n; i-- > 0; )
527 *dst++ &= *src++;
528
529 return _dst;
530 }
531
532 static void *compute_or(void *_dst, const void *_src, size_t n)
533 {
534 uint8_t *dst = _dst;
535 const uint8_t *src = _src;
536 size_t i;
537
538 for (i = n; i-- > 0; )
539 *dst++ |= *src++;
540
541 return _dst;
542 }
543
544 static void *compute_xor(void *_dst, const void *_src, size_t n)
545 {
546 uint8_t *dst = _dst;
547 const uint8_t *src = _src;
548 size_t i;
549
550 for (i = n; i-- > 0; )
551 *dst++ ^= *src++;
552
553 return _dst;
554 }
555
556 static void *compute_extend(void *_dst, const void *_src, size_t n)
557 {
558 uint8_t digest[20];
559 sha1_context ctx;
560
561 sha1_starts(&ctx);
562 sha1_update(&ctx, _dst, n);
563 sha1_update(&ctx, _src, n);
564 sha1_finish(&ctx, digest);
565 memcpy(_dst, digest, min(n, sizeof(digest)));
566
567 return _dst;
568 }
569
570 static int hre_op_loadkey(struct h_reg *src_reg, struct h_reg *dst_reg,
571 const void *key, size_t key_size)
572 {
573 uint32_t parent_handle;
574 uint32_t key_handle;
575
576 if (!src_reg || !dst_reg || !src_reg->valid || !dst_reg->valid)
577 return -1;
578 if (find_key(src_reg->digest, dst_reg->digest, &parent_handle))
579 return -1;
580 hre_tpm_err = tpm_load_key2_oiap(parent_handle, key, key_size,
581 src_reg->digest, &key_handle);
582 if (hre_tpm_err) {
583 hre_err = HRE_E_TPM_FAILURE;
584 return -1;
585 }
586 /* TODO remember key handle somehow? */
587
588 return 0;
589 }
590
591 /**
592 * @brief executes the next opcode on the hash register engine.
593 * @param[in,out] ip pointer to the opcode (instruction pointer)
594 * @param[in,out] code_size (remaining) size of the code
595 * @return new instruction pointer on success, NULL on error.
596 */
597 static const uint8_t *hre_execute_op(const uint8_t **ip, size_t *code_size)
598 {
599 bool dst_modified = false;
600 uint32_t ins;
601 uint8_t opcode;
602 uint8_t src_spec;
603 uint8_t dst_spec;
604 uint16_t data_size;
605 struct h_reg *src_reg, *dst_reg;
606 uint8_t buf[20];
607 const uint8_t *src_buf, *data;
608 uint8_t *ptr;
609 int i;
610 void * (*bin_func)(void *, const void *, size_t);
611
612 if (*code_size < 4)
613 return NULL;
614
615 ins = get_unaligned_be32(*ip);
616 opcode = **ip;
617 data = *ip + 4;
618 src_spec = (ins >> 18) & 0x3f;
619 dst_spec = (ins >> 12) & 0x3f;
620 data_size = (ins & 0x7ff);
621
622 debug("HRE: ins=%08x (op=%02x, s=%02x, d=%02x, L=%d)\n", ins,
623 opcode, src_spec, dst_spec, data_size);
624
625 if ((opcode & 0x80) && (data_size + 4) > *code_size)
626 return NULL;
627
628 src_reg = access_hreg(src_spec, HREG_RD);
629 if (hre_err || hre_tpm_err)
630 return NULL;
631 dst_reg = access_hreg(dst_spec, (opcode & 0x40) ? HREG_RDWR : HREG_WR);
632 if (hre_err || hre_tpm_err)
633 return NULL;
634
635 switch (opcode) {
636 case HRE_NOP:
637 goto end;
638 case HRE_CHECK0:
639 if (src_reg) {
640 for (i = 0; i < 20; ++i) {
641 if (src_reg->digest[i])
642 return NULL;
643 }
644 }
645 break;
646 case HRE_LOAD:
647 bin_func = memcpy;
648 goto do_bin_func;
649 case HRE_XOR:
650 bin_func = compute_xor;
651 goto do_bin_func;
652 case HRE_AND:
653 bin_func = compute_and;
654 goto do_bin_func;
655 case HRE_OR:
656 bin_func = compute_or;
657 goto do_bin_func;
658 case HRE_EXTEND:
659 bin_func = compute_extend;
660 do_bin_func:
661 if (!dst_reg)
662 return NULL;
663 if (src_reg) {
664 src_buf = src_reg->digest;
665 } else {
666 if (!data_size) {
667 memset(buf, 0, 20);
668 src_buf = buf;
669 } else if (data_size == 1) {
670 memset(buf, *data, 20);
671 src_buf = buf;
672 } else if (data_size >= 20) {
673 src_buf = data;
674 } else {
675 src_buf = buf;
676 for (ptr = (uint8_t *)src_buf, i = 20; i > 0;
677 i -= data_size, ptr += data_size)
678 memcpy(ptr, data,
679 min_t(size_t, i, data_size));
680 }
681 }
682 bin_func(dst_reg->digest, src_buf, 20);
683 dst_reg->valid = true;
684 dst_modified = true;
685 break;
686 case HRE_LOADKEY:
687 if (hre_op_loadkey(src_reg, dst_reg, data, data_size))
688 return NULL;
689 break;
690 default:
691 return NULL;
692 }
693
694 if (dst_reg && dst_modified && IS_PCR_HREG(dst_spec)) {
695 hre_tpm_err = tpm_extend(HREG_IDX(dst_spec), dst_reg->digest,
696 dst_reg->digest);
697 if (hre_tpm_err) {
698 hre_err = HRE_E_TPM_FAILURE;
699 return NULL;
700 }
701 }
702 end:
703 *ip += 4;
704 *code_size -= 4;
705 if (opcode & 0x80) {
706 *ip += data_size;
707 *code_size -= data_size;
708 }
709
710 return *ip;
711 }
712
713 /**
714 * @brief runs a program on the hash register engine.
715 * @param code pointer to the (HRE) code.
716 * @param code_size size of the code (in bytes).
717 * @return 0 on success, != 0 on failure.
718 */
719 static int hre_run_program(const uint8_t *code, size_t code_size)
720 {
721 size_t code_left;
722 const uint8_t *ip = code;
723
724 code_left = code_size;
725 hre_tpm_err = 0;
726 hre_err = HRE_E_OK;
727 while (code_left > 0)
728 if (!hre_execute_op(&ip, &code_left))
729 return -1;
730
731 return hre_err;
732 }
733
734 static int check_hmac(struct key_program *hmac,
735 const uint8_t *data, size_t data_size)
736 {
737 uint8_t key[20], computed_hmac[20];
738 uint32_t type;
739
740 type = get_unaligned_be32(hmac->code);
741 if (type != 0)
742 return 1;
743 memset(key, 0, sizeof(key));
744 compute_extend(key, pcr_hregs[1].digest, 20);
745 compute_extend(key, pcr_hregs[2].digest, 20);
746 compute_extend(key, pcr_hregs[3].digest, 20);
747 compute_extend(key, pcr_hregs[4].digest, 20);
748
749 sha1_hmac(key, sizeof(key), data, data_size, computed_hmac);
750
751 return memcmp(computed_hmac, hmac->code + 4, 20);
752 }
753
754 static int verify_program(struct key_program *prg)
755 {
756 uint32_t crc;
757 crc = crc32(0, prg->code, prg->code_size);
758
759 if (crc != prg->code_crc) {
760 printf("HRC crc mismatch: %08x != %08x\n",
761 crc, prg->code_crc);
762 return 1;
763 }
764 return 0;
765 }
766
767 #if defined(CCDM_FIRST_STAGE) || (defined CCDM_AUTO_FIRST_STAGE)
768 static struct key_program *load_sd_key_program(void)
769 {
770 u32 code_len, code_offset;
771 struct mmc *mmc;
772 u8 buf[128];
773 struct key_program *result = NULL, *hmac = NULL;
774 struct key_program header;
775
776 mmc = find_mmc_device(0);
777 if (!mmc)
778 return NULL;
779 mmc_init(mmc);
780
781 if (ccdm_mmc_read(mmc, 0, buf, sizeof(buf)) <= 0)
782 goto failure;
783
784 code_offset = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ADDR_OFS);
785 code_len = *(u32 *)(buf + ESDHC_BOOT_IMAGE_SIZE_OFS);
786
787 code_offset += code_len;
788 /* TODO: the following needs to be the size of the 2nd stage env */
789 code_offset += CONFIG_ENV_SIZE;
790
791 if (ccdm_mmc_read(mmc, code_offset, buf, 4*3) < 0)
792 goto failure;
793
794 header.magic = get_unaligned_be32(buf);
795 header.code_crc = get_unaligned_be32(buf + 4);
796 header.code_size = get_unaligned_be32(buf + 8);
797
798 if (header.magic != MAGIC_KEY_PROGRAM)
799 goto failure;
800
801 result = malloc(sizeof(struct key_program) + header.code_size);
802 if (!result)
803 goto failure;
804 *result = header;
805
806 printf("load key program chunk from SD card (%u bytes) ",
807 header.code_size);
808 code_offset += 12;
809 if (ccdm_mmc_read(mmc, code_offset, result->code, header.code_size)
810 < 0)
811 goto failure;
812 code_offset += header.code_size;
813 puts("\n");
814
815 if (verify_program(result))
816 goto failure;
817
818 if (ccdm_mmc_read(mmc, code_offset, buf, 4*3) < 0)
819 goto failure;
820
821 header.magic = get_unaligned_be32(buf);
822 header.code_crc = get_unaligned_be32(buf + 4);
823 header.code_size = get_unaligned_be32(buf + 8);
824
825 if (header.magic == MAGIC_HMAC) {
826 puts("check integrity\n");
827 hmac = malloc(sizeof(struct key_program) + header.code_size);
828 if (!hmac)
829 goto failure;
830 *hmac = header;
831 code_offset += 12;
832 if (ccdm_mmc_read(mmc, code_offset, hmac->code,
833 hmac->code_size) < 0)
834 goto failure;
835 if (verify_program(hmac))
836 goto failure;
837 if (check_hmac(hmac, result->code, result->code_size)) {
838 puts("key program integrity could not be verified\n");
839 goto failure;
840 }
841 puts("key program verified\n");
842 }
843
844 goto end;
845 failure:
846 if (result)
847 free(result);
848 result = NULL;
849 end:
850 if (hmac)
851 free(hmac);
852
853 return result;
854 }
855 #endif
856
857 #ifdef CCDM_SECOND_STAGE
858 /**
859 * @brief load a key program from file system.
860 * @param ifname interface of the file system
861 * @param dev_part_str device part of the file system
862 * @param fs_type tyep of the file system
863 * @param path path of the file to load.
864 * @return the loaded structure or NULL on failure.
865 */
866 static struct key_program *load_key_chunk(const char *ifname,
867 const char *dev_part_str, int fs_type,
868 const char *path)
869 {
870 struct key_program *result = NULL;
871 struct key_program header;
872 uint32_t crc;
873 uint8_t buf[12];
874 loff_t i;
875
876 if (fs_set_blk_dev(ifname, dev_part_str, fs_type))
877 goto failure;
878 if (fs_read(path, (ulong)buf, 0, 12, &i) < 0)
879 goto failure;
880 if (i < 12)
881 goto failure;
882 header.magic = get_unaligned_be32(buf);
883 header.code_crc = get_unaligned_be32(buf + 4);
884 header.code_size = get_unaligned_be32(buf + 8);
885
886 if (header.magic != MAGIC_HMAC && header.magic != MAGIC_KEY_PROGRAM)
887 goto failure;
888
889 result = malloc(sizeof(struct key_program) + header.code_size);
890 if (!result)
891 goto failure;
892 if (fs_set_blk_dev(ifname, dev_part_str, fs_type))
893 goto failure;
894 if (fs_read(path, (ulong)result, 0,
895 sizeof(struct key_program) + header.code_size, &i) < 0)
896 goto failure;
897 if (i <= 0)
898 goto failure;
899 *result = header;
900
901 crc = crc32(0, result->code, result->code_size);
902
903 if (crc != result->code_crc) {
904 printf("%s: HRC crc mismatch: %08x != %08x\n",
905 path, crc, result->code_crc);
906 goto failure;
907 }
908 goto end;
909 failure:
910 if (result) {
911 free(result);
912 result = NULL;
913 }
914 end:
915 return result;
916 }
917 #endif
918
919 #if defined(CCDM_FIRST_STAGE) || (defined CCDM_AUTO_FIRST_STAGE)
920 static const uint8_t prg_stage1_prepare[] = {
921 0x00, 0x20, 0x00, 0x00, /* opcode: SYNC f0 */
922 0x00, 0x24, 0x00, 0x00, /* opcode: SYNC f1 */
923 0x01, 0x80, 0x00, 0x00, /* opcode: CHECK0 PCR0 */
924 0x81, 0x22, 0x00, 0x00, /* opcode: LOAD PCR0, f0 */
925 0x01, 0x84, 0x00, 0x00, /* opcode: CHECK0 PCR1 */
926 0x81, 0x26, 0x10, 0x00, /* opcode: LOAD PCR1, f1 */
927 0x01, 0x88, 0x00, 0x00, /* opcode: CHECK0 PCR2 */
928 0x81, 0x2a, 0x20, 0x00, /* opcode: LOAD PCR2, f2 */
929 0x01, 0x8c, 0x00, 0x00, /* opcode: CHECK0 PCR3 */
930 0x81, 0x2e, 0x30, 0x00, /* opcode: LOAD PCR3, f3 */
931 };
932
933 static int first_stage_actions(void)
934 {
935 int result = 0;
936 struct key_program *sd_prg = NULL;
937
938 puts("CCDM S1: start actions\n");
939 #ifndef CCDM_SECOND_STAGE
940 if (tpm_continue_self_test())
941 goto failure;
942 #else
943 tpm_continue_self_test();
944 #endif
945 mdelay(37);
946
947 if (hre_run_program(prg_stage1_prepare, sizeof(prg_stage1_prepare)))
948 goto failure;
949
950 sd_prg = load_sd_key_program();
951 if (sd_prg) {
952 if (hre_run_program(sd_prg->code, sd_prg->code_size))
953 goto failure;
954 puts("SD code run successfully\n");
955 } else {
956 puts("no key program found on SD\n");
957 goto failure;
958 }
959 goto end;
960 failure:
961 result = 1;
962 end:
963 if (sd_prg)
964 free(sd_prg);
965 printf("CCDM S1: actions done (%d)\n", result);
966 return result;
967 }
968 #endif
969
970 #ifdef CCDM_FIRST_STAGE
971 static int first_stage_init(void)
972 {
973 int res = 0;
974 puts("CCDM S1\n");
975 if (tpm_init() || tpm_startup(TPM_ST_CLEAR))
976 return 1;
977 res = first_stage_actions();
978 #ifndef CCDM_SECOND_STAGE
979 if (!res) {
980 if (bl2_entry)
981 (*bl2_entry)();
982 res = 1;
983 }
984 #endif
985 return res;
986 }
987 #endif
988
989 #ifdef CCDM_SECOND_STAGE
990 static const uint8_t prg_stage2_prepare[] = {
991 0x00, 0x80, 0x00, 0x00, /* opcode: SYNC PCR0 */
992 0x00, 0x84, 0x00, 0x00, /* opcode: SYNC PCR1 */
993 0x00, 0x88, 0x00, 0x00, /* opcode: SYNC PCR2 */
994 0x00, 0x8c, 0x00, 0x00, /* opcode: SYNC PCR3 */
995 0x00, 0x90, 0x00, 0x00, /* opcode: SYNC PCR4 */
996 };
997
998 static const uint8_t prg_stage2_success[] = {
999 0x81, 0x02, 0x40, 0x14, /* opcode: LOAD PCR4, #<20B data> */
1000 0x48, 0xfd, 0x95, 0x17, 0xe7, 0x54, 0x6b, 0x68, /* data */
1001 0x92, 0x31, 0x18, 0x05, 0xf8, 0x58, 0x58, 0x3c, /* data */
1002 0xe4, 0xd2, 0x81, 0xe0, /* data */
1003 };
1004
1005 static const uint8_t prg_stage_fail[] = {
1006 0x81, 0x01, 0x00, 0x14, /* opcode: LOAD v0, #<20B data> */
1007 0xc0, 0x32, 0xad, 0xc1, 0xff, 0x62, 0x9c, 0x9b, /* data */
1008 0x66, 0xf2, 0x27, 0x49, 0xad, 0x66, 0x7e, 0x6b, /* data */
1009 0xea, 0xdf, 0x14, 0x4b, /* data */
1010 0x81, 0x42, 0x30, 0x00, /* opcode: LOAD PCR3, v0 */
1011 0x81, 0x42, 0x40, 0x00, /* opcode: LOAD PCR4, v0 */
1012 };
1013
1014 static int second_stage_init(void)
1015 {
1016 static const char mac_suffix[] = ".mac";
1017 bool did_first_stage_run = true;
1018 int result = 0;
1019 char *cptr, *mmcdev = NULL;
1020 struct key_program *hmac_blob = NULL;
1021 const char *image_path = "/ccdm.itb";
1022 char *mac_path = NULL;
1023 ulong image_addr;
1024 loff_t image_size;
1025 uint32_t err;
1026
1027 printf("CCDM S2\n");
1028 if (tpm_init())
1029 return 1;
1030 err = tpm_startup(TPM_ST_CLEAR);
1031 if (err != TPM_INVALID_POSTINIT)
1032 did_first_stage_run = false;
1033
1034 #ifdef CCDM_AUTO_FIRST_STAGE
1035 if (!did_first_stage_run && first_stage_actions())
1036 goto failure;
1037 #else
1038 if (!did_first_stage_run)
1039 goto failure;
1040 #endif
1041
1042 if (hre_run_program(prg_stage2_prepare, sizeof(prg_stage2_prepare)))
1043 goto failure;
1044
1045 /* run "prepboot" from env to get "mmcdev" set */
1046 cptr = env_get("prepboot");
1047 if (cptr && !run_command(cptr, 0))
1048 mmcdev = env_get("mmcdev");
1049 if (!mmcdev)
1050 goto failure;
1051
1052 cptr = env_get("ramdiskimage");
1053 if (cptr)
1054 image_path = cptr;
1055
1056 mac_path = malloc(strlen(image_path) + strlen(mac_suffix) + 1);
1057 if (mac_path == NULL)
1058 goto failure;
1059 strcpy(mac_path, image_path);
1060 strcat(mac_path, mac_suffix);
1061
1062 /* read image from mmcdev (ccdm.itb) */
1063 image_addr = (ulong)get_image_location();
1064 if (fs_set_blk_dev("mmc", mmcdev, FS_TYPE_EXT))
1065 goto failure;
1066 if (fs_read(image_path, image_addr, 0, 0, &image_size) < 0)
1067 goto failure;
1068 if (image_size <= 0)
1069 goto failure;
1070 printf("CCDM image found on %s, %lld bytes\n", mmcdev, image_size);
1071
1072 hmac_blob = load_key_chunk("mmc", mmcdev, FS_TYPE_EXT, mac_path);
1073 if (!hmac_blob) {
1074 puts("failed to load mac file\n");
1075 goto failure;
1076 }
1077 if (verify_program(hmac_blob)) {
1078 puts("corrupted mac file\n");
1079 goto failure;
1080 }
1081 if (check_hmac(hmac_blob, (u8 *)image_addr, image_size)) {
1082 puts("image integrity could not be verified\n");
1083 goto failure;
1084 }
1085 puts("CCDM image OK\n");
1086
1087 hre_run_program(prg_stage2_success, sizeof(prg_stage2_success));
1088
1089 goto end;
1090 failure:
1091 result = 1;
1092 hre_run_program(prg_stage_fail, sizeof(prg_stage_fail));
1093 end:
1094 if (hmac_blob)
1095 free(hmac_blob);
1096 if (mac_path)
1097 free(mac_path);
1098
1099 return result;
1100 }
1101 #endif
1102
1103 int show_self_hash(void)
1104 {
1105 struct h_reg *hash_ptr;
1106 #ifdef CCDM_SECOND_STAGE
1107 struct h_reg hash;
1108
1109 hash_ptr = &hash;
1110 if (compute_self_hash(hash_ptr))
1111 return 1;
1112 #else
1113 hash_ptr = &fix_hregs[FIX_HREG_SELF_HASH];
1114 #endif
1115 puts("self hash: ");
1116 if (hash_ptr && hash_ptr->valid)
1117 print_buffer(0, hash_ptr->digest, 1, 20, 20);
1118 else
1119 puts("INVALID\n");
1120
1121 return 0;
1122 }
1123
1124 /**
1125 * @brief let the system hang.
1126 *
1127 * Called on error.
1128 * Will stop the boot process; display a message and signal the error condition
1129 * by blinking the "status" and the "finder" LED of the controller board.
1130 *
1131 * @note the develop version runs the blink cycle 2 times and then returns.
1132 * The release version never returns.
1133 */
1134 static void ccdm_hang(void)
1135 {
1136 static const u64 f0 = 0x0ba3bb8ba2e880; /* blink code "finder" LED */
1137 static const u64 s0 = 0x00f0f0f0f0f0f0; /* blink code "status" LED */
1138 u64 f, s;
1139 int i;
1140 #ifdef CCDM_DEVELOP
1141 int j;
1142 #endif
1143
1144 I2C_SET_BUS(I2C_SOC_0);
1145 pca9698_direction_output(0x22, 0, 0); /* Finder */
1146 pca9698_direction_output(0x22, 4, 0); /* Status */
1147
1148 puts("### ERROR ### Please RESET the board ###\n");
1149 bootstage_error(BOOTSTAGE_ID_NEED_RESET);
1150 #ifdef CCDM_DEVELOP
1151 puts("*** ERROR ******** THIS WOULD HANG ******** ERROR ***\n");
1152 puts("** but we continue since this is a DEVELOP version **\n");
1153 puts("*** ERROR ******** THIS WOULD HANG ******** ERROR ***\n");
1154 for (j = 2; j-- > 0;) {
1155 putc('#');
1156 #else
1157 for (;;) {
1158 #endif
1159 f = f0;
1160 s = s0;
1161 for (i = 54; i-- > 0;) {
1162 pca9698_set_value(0x22, 0, !(f & 1));
1163 pca9698_set_value(0x22, 4, (s & 1));
1164 f >>= 1;
1165 s >>= 1;
1166 mdelay(120);
1167 }
1168 }
1169 puts("\ncontinue...\n");
1170 }
1171
1172 int startup_ccdm_id_module(void)
1173 {
1174 int result = 0;
1175 unsigned int orig_i2c_bus;
1176
1177 orig_i2c_bus = i2c_get_bus_num();
1178 i2c_set_bus_num(I2C_SOC_1);
1179
1180 /* goto end; */
1181
1182 #ifdef CCDM_DEVELOP
1183 show_self_hash();
1184 #endif
1185 #ifdef CCDM_FIRST_STAGE
1186 result = first_stage_init();
1187 if (result) {
1188 puts("1st stage init failed\n");
1189 goto failure;
1190 }
1191 #endif
1192 #ifdef CCDM_SECOND_STAGE
1193 result = second_stage_init();
1194 if (result) {
1195 puts("2nd stage init failed\n");
1196 goto failure;
1197 }
1198 #endif
1199
1200 goto end;
1201 failure:
1202 result = 1;
1203 end:
1204 i2c_set_bus_num(orig_i2c_bus);
1205 if (result)
1206 ccdm_hang();
1207
1208 return result;
1209 }