]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/nand_base.c
Remove white space at end.
[people/ms/u-boot.git] / drivers / mtd / nand / nand_base.c
1 /*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
8 *
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/tech/nand.html
11 *
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
14 *
15 * Credits:
16 * David Woodhouse for adding multichip support
17 *
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
20 *
21 * TODO:
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 *
28 * This program is free software; you can redistribute it and/or modify
29 * it under the terms of the GNU General Public License version 2 as
30 * published by the Free Software Foundation.
31 *
32 */
33
34 /* XXX U-BOOT XXX */
35 #if 0
36 #include <linux/module.h>
37 #include <linux/delay.h>
38 #include <linux/errno.h>
39 #include <linux/err.h>
40 #include <linux/sched.h>
41 #include <linux/slab.h>
42 #include <linux/types.h>
43 #include <linux/mtd/mtd.h>
44 #include <linux/mtd/nand.h>
45 #include <linux/mtd/nand_ecc.h>
46 #include <linux/mtd/compatmac.h>
47 #include <linux/interrupt.h>
48 #include <linux/bitops.h>
49 #include <linux/leds.h>
50 #include <asm/io.h>
51
52 #ifdef CONFIG_MTD_PARTITIONS
53 #include <linux/mtd/partitions.h>
54 #endif
55
56 #endif
57
58 #include <common.h>
59
60 #define ENOTSUPP 524 /* Operation is not supported */
61
62 #if defined(CONFIG_CMD_NAND) && !defined(CFG_NAND_LEGACY)
63
64 #include <malloc.h>
65 #include <watchdog.h>
66 #include <linux/err.h>
67 #include <linux/mtd/compat.h>
68 #include <linux/mtd/mtd.h>
69 #include <linux/mtd/nand.h>
70 #include <linux/mtd/nand_ecc.h>
71
72 #include <asm/io.h>
73 #include <asm/errno.h>
74
75 #ifdef CONFIG_JFFS2_NAND
76 #include <jffs2/jffs2.h>
77 #endif
78
79 /* Define default oob placement schemes for large and small page devices */
80 static struct nand_ecclayout nand_oob_8 = {
81 .eccbytes = 3,
82 .eccpos = {0, 1, 2},
83 .oobfree = {
84 {.offset = 3,
85 .length = 2},
86 {.offset = 6,
87 .length = 2}}
88 };
89
90 static struct nand_ecclayout nand_oob_16 = {
91 .eccbytes = 6,
92 .eccpos = {0, 1, 2, 3, 6, 7},
93 .oobfree = {
94 {.offset = 8,
95 . length = 8}}
96 };
97
98 static struct nand_ecclayout nand_oob_64 = {
99 .eccbytes = 24,
100 .eccpos = {
101 40, 41, 42, 43, 44, 45, 46, 47,
102 48, 49, 50, 51, 52, 53, 54, 55,
103 56, 57, 58, 59, 60, 61, 62, 63},
104 .oobfree = {
105 {.offset = 2,
106 .length = 38}}
107 };
108
109 static struct nand_ecclayout nand_oob_128 = {
110 .eccbytes = 48,
111 .eccpos = {
112 80, 81, 82, 83, 84, 85, 86, 87,
113 88, 89, 90, 91, 92, 93, 94, 95,
114 96, 97, 98, 99, 100, 101, 102, 103,
115 104, 105, 106, 107, 108, 109, 110, 111,
116 112, 113, 114, 115, 116, 117, 118, 119,
117 120, 121, 122, 123, 124, 125, 126, 127},
118 .oobfree = {
119 {.offset = 2,
120 .length = 78}}
121 };
122
123
124 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
125 int new_state);
126
127 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
128 struct mtd_oob_ops *ops);
129
130 static int nand_wait(struct mtd_info *mtd, struct nand_chip *this);
131
132 /*
133 * For devices which display every fart in the system on a seperate LED. Is
134 * compiled away when LED support is disabled.
135 */
136 /* XXX U-BOOT XXX */
137 #if 0
138 DEFINE_LED_TRIGGER(nand_led_trigger);
139 #endif
140
141 /**
142 * nand_release_device - [GENERIC] release chip
143 * @mtd: MTD device structure
144 *
145 * Deselect, release chip lock and wake up anyone waiting on the device
146 */
147 /* XXX U-BOOT XXX */
148 #if 0
149 static void nand_release_device(struct mtd_info *mtd)
150 {
151 struct nand_chip *chip = mtd->priv;
152
153 /* De-select the NAND device */
154 chip->select_chip(mtd, -1);
155
156 /* Release the controller and the chip */
157 spin_lock(&chip->controller->lock);
158 chip->controller->active = NULL;
159 chip->state = FL_READY;
160 wake_up(&chip->controller->wq);
161 spin_unlock(&chip->controller->lock);
162 }
163 #else
164 static void nand_release_device (struct mtd_info *mtd)
165 {
166 struct nand_chip *this = mtd->priv;
167 this->select_chip(mtd, -1); /* De-select the NAND device */
168 }
169 #endif
170
171 /**
172 * nand_read_byte - [DEFAULT] read one byte from the chip
173 * @mtd: MTD device structure
174 *
175 * Default read function for 8bit buswith
176 */
177 static uint8_t nand_read_byte(struct mtd_info *mtd)
178 {
179 struct nand_chip *chip = mtd->priv;
180 return readb(chip->IO_ADDR_R);
181 }
182
183 /**
184 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
185 * @mtd: MTD device structure
186 *
187 * Default read function for 16bit buswith with
188 * endianess conversion
189 */
190 static uint8_t nand_read_byte16(struct mtd_info *mtd)
191 {
192 struct nand_chip *chip = mtd->priv;
193 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
194 }
195
196 /**
197 * nand_read_word - [DEFAULT] read one word from the chip
198 * @mtd: MTD device structure
199 *
200 * Default read function for 16bit buswith without
201 * endianess conversion
202 */
203 static u16 nand_read_word(struct mtd_info *mtd)
204 {
205 struct nand_chip *chip = mtd->priv;
206 return readw(chip->IO_ADDR_R);
207 }
208
209 /**
210 * nand_select_chip - [DEFAULT] control CE line
211 * @mtd: MTD device structure
212 * @chipnr: chipnumber to select, -1 for deselect
213 *
214 * Default select function for 1 chip devices.
215 */
216 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
217 {
218 struct nand_chip *chip = mtd->priv;
219
220 switch (chipnr) {
221 case -1:
222 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
223 break;
224 case 0:
225 break;
226
227 default:
228 BUG();
229 }
230 }
231
232 /**
233 * nand_write_buf - [DEFAULT] write buffer to chip
234 * @mtd: MTD device structure
235 * @buf: data buffer
236 * @len: number of bytes to write
237 *
238 * Default write function for 8bit buswith
239 */
240 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
241 {
242 int i;
243 struct nand_chip *chip = mtd->priv;
244
245 for (i = 0; i < len; i++)
246 writeb(buf[i], chip->IO_ADDR_W);
247 }
248
249 /**
250 * nand_read_buf - [DEFAULT] read chip data into buffer
251 * @mtd: MTD device structure
252 * @buf: buffer to store date
253 * @len: number of bytes to read
254 *
255 * Default read function for 8bit buswith
256 */
257 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
258 {
259 int i;
260 struct nand_chip *chip = mtd->priv;
261
262 for (i = 0; i < len; i++)
263 buf[i] = readb(chip->IO_ADDR_R);
264 }
265
266 /**
267 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
268 * @mtd: MTD device structure
269 * @buf: buffer containing the data to compare
270 * @len: number of bytes to compare
271 *
272 * Default verify function for 8bit buswith
273 */
274 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
275 {
276 int i;
277 struct nand_chip *chip = mtd->priv;
278
279 for (i = 0; i < len; i++)
280 if (buf[i] != readb(chip->IO_ADDR_R))
281 return -EFAULT;
282 return 0;
283 }
284
285 /**
286 * nand_write_buf16 - [DEFAULT] write buffer to chip
287 * @mtd: MTD device structure
288 * @buf: data buffer
289 * @len: number of bytes to write
290 *
291 * Default write function for 16bit buswith
292 */
293 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
294 {
295 int i;
296 struct nand_chip *chip = mtd->priv;
297 u16 *p = (u16 *) buf;
298 len >>= 1;
299
300 for (i = 0; i < len; i++)
301 writew(p[i], chip->IO_ADDR_W);
302
303 }
304
305 /**
306 * nand_read_buf16 - [DEFAULT] read chip data into buffer
307 * @mtd: MTD device structure
308 * @buf: buffer to store date
309 * @len: number of bytes to read
310 *
311 * Default read function for 16bit buswith
312 */
313 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
314 {
315 int i;
316 struct nand_chip *chip = mtd->priv;
317 u16 *p = (u16 *) buf;
318 len >>= 1;
319
320 for (i = 0; i < len; i++)
321 p[i] = readw(chip->IO_ADDR_R);
322 }
323
324 /**
325 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
326 * @mtd: MTD device structure
327 * @buf: buffer containing the data to compare
328 * @len: number of bytes to compare
329 *
330 * Default verify function for 16bit buswith
331 */
332 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
333 {
334 int i;
335 struct nand_chip *chip = mtd->priv;
336 u16 *p = (u16 *) buf;
337 len >>= 1;
338
339 for (i = 0; i < len; i++)
340 if (p[i] != readw(chip->IO_ADDR_R))
341 return -EFAULT;
342
343 return 0;
344 }
345
346 /**
347 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
348 * @mtd: MTD device structure
349 * @ofs: offset from device start
350 * @getchip: 0, if the chip is already selected
351 *
352 * Check, if the block is bad.
353 */
354 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
355 {
356 int page, chipnr, res = 0;
357 struct nand_chip *chip = mtd->priv;
358 u16 bad;
359
360 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
361
362 if (getchip) {
363 chipnr = (int)(ofs >> chip->chip_shift);
364
365 nand_get_device(chip, mtd, FL_READING);
366
367 /* Select the NAND device */
368 chip->select_chip(mtd, chipnr);
369 }
370
371 if (chip->options & NAND_BUSWIDTH_16) {
372 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
373 page);
374 bad = cpu_to_le16(chip->read_word(mtd));
375 if (chip->badblockpos & 0x1)
376 bad >>= 8;
377 if ((bad & 0xFF) != 0xff)
378 res = 1;
379 } else {
380 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
381 if (chip->read_byte(mtd) != 0xff)
382 res = 1;
383 }
384
385 if (getchip)
386 nand_release_device(mtd);
387
388 return res;
389 }
390
391 /**
392 * nand_default_block_markbad - [DEFAULT] mark a block bad
393 * @mtd: MTD device structure
394 * @ofs: offset from device start
395 *
396 * This is the default implementation, which can be overridden by
397 * a hardware specific driver.
398 */
399 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
400 {
401 struct nand_chip *chip = mtd->priv;
402 uint8_t buf[2] = { 0, 0 };
403 int block, ret;
404
405 /* Get block number */
406 block = (int)(ofs >> chip->bbt_erase_shift);
407 if (chip->bbt)
408 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
409
410 /* Do we have a flash based bad block table ? */
411 if (chip->options & NAND_USE_FLASH_BBT)
412 ret = nand_update_bbt(mtd, ofs);
413 else {
414 /* We write two bytes, so we dont have to mess with 16 bit
415 * access
416 */
417 ofs += mtd->oobsize;
418 chip->ops.len = chip->ops.ooblen = 2;
419 chip->ops.datbuf = NULL;
420 chip->ops.oobbuf = buf;
421 chip->ops.ooboffs = chip->badblockpos & ~0x01;
422
423 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
424 }
425 if (!ret)
426 mtd->ecc_stats.badblocks++;
427 return ret;
428 }
429
430 /**
431 * nand_check_wp - [GENERIC] check if the chip is write protected
432 * @mtd: MTD device structure
433 * Check, if the device is write protected
434 *
435 * The function expects, that the device is already selected
436 */
437 static int nand_check_wp(struct mtd_info *mtd)
438 {
439 struct nand_chip *chip = mtd->priv;
440 /* Check the WP bit */
441 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
442 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
443 }
444
445 /**
446 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
447 * @mtd: MTD device structure
448 * @ofs: offset from device start
449 * @getchip: 0, if the chip is already selected
450 * @allowbbt: 1, if its allowed to access the bbt area
451 *
452 * Check, if the block is bad. Either by reading the bad block table or
453 * calling of the scan function.
454 */
455 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
456 int allowbbt)
457 {
458 struct nand_chip *chip = mtd->priv;
459
460 if (!chip->bbt)
461 return chip->block_bad(mtd, ofs, getchip);
462
463 /* Return info from the table */
464 return nand_isbad_bbt(mtd, ofs, allowbbt);
465 }
466
467 /*
468 * Wait for the ready pin, after a command
469 * The timeout is catched later.
470 */
471 /* XXX U-BOOT XXX */
472 #if 0
473 void nand_wait_ready(struct mtd_info *mtd)
474 {
475 struct nand_chip *chip = mtd->priv;
476 unsigned long timeo = jiffies + 2;
477
478 led_trigger_event(nand_led_trigger, LED_FULL);
479 /* wait until command is processed or timeout occures */
480 do {
481 if (chip->dev_ready(mtd))
482 break;
483 touch_softlockup_watchdog();
484 } while (time_before(jiffies, timeo));
485 led_trigger_event(nand_led_trigger, LED_OFF);
486 }
487 EXPORT_SYMBOL_GPL(nand_wait_ready);
488 #else
489 void nand_wait_ready(struct mtd_info *mtd)
490 {
491 struct nand_chip *chip = mtd->priv;
492 nand_wait(mtd, chip);
493 }
494 #endif
495
496 /**
497 * nand_command - [DEFAULT] Send command to NAND device
498 * @mtd: MTD device structure
499 * @command: the command to be sent
500 * @column: the column address for this command, -1 if none
501 * @page_addr: the page address for this command, -1 if none
502 *
503 * Send command to NAND device. This function is used for small page
504 * devices (256/512 Bytes per page)
505 */
506 static void nand_command(struct mtd_info *mtd, unsigned int command,
507 int column, int page_addr)
508 {
509 register struct nand_chip *chip = mtd->priv;
510 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
511
512 /*
513 * Write out the command to the device.
514 */
515 if (command == NAND_CMD_SEQIN) {
516 int readcmd;
517
518 if (column >= mtd->writesize) {
519 /* OOB area */
520 column -= mtd->writesize;
521 readcmd = NAND_CMD_READOOB;
522 } else if (column < 256) {
523 /* First 256 bytes --> READ0 */
524 readcmd = NAND_CMD_READ0;
525 } else {
526 column -= 256;
527 readcmd = NAND_CMD_READ1;
528 }
529 chip->cmd_ctrl(mtd, readcmd, ctrl);
530 ctrl &= ~NAND_CTRL_CHANGE;
531 }
532 chip->cmd_ctrl(mtd, command, ctrl);
533
534 /*
535 * Address cycle, when necessary
536 */
537 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
538 /* Serially input address */
539 if (column != -1) {
540 /* Adjust columns for 16 bit buswidth */
541 if (chip->options & NAND_BUSWIDTH_16)
542 column >>= 1;
543 chip->cmd_ctrl(mtd, column, ctrl);
544 ctrl &= ~NAND_CTRL_CHANGE;
545 }
546 if (page_addr != -1) {
547 chip->cmd_ctrl(mtd, page_addr, ctrl);
548 ctrl &= ~NAND_CTRL_CHANGE;
549 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
550 /* One more address cycle for devices > 32MiB */
551 if (chip->chipsize > (32 << 20))
552 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
553 }
554 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
555
556 /*
557 * program and erase have their own busy handlers
558 * status and sequential in needs no delay
559 */
560 switch (command) {
561
562 case NAND_CMD_PAGEPROG:
563 case NAND_CMD_ERASE1:
564 case NAND_CMD_ERASE2:
565 case NAND_CMD_SEQIN:
566 case NAND_CMD_STATUS:
567 return;
568
569 case NAND_CMD_RESET:
570 if (chip->dev_ready)
571 break;
572 udelay(chip->chip_delay);
573 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
574 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
575 chip->cmd_ctrl(mtd,
576 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
577 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
578 return;
579
580 /* This applies to read commands */
581 default:
582 /*
583 * If we don't have access to the busy pin, we apply the given
584 * command delay
585 */
586 if (!chip->dev_ready) {
587 udelay(chip->chip_delay);
588 return;
589 }
590 }
591 /* Apply this short delay always to ensure that we do wait tWB in
592 * any case on any machine. */
593 ndelay(100);
594
595 nand_wait_ready(mtd);
596 }
597
598 /**
599 * nand_command_lp - [DEFAULT] Send command to NAND large page device
600 * @mtd: MTD device structure
601 * @command: the command to be sent
602 * @column: the column address for this command, -1 if none
603 * @page_addr: the page address for this command, -1 if none
604 *
605 * Send command to NAND device. This is the version for the new large page
606 * devices We dont have the separate regions as we have in the small page
607 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
608 */
609 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
610 int column, int page_addr)
611 {
612 register struct nand_chip *chip = mtd->priv;
613
614 /* Emulate NAND_CMD_READOOB */
615 if (command == NAND_CMD_READOOB) {
616 column += mtd->writesize;
617 command = NAND_CMD_READ0;
618 }
619
620 /* Command latch cycle */
621 chip->cmd_ctrl(mtd, command & 0xff,
622 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
623
624 if (column != -1 || page_addr != -1) {
625 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
626
627 /* Serially input address */
628 if (column != -1) {
629 /* Adjust columns for 16 bit buswidth */
630 if (chip->options & NAND_BUSWIDTH_16)
631 column >>= 1;
632 chip->cmd_ctrl(mtd, column, ctrl);
633 ctrl &= ~NAND_CTRL_CHANGE;
634 chip->cmd_ctrl(mtd, column >> 8, ctrl);
635 }
636 if (page_addr != -1) {
637 chip->cmd_ctrl(mtd, page_addr, ctrl);
638 chip->cmd_ctrl(mtd, page_addr >> 8,
639 NAND_NCE | NAND_ALE);
640 /* One more address cycle for devices > 128MiB */
641 if (chip->chipsize > (128 << 20))
642 chip->cmd_ctrl(mtd, page_addr >> 16,
643 NAND_NCE | NAND_ALE);
644 }
645 }
646 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
647
648 /*
649 * program and erase have their own busy handlers
650 * status, sequential in, and deplete1 need no delay
651 */
652 switch (command) {
653
654 case NAND_CMD_CACHEDPROG:
655 case NAND_CMD_PAGEPROG:
656 case NAND_CMD_ERASE1:
657 case NAND_CMD_ERASE2:
658 case NAND_CMD_SEQIN:
659 case NAND_CMD_RNDIN:
660 case NAND_CMD_STATUS:
661 case NAND_CMD_DEPLETE1:
662 return;
663
664 /*
665 * read error status commands require only a short delay
666 */
667 case NAND_CMD_STATUS_ERROR:
668 case NAND_CMD_STATUS_ERROR0:
669 case NAND_CMD_STATUS_ERROR1:
670 case NAND_CMD_STATUS_ERROR2:
671 case NAND_CMD_STATUS_ERROR3:
672 udelay(chip->chip_delay);
673 return;
674
675 case NAND_CMD_RESET:
676 if (chip->dev_ready)
677 break;
678 udelay(chip->chip_delay);
679 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
680 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
681 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
682 NAND_NCE | NAND_CTRL_CHANGE);
683 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
684 return;
685
686 case NAND_CMD_RNDOUT:
687 /* No ready / busy check necessary */
688 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
689 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
690 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
691 NAND_NCE | NAND_CTRL_CHANGE);
692 return;
693
694 case NAND_CMD_READ0:
695 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
696 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
697 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
698 NAND_NCE | NAND_CTRL_CHANGE);
699
700 /* This applies to read commands */
701 default:
702 /*
703 * If we don't have access to the busy pin, we apply the given
704 * command delay
705 */
706 if (!chip->dev_ready) {
707 udelay(chip->chip_delay);
708 return;
709 }
710 }
711
712 /* Apply this short delay always to ensure that we do wait tWB in
713 * any case on any machine. */
714 ndelay(100);
715
716 nand_wait_ready(mtd);
717 }
718
719 /**
720 * nand_get_device - [GENERIC] Get chip for selected access
721 * @chip: the nand chip descriptor
722 * @mtd: MTD device structure
723 * @new_state: the state which is requested
724 *
725 * Get the device and lock it for exclusive access
726 */
727 /* XXX U-BOOT XXX */
728 #if 0
729 static int
730 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
731 {
732 spinlock_t *lock = &chip->controller->lock;
733 wait_queue_head_t *wq = &chip->controller->wq;
734 DECLARE_WAITQUEUE(wait, current);
735 retry:
736 spin_lock(lock);
737
738 /* Hardware controller shared among independend devices */
739 /* Hardware controller shared among independend devices */
740 if (!chip->controller->active)
741 chip->controller->active = chip;
742
743 if (chip->controller->active == chip && chip->state == FL_READY) {
744 chip->state = new_state;
745 spin_unlock(lock);
746 return 0;
747 }
748 if (new_state == FL_PM_SUSPENDED) {
749 spin_unlock(lock);
750 return (chip->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
751 }
752 set_current_state(TASK_UNINTERRUPTIBLE);
753 add_wait_queue(wq, &wait);
754 spin_unlock(lock);
755 schedule();
756 remove_wait_queue(wq, &wait);
757 goto retry;
758 }
759 #else
760 static int nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state)
761 {
762 return 0;
763 }
764 #endif
765
766 /**
767 * nand_wait - [DEFAULT] wait until the command is done
768 * @mtd: MTD device structure
769 * @chip: NAND chip structure
770 *
771 * Wait for command done. This applies to erase and program only
772 * Erase can take up to 400ms and program up to 20ms according to
773 * general NAND and SmartMedia specs
774 */
775 /* XXX U-BOOT XXX */
776 #if 0
777 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
778 {
779
780 unsigned long timeo = jiffies;
781 int status, state = chip->state;
782
783 if (state == FL_ERASING)
784 timeo += (HZ * 400) / 1000;
785 else
786 timeo += (HZ * 20) / 1000;
787
788 led_trigger_event(nand_led_trigger, LED_FULL);
789
790 /* Apply this short delay always to ensure that we do wait tWB in
791 * any case on any machine. */
792 ndelay(100);
793
794 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
795 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
796 else
797 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
798
799 while (time_before(jiffies, timeo)) {
800 if (chip->dev_ready) {
801 if (chip->dev_ready(mtd))
802 break;
803 } else {
804 if (chip->read_byte(mtd) & NAND_STATUS_READY)
805 break;
806 }
807 cond_resched();
808 }
809 led_trigger_event(nand_led_trigger, LED_OFF);
810
811 status = (int)chip->read_byte(mtd);
812 return status;
813 }
814 #else
815 static int nand_wait(struct mtd_info *mtd, struct nand_chip *this)
816 {
817 unsigned long timeo;
818 int state = this->state;
819
820 if (state == FL_ERASING)
821 timeo = (CFG_HZ * 400) / 1000;
822 else
823 timeo = (CFG_HZ * 20) / 1000;
824
825 if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
826 this->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
827 else
828 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
829
830 reset_timer();
831
832 while (1) {
833 if (get_timer(0) > timeo) {
834 printf("Timeout!");
835 return 0x01;
836 }
837
838 if (this->dev_ready) {
839 if (this->dev_ready(mtd))
840 break;
841 } else {
842 if (this->read_byte(mtd) & NAND_STATUS_READY)
843 break;
844 }
845 }
846 #ifdef PPCHAMELON_NAND_TIMER_HACK
847 reset_timer();
848 while (get_timer(0) < 10);
849 #endif /* PPCHAMELON_NAND_TIMER_HACK */
850
851 return this->read_byte(mtd);
852 }
853 #endif
854
855 /**
856 * nand_read_page_raw - [Intern] read raw page data without ecc
857 * @mtd: mtd info structure
858 * @chip: nand chip info structure
859 * @buf: buffer to store read data
860 */
861 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
862 uint8_t *buf)
863 {
864 chip->read_buf(mtd, buf, mtd->writesize);
865 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
866 return 0;
867 }
868
869 /**
870 * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
871 * @mtd: mtd info structure
872 * @chip: nand chip info structure
873 * @buf: buffer to store read data
874 */
875 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
876 uint8_t *buf)
877 {
878 int i, eccsize = chip->ecc.size;
879 int eccbytes = chip->ecc.bytes;
880 int eccsteps = chip->ecc.steps;
881 uint8_t *p = buf;
882 uint8_t *ecc_calc = chip->buffers->ecccalc;
883 uint8_t *ecc_code = chip->buffers->ecccode;
884 uint32_t *eccpos = chip->ecc.layout->eccpos;
885
886 chip->ecc.read_page_raw(mtd, chip, buf);
887
888 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
889 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
890
891 for (i = 0; i < chip->ecc.total; i++)
892 ecc_code[i] = chip->oob_poi[eccpos[i]];
893
894 eccsteps = chip->ecc.steps;
895 p = buf;
896
897 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
898 int stat;
899
900 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
901 if (stat == -1)
902 mtd->ecc_stats.failed++;
903 else
904 mtd->ecc_stats.corrected += stat;
905 }
906 return 0;
907 }
908
909 /**
910 * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
911 * @mtd: mtd info structure
912 * @chip: nand chip info structure
913 * @buf: buffer to store read data
914 *
915 * Not for syndrome calculating ecc controllers which need a special oob layout
916 */
917 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
918 uint8_t *buf)
919 {
920 int i, eccsize = chip->ecc.size;
921 int eccbytes = chip->ecc.bytes;
922 int eccsteps = chip->ecc.steps;
923 uint8_t *p = buf;
924 uint8_t *ecc_calc = chip->buffers->ecccalc;
925 uint8_t *ecc_code = chip->buffers->ecccode;
926 uint32_t *eccpos = chip->ecc.layout->eccpos;
927
928 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
929 chip->ecc.hwctl(mtd, NAND_ECC_READ);
930 chip->read_buf(mtd, p, eccsize);
931 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
932 }
933 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
934
935 for (i = 0; i < chip->ecc.total; i++)
936 ecc_code[i] = chip->oob_poi[eccpos[i]];
937
938 eccsteps = chip->ecc.steps;
939 p = buf;
940
941 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
942 int stat;
943
944 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
945 if (stat == -1)
946 mtd->ecc_stats.failed++;
947 else
948 mtd->ecc_stats.corrected += stat;
949 }
950 return 0;
951 }
952
953 /**
954 * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
955 * @mtd: mtd info structure
956 * @chip: nand chip info structure
957 * @buf: buffer to store read data
958 *
959 * The hw generator calculates the error syndrome automatically. Therefor
960 * we need a special oob layout and handling.
961 */
962 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
963 uint8_t *buf)
964 {
965 int i, eccsize = chip->ecc.size;
966 int eccbytes = chip->ecc.bytes;
967 int eccsteps = chip->ecc.steps;
968 uint8_t *p = buf;
969 uint8_t *oob = chip->oob_poi;
970
971 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
972 int stat;
973
974 chip->ecc.hwctl(mtd, NAND_ECC_READ);
975 chip->read_buf(mtd, p, eccsize);
976
977 if (chip->ecc.prepad) {
978 chip->read_buf(mtd, oob, chip->ecc.prepad);
979 oob += chip->ecc.prepad;
980 }
981
982 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
983 chip->read_buf(mtd, oob, eccbytes);
984 stat = chip->ecc.correct(mtd, p, oob, NULL);
985
986 if (stat == -1)
987 mtd->ecc_stats.failed++;
988 else
989 mtd->ecc_stats.corrected += stat;
990
991 oob += eccbytes;
992
993 if (chip->ecc.postpad) {
994 chip->read_buf(mtd, oob, chip->ecc.postpad);
995 oob += chip->ecc.postpad;
996 }
997 }
998
999 /* Calculate remaining oob bytes */
1000 i = mtd->oobsize - (oob - chip->oob_poi);
1001 if (i)
1002 chip->read_buf(mtd, oob, i);
1003
1004 return 0;
1005 }
1006
1007 /**
1008 * nand_transfer_oob - [Internal] Transfer oob to client buffer
1009 * @chip: nand chip structure
1010 * @oob: oob destination address
1011 * @ops: oob ops structure
1012 * @len: size of oob to transfer
1013 */
1014 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1015 struct mtd_oob_ops *ops, size_t len)
1016 {
1017 switch(ops->mode) {
1018
1019 case MTD_OOB_PLACE:
1020 case MTD_OOB_RAW:
1021 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1022 return oob + len;
1023
1024 case MTD_OOB_AUTO: {
1025 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1026 uint32_t boffs = 0, roffs = ops->ooboffs;
1027 size_t bytes = 0;
1028
1029 for(; free->length && len; free++, len -= bytes) {
1030 /* Read request not from offset 0 ? */
1031 if (unlikely(roffs)) {
1032 if (roffs >= free->length) {
1033 roffs -= free->length;
1034 continue;
1035 }
1036 boffs = free->offset + roffs;
1037 bytes = min_t(size_t, len,
1038 (free->length - roffs));
1039 roffs = 0;
1040 } else {
1041 bytes = min_t(size_t, len, free->length);
1042 boffs = free->offset;
1043 }
1044 memcpy(oob, chip->oob_poi + boffs, bytes);
1045 oob += bytes;
1046 }
1047 return oob;
1048 }
1049 default:
1050 BUG();
1051 }
1052 return NULL;
1053 }
1054
1055 /**
1056 * nand_do_read_ops - [Internal] Read data with ECC
1057 *
1058 * @mtd: MTD device structure
1059 * @from: offset to read from
1060 * @ops: oob ops structure
1061 *
1062 * Internal function. Called with chip held.
1063 */
1064 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1065 struct mtd_oob_ops *ops)
1066 {
1067 int chipnr, page, realpage, col, bytes, aligned;
1068 struct nand_chip *chip = mtd->priv;
1069 struct mtd_ecc_stats stats;
1070 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1071 int sndcmd = 1;
1072 int ret = 0;
1073 uint32_t readlen = ops->len;
1074 uint32_t oobreadlen = ops->ooblen;
1075 uint8_t *bufpoi, *oob, *buf;
1076
1077 stats = mtd->ecc_stats;
1078
1079 chipnr = (int)(from >> chip->chip_shift);
1080 chip->select_chip(mtd, chipnr);
1081
1082 realpage = (int)(from >> chip->page_shift);
1083 page = realpage & chip->pagemask;
1084
1085 col = (int)(from & (mtd->writesize - 1));
1086
1087 buf = ops->datbuf;
1088 oob = ops->oobbuf;
1089
1090 while(1) {
1091 bytes = min(mtd->writesize - col, readlen);
1092 aligned = (bytes == mtd->writesize);
1093
1094 /* Is the current page in the buffer ? */
1095 if (realpage != chip->pagebuf || oob) {
1096 bufpoi = aligned ? buf : chip->buffers->databuf;
1097
1098 if (likely(sndcmd)) {
1099 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1100 sndcmd = 0;
1101 }
1102
1103 /* Now read the page into the buffer */
1104 if (unlikely(ops->mode == MTD_OOB_RAW))
1105 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi);
1106 else
1107 ret = chip->ecc.read_page(mtd, chip, bufpoi);
1108 if (ret < 0)
1109 break;
1110
1111 /* Transfer not aligned data */
1112 if (!aligned) {
1113 chip->pagebuf = realpage;
1114 memcpy(buf, chip->buffers->databuf + col, bytes);
1115 }
1116
1117 buf += bytes;
1118
1119 if (unlikely(oob)) {
1120 /* Raw mode does data:oob:data:oob */
1121 if (ops->mode != MTD_OOB_RAW) {
1122 int toread = min(oobreadlen,
1123 chip->ecc.layout->oobavail);
1124 if (toread) {
1125 oob = nand_transfer_oob(chip,
1126 oob, ops, toread);
1127 oobreadlen -= toread;
1128 }
1129 } else
1130 buf = nand_transfer_oob(chip,
1131 buf, ops, mtd->oobsize);
1132 }
1133
1134 if (!(chip->options & NAND_NO_READRDY)) {
1135 /*
1136 * Apply delay or wait for ready/busy pin. Do
1137 * this before the AUTOINCR check, so no
1138 * problems arise if a chip which does auto
1139 * increment is marked as NOAUTOINCR by the
1140 * board driver.
1141 */
1142 if (!chip->dev_ready)
1143 udelay(chip->chip_delay);
1144 else
1145 nand_wait_ready(mtd);
1146 }
1147 } else {
1148 memcpy(buf, chip->buffers->databuf + col, bytes);
1149 buf += bytes;
1150 }
1151
1152 readlen -= bytes;
1153
1154 if (!readlen)
1155 break;
1156
1157 /* For subsequent reads align to page boundary. */
1158 col = 0;
1159 /* Increment page address */
1160 realpage++;
1161
1162 page = realpage & chip->pagemask;
1163 /* Check, if we cross a chip boundary */
1164 if (!page) {
1165 chipnr++;
1166 chip->select_chip(mtd, -1);
1167 chip->select_chip(mtd, chipnr);
1168 }
1169
1170 /* Check, if the chip supports auto page increment
1171 * or if we have hit a block boundary.
1172 */
1173 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1174 sndcmd = 1;
1175 }
1176
1177 ops->retlen = ops->len - (size_t) readlen;
1178 if (oob)
1179 ops->oobretlen = ops->ooblen - oobreadlen;
1180
1181 if (ret)
1182 return ret;
1183
1184 if (mtd->ecc_stats.failed - stats.failed)
1185 return -EBADMSG;
1186
1187 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1188 }
1189
1190 /**
1191 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1192 * @mtd: MTD device structure
1193 * @from: offset to read from
1194 * @len: number of bytes to read
1195 * @retlen: pointer to variable to store the number of read bytes
1196 * @buf: the databuffer to put data
1197 *
1198 * Get hold of the chip and call nand_do_read
1199 */
1200 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1201 size_t *retlen, uint8_t *buf)
1202 {
1203 struct nand_chip *chip = mtd->priv;
1204 int ret;
1205
1206 /* Do not allow reads past end of device */
1207 if ((from + len) > mtd->size)
1208 return -EINVAL;
1209 if (!len)
1210 return 0;
1211
1212 nand_get_device(chip, mtd, FL_READING);
1213
1214 chip->ops.len = len;
1215 chip->ops.datbuf = buf;
1216 chip->ops.oobbuf = NULL;
1217
1218 ret = nand_do_read_ops(mtd, from, &chip->ops);
1219
1220 *retlen = chip->ops.retlen;
1221
1222 nand_release_device(mtd);
1223
1224 return ret;
1225 }
1226
1227 /**
1228 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1229 * @mtd: mtd info structure
1230 * @chip: nand chip info structure
1231 * @page: page number to read
1232 * @sndcmd: flag whether to issue read command or not
1233 */
1234 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1235 int page, int sndcmd)
1236 {
1237 if (sndcmd) {
1238 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1239 sndcmd = 0;
1240 }
1241 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1242 return sndcmd;
1243 }
1244
1245 /**
1246 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1247 * with syndromes
1248 * @mtd: mtd info structure
1249 * @chip: nand chip info structure
1250 * @page: page number to read
1251 * @sndcmd: flag whether to issue read command or not
1252 */
1253 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1254 int page, int sndcmd)
1255 {
1256 uint8_t *buf = chip->oob_poi;
1257 int length = mtd->oobsize;
1258 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1259 int eccsize = chip->ecc.size;
1260 uint8_t *bufpoi = buf;
1261 int i, toread, sndrnd = 0, pos;
1262
1263 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1264 for (i = 0; i < chip->ecc.steps; i++) {
1265 if (sndrnd) {
1266 pos = eccsize + i * (eccsize + chunk);
1267 if (mtd->writesize > 512)
1268 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1269 else
1270 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1271 } else
1272 sndrnd = 1;
1273 toread = min_t(int, length, chunk);
1274 chip->read_buf(mtd, bufpoi, toread);
1275 bufpoi += toread;
1276 length -= toread;
1277 }
1278 if (length > 0)
1279 chip->read_buf(mtd, bufpoi, length);
1280
1281 return 1;
1282 }
1283
1284 /**
1285 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1286 * @mtd: mtd info structure
1287 * @chip: nand chip info structure
1288 * @page: page number to write
1289 */
1290 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1291 int page)
1292 {
1293 int status = 0;
1294 const uint8_t *buf = chip->oob_poi;
1295 int length = mtd->oobsize;
1296
1297 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1298 chip->write_buf(mtd, buf, length);
1299 /* Send command to program the OOB data */
1300 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1301
1302 status = chip->waitfunc(mtd, chip);
1303
1304 return status & NAND_STATUS_FAIL ? -EIO : 0;
1305 }
1306
1307 /**
1308 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1309 * with syndrome - only for large page flash !
1310 * @mtd: mtd info structure
1311 * @chip: nand chip info structure
1312 * @page: page number to write
1313 */
1314 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1315 struct nand_chip *chip, int page)
1316 {
1317 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1318 int eccsize = chip->ecc.size, length = mtd->oobsize;
1319 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1320 const uint8_t *bufpoi = chip->oob_poi;
1321
1322 /*
1323 * data-ecc-data-ecc ... ecc-oob
1324 * or
1325 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1326 */
1327 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1328 pos = steps * (eccsize + chunk);
1329 steps = 0;
1330 } else
1331 pos = eccsize;
1332
1333 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1334 for (i = 0; i < steps; i++) {
1335 if (sndcmd) {
1336 if (mtd->writesize <= 512) {
1337 uint32_t fill = 0xFFFFFFFF;
1338
1339 len = eccsize;
1340 while (len > 0) {
1341 int num = min_t(int, len, 4);
1342 chip->write_buf(mtd, (uint8_t *)&fill,
1343 num);
1344 len -= num;
1345 }
1346 } else {
1347 pos = eccsize + i * (eccsize + chunk);
1348 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1349 }
1350 } else
1351 sndcmd = 1;
1352 len = min_t(int, length, chunk);
1353 chip->write_buf(mtd, bufpoi, len);
1354 bufpoi += len;
1355 length -= len;
1356 }
1357 if (length > 0)
1358 chip->write_buf(mtd, bufpoi, length);
1359
1360 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1361 status = chip->waitfunc(mtd, chip);
1362
1363 return status & NAND_STATUS_FAIL ? -EIO : 0;
1364 }
1365
1366 /**
1367 * nand_do_read_oob - [Intern] NAND read out-of-band
1368 * @mtd: MTD device structure
1369 * @from: offset to read from
1370 * @ops: oob operations description structure
1371 *
1372 * NAND read out-of-band data from the spare area
1373 */
1374 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1375 struct mtd_oob_ops *ops)
1376 {
1377 int page, realpage, chipnr, sndcmd = 1;
1378 struct nand_chip *chip = mtd->priv;
1379 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1380 int readlen = ops->ooblen;
1381 int len;
1382 uint8_t *buf = ops->oobbuf;
1383
1384 MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08Lx, len = %i\n",
1385 (unsigned long long)from, readlen);
1386
1387 if (ops->mode == MTD_OOB_AUTO)
1388 len = chip->ecc.layout->oobavail;
1389 else
1390 len = mtd->oobsize;
1391
1392 if (unlikely(ops->ooboffs >= len)) {
1393 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1394 "Attempt to start read outside oob\n");
1395 return -EINVAL;
1396 }
1397
1398 /* Do not allow reads past end of device */
1399 if (unlikely(from >= mtd->size ||
1400 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1401 (from >> chip->page_shift)) * len)) {
1402 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1403 "Attempt read beyond end of device\n");
1404 return -EINVAL;
1405 }
1406
1407 chipnr = (int)(from >> chip->chip_shift);
1408 chip->select_chip(mtd, chipnr);
1409
1410 /* Shift to get page */
1411 realpage = (int)(from >> chip->page_shift);
1412 page = realpage & chip->pagemask;
1413
1414 while(1) {
1415 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1416
1417 len = min(len, readlen);
1418 buf = nand_transfer_oob(chip, buf, ops, len);
1419
1420 if (!(chip->options & NAND_NO_READRDY)) {
1421 /*
1422 * Apply delay or wait for ready/busy pin. Do this
1423 * before the AUTOINCR check, so no problems arise if a
1424 * chip which does auto increment is marked as
1425 * NOAUTOINCR by the board driver.
1426 */
1427 if (!chip->dev_ready)
1428 udelay(chip->chip_delay);
1429 else
1430 nand_wait_ready(mtd);
1431 }
1432
1433 readlen -= len;
1434 if (!readlen)
1435 break;
1436
1437 /* Increment page address */
1438 realpage++;
1439
1440 page = realpage & chip->pagemask;
1441 /* Check, if we cross a chip boundary */
1442 if (!page) {
1443 chipnr++;
1444 chip->select_chip(mtd, -1);
1445 chip->select_chip(mtd, chipnr);
1446 }
1447
1448 /* Check, if the chip supports auto page increment
1449 * or if we have hit a block boundary.
1450 */
1451 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1452 sndcmd = 1;
1453 }
1454
1455 ops->oobretlen = ops->ooblen;
1456 return 0;
1457 }
1458
1459 /**
1460 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1461 * @mtd: MTD device structure
1462 * @from: offset to read from
1463 * @ops: oob operation description structure
1464 *
1465 * NAND read data and/or out-of-band data
1466 */
1467 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1468 struct mtd_oob_ops *ops)
1469 {
1470 struct nand_chip *chip = mtd->priv;
1471 int ret = -ENOTSUPP;
1472
1473 ops->retlen = 0;
1474
1475 /* Do not allow reads past end of device */
1476 if (ops->datbuf && (from + ops->len) > mtd->size) {
1477 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1478 "Attempt read beyond end of device\n");
1479 return -EINVAL;
1480 }
1481
1482 nand_get_device(chip, mtd, FL_READING);
1483
1484 switch(ops->mode) {
1485 case MTD_OOB_PLACE:
1486 case MTD_OOB_AUTO:
1487 case MTD_OOB_RAW:
1488 break;
1489
1490 default:
1491 goto out;
1492 }
1493
1494 if (!ops->datbuf)
1495 ret = nand_do_read_oob(mtd, from, ops);
1496 else
1497 ret = nand_do_read_ops(mtd, from, ops);
1498
1499 out:
1500 nand_release_device(mtd);
1501 return ret;
1502 }
1503
1504
1505 /**
1506 * nand_write_page_raw - [Intern] raw page write function
1507 * @mtd: mtd info structure
1508 * @chip: nand chip info structure
1509 * @buf: data buffer
1510 */
1511 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1512 const uint8_t *buf)
1513 {
1514 chip->write_buf(mtd, buf, mtd->writesize);
1515 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1516 }
1517
1518 /**
1519 * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1520 * @mtd: mtd info structure
1521 * @chip: nand chip info structure
1522 * @buf: data buffer
1523 */
1524 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1525 const uint8_t *buf)
1526 {
1527 int i, eccsize = chip->ecc.size;
1528 int eccbytes = chip->ecc.bytes;
1529 int eccsteps = chip->ecc.steps;
1530 uint8_t *ecc_calc = chip->buffers->ecccalc;
1531 const uint8_t *p = buf;
1532 uint32_t *eccpos = chip->ecc.layout->eccpos;
1533
1534 /* Software ecc calculation */
1535 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1536 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1537
1538 for (i = 0; i < chip->ecc.total; i++)
1539 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1540
1541 chip->ecc.write_page_raw(mtd, chip, buf);
1542 }
1543
1544 /**
1545 * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1546 * @mtd: mtd info structure
1547 * @chip: nand chip info structure
1548 * @buf: data buffer
1549 */
1550 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1551 const uint8_t *buf)
1552 {
1553 int i, eccsize = chip->ecc.size;
1554 int eccbytes = chip->ecc.bytes;
1555 int eccsteps = chip->ecc.steps;
1556 uint8_t *ecc_calc = chip->buffers->ecccalc;
1557 const uint8_t *p = buf;
1558 uint32_t *eccpos = chip->ecc.layout->eccpos;
1559
1560 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1561 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1562 chip->write_buf(mtd, p, eccsize);
1563 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1564 }
1565
1566 for (i = 0; i < chip->ecc.total; i++)
1567 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1568
1569 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1570 }
1571
1572 /**
1573 * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
1574 * @mtd: mtd info structure
1575 * @chip: nand chip info structure
1576 * @buf: data buffer
1577 *
1578 * The hw generator calculates the error syndrome automatically. Therefor
1579 * we need a special oob layout and handling.
1580 */
1581 static void nand_write_page_syndrome(struct mtd_info *mtd,
1582 struct nand_chip *chip, const uint8_t *buf)
1583 {
1584 int i, eccsize = chip->ecc.size;
1585 int eccbytes = chip->ecc.bytes;
1586 int eccsteps = chip->ecc.steps;
1587 const uint8_t *p = buf;
1588 uint8_t *oob = chip->oob_poi;
1589
1590 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1591
1592 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1593 chip->write_buf(mtd, p, eccsize);
1594
1595 if (chip->ecc.prepad) {
1596 chip->write_buf(mtd, oob, chip->ecc.prepad);
1597 oob += chip->ecc.prepad;
1598 }
1599
1600 chip->ecc.calculate(mtd, p, oob);
1601 chip->write_buf(mtd, oob, eccbytes);
1602 oob += eccbytes;
1603
1604 if (chip->ecc.postpad) {
1605 chip->write_buf(mtd, oob, chip->ecc.postpad);
1606 oob += chip->ecc.postpad;
1607 }
1608 }
1609
1610 /* Calculate remaining oob bytes */
1611 i = mtd->oobsize - (oob - chip->oob_poi);
1612 if (i)
1613 chip->write_buf(mtd, oob, i);
1614 }
1615
1616 /**
1617 * nand_write_page - [REPLACEABLE] write one page
1618 * @mtd: MTD device structure
1619 * @chip: NAND chip descriptor
1620 * @buf: the data to write
1621 * @page: page number to write
1622 * @cached: cached programming
1623 * @raw: use _raw version of write_page
1624 */
1625 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1626 const uint8_t *buf, int page, int cached, int raw)
1627 {
1628 int status;
1629
1630 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1631
1632 if (unlikely(raw))
1633 chip->ecc.write_page_raw(mtd, chip, buf);
1634 else
1635 chip->ecc.write_page(mtd, chip, buf);
1636
1637 /*
1638 * Cached progamming disabled for now, Not sure if its worth the
1639 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1640 */
1641 cached = 0;
1642
1643 if (!cached || !(chip->options & NAND_CACHEPRG)) {
1644
1645 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1646 status = chip->waitfunc(mtd, chip);
1647 /*
1648 * See if operation failed and additional status checks are
1649 * available
1650 */
1651 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1652 status = chip->errstat(mtd, chip, FL_WRITING, status,
1653 page);
1654
1655 if (status & NAND_STATUS_FAIL)
1656 return -EIO;
1657 } else {
1658 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
1659 status = chip->waitfunc(mtd, chip);
1660 }
1661
1662 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1663 /* Send command to read back the data */
1664 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1665
1666 if (chip->verify_buf(mtd, buf, mtd->writesize))
1667 return -EIO;
1668 #endif
1669 return 0;
1670 }
1671
1672 /**
1673 * nand_fill_oob - [Internal] Transfer client buffer to oob
1674 * @chip: nand chip structure
1675 * @oob: oob data buffer
1676 * @ops: oob ops structure
1677 */
1678 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob,
1679 struct mtd_oob_ops *ops)
1680 {
1681 size_t len = ops->ooblen;
1682
1683 switch(ops->mode) {
1684
1685 case MTD_OOB_PLACE:
1686 case MTD_OOB_RAW:
1687 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
1688 return oob + len;
1689
1690 case MTD_OOB_AUTO: {
1691 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1692 uint32_t boffs = 0, woffs = ops->ooboffs;
1693 size_t bytes = 0;
1694
1695 for(; free->length && len; free++, len -= bytes) {
1696 /* Write request not from offset 0 ? */
1697 if (unlikely(woffs)) {
1698 if (woffs >= free->length) {
1699 woffs -= free->length;
1700 continue;
1701 }
1702 boffs = free->offset + woffs;
1703 bytes = min_t(size_t, len,
1704 (free->length - woffs));
1705 woffs = 0;
1706 } else {
1707 bytes = min_t(size_t, len, free->length);
1708 boffs = free->offset;
1709 }
1710 memcpy(chip->oob_poi + boffs, oob, bytes);
1711 oob += bytes;
1712 }
1713 return oob;
1714 }
1715 default:
1716 BUG();
1717 }
1718 return NULL;
1719 }
1720
1721 #define NOTALIGNED(x) (x & (chip->subpagesize - 1)) != 0
1722
1723 /**
1724 * nand_do_write_ops - [Internal] NAND write with ECC
1725 * @mtd: MTD device structure
1726 * @to: offset to write to
1727 * @ops: oob operations description structure
1728 *
1729 * NAND write with ECC
1730 */
1731 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
1732 struct mtd_oob_ops *ops)
1733 {
1734 int chipnr, realpage, page, blockmask, column;
1735 struct nand_chip *chip = mtd->priv;
1736 uint32_t writelen = ops->len;
1737 uint8_t *oob = ops->oobbuf;
1738 uint8_t *buf = ops->datbuf;
1739 int ret, subpage;
1740
1741 ops->retlen = 0;
1742 if (!writelen)
1743 return 0;
1744
1745 /* reject writes, which are not page aligned */
1746 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
1747 printk(KERN_NOTICE "nand_write: "
1748 "Attempt to write not page aligned data\n");
1749 return -EINVAL;
1750 }
1751
1752 column = to & (mtd->writesize - 1);
1753 subpage = column || (writelen & (mtd->writesize - 1));
1754
1755 if (subpage && oob)
1756 return -EINVAL;
1757
1758 chipnr = (int)(to >> chip->chip_shift);
1759 chip->select_chip(mtd, chipnr);
1760
1761 /* Check, if it is write protected */
1762 if (nand_check_wp(mtd)) {
1763 printk (KERN_NOTICE "nand_do_write_ops: Device is write protected\n");
1764 return -EIO;
1765 }
1766
1767 realpage = (int)(to >> chip->page_shift);
1768 page = realpage & chip->pagemask;
1769 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1770
1771 /* Invalidate the page cache, when we write to the cached page */
1772 if (to <= (chip->pagebuf << chip->page_shift) &&
1773 (chip->pagebuf << chip->page_shift) < (to + ops->len))
1774 chip->pagebuf = -1;
1775
1776 /* If we're not given explicit OOB data, let it be 0xFF */
1777 if (likely(!oob))
1778 memset(chip->oob_poi, 0xff, mtd->oobsize);
1779
1780 while(1) {
1781 int bytes = mtd->writesize;
1782 int cached = writelen > bytes && page != blockmask;
1783 uint8_t *wbuf = buf;
1784
1785 /* Partial page write ? */
1786 if (unlikely(column || writelen < (mtd->writesize - 1))) {
1787 cached = 0;
1788 bytes = min_t(int, bytes - column, (int) writelen);
1789 chip->pagebuf = -1;
1790 memset(chip->buffers->databuf, 0xff, mtd->writesize);
1791 memcpy(&chip->buffers->databuf[column], buf, bytes);
1792 wbuf = chip->buffers->databuf;
1793 }
1794
1795 if (unlikely(oob))
1796 oob = nand_fill_oob(chip, oob, ops);
1797
1798 ret = chip->write_page(mtd, chip, wbuf, page, cached,
1799 (ops->mode == MTD_OOB_RAW));
1800 if (ret)
1801 break;
1802
1803 writelen -= bytes;
1804 if (!writelen)
1805 break;
1806
1807 column = 0;
1808 buf += bytes;
1809 realpage++;
1810
1811 page = realpage & chip->pagemask;
1812 /* Check, if we cross a chip boundary */
1813 if (!page) {
1814 chipnr++;
1815 chip->select_chip(mtd, -1);
1816 chip->select_chip(mtd, chipnr);
1817 }
1818 }
1819
1820 ops->retlen = ops->len - writelen;
1821 if (unlikely(oob))
1822 ops->oobretlen = ops->ooblen;
1823 return ret;
1824 }
1825
1826 /**
1827 * nand_write - [MTD Interface] NAND write with ECC
1828 * @mtd: MTD device structure
1829 * @to: offset to write to
1830 * @len: number of bytes to write
1831 * @retlen: pointer to variable to store the number of written bytes
1832 * @buf: the data to write
1833 *
1834 * NAND write with ECC
1835 */
1836 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
1837 size_t *retlen, const uint8_t *buf)
1838 {
1839 struct nand_chip *chip = mtd->priv;
1840 int ret;
1841
1842 /* Do not allow reads past end of device */
1843 if ((to + len) > mtd->size)
1844 return -EINVAL;
1845 if (!len)
1846 return 0;
1847
1848 nand_get_device(chip, mtd, FL_WRITING);
1849
1850 chip->ops.len = len;
1851 chip->ops.datbuf = (uint8_t *)buf;
1852 chip->ops.oobbuf = NULL;
1853
1854 ret = nand_do_write_ops(mtd, to, &chip->ops);
1855
1856 *retlen = chip->ops.retlen;
1857
1858 nand_release_device(mtd);
1859
1860 return ret;
1861 }
1862
1863 /**
1864 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
1865 * @mtd: MTD device structure
1866 * @to: offset to write to
1867 * @ops: oob operation description structure
1868 *
1869 * NAND write out-of-band
1870 */
1871 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
1872 struct mtd_oob_ops *ops)
1873 {
1874 int chipnr, page, status, len;
1875 struct nand_chip *chip = mtd->priv;
1876
1877 MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n",
1878 (unsigned int)to, (int)ops->ooblen);
1879
1880 if (ops->mode == MTD_OOB_AUTO)
1881 len = chip->ecc.layout->oobavail;
1882 else
1883 len = mtd->oobsize;
1884
1885 /* Do not allow write past end of page */
1886 if ((ops->ooboffs + ops->ooblen) > len) {
1887 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: "
1888 "Attempt to write past end of page\n");
1889 return -EINVAL;
1890 }
1891
1892 if (unlikely(ops->ooboffs >= len)) {
1893 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1894 "Attempt to start write outside oob\n");
1895 return -EINVAL;
1896 }
1897
1898 /* Do not allow reads past end of device */
1899 if (unlikely(to >= mtd->size ||
1900 ops->ooboffs + ops->ooblen >
1901 ((mtd->size >> chip->page_shift) -
1902 (to >> chip->page_shift)) * len)) {
1903 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1904 "Attempt write beyond end of device\n");
1905 return -EINVAL;
1906 }
1907
1908 chipnr = (int)(to >> chip->chip_shift);
1909 chip->select_chip(mtd, chipnr);
1910
1911 /* Shift to get page */
1912 page = (int)(to >> chip->page_shift);
1913
1914 /*
1915 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
1916 * of my DiskOnChip 2000 test units) will clear the whole data page too
1917 * if we don't do this. I have no clue why, but I seem to have 'fixed'
1918 * it in the doc2000 driver in August 1999. dwmw2.
1919 */
1920 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1921
1922 /* Check, if it is write protected */
1923 if (nand_check_wp(mtd))
1924 return -EROFS;
1925
1926 /* Invalidate the page cache, if we write to the cached page */
1927 if (page == chip->pagebuf)
1928 chip->pagebuf = -1;
1929
1930 memset(chip->oob_poi, 0xff, mtd->oobsize);
1931 nand_fill_oob(chip, ops->oobbuf, ops);
1932 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1933 memset(chip->oob_poi, 0xff, mtd->oobsize);
1934
1935 if (status)
1936 return status;
1937
1938 ops->oobretlen = ops->ooblen;
1939
1940 return 0;
1941 }
1942
1943 /**
1944 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1945 * @mtd: MTD device structure
1946 * @to: offset to write to
1947 * @ops: oob operation description structure
1948 */
1949 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
1950 struct mtd_oob_ops *ops)
1951 {
1952 struct nand_chip *chip = mtd->priv;
1953 int ret = -ENOTSUPP;
1954
1955 ops->retlen = 0;
1956
1957 /* Do not allow writes past end of device */
1958 if (ops->datbuf && (to + ops->len) > mtd->size) {
1959 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1960 "Attempt read beyond end of device\n");
1961 return -EINVAL;
1962 }
1963
1964 nand_get_device(chip, mtd, FL_WRITING);
1965
1966 switch(ops->mode) {
1967 case MTD_OOB_PLACE:
1968 case MTD_OOB_AUTO:
1969 case MTD_OOB_RAW:
1970 break;
1971
1972 default:
1973 goto out;
1974 }
1975
1976 if (!ops->datbuf)
1977 ret = nand_do_write_oob(mtd, to, ops);
1978 else
1979 ret = nand_do_write_ops(mtd, to, ops);
1980
1981 out:
1982 nand_release_device(mtd);
1983 return ret;
1984 }
1985
1986 /**
1987 * single_erease_cmd - [GENERIC] NAND standard block erase command function
1988 * @mtd: MTD device structure
1989 * @page: the page address of the block which will be erased
1990 *
1991 * Standard erase command for NAND chips
1992 */
1993 static void single_erase_cmd(struct mtd_info *mtd, int page)
1994 {
1995 struct nand_chip *chip = mtd->priv;
1996 /* Send commands to erase a block */
1997 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1998 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1999 }
2000
2001 /**
2002 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2003 * @mtd: MTD device structure
2004 * @page: the page address of the block which will be erased
2005 *
2006 * AND multi block erase command function
2007 * Erase 4 consecutive blocks
2008 */
2009 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2010 {
2011 struct nand_chip *chip = mtd->priv;
2012 /* Send commands to erase a block */
2013 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2014 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2015 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2016 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2017 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2018 }
2019
2020 /**
2021 * nand_erase - [MTD Interface] erase block(s)
2022 * @mtd: MTD device structure
2023 * @instr: erase instruction
2024 *
2025 * Erase one ore more blocks
2026 */
2027 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2028 {
2029 return nand_erase_nand(mtd, instr, 0);
2030 }
2031
2032 #define BBT_PAGE_MASK 0xffffff3f
2033 /**
2034 * nand_erase_nand - [Internal] erase block(s)
2035 * @mtd: MTD device structure
2036 * @instr: erase instruction
2037 * @allowbbt: allow erasing the bbt area
2038 *
2039 * Erase one ore more blocks
2040 */
2041 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2042 int allowbbt)
2043 {
2044 int page, len, status, pages_per_block, ret, chipnr;
2045 struct nand_chip *chip = mtd->priv;
2046 int rewrite_bbt[NAND_MAX_CHIPS]={0};
2047 unsigned int bbt_masked_page = 0xffffffff;
2048
2049 MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%08x, len = %i\n",
2050 (unsigned int) instr->addr, (unsigned int) instr->len);
2051
2052 /* Start address must align on block boundary */
2053 if (instr->addr & ((1 << chip->phys_erase_shift) - 1)) {
2054 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
2055 return -EINVAL;
2056 }
2057
2058 /* Length must align on block boundary */
2059 if (instr->len & ((1 << chip->phys_erase_shift) - 1)) {
2060 MTDDEBUG (MTD_DEBUG_LEVEL0,
2061 "nand_erase: Length not block aligned\n");
2062 return -EINVAL;
2063 }
2064
2065 /* Do not allow erase past end of device */
2066 if ((instr->len + instr->addr) > mtd->size) {
2067 MTDDEBUG (MTD_DEBUG_LEVEL0,
2068 "nand_erase: Erase past end of device\n");
2069 return -EINVAL;
2070 }
2071
2072 instr->fail_addr = 0xffffffff;
2073
2074 /* Grab the lock and see if the device is available */
2075 nand_get_device(chip, mtd, FL_ERASING);
2076
2077 /* Shift to get first page */
2078 page = (int)(instr->addr >> chip->page_shift);
2079 chipnr = (int)(instr->addr >> chip->chip_shift);
2080
2081 /* Calculate pages in each block */
2082 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2083
2084 /* Select the NAND device */
2085 chip->select_chip(mtd, chipnr);
2086
2087 /* Check, if it is write protected */
2088 if (nand_check_wp(mtd)) {
2089 MTDDEBUG (MTD_DEBUG_LEVEL0,
2090 "nand_erase: Device is write protected!!!\n");
2091 instr->state = MTD_ERASE_FAILED;
2092 goto erase_exit;
2093 }
2094
2095 /*
2096 * If BBT requires refresh, set the BBT page mask to see if the BBT
2097 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2098 * can not be matched. This is also done when the bbt is actually
2099 * erased to avoid recusrsive updates
2100 */
2101 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2102 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2103
2104 /* Loop through the pages */
2105 len = instr->len;
2106
2107 instr->state = MTD_ERASING;
2108
2109 while (len) {
2110 /*
2111 * heck if we have a bad block, we do not erase bad blocks !
2112 */
2113 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2114 chip->page_shift, 0, allowbbt)) {
2115 printk(KERN_WARNING "nand_erase: attempt to erase a "
2116 "bad block at page 0x%08x\n", page);
2117 instr->state = MTD_ERASE_FAILED;
2118 goto erase_exit;
2119 }
2120
2121 /*
2122 * Invalidate the page cache, if we erase the block which
2123 * contains the current cached page
2124 */
2125 if (page <= chip->pagebuf && chip->pagebuf <
2126 (page + pages_per_block))
2127 chip->pagebuf = -1;
2128
2129 chip->erase_cmd(mtd, page & chip->pagemask);
2130
2131 status = chip->waitfunc(mtd, chip);
2132
2133 /*
2134 * See if operation failed and additional status checks are
2135 * available
2136 */
2137 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2138 status = chip->errstat(mtd, chip, FL_ERASING,
2139 status, page);
2140
2141 /* See if block erase succeeded */
2142 if (status & NAND_STATUS_FAIL) {
2143 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_erase: "
2144 "Failed erase, page 0x%08x\n", page);
2145 instr->state = MTD_ERASE_FAILED;
2146 instr->fail_addr = (page << chip->page_shift);
2147 goto erase_exit;
2148 }
2149
2150 /*
2151 * If BBT requires refresh, set the BBT rewrite flag to the
2152 * page being erased
2153 */
2154 if (bbt_masked_page != 0xffffffff &&
2155 (page & BBT_PAGE_MASK) == bbt_masked_page)
2156 rewrite_bbt[chipnr] = (page << chip->page_shift);
2157
2158 /* Increment page address and decrement length */
2159 len -= (1 << chip->phys_erase_shift);
2160 page += pages_per_block;
2161
2162 /* Check, if we cross a chip boundary */
2163 if (len && !(page & chip->pagemask)) {
2164 chipnr++;
2165 chip->select_chip(mtd, -1);
2166 chip->select_chip(mtd, chipnr);
2167
2168 /*
2169 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2170 * page mask to see if this BBT should be rewritten
2171 */
2172 if (bbt_masked_page != 0xffffffff &&
2173 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2174 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2175 BBT_PAGE_MASK;
2176 }
2177 }
2178 instr->state = MTD_ERASE_DONE;
2179
2180 erase_exit:
2181
2182 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2183 /* Do call back function */
2184 if (!ret)
2185 mtd_erase_callback(instr);
2186
2187 /* Deselect and wake up anyone waiting on the device */
2188 nand_release_device(mtd);
2189
2190 /*
2191 * If BBT requires refresh and erase was successful, rewrite any
2192 * selected bad block tables
2193 */
2194 if (bbt_masked_page == 0xffffffff || ret)
2195 return ret;
2196
2197 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2198 if (!rewrite_bbt[chipnr])
2199 continue;
2200 /* update the BBT for chip */
2201 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt "
2202 "(%d:0x%0x 0x%0x)\n", chipnr, rewrite_bbt[chipnr],
2203 chip->bbt_td->pages[chipnr]);
2204 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2205 }
2206
2207 /* Return more or less happy */
2208 return ret;
2209 }
2210
2211 /**
2212 * nand_sync - [MTD Interface] sync
2213 * @mtd: MTD device structure
2214 *
2215 * Sync is actually a wait for chip ready function
2216 */
2217 static void nand_sync(struct mtd_info *mtd)
2218 {
2219 struct nand_chip *chip = mtd->priv;
2220
2221 MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n");
2222
2223 /* Grab the lock and see if the device is available */
2224 nand_get_device(chip, mtd, FL_SYNCING);
2225 /* Release it and go back */
2226 nand_release_device(mtd);
2227 }
2228
2229 /**
2230 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2231 * @mtd: MTD device structure
2232 * @offs: offset relative to mtd start
2233 */
2234 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2235 {
2236 /* Check for invalid offset */
2237 if (offs > mtd->size)
2238 return -EINVAL;
2239
2240 return nand_block_checkbad(mtd, offs, 1, 0);
2241 }
2242
2243 /**
2244 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2245 * @mtd: MTD device structure
2246 * @ofs: offset relative to mtd start
2247 */
2248 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2249 {
2250 struct nand_chip *chip = mtd->priv;
2251 int ret;
2252
2253 if ((ret = nand_block_isbad(mtd, ofs))) {
2254 /* If it was bad already, return success and do nothing. */
2255 if (ret > 0)
2256 return 0;
2257 return ret;
2258 }
2259
2260 return chip->block_markbad(mtd, ofs);
2261 }
2262
2263 /**
2264 * nand_suspend - [MTD Interface] Suspend the NAND flash
2265 * @mtd: MTD device structure
2266 */
2267 static int nand_suspend(struct mtd_info *mtd)
2268 {
2269 struct nand_chip *chip = mtd->priv;
2270
2271 return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2272 }
2273
2274 /**
2275 * nand_resume - [MTD Interface] Resume the NAND flash
2276 * @mtd: MTD device structure
2277 */
2278 static void nand_resume(struct mtd_info *mtd)
2279 {
2280 struct nand_chip *chip = mtd->priv;
2281
2282 if (chip->state == FL_PM_SUSPENDED)
2283 nand_release_device(mtd);
2284 else
2285 printk(KERN_ERR "nand_resume() called for a chip which is not "
2286 "in suspended state\n");
2287 }
2288
2289 /*
2290 * Set default functions
2291 */
2292 static void nand_set_defaults(struct nand_chip *chip, int busw)
2293 {
2294 /* check for proper chip_delay setup, set 20us if not */
2295 if (!chip->chip_delay)
2296 chip->chip_delay = 20;
2297
2298 /* check, if a user supplied command function given */
2299 if (chip->cmdfunc == NULL)
2300 chip->cmdfunc = nand_command;
2301
2302 /* check, if a user supplied wait function given */
2303 if (chip->waitfunc == NULL)
2304 chip->waitfunc = nand_wait;
2305
2306 if (!chip->select_chip)
2307 chip->select_chip = nand_select_chip;
2308 if (!chip->read_byte)
2309 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2310 if (!chip->read_word)
2311 chip->read_word = nand_read_word;
2312 if (!chip->block_bad)
2313 chip->block_bad = nand_block_bad;
2314 if (!chip->block_markbad)
2315 chip->block_markbad = nand_default_block_markbad;
2316 if (!chip->write_buf)
2317 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2318 if (!chip->read_buf)
2319 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2320 if (!chip->verify_buf)
2321 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2322 if (!chip->scan_bbt)
2323 chip->scan_bbt = nand_default_bbt;
2324
2325 if (!chip->controller) {
2326 chip->controller = &chip->hwcontrol;
2327
2328 /* XXX U-BOOT XXX */
2329 #if 0
2330 spin_lock_init(&chip->controller->lock);
2331 init_waitqueue_head(&chip->controller->wq);
2332 #endif
2333 }
2334
2335 }
2336
2337 /*
2338 * Get the flash and manufacturer id and lookup if the type is supported
2339 */
2340 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2341 struct nand_chip *chip,
2342 int busw, int *maf_id)
2343 {
2344 struct nand_flash_dev *type = NULL;
2345 int i, dev_id, maf_idx;
2346
2347 /* Select the device */
2348 chip->select_chip(mtd, 0);
2349
2350 /* Send the command for reading device ID */
2351 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2352
2353 /* Read manufacturer and device IDs */
2354 *maf_id = chip->read_byte(mtd);
2355 dev_id = chip->read_byte(mtd);
2356
2357 /* Lookup the flash id */
2358 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2359 if (dev_id == nand_flash_ids[i].id) {
2360 type = &nand_flash_ids[i];
2361 break;
2362 }
2363 }
2364
2365 if (!type)
2366 return ERR_PTR(-ENODEV);
2367
2368 if (!mtd->name)
2369 mtd->name = type->name;
2370
2371 chip->chipsize = type->chipsize << 20;
2372
2373 /* Newer devices have all the information in additional id bytes */
2374 if (!type->pagesize) {
2375 int extid;
2376 /* The 3rd id byte holds MLC / multichip data */
2377 chip->cellinfo = chip->read_byte(mtd);
2378 /* The 4th id byte is the important one */
2379 extid = chip->read_byte(mtd);
2380 /* Calc pagesize */
2381 mtd->writesize = 1024 << (extid & 0x3);
2382 extid >>= 2;
2383 /* Calc oobsize */
2384 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
2385 extid >>= 2;
2386 /* Calc blocksize. Blocksize is multiples of 64KiB */
2387 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2388 extid >>= 2;
2389 /* Get buswidth information */
2390 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2391
2392 } else {
2393 /*
2394 * Old devices have chip data hardcoded in the device id table
2395 */
2396 mtd->erasesize = type->erasesize;
2397 mtd->writesize = type->pagesize;
2398 mtd->oobsize = mtd->writesize / 32;
2399 busw = type->options & NAND_BUSWIDTH_16;
2400 }
2401
2402 /* Try to identify manufacturer */
2403 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
2404 if (nand_manuf_ids[maf_idx].id == *maf_id)
2405 break;
2406 }
2407
2408 /*
2409 * Check, if buswidth is correct. Hardware drivers should set
2410 * chip correct !
2411 */
2412 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2413 printk(KERN_INFO "NAND device: Manufacturer ID:"
2414 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2415 dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2416 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2417 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2418 busw ? 16 : 8);
2419 return ERR_PTR(-EINVAL);
2420 }
2421
2422 /* Calculate the address shift from the page size */
2423 chip->page_shift = ffs(mtd->writesize) - 1;
2424 /* Convert chipsize to number of pages per chip -1. */
2425 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2426
2427 chip->bbt_erase_shift = chip->phys_erase_shift =
2428 ffs(mtd->erasesize) - 1;
2429 chip->chip_shift = ffs(chip->chipsize) - 1;
2430
2431 /* Set the bad block position */
2432 chip->badblockpos = mtd->writesize > 512 ?
2433 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2434
2435 /* Get chip options, preserve non chip based options */
2436 chip->options &= ~NAND_CHIPOPTIONS_MSK;
2437 chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2438
2439 /*
2440 * Set chip as a default. Board drivers can override it, if necessary
2441 */
2442 chip->options |= NAND_NO_AUTOINCR;
2443
2444 /* Check if chip is a not a samsung device. Do not clear the
2445 * options for chips which are not having an extended id.
2446 */
2447 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2448 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2449
2450 /* Check for AND chips with 4 page planes */
2451 if (chip->options & NAND_4PAGE_ARRAY)
2452 chip->erase_cmd = multi_erase_cmd;
2453 else
2454 chip->erase_cmd = single_erase_cmd;
2455
2456 /* Do not replace user supplied command function ! */
2457 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2458 chip->cmdfunc = nand_command_lp;
2459
2460 printk(KERN_INFO "NAND device: Manufacturer ID:"
2461 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2462 nand_manuf_ids[maf_idx].name, type->name);
2463
2464 return type;
2465 }
2466
2467 /**
2468 * nand_scan_ident - [NAND Interface] Scan for the NAND device
2469 * @mtd: MTD device structure
2470 * @maxchips: Number of chips to scan for
2471 *
2472 * This is the first phase of the normal nand_scan() function. It
2473 * reads the flash ID and sets up MTD fields accordingly.
2474 *
2475 * The mtd->owner field must be set to the module of the caller.
2476 */
2477 int nand_scan_ident(struct mtd_info *mtd, int maxchips)
2478 {
2479 int i, busw, nand_maf_id;
2480 struct nand_chip *chip = mtd->priv;
2481 struct nand_flash_dev *type;
2482
2483 /* Get buswidth to select the correct functions */
2484 busw = chip->options & NAND_BUSWIDTH_16;
2485 /* Set the default functions */
2486 nand_set_defaults(chip, busw);
2487
2488 /* Read the flash type */
2489 type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id);
2490
2491 if (IS_ERR(type)) {
2492 printk(KERN_WARNING "No NAND device found!!!\n");
2493 chip->select_chip(mtd, -1);
2494 return PTR_ERR(type);
2495 }
2496
2497 /* Check for a chip array */
2498 for (i = 1; i < maxchips; i++) {
2499 chip->select_chip(mtd, i);
2500 /* Send the command for reading device ID */
2501 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2502 /* Read manufacturer and device IDs */
2503 if (nand_maf_id != chip->read_byte(mtd) ||
2504 type->id != chip->read_byte(mtd))
2505 break;
2506 }
2507 if (i > 1)
2508 printk(KERN_INFO "%d NAND chips detected\n", i);
2509
2510 /* Store the number of chips and calc total size for mtd */
2511 chip->numchips = i;
2512 mtd->size = i * chip->chipsize;
2513
2514 return 0;
2515 }
2516
2517
2518 /**
2519 * nand_scan_tail - [NAND Interface] Scan for the NAND device
2520 * @mtd: MTD device structure
2521 * @maxchips: Number of chips to scan for
2522 *
2523 * This is the second phase of the normal nand_scan() function. It
2524 * fills out all the uninitialized function pointers with the defaults
2525 * and scans for a bad block table if appropriate.
2526 */
2527 int nand_scan_tail(struct mtd_info *mtd)
2528 {
2529 int i;
2530 struct nand_chip *chip = mtd->priv;
2531
2532 if (!(chip->options & NAND_OWN_BUFFERS))
2533 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
2534 if (!chip->buffers)
2535 return -ENOMEM;
2536
2537 /* Set the internal oob buffer location, just after the page data */
2538 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
2539
2540 /*
2541 * If no default placement scheme is given, select an appropriate one
2542 */
2543 if (!chip->ecc.layout) {
2544 switch (mtd->oobsize) {
2545 case 8:
2546 chip->ecc.layout = &nand_oob_8;
2547 break;
2548 case 16:
2549 chip->ecc.layout = &nand_oob_16;
2550 break;
2551 case 64:
2552 chip->ecc.layout = &nand_oob_64;
2553 break;
2554 case 128:
2555 chip->ecc.layout = &nand_oob_128;
2556 break;
2557 default:
2558 printk(KERN_WARNING "No oob scheme defined for "
2559 "oobsize %d\n", mtd->oobsize);
2560 // BUG();
2561 }
2562 }
2563
2564 if (!chip->write_page)
2565 chip->write_page = nand_write_page;
2566
2567 /*
2568 * check ECC mode, default to software if 3byte/512byte hardware ECC is
2569 * selected and we have 256 byte pagesize fallback to software ECC
2570 */
2571 if (!chip->ecc.read_page_raw)
2572 chip->ecc.read_page_raw = nand_read_page_raw;
2573 if (!chip->ecc.write_page_raw)
2574 chip->ecc.write_page_raw = nand_write_page_raw;
2575
2576 switch (chip->ecc.mode) {
2577 case NAND_ECC_HW:
2578 /* Use standard hwecc read page function ? */
2579 if (!chip->ecc.read_page)
2580 chip->ecc.read_page = nand_read_page_hwecc;
2581 if (!chip->ecc.write_page)
2582 chip->ecc.write_page = nand_write_page_hwecc;
2583 if (!chip->ecc.read_oob)
2584 chip->ecc.read_oob = nand_read_oob_std;
2585 if (!chip->ecc.write_oob)
2586 chip->ecc.write_oob = nand_write_oob_std;
2587
2588 case NAND_ECC_HW_SYNDROME:
2589 if (!chip->ecc.calculate || !chip->ecc.correct ||
2590 !chip->ecc.hwctl) {
2591 printk(KERN_WARNING "No ECC functions supplied, "
2592 "Hardware ECC not possible\n");
2593 BUG();
2594 }
2595 /* Use standard syndrome read/write page function ? */
2596 if (!chip->ecc.read_page)
2597 chip->ecc.read_page = nand_read_page_syndrome;
2598 if (!chip->ecc.write_page)
2599 chip->ecc.write_page = nand_write_page_syndrome;
2600 if (!chip->ecc.read_oob)
2601 chip->ecc.read_oob = nand_read_oob_syndrome;
2602 if (!chip->ecc.write_oob)
2603 chip->ecc.write_oob = nand_write_oob_syndrome;
2604
2605 if (mtd->writesize >= chip->ecc.size)
2606 break;
2607 printk(KERN_WARNING "%d byte HW ECC not possible on "
2608 "%d byte page size, fallback to SW ECC\n",
2609 chip->ecc.size, mtd->writesize);
2610 chip->ecc.mode = NAND_ECC_SOFT;
2611
2612 case NAND_ECC_SOFT:
2613 chip->ecc.calculate = nand_calculate_ecc;
2614 chip->ecc.correct = nand_correct_data;
2615 chip->ecc.read_page = nand_read_page_swecc;
2616 chip->ecc.write_page = nand_write_page_swecc;
2617 chip->ecc.read_oob = nand_read_oob_std;
2618 chip->ecc.write_oob = nand_write_oob_std;
2619 chip->ecc.size = 256;
2620 chip->ecc.bytes = 3;
2621 break;
2622
2623 case NAND_ECC_NONE:
2624 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
2625 "This is not recommended !!\n");
2626 chip->ecc.read_page = nand_read_page_raw;
2627 chip->ecc.write_page = nand_write_page_raw;
2628 chip->ecc.read_oob = nand_read_oob_std;
2629 chip->ecc.write_oob = nand_write_oob_std;
2630 chip->ecc.size = mtd->writesize;
2631 chip->ecc.bytes = 0;
2632 break;
2633
2634 default:
2635 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
2636 chip->ecc.mode);
2637 BUG();
2638 }
2639
2640 /*
2641 * The number of bytes available for a client to place data into
2642 * the out of band area
2643 */
2644 chip->ecc.layout->oobavail = 0;
2645 for (i = 0; chip->ecc.layout->oobfree[i].length; i++)
2646 chip->ecc.layout->oobavail +=
2647 chip->ecc.layout->oobfree[i].length;
2648 mtd->oobavail = chip->ecc.layout->oobavail;
2649
2650 /*
2651 * Set the number of read / write steps for one page depending on ECC
2652 * mode
2653 */
2654 chip->ecc.steps = mtd->writesize / chip->ecc.size;
2655 if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
2656 printk(KERN_WARNING "Invalid ecc parameters\n");
2657 BUG();
2658 }
2659 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
2660
2661 /*
2662 * Allow subpage writes up to ecc.steps. Not possible for MLC
2663 * FLASH.
2664 */
2665 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2666 !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
2667 switch(chip->ecc.steps) {
2668 case 2:
2669 mtd->subpage_sft = 1;
2670 break;
2671 case 4:
2672 case 8:
2673 mtd->subpage_sft = 2;
2674 break;
2675 }
2676 }
2677 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
2678
2679 /* Initialize state */
2680 chip->state = FL_READY;
2681
2682 /* De-select the device */
2683 chip->select_chip(mtd, -1);
2684
2685 /* Invalidate the pagebuffer reference */
2686 chip->pagebuf = -1;
2687
2688 /* Fill in remaining MTD driver data */
2689 mtd->type = MTD_NANDFLASH;
2690 mtd->flags = MTD_CAP_NANDFLASH;
2691 mtd->erase = nand_erase;
2692 mtd->point = NULL;
2693 mtd->unpoint = NULL;
2694 mtd->read = nand_read;
2695 mtd->write = nand_write;
2696 mtd->read_oob = nand_read_oob;
2697 mtd->write_oob = nand_write_oob;
2698 mtd->sync = nand_sync;
2699 mtd->lock = NULL;
2700 mtd->unlock = NULL;
2701 mtd->suspend = nand_suspend;
2702 mtd->resume = nand_resume;
2703 mtd->block_isbad = nand_block_isbad;
2704 mtd->block_markbad = nand_block_markbad;
2705
2706 /* propagate ecc.layout to mtd_info */
2707 mtd->ecclayout = chip->ecc.layout;
2708
2709 /* Check, if we should skip the bad block table scan */
2710 if (chip->options & NAND_SKIP_BBTSCAN)
2711 return 0;
2712
2713 /* Build bad block table */
2714 return chip->scan_bbt(mtd);
2715 }
2716
2717 /* module_text_address() isn't exported, and it's mostly a pointless
2718 test if this is a module _anyway_ -- they'd have to try _really_ hard
2719 to call us from in-kernel code if the core NAND support is modular. */
2720 #ifdef MODULE
2721 #define caller_is_module() (1)
2722 #else
2723 #define caller_is_module() \
2724 module_text_address((unsigned long)__builtin_return_address(0))
2725 #endif
2726
2727 /**
2728 * nand_scan - [NAND Interface] Scan for the NAND device
2729 * @mtd: MTD device structure
2730 * @maxchips: Number of chips to scan for
2731 *
2732 * This fills out all the uninitialized function pointers
2733 * with the defaults.
2734 * The flash ID is read and the mtd/chip structures are
2735 * filled with the appropriate values.
2736 * The mtd->owner field must be set to the module of the caller
2737 *
2738 */
2739 int nand_scan(struct mtd_info *mtd, int maxchips)
2740 {
2741 int ret;
2742
2743 /* Many callers got this wrong, so check for it for a while... */
2744 /* XXX U-BOOT XXX */
2745 #if 0
2746 if (!mtd->owner && caller_is_module()) {
2747 printk(KERN_CRIT "nand_scan() called with NULL mtd->owner!\n");
2748 BUG();
2749 }
2750 #endif
2751
2752 ret = nand_scan_ident(mtd, maxchips);
2753 if (!ret)
2754 ret = nand_scan_tail(mtd);
2755 return ret;
2756 }
2757
2758 /**
2759 * nand_release - [NAND Interface] Free resources held by the NAND device
2760 * @mtd: MTD device structure
2761 */
2762 void nand_release(struct mtd_info *mtd)
2763 {
2764 struct nand_chip *chip = mtd->priv;
2765
2766 #ifdef CONFIG_MTD_PARTITIONS
2767 /* Deregister partitions */
2768 del_mtd_partitions(mtd);
2769 #endif
2770 /* Deregister the device */
2771 /* XXX U-BOOT XXX */
2772 #if 0
2773 del_mtd_device(mtd);
2774 #endif
2775
2776 /* Free bad block table memory */
2777 kfree(chip->bbt);
2778 if (!(chip->options & NAND_OWN_BUFFERS))
2779 kfree(chip->buffers);
2780 }
2781
2782 /* XXX U-BOOT XXX */
2783 #if 0
2784 EXPORT_SYMBOL_GPL(nand_scan);
2785 EXPORT_SYMBOL_GPL(nand_scan_ident);
2786 EXPORT_SYMBOL_GPL(nand_scan_tail);
2787 EXPORT_SYMBOL_GPL(nand_release);
2788
2789 static int __init nand_base_init(void)
2790 {
2791 led_trigger_register_simple("nand-disk", &nand_led_trigger);
2792 return 0;
2793 }
2794
2795 static void __exit nand_base_exit(void)
2796 {
2797 led_trigger_unregister_simple(nand_led_trigger);
2798 }
2799
2800 module_init(nand_base_init);
2801 module_exit(nand_base_exit);
2802
2803 MODULE_LICENSE("GPL");
2804 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2805 MODULE_DESCRIPTION("Generic NAND flash driver code");
2806 #endif
2807
2808 #endif
2809