]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/nand_base.c
Merge branch 'next' of git://git.denx.de/u-boot-nand-flash into next
[people/ms/u-boot.git] / drivers / mtd / nand / nand_base.c
1 /*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
8 *
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/doc/nand.html
11 *
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
14 *
15 * Credits:
16 * David Woodhouse for adding multichip support
17 *
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
20 *
21 * TODO:
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 * BBT table is not serialized, has to be fixed
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
32 *
33 */
34
35 /* XXX U-BOOT XXX */
36 #if 0
37 #include <linux/module.h>
38 #include <linux/delay.h>
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
43 #include <linux/types.h>
44 #include <linux/mtd/mtd.h>
45 #include <linux/mtd/nand.h>
46 #include <linux/mtd/nand_ecc.h>
47 #include <linux/mtd/compatmac.h>
48 #include <linux/interrupt.h>
49 #include <linux/bitops.h>
50 #include <linux/leds.h>
51 #include <asm/io.h>
52
53 #ifdef CONFIG_MTD_PARTITIONS
54 #include <linux/mtd/partitions.h>
55 #endif
56
57 #endif
58
59 #include <common.h>
60
61 #define ENOTSUPP 524 /* Operation is not supported */
62
63 #include <malloc.h>
64 #include <watchdog.h>
65 #include <linux/err.h>
66 #include <linux/mtd/compat.h>
67 #include <linux/mtd/mtd.h>
68 #include <linux/mtd/nand.h>
69 #include <linux/mtd/nand_ecc.h>
70
71 #ifdef CONFIG_MTD_PARTITIONS
72 #include <linux/mtd/partitions.h>
73 #endif
74
75 #include <asm/io.h>
76 #include <asm/errno.h>
77
78 #ifdef CONFIG_JFFS2_NAND
79 #include <jffs2/jffs2.h>
80 #endif
81
82 /*
83 * CONFIG_SYS_NAND_RESET_CNT is used as a timeout mechanism when resetting
84 * a flash. NAND flash is initialized prior to interrupts so standard timers
85 * can't be used. CONFIG_SYS_NAND_RESET_CNT should be set to a value
86 * which is greater than (max NAND reset time / NAND status read time).
87 * A conservative default of 200000 (500 us / 25 ns) is used as a default.
88 */
89 #ifndef CONFIG_SYS_NAND_RESET_CNT
90 #define CONFIG_SYS_NAND_RESET_CNT 200000
91 #endif
92
93 /* Define default oob placement schemes for large and small page devices */
94 static struct nand_ecclayout nand_oob_8 = {
95 .eccbytes = 3,
96 .eccpos = {0, 1, 2},
97 .oobfree = {
98 {.offset = 3,
99 .length = 2},
100 {.offset = 6,
101 .length = 2}}
102 };
103
104 static struct nand_ecclayout nand_oob_16 = {
105 .eccbytes = 6,
106 .eccpos = {0, 1, 2, 3, 6, 7},
107 .oobfree = {
108 {.offset = 8,
109 . length = 8}}
110 };
111
112 static struct nand_ecclayout nand_oob_64 = {
113 .eccbytes = 24,
114 .eccpos = {
115 40, 41, 42, 43, 44, 45, 46, 47,
116 48, 49, 50, 51, 52, 53, 54, 55,
117 56, 57, 58, 59, 60, 61, 62, 63},
118 .oobfree = {
119 {.offset = 2,
120 .length = 38}}
121 };
122
123 static struct nand_ecclayout nand_oob_128 = {
124 .eccbytes = 48,
125 .eccpos = {
126 80, 81, 82, 83, 84, 85, 86, 87,
127 88, 89, 90, 91, 92, 93, 94, 95,
128 96, 97, 98, 99, 100, 101, 102, 103,
129 104, 105, 106, 107, 108, 109, 110, 111,
130 112, 113, 114, 115, 116, 117, 118, 119,
131 120, 121, 122, 123, 124, 125, 126, 127},
132 .oobfree = {
133 {.offset = 2,
134 .length = 78}}
135 };
136
137
138 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
139 int new_state);
140
141 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
142 struct mtd_oob_ops *ops);
143
144 static int nand_wait(struct mtd_info *mtd, struct nand_chip *this);
145
146 /*
147 * For devices which display every fart in the system on a separate LED. Is
148 * compiled away when LED support is disabled.
149 */
150 /* XXX U-BOOT XXX */
151 #if 0
152 DEFINE_LED_TRIGGER(nand_led_trigger);
153 #endif
154
155 /**
156 * nand_release_device - [GENERIC] release chip
157 * @mtd: MTD device structure
158 *
159 * Deselect, release chip lock and wake up anyone waiting on the device
160 */
161 /* XXX U-BOOT XXX */
162 #if 0
163 static void nand_release_device(struct mtd_info *mtd)
164 {
165 struct nand_chip *chip = mtd->priv;
166
167 /* De-select the NAND device */
168 chip->select_chip(mtd, -1);
169
170 /* Release the controller and the chip */
171 spin_lock(&chip->controller->lock);
172 chip->controller->active = NULL;
173 chip->state = FL_READY;
174 wake_up(&chip->controller->wq);
175 spin_unlock(&chip->controller->lock);
176 }
177 #else
178 static void nand_release_device (struct mtd_info *mtd)
179 {
180 struct nand_chip *this = mtd->priv;
181 this->select_chip(mtd, -1); /* De-select the NAND device */
182 }
183 #endif
184
185 /**
186 * nand_read_byte - [DEFAULT] read one byte from the chip
187 * @mtd: MTD device structure
188 *
189 * Default read function for 8bit buswith
190 */
191 static uint8_t nand_read_byte(struct mtd_info *mtd)
192 {
193 struct nand_chip *chip = mtd->priv;
194 return readb(chip->IO_ADDR_R);
195 }
196
197 /**
198 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
199 * @mtd: MTD device structure
200 *
201 * Default read function for 16bit buswith with
202 * endianess conversion
203 */
204 static uint8_t nand_read_byte16(struct mtd_info *mtd)
205 {
206 struct nand_chip *chip = mtd->priv;
207 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
208 }
209
210 /**
211 * nand_read_word - [DEFAULT] read one word from the chip
212 * @mtd: MTD device structure
213 *
214 * Default read function for 16bit buswith without
215 * endianess conversion
216 */
217 static u16 nand_read_word(struct mtd_info *mtd)
218 {
219 struct nand_chip *chip = mtd->priv;
220 return readw(chip->IO_ADDR_R);
221 }
222
223 /**
224 * nand_select_chip - [DEFAULT] control CE line
225 * @mtd: MTD device structure
226 * @chipnr: chipnumber to select, -1 for deselect
227 *
228 * Default select function for 1 chip devices.
229 */
230 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
231 {
232 struct nand_chip *chip = mtd->priv;
233
234 switch (chipnr) {
235 case -1:
236 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
237 break;
238 case 0:
239 break;
240
241 default:
242 BUG();
243 }
244 }
245
246 /**
247 * nand_write_buf - [DEFAULT] write buffer to chip
248 * @mtd: MTD device structure
249 * @buf: data buffer
250 * @len: number of bytes to write
251 *
252 * Default write function for 8bit buswith
253 */
254 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
255 {
256 int i;
257 struct nand_chip *chip = mtd->priv;
258
259 for (i = 0; i < len; i++)
260 writeb(buf[i], chip->IO_ADDR_W);
261 }
262
263 /**
264 * nand_read_buf - [DEFAULT] read chip data into buffer
265 * @mtd: MTD device structure
266 * @buf: buffer to store date
267 * @len: number of bytes to read
268 *
269 * Default read function for 8bit buswith
270 */
271 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
272 {
273 int i;
274 struct nand_chip *chip = mtd->priv;
275
276 for (i = 0; i < len; i++)
277 buf[i] = readb(chip->IO_ADDR_R);
278 }
279
280 /**
281 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
282 * @mtd: MTD device structure
283 * @buf: buffer containing the data to compare
284 * @len: number of bytes to compare
285 *
286 * Default verify function for 8bit buswith
287 */
288 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
289 {
290 int i;
291 struct nand_chip *chip = mtd->priv;
292
293 for (i = 0; i < len; i++)
294 if (buf[i] != readb(chip->IO_ADDR_R))
295 return -EFAULT;
296 return 0;
297 }
298
299 /**
300 * nand_write_buf16 - [DEFAULT] write buffer to chip
301 * @mtd: MTD device structure
302 * @buf: data buffer
303 * @len: number of bytes to write
304 *
305 * Default write function for 16bit buswith
306 */
307 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
308 {
309 int i;
310 struct nand_chip *chip = mtd->priv;
311 u16 *p = (u16 *) buf;
312 len >>= 1;
313
314 for (i = 0; i < len; i++)
315 writew(p[i], chip->IO_ADDR_W);
316
317 }
318
319 /**
320 * nand_read_buf16 - [DEFAULT] read chip data into buffer
321 * @mtd: MTD device structure
322 * @buf: buffer to store date
323 * @len: number of bytes to read
324 *
325 * Default read function for 16bit buswith
326 */
327 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
328 {
329 int i;
330 struct nand_chip *chip = mtd->priv;
331 u16 *p = (u16 *) buf;
332 len >>= 1;
333
334 for (i = 0; i < len; i++)
335 p[i] = readw(chip->IO_ADDR_R);
336 }
337
338 /**
339 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
340 * @mtd: MTD device structure
341 * @buf: buffer containing the data to compare
342 * @len: number of bytes to compare
343 *
344 * Default verify function for 16bit buswith
345 */
346 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
347 {
348 int i;
349 struct nand_chip *chip = mtd->priv;
350 u16 *p = (u16 *) buf;
351 len >>= 1;
352
353 for (i = 0; i < len; i++)
354 if (p[i] != readw(chip->IO_ADDR_R))
355 return -EFAULT;
356
357 return 0;
358 }
359
360 /**
361 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
362 * @mtd: MTD device structure
363 * @ofs: offset from device start
364 * @getchip: 0, if the chip is already selected
365 *
366 * Check, if the block is bad.
367 */
368 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
369 {
370 int page, chipnr, res = 0;
371 struct nand_chip *chip = mtd->priv;
372 u16 bad;
373
374 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
375
376 if (getchip) {
377 chipnr = (int)(ofs >> chip->chip_shift);
378
379 nand_get_device(chip, mtd, FL_READING);
380
381 /* Select the NAND device */
382 chip->select_chip(mtd, chipnr);
383 }
384
385 if (chip->options & NAND_BUSWIDTH_16) {
386 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
387 page);
388 bad = cpu_to_le16(chip->read_word(mtd));
389 if (chip->badblockpos & 0x1)
390 bad >>= 8;
391 if ((bad & 0xFF) != 0xff)
392 res = 1;
393 } else {
394 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
395 if (chip->read_byte(mtd) != 0xff)
396 res = 1;
397 }
398
399 if (getchip)
400 nand_release_device(mtd);
401
402 return res;
403 }
404
405 /**
406 * nand_default_block_markbad - [DEFAULT] mark a block bad
407 * @mtd: MTD device structure
408 * @ofs: offset from device start
409 *
410 * This is the default implementation, which can be overridden by
411 * a hardware specific driver.
412 */
413 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
414 {
415 struct nand_chip *chip = mtd->priv;
416 uint8_t buf[2] = { 0, 0 };
417 int block, ret;
418
419 /* Get block number */
420 block = (int)(ofs >> chip->bbt_erase_shift);
421 if (chip->bbt)
422 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
423
424 /* Do we have a flash based bad block table ? */
425 if (chip->options & NAND_USE_FLASH_BBT)
426 ret = nand_update_bbt(mtd, ofs);
427 else {
428 /* We write two bytes, so we dont have to mess with 16 bit
429 * access
430 */
431 nand_get_device(chip, mtd, FL_WRITING);
432 ofs += mtd->oobsize;
433 chip->ops.len = chip->ops.ooblen = 2;
434 chip->ops.datbuf = NULL;
435 chip->ops.oobbuf = buf;
436 chip->ops.ooboffs = chip->badblockpos & ~0x01;
437
438 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
439 nand_release_device(mtd);
440 }
441 if (!ret)
442 mtd->ecc_stats.badblocks++;
443
444 return ret;
445 }
446
447 /**
448 * nand_check_wp - [GENERIC] check if the chip is write protected
449 * @mtd: MTD device structure
450 * Check, if the device is write protected
451 *
452 * The function expects, that the device is already selected
453 */
454 static int nand_check_wp(struct mtd_info *mtd)
455 {
456 struct nand_chip *chip = mtd->priv;
457 /* Check the WP bit */
458 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
459 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
460 }
461
462 /**
463 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
464 * @mtd: MTD device structure
465 * @ofs: offset from device start
466 * @getchip: 0, if the chip is already selected
467 * @allowbbt: 1, if its allowed to access the bbt area
468 *
469 * Check, if the block is bad. Either by reading the bad block table or
470 * calling of the scan function.
471 */
472 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
473 int allowbbt)
474 {
475 struct nand_chip *chip = mtd->priv;
476
477 if (!(chip->options & NAND_BBT_SCANNED)) {
478 chip->options |= NAND_BBT_SCANNED;
479 chip->scan_bbt(mtd);
480 }
481
482 if (!chip->bbt)
483 return chip->block_bad(mtd, ofs, getchip);
484
485 /* Return info from the table */
486 return nand_isbad_bbt(mtd, ofs, allowbbt);
487 }
488
489 /*
490 * Wait for the ready pin, after a command
491 * The timeout is catched later.
492 */
493 /* XXX U-BOOT XXX */
494 #if 0
495 void nand_wait_ready(struct mtd_info *mtd)
496 {
497 struct nand_chip *chip = mtd->priv;
498 unsigned long timeo = jiffies + 2;
499
500 led_trigger_event(nand_led_trigger, LED_FULL);
501 /* wait until command is processed or timeout occures */
502 do {
503 if (chip->dev_ready(mtd))
504 break;
505 touch_softlockup_watchdog();
506 } while (time_before(jiffies, timeo));
507 led_trigger_event(nand_led_trigger, LED_OFF);
508 }
509 EXPORT_SYMBOL_GPL(nand_wait_ready);
510 #else
511 void nand_wait_ready(struct mtd_info *mtd)
512 {
513 struct nand_chip *chip = mtd->priv;
514 u32 timeo = (CONFIG_SYS_HZ * 20) / 1000;
515
516 reset_timer();
517
518 /* wait until command is processed or timeout occures */
519 while (get_timer(0) < timeo) {
520 if (chip->dev_ready)
521 if (chip->dev_ready(mtd))
522 break;
523 }
524 }
525 #endif
526
527 /**
528 * nand_command - [DEFAULT] Send command to NAND device
529 * @mtd: MTD device structure
530 * @command: the command to be sent
531 * @column: the column address for this command, -1 if none
532 * @page_addr: the page address for this command, -1 if none
533 *
534 * Send command to NAND device. This function is used for small page
535 * devices (256/512 Bytes per page)
536 */
537 static void nand_command(struct mtd_info *mtd, unsigned int command,
538 int column, int page_addr)
539 {
540 register struct nand_chip *chip = mtd->priv;
541 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
542 uint32_t rst_sts_cnt = CONFIG_SYS_NAND_RESET_CNT;
543
544 /*
545 * Write out the command to the device.
546 */
547 if (command == NAND_CMD_SEQIN) {
548 int readcmd;
549
550 if (column >= mtd->writesize) {
551 /* OOB area */
552 column -= mtd->writesize;
553 readcmd = NAND_CMD_READOOB;
554 } else if (column < 256) {
555 /* First 256 bytes --> READ0 */
556 readcmd = NAND_CMD_READ0;
557 } else {
558 column -= 256;
559 readcmd = NAND_CMD_READ1;
560 }
561 chip->cmd_ctrl(mtd, readcmd, ctrl);
562 ctrl &= ~NAND_CTRL_CHANGE;
563 }
564 chip->cmd_ctrl(mtd, command, ctrl);
565
566 /*
567 * Address cycle, when necessary
568 */
569 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
570 /* Serially input address */
571 if (column != -1) {
572 /* Adjust columns for 16 bit buswidth */
573 if (chip->options & NAND_BUSWIDTH_16)
574 column >>= 1;
575 chip->cmd_ctrl(mtd, column, ctrl);
576 ctrl &= ~NAND_CTRL_CHANGE;
577 }
578 if (page_addr != -1) {
579 chip->cmd_ctrl(mtd, page_addr, ctrl);
580 ctrl &= ~NAND_CTRL_CHANGE;
581 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
582 /* One more address cycle for devices > 32MiB */
583 if (chip->chipsize > (32 << 20))
584 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
585 }
586 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
587
588 /*
589 * program and erase have their own busy handlers
590 * status and sequential in needs no delay
591 */
592 switch (command) {
593
594 case NAND_CMD_PAGEPROG:
595 case NAND_CMD_ERASE1:
596 case NAND_CMD_ERASE2:
597 case NAND_CMD_SEQIN:
598 case NAND_CMD_STATUS:
599 return;
600
601 case NAND_CMD_RESET:
602 if (chip->dev_ready)
603 break;
604 udelay(chip->chip_delay);
605 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
606 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
607 chip->cmd_ctrl(mtd,
608 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
609 while (!(chip->read_byte(mtd) & NAND_STATUS_READY) &&
610 (rst_sts_cnt--));
611 return;
612
613 /* This applies to read commands */
614 default:
615 /*
616 * If we don't have access to the busy pin, we apply the given
617 * command delay
618 */
619 if (!chip->dev_ready) {
620 udelay(chip->chip_delay);
621 return;
622 }
623 }
624 /* Apply this short delay always to ensure that we do wait tWB in
625 * any case on any machine. */
626 ndelay(100);
627
628 nand_wait_ready(mtd);
629 }
630
631 /**
632 * nand_command_lp - [DEFAULT] Send command to NAND large page device
633 * @mtd: MTD device structure
634 * @command: the command to be sent
635 * @column: the column address for this command, -1 if none
636 * @page_addr: the page address for this command, -1 if none
637 *
638 * Send command to NAND device. This is the version for the new large page
639 * devices We dont have the separate regions as we have in the small page
640 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
641 */
642 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
643 int column, int page_addr)
644 {
645 register struct nand_chip *chip = mtd->priv;
646 uint32_t rst_sts_cnt = CONFIG_SYS_NAND_RESET_CNT;
647
648 /* Emulate NAND_CMD_READOOB */
649 if (command == NAND_CMD_READOOB) {
650 column += mtd->writesize;
651 command = NAND_CMD_READ0;
652 }
653
654 /* Command latch cycle */
655 chip->cmd_ctrl(mtd, command & 0xff,
656 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
657
658 if (column != -1 || page_addr != -1) {
659 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
660
661 /* Serially input address */
662 if (column != -1) {
663 /* Adjust columns for 16 bit buswidth */
664 if (chip->options & NAND_BUSWIDTH_16)
665 column >>= 1;
666 chip->cmd_ctrl(mtd, column, ctrl);
667 ctrl &= ~NAND_CTRL_CHANGE;
668 chip->cmd_ctrl(mtd, column >> 8, ctrl);
669 }
670 if (page_addr != -1) {
671 chip->cmd_ctrl(mtd, page_addr, ctrl);
672 chip->cmd_ctrl(mtd, page_addr >> 8,
673 NAND_NCE | NAND_ALE);
674 /* One more address cycle for devices > 128MiB */
675 if (chip->chipsize > (128 << 20))
676 chip->cmd_ctrl(mtd, page_addr >> 16,
677 NAND_NCE | NAND_ALE);
678 }
679 }
680 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
681
682 /*
683 * program and erase have their own busy handlers
684 * status, sequential in, and deplete1 need no delay
685 */
686 switch (command) {
687
688 case NAND_CMD_CACHEDPROG:
689 case NAND_CMD_PAGEPROG:
690 case NAND_CMD_ERASE1:
691 case NAND_CMD_ERASE2:
692 case NAND_CMD_SEQIN:
693 case NAND_CMD_RNDIN:
694 case NAND_CMD_STATUS:
695 case NAND_CMD_DEPLETE1:
696 return;
697
698 /*
699 * read error status commands require only a short delay
700 */
701 case NAND_CMD_STATUS_ERROR:
702 case NAND_CMD_STATUS_ERROR0:
703 case NAND_CMD_STATUS_ERROR1:
704 case NAND_CMD_STATUS_ERROR2:
705 case NAND_CMD_STATUS_ERROR3:
706 udelay(chip->chip_delay);
707 return;
708
709 case NAND_CMD_RESET:
710 if (chip->dev_ready)
711 break;
712 udelay(chip->chip_delay);
713 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
714 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
715 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
716 NAND_NCE | NAND_CTRL_CHANGE);
717 while (!(chip->read_byte(mtd) & NAND_STATUS_READY) &&
718 (rst_sts_cnt--));
719 return;
720
721 case NAND_CMD_RNDOUT:
722 /* No ready / busy check necessary */
723 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
724 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
725 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
726 NAND_NCE | NAND_CTRL_CHANGE);
727 return;
728
729 case NAND_CMD_READ0:
730 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
731 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
732 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
733 NAND_NCE | NAND_CTRL_CHANGE);
734
735 /* This applies to read commands */
736 default:
737 /*
738 * If we don't have access to the busy pin, we apply the given
739 * command delay
740 */
741 if (!chip->dev_ready) {
742 udelay(chip->chip_delay);
743 return;
744 }
745 }
746
747 /* Apply this short delay always to ensure that we do wait tWB in
748 * any case on any machine. */
749 ndelay(100);
750
751 nand_wait_ready(mtd);
752 }
753
754 /**
755 * nand_get_device - [GENERIC] Get chip for selected access
756 * @chip: the nand chip descriptor
757 * @mtd: MTD device structure
758 * @new_state: the state which is requested
759 *
760 * Get the device and lock it for exclusive access
761 */
762 /* XXX U-BOOT XXX */
763 #if 0
764 static int
765 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
766 {
767 spinlock_t *lock = &chip->controller->lock;
768 wait_queue_head_t *wq = &chip->controller->wq;
769 DECLARE_WAITQUEUE(wait, current);
770 retry:
771 spin_lock(lock);
772
773 /* Hardware controller shared among independend devices */
774 /* Hardware controller shared among independend devices */
775 if (!chip->controller->active)
776 chip->controller->active = chip;
777
778 if (chip->controller->active == chip && chip->state == FL_READY) {
779 chip->state = new_state;
780 spin_unlock(lock);
781 return 0;
782 }
783 if (new_state == FL_PM_SUSPENDED) {
784 spin_unlock(lock);
785 return (chip->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
786 }
787 set_current_state(TASK_UNINTERRUPTIBLE);
788 add_wait_queue(wq, &wait);
789 spin_unlock(lock);
790 schedule();
791 remove_wait_queue(wq, &wait);
792 goto retry;
793 }
794 #else
795 static int nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state)
796 {
797 this->state = new_state;
798 return 0;
799 }
800 #endif
801
802 /**
803 * nand_wait - [DEFAULT] wait until the command is done
804 * @mtd: MTD device structure
805 * @chip: NAND chip structure
806 *
807 * Wait for command done. This applies to erase and program only
808 * Erase can take up to 400ms and program up to 20ms according to
809 * general NAND and SmartMedia specs
810 */
811 /* XXX U-BOOT XXX */
812 #if 0
813 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
814 {
815
816 unsigned long timeo = jiffies;
817 int status, state = chip->state;
818
819 if (state == FL_ERASING)
820 timeo += (HZ * 400) / 1000;
821 else
822 timeo += (HZ * 20) / 1000;
823
824 led_trigger_event(nand_led_trigger, LED_FULL);
825
826 /* Apply this short delay always to ensure that we do wait tWB in
827 * any case on any machine. */
828 ndelay(100);
829
830 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
831 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
832 else
833 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
834
835 while (time_before(jiffies, timeo)) {
836 if (chip->dev_ready) {
837 if (chip->dev_ready(mtd))
838 break;
839 } else {
840 if (chip->read_byte(mtd) & NAND_STATUS_READY)
841 break;
842 }
843 cond_resched();
844 }
845 led_trigger_event(nand_led_trigger, LED_OFF);
846
847 status = (int)chip->read_byte(mtd);
848 return status;
849 }
850 #else
851 static int nand_wait(struct mtd_info *mtd, struct nand_chip *this)
852 {
853 unsigned long timeo;
854 int state = this->state;
855
856 if (state == FL_ERASING)
857 timeo = (CONFIG_SYS_HZ * 400) / 1000;
858 else
859 timeo = (CONFIG_SYS_HZ * 20) / 1000;
860
861 if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
862 this->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
863 else
864 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
865
866 reset_timer();
867
868 while (1) {
869 if (get_timer(0) > timeo) {
870 printf("Timeout!");
871 return 0x01;
872 }
873
874 if (this->dev_ready) {
875 if (this->dev_ready(mtd))
876 break;
877 } else {
878 if (this->read_byte(mtd) & NAND_STATUS_READY)
879 break;
880 }
881 }
882 #ifdef PPCHAMELON_NAND_TIMER_HACK
883 reset_timer();
884 while (get_timer(0) < 10);
885 #endif /* PPCHAMELON_NAND_TIMER_HACK */
886
887 return this->read_byte(mtd);
888 }
889 #endif
890
891 /**
892 * nand_read_page_raw - [Intern] read raw page data without ecc
893 * @mtd: mtd info structure
894 * @chip: nand chip info structure
895 * @buf: buffer to store read data
896 */
897 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
898 uint8_t *buf, int page)
899 {
900 chip->read_buf(mtd, buf, mtd->writesize);
901 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
902 return 0;
903 }
904
905 /**
906 * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
907 * @mtd: mtd info structure
908 * @chip: nand chip info structure
909 * @buf: buffer to store read data
910 */
911 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
912 uint8_t *buf, int page)
913 {
914 int i, eccsize = chip->ecc.size;
915 int eccbytes = chip->ecc.bytes;
916 int eccsteps = chip->ecc.steps;
917 uint8_t *p = buf;
918 uint8_t *ecc_calc = chip->buffers->ecccalc;
919 uint8_t *ecc_code = chip->buffers->ecccode;
920 uint32_t *eccpos = chip->ecc.layout->eccpos;
921
922 chip->ecc.read_page_raw(mtd, chip, buf, page);
923
924 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
925 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
926
927 for (i = 0; i < chip->ecc.total; i++)
928 ecc_code[i] = chip->oob_poi[eccpos[i]];
929
930 eccsteps = chip->ecc.steps;
931 p = buf;
932
933 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
934 int stat;
935
936 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
937 if (stat < 0)
938 mtd->ecc_stats.failed++;
939 else
940 mtd->ecc_stats.corrected += stat;
941 }
942 return 0;
943 }
944
945 /**
946 * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
947 * @mtd: mtd info structure
948 * @chip: nand chip info structure
949 * @dataofs offset of requested data within the page
950 * @readlen data length
951 * @buf: buffer to store read data
952 */
953 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
954 {
955 int start_step, end_step, num_steps;
956 uint32_t *eccpos = chip->ecc.layout->eccpos;
957 uint8_t *p;
958 int data_col_addr, i, gaps = 0;
959 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
960 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
961
962 /* Column address wihin the page aligned to ECC size (256bytes). */
963 start_step = data_offs / chip->ecc.size;
964 end_step = (data_offs + readlen - 1) / chip->ecc.size;
965 num_steps = end_step - start_step + 1;
966
967 /* Data size aligned to ECC ecc.size*/
968 datafrag_len = num_steps * chip->ecc.size;
969 eccfrag_len = num_steps * chip->ecc.bytes;
970
971 data_col_addr = start_step * chip->ecc.size;
972 /* If we read not a page aligned data */
973 if (data_col_addr != 0)
974 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
975
976 p = bufpoi + data_col_addr;
977 chip->read_buf(mtd, p, datafrag_len);
978
979 /* Calculate ECC */
980 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
981 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
982
983 /* The performance is faster if to position offsets
984 according to ecc.pos. Let make sure here that
985 there are no gaps in ecc positions */
986 for (i = 0; i < eccfrag_len - 1; i++) {
987 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
988 eccpos[i + start_step * chip->ecc.bytes + 1]) {
989 gaps = 1;
990 break;
991 }
992 }
993 if (gaps) {
994 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
995 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
996 } else {
997 /* send the command to read the particular ecc bytes */
998 /* take care about buswidth alignment in read_buf */
999 aligned_pos = eccpos[start_step * chip->ecc.bytes] & ~(busw - 1);
1000 aligned_len = eccfrag_len;
1001 if (eccpos[start_step * chip->ecc.bytes] & (busw - 1))
1002 aligned_len++;
1003 if (eccpos[(start_step + num_steps) * chip->ecc.bytes] & (busw - 1))
1004 aligned_len++;
1005
1006 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize + aligned_pos, -1);
1007 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1008 }
1009
1010 for (i = 0; i < eccfrag_len; i++)
1011 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + start_step * chip->ecc.bytes]];
1012
1013 p = bufpoi + data_col_addr;
1014 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1015 int stat;
1016
1017 stat = chip->ecc.correct(mtd, p, &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1018 if (stat < 0)
1019 mtd->ecc_stats.failed++;
1020 else
1021 mtd->ecc_stats.corrected += stat;
1022 }
1023 return 0;
1024 }
1025
1026 /**
1027 * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
1028 * @mtd: mtd info structure
1029 * @chip: nand chip info structure
1030 * @buf: buffer to store read data
1031 *
1032 * Not for syndrome calculating ecc controllers which need a special oob layout
1033 */
1034 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1035 uint8_t *buf, int page)
1036 {
1037 int i, eccsize = chip->ecc.size;
1038 int eccbytes = chip->ecc.bytes;
1039 int eccsteps = chip->ecc.steps;
1040 uint8_t *p = buf;
1041 uint8_t *ecc_calc = chip->buffers->ecccalc;
1042 uint8_t *ecc_code = chip->buffers->ecccode;
1043 uint32_t *eccpos = chip->ecc.layout->eccpos;
1044
1045 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1046 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1047 chip->read_buf(mtd, p, eccsize);
1048 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1049 }
1050 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1051
1052 for (i = 0; i < chip->ecc.total; i++)
1053 ecc_code[i] = chip->oob_poi[eccpos[i]];
1054
1055 eccsteps = chip->ecc.steps;
1056 p = buf;
1057
1058 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1059 int stat;
1060
1061 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1062 if (stat == -1)
1063 mtd->ecc_stats.failed++;
1064 else
1065 mtd->ecc_stats.corrected += stat;
1066 }
1067 return 0;
1068 }
1069
1070 /**
1071 * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
1072 * @mtd: mtd info structure
1073 * @chip: nand chip info structure
1074 * @buf: buffer to store read data
1075 *
1076 * Hardware ECC for large page chips, require OOB to be read first.
1077 * For this ECC mode, the write_page method is re-used from ECC_HW.
1078 * These methods read/write ECC from the OOB area, unlike the
1079 * ECC_HW_SYNDROME support with multiple ECC steps, follows the
1080 * "infix ECC" scheme and reads/writes ECC from the data area, by
1081 * overwriting the NAND manufacturer bad block markings.
1082 */
1083 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1084 struct nand_chip *chip, uint8_t *buf, int page)
1085 {
1086 int i, eccsize = chip->ecc.size;
1087 int eccbytes = chip->ecc.bytes;
1088 int eccsteps = chip->ecc.steps;
1089 uint8_t *p = buf;
1090 uint8_t *ecc_code = chip->buffers->ecccode;
1091 uint32_t *eccpos = chip->ecc.layout->eccpos;
1092 uint8_t *ecc_calc = chip->buffers->ecccalc;
1093
1094 /* Read the OOB area first */
1095 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1096 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1097 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1098
1099 for (i = 0; i < chip->ecc.total; i++)
1100 ecc_code[i] = chip->oob_poi[eccpos[i]];
1101
1102 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1103 int stat;
1104
1105 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1106 chip->read_buf(mtd, p, eccsize);
1107 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1108
1109 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1110 if (stat < 0)
1111 mtd->ecc_stats.failed++;
1112 else
1113 mtd->ecc_stats.corrected += stat;
1114 }
1115 return 0;
1116 }
1117
1118 /**
1119 * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
1120 * @mtd: mtd info structure
1121 * @chip: nand chip info structure
1122 * @buf: buffer to store read data
1123 *
1124 * The hw generator calculates the error syndrome automatically. Therefor
1125 * we need a special oob layout and handling.
1126 */
1127 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1128 uint8_t *buf, int page)
1129 {
1130 int i, eccsize = chip->ecc.size;
1131 int eccbytes = chip->ecc.bytes;
1132 int eccsteps = chip->ecc.steps;
1133 uint8_t *p = buf;
1134 uint8_t *oob = chip->oob_poi;
1135
1136 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1137 int stat;
1138
1139 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1140 chip->read_buf(mtd, p, eccsize);
1141
1142 if (chip->ecc.prepad) {
1143 chip->read_buf(mtd, oob, chip->ecc.prepad);
1144 oob += chip->ecc.prepad;
1145 }
1146
1147 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1148 chip->read_buf(mtd, oob, eccbytes);
1149 stat = chip->ecc.correct(mtd, p, oob, NULL);
1150
1151 if (stat < 0)
1152 mtd->ecc_stats.failed++;
1153 else
1154 mtd->ecc_stats.corrected += stat;
1155
1156 oob += eccbytes;
1157
1158 if (chip->ecc.postpad) {
1159 chip->read_buf(mtd, oob, chip->ecc.postpad);
1160 oob += chip->ecc.postpad;
1161 }
1162 }
1163
1164 /* Calculate remaining oob bytes */
1165 i = mtd->oobsize - (oob - chip->oob_poi);
1166 if (i)
1167 chip->read_buf(mtd, oob, i);
1168
1169 return 0;
1170 }
1171
1172 /**
1173 * nand_transfer_oob - [Internal] Transfer oob to client buffer
1174 * @chip: nand chip structure
1175 * @oob: oob destination address
1176 * @ops: oob ops structure
1177 * @len: size of oob to transfer
1178 */
1179 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1180 struct mtd_oob_ops *ops, size_t len)
1181 {
1182 switch(ops->mode) {
1183
1184 case MTD_OOB_PLACE:
1185 case MTD_OOB_RAW:
1186 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1187 return oob + len;
1188
1189 case MTD_OOB_AUTO: {
1190 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1191 uint32_t boffs = 0, roffs = ops->ooboffs;
1192 size_t bytes = 0;
1193
1194 for(; free->length && len; free++, len -= bytes) {
1195 /* Read request not from offset 0 ? */
1196 if (unlikely(roffs)) {
1197 if (roffs >= free->length) {
1198 roffs -= free->length;
1199 continue;
1200 }
1201 boffs = free->offset + roffs;
1202 bytes = min_t(size_t, len,
1203 (free->length - roffs));
1204 roffs = 0;
1205 } else {
1206 bytes = min_t(size_t, len, free->length);
1207 boffs = free->offset;
1208 }
1209 memcpy(oob, chip->oob_poi + boffs, bytes);
1210 oob += bytes;
1211 }
1212 return oob;
1213 }
1214 default:
1215 BUG();
1216 }
1217 return NULL;
1218 }
1219
1220 /**
1221 * nand_do_read_ops - [Internal] Read data with ECC
1222 *
1223 * @mtd: MTD device structure
1224 * @from: offset to read from
1225 * @ops: oob ops structure
1226 *
1227 * Internal function. Called with chip held.
1228 */
1229 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1230 struct mtd_oob_ops *ops)
1231 {
1232 int chipnr, page, realpage, col, bytes, aligned;
1233 struct nand_chip *chip = mtd->priv;
1234 struct mtd_ecc_stats stats;
1235 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1236 int sndcmd = 1;
1237 int ret = 0;
1238 uint32_t readlen = ops->len;
1239 uint32_t oobreadlen = ops->ooblen;
1240 uint8_t *bufpoi, *oob, *buf;
1241
1242 stats = mtd->ecc_stats;
1243
1244 chipnr = (int)(from >> chip->chip_shift);
1245 chip->select_chip(mtd, chipnr);
1246
1247 realpage = (int)(from >> chip->page_shift);
1248 page = realpage & chip->pagemask;
1249
1250 col = (int)(from & (mtd->writesize - 1));
1251
1252 buf = ops->datbuf;
1253 oob = ops->oobbuf;
1254
1255 while(1) {
1256 bytes = min(mtd->writesize - col, readlen);
1257 aligned = (bytes == mtd->writesize);
1258
1259 /* Is the current page in the buffer ? */
1260 if (realpage != chip->pagebuf || oob) {
1261 bufpoi = aligned ? buf : chip->buffers->databuf;
1262
1263 if (likely(sndcmd)) {
1264 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1265 sndcmd = 0;
1266 }
1267
1268 /* Now read the page into the buffer */
1269 if (unlikely(ops->mode == MTD_OOB_RAW))
1270 ret = chip->ecc.read_page_raw(mtd, chip,
1271 bufpoi, page);
1272 else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1273 ret = chip->ecc.read_subpage(mtd, chip, col, bytes, bufpoi);
1274 else
1275 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1276 page);
1277 if (ret < 0)
1278 break;
1279
1280 /* Transfer not aligned data */
1281 if (!aligned) {
1282 if (!NAND_SUBPAGE_READ(chip) && !oob)
1283 chip->pagebuf = realpage;
1284 memcpy(buf, chip->buffers->databuf + col, bytes);
1285 }
1286
1287 buf += bytes;
1288
1289 if (unlikely(oob)) {
1290 /* Raw mode does data:oob:data:oob */
1291 if (ops->mode != MTD_OOB_RAW) {
1292 int toread = min(oobreadlen,
1293 chip->ecc.layout->oobavail);
1294 if (toread) {
1295 oob = nand_transfer_oob(chip,
1296 oob, ops, toread);
1297 oobreadlen -= toread;
1298 }
1299 } else
1300 buf = nand_transfer_oob(chip,
1301 buf, ops, mtd->oobsize);
1302 }
1303
1304 if (!(chip->options & NAND_NO_READRDY)) {
1305 /*
1306 * Apply delay or wait for ready/busy pin. Do
1307 * this before the AUTOINCR check, so no
1308 * problems arise if a chip which does auto
1309 * increment is marked as NOAUTOINCR by the
1310 * board driver.
1311 */
1312 if (!chip->dev_ready)
1313 udelay(chip->chip_delay);
1314 else
1315 nand_wait_ready(mtd);
1316 }
1317 } else {
1318 memcpy(buf, chip->buffers->databuf + col, bytes);
1319 buf += bytes;
1320 }
1321
1322 readlen -= bytes;
1323
1324 if (!readlen)
1325 break;
1326
1327 /* For subsequent reads align to page boundary. */
1328 col = 0;
1329 /* Increment page address */
1330 realpage++;
1331
1332 page = realpage & chip->pagemask;
1333 /* Check, if we cross a chip boundary */
1334 if (!page) {
1335 chipnr++;
1336 chip->select_chip(mtd, -1);
1337 chip->select_chip(mtd, chipnr);
1338 }
1339
1340 /* Check, if the chip supports auto page increment
1341 * or if we have hit a block boundary.
1342 */
1343 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1344 sndcmd = 1;
1345 }
1346
1347 ops->retlen = ops->len - (size_t) readlen;
1348 if (oob)
1349 ops->oobretlen = ops->ooblen - oobreadlen;
1350
1351 if (ret)
1352 return ret;
1353
1354 if (mtd->ecc_stats.failed - stats.failed)
1355 return -EBADMSG;
1356
1357 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1358 }
1359
1360 /**
1361 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1362 * @mtd: MTD device structure
1363 * @from: offset to read from
1364 * @len: number of bytes to read
1365 * @retlen: pointer to variable to store the number of read bytes
1366 * @buf: the databuffer to put data
1367 *
1368 * Get hold of the chip and call nand_do_read
1369 */
1370 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1371 size_t *retlen, uint8_t *buf)
1372 {
1373 struct nand_chip *chip = mtd->priv;
1374 int ret;
1375
1376 /* Do not allow reads past end of device */
1377 if ((from + len) > mtd->size)
1378 return -EINVAL;
1379 if (!len)
1380 return 0;
1381
1382 nand_get_device(chip, mtd, FL_READING);
1383
1384 chip->ops.len = len;
1385 chip->ops.datbuf = buf;
1386 chip->ops.oobbuf = NULL;
1387
1388 ret = nand_do_read_ops(mtd, from, &chip->ops);
1389
1390 *retlen = chip->ops.retlen;
1391
1392 nand_release_device(mtd);
1393
1394 return ret;
1395 }
1396
1397 /**
1398 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1399 * @mtd: mtd info structure
1400 * @chip: nand chip info structure
1401 * @page: page number to read
1402 * @sndcmd: flag whether to issue read command or not
1403 */
1404 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1405 int page, int sndcmd)
1406 {
1407 if (sndcmd) {
1408 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1409 sndcmd = 0;
1410 }
1411 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1412 return sndcmd;
1413 }
1414
1415 /**
1416 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1417 * with syndromes
1418 * @mtd: mtd info structure
1419 * @chip: nand chip info structure
1420 * @page: page number to read
1421 * @sndcmd: flag whether to issue read command or not
1422 */
1423 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1424 int page, int sndcmd)
1425 {
1426 uint8_t *buf = chip->oob_poi;
1427 int length = mtd->oobsize;
1428 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1429 int eccsize = chip->ecc.size;
1430 uint8_t *bufpoi = buf;
1431 int i, toread, sndrnd = 0, pos;
1432
1433 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1434 for (i = 0; i < chip->ecc.steps; i++) {
1435 if (sndrnd) {
1436 pos = eccsize + i * (eccsize + chunk);
1437 if (mtd->writesize > 512)
1438 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1439 else
1440 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1441 } else
1442 sndrnd = 1;
1443 toread = min_t(int, length, chunk);
1444 chip->read_buf(mtd, bufpoi, toread);
1445 bufpoi += toread;
1446 length -= toread;
1447 }
1448 if (length > 0)
1449 chip->read_buf(mtd, bufpoi, length);
1450
1451 return 1;
1452 }
1453
1454 /**
1455 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1456 * @mtd: mtd info structure
1457 * @chip: nand chip info structure
1458 * @page: page number to write
1459 */
1460 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1461 int page)
1462 {
1463 int status = 0;
1464 const uint8_t *buf = chip->oob_poi;
1465 int length = mtd->oobsize;
1466
1467 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1468 chip->write_buf(mtd, buf, length);
1469 /* Send command to program the OOB data */
1470 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1471
1472 status = chip->waitfunc(mtd, chip);
1473
1474 return status & NAND_STATUS_FAIL ? -EIO : 0;
1475 }
1476
1477 /**
1478 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1479 * with syndrome - only for large page flash !
1480 * @mtd: mtd info structure
1481 * @chip: nand chip info structure
1482 * @page: page number to write
1483 */
1484 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1485 struct nand_chip *chip, int page)
1486 {
1487 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1488 int eccsize = chip->ecc.size, length = mtd->oobsize;
1489 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1490 const uint8_t *bufpoi = chip->oob_poi;
1491
1492 /*
1493 * data-ecc-data-ecc ... ecc-oob
1494 * or
1495 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1496 */
1497 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1498 pos = steps * (eccsize + chunk);
1499 steps = 0;
1500 } else
1501 pos = eccsize;
1502
1503 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1504 for (i = 0; i < steps; i++) {
1505 if (sndcmd) {
1506 if (mtd->writesize <= 512) {
1507 uint32_t fill = 0xFFFFFFFF;
1508
1509 len = eccsize;
1510 while (len > 0) {
1511 int num = min_t(int, len, 4);
1512 chip->write_buf(mtd, (uint8_t *)&fill,
1513 num);
1514 len -= num;
1515 }
1516 } else {
1517 pos = eccsize + i * (eccsize + chunk);
1518 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1519 }
1520 } else
1521 sndcmd = 1;
1522 len = min_t(int, length, chunk);
1523 chip->write_buf(mtd, bufpoi, len);
1524 bufpoi += len;
1525 length -= len;
1526 }
1527 if (length > 0)
1528 chip->write_buf(mtd, bufpoi, length);
1529
1530 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1531 status = chip->waitfunc(mtd, chip);
1532
1533 return status & NAND_STATUS_FAIL ? -EIO : 0;
1534 }
1535
1536 /**
1537 * nand_do_read_oob - [Intern] NAND read out-of-band
1538 * @mtd: MTD device structure
1539 * @from: offset to read from
1540 * @ops: oob operations description structure
1541 *
1542 * NAND read out-of-band data from the spare area
1543 */
1544 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1545 struct mtd_oob_ops *ops)
1546 {
1547 int page, realpage, chipnr, sndcmd = 1;
1548 struct nand_chip *chip = mtd->priv;
1549 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1550 int readlen = ops->ooblen;
1551 int len;
1552 uint8_t *buf = ops->oobbuf;
1553
1554 MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08Lx, len = %i\n",
1555 (unsigned long long)from, readlen);
1556
1557 if (ops->mode == MTD_OOB_AUTO)
1558 len = chip->ecc.layout->oobavail;
1559 else
1560 len = mtd->oobsize;
1561
1562 if (unlikely(ops->ooboffs >= len)) {
1563 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1564 "Attempt to start read outside oob\n");
1565 return -EINVAL;
1566 }
1567
1568 /* Do not allow reads past end of device */
1569 if (unlikely(from >= mtd->size ||
1570 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1571 (from >> chip->page_shift)) * len)) {
1572 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1573 "Attempt read beyond end of device\n");
1574 return -EINVAL;
1575 }
1576
1577 chipnr = (int)(from >> chip->chip_shift);
1578 chip->select_chip(mtd, chipnr);
1579
1580 /* Shift to get page */
1581 realpage = (int)(from >> chip->page_shift);
1582 page = realpage & chip->pagemask;
1583
1584 while(1) {
1585 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1586
1587 len = min(len, readlen);
1588 buf = nand_transfer_oob(chip, buf, ops, len);
1589
1590 if (!(chip->options & NAND_NO_READRDY)) {
1591 /*
1592 * Apply delay or wait for ready/busy pin. Do this
1593 * before the AUTOINCR check, so no problems arise if a
1594 * chip which does auto increment is marked as
1595 * NOAUTOINCR by the board driver.
1596 */
1597 if (!chip->dev_ready)
1598 udelay(chip->chip_delay);
1599 else
1600 nand_wait_ready(mtd);
1601 }
1602
1603 readlen -= len;
1604 if (!readlen)
1605 break;
1606
1607 /* Increment page address */
1608 realpage++;
1609
1610 page = realpage & chip->pagemask;
1611 /* Check, if we cross a chip boundary */
1612 if (!page) {
1613 chipnr++;
1614 chip->select_chip(mtd, -1);
1615 chip->select_chip(mtd, chipnr);
1616 }
1617
1618 /* Check, if the chip supports auto page increment
1619 * or if we have hit a block boundary.
1620 */
1621 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1622 sndcmd = 1;
1623 }
1624
1625 ops->oobretlen = ops->ooblen;
1626 return 0;
1627 }
1628
1629 /**
1630 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1631 * @mtd: MTD device structure
1632 * @from: offset to read from
1633 * @ops: oob operation description structure
1634 *
1635 * NAND read data and/or out-of-band data
1636 */
1637 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1638 struct mtd_oob_ops *ops)
1639 {
1640 struct nand_chip *chip = mtd->priv;
1641 int ret = -ENOTSUPP;
1642
1643 ops->retlen = 0;
1644
1645 /* Do not allow reads past end of device */
1646 if (ops->datbuf && (from + ops->len) > mtd->size) {
1647 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1648 "Attempt read beyond end of device\n");
1649 return -EINVAL;
1650 }
1651
1652 nand_get_device(chip, mtd, FL_READING);
1653
1654 switch(ops->mode) {
1655 case MTD_OOB_PLACE:
1656 case MTD_OOB_AUTO:
1657 case MTD_OOB_RAW:
1658 break;
1659
1660 default:
1661 goto out;
1662 }
1663
1664 if (!ops->datbuf)
1665 ret = nand_do_read_oob(mtd, from, ops);
1666 else
1667 ret = nand_do_read_ops(mtd, from, ops);
1668
1669 out:
1670 nand_release_device(mtd);
1671 return ret;
1672 }
1673
1674
1675 /**
1676 * nand_write_page_raw - [Intern] raw page write function
1677 * @mtd: mtd info structure
1678 * @chip: nand chip info structure
1679 * @buf: data buffer
1680 */
1681 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1682 const uint8_t *buf)
1683 {
1684 chip->write_buf(mtd, buf, mtd->writesize);
1685 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1686 }
1687
1688 /**
1689 * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1690 * @mtd: mtd info structure
1691 * @chip: nand chip info structure
1692 * @buf: data buffer
1693 */
1694 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1695 const uint8_t *buf)
1696 {
1697 int i, eccsize = chip->ecc.size;
1698 int eccbytes = chip->ecc.bytes;
1699 int eccsteps = chip->ecc.steps;
1700 uint8_t *ecc_calc = chip->buffers->ecccalc;
1701 const uint8_t *p = buf;
1702 uint32_t *eccpos = chip->ecc.layout->eccpos;
1703
1704 /* Software ecc calculation */
1705 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1706 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1707
1708 for (i = 0; i < chip->ecc.total; i++)
1709 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1710
1711 chip->ecc.write_page_raw(mtd, chip, buf);
1712 }
1713
1714 /**
1715 * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1716 * @mtd: mtd info structure
1717 * @chip: nand chip info structure
1718 * @buf: data buffer
1719 */
1720 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1721 const uint8_t *buf)
1722 {
1723 int i, eccsize = chip->ecc.size;
1724 int eccbytes = chip->ecc.bytes;
1725 int eccsteps = chip->ecc.steps;
1726 uint8_t *ecc_calc = chip->buffers->ecccalc;
1727 const uint8_t *p = buf;
1728 uint32_t *eccpos = chip->ecc.layout->eccpos;
1729
1730 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1731 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1732 chip->write_buf(mtd, p, eccsize);
1733 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1734 }
1735
1736 for (i = 0; i < chip->ecc.total; i++)
1737 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1738
1739 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1740 }
1741
1742 /**
1743 * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
1744 * @mtd: mtd info structure
1745 * @chip: nand chip info structure
1746 * @buf: data buffer
1747 *
1748 * The hw generator calculates the error syndrome automatically. Therefor
1749 * we need a special oob layout and handling.
1750 */
1751 static void nand_write_page_syndrome(struct mtd_info *mtd,
1752 struct nand_chip *chip, const uint8_t *buf)
1753 {
1754 int i, eccsize = chip->ecc.size;
1755 int eccbytes = chip->ecc.bytes;
1756 int eccsteps = chip->ecc.steps;
1757 const uint8_t *p = buf;
1758 uint8_t *oob = chip->oob_poi;
1759
1760 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1761
1762 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1763 chip->write_buf(mtd, p, eccsize);
1764
1765 if (chip->ecc.prepad) {
1766 chip->write_buf(mtd, oob, chip->ecc.prepad);
1767 oob += chip->ecc.prepad;
1768 }
1769
1770 chip->ecc.calculate(mtd, p, oob);
1771 chip->write_buf(mtd, oob, eccbytes);
1772 oob += eccbytes;
1773
1774 if (chip->ecc.postpad) {
1775 chip->write_buf(mtd, oob, chip->ecc.postpad);
1776 oob += chip->ecc.postpad;
1777 }
1778 }
1779
1780 /* Calculate remaining oob bytes */
1781 i = mtd->oobsize - (oob - chip->oob_poi);
1782 if (i)
1783 chip->write_buf(mtd, oob, i);
1784 }
1785
1786 /**
1787 * nand_write_page - [REPLACEABLE] write one page
1788 * @mtd: MTD device structure
1789 * @chip: NAND chip descriptor
1790 * @buf: the data to write
1791 * @page: page number to write
1792 * @cached: cached programming
1793 * @raw: use _raw version of write_page
1794 */
1795 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1796 const uint8_t *buf, int page, int cached, int raw)
1797 {
1798 int status;
1799
1800 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1801
1802 if (unlikely(raw))
1803 chip->ecc.write_page_raw(mtd, chip, buf);
1804 else
1805 chip->ecc.write_page(mtd, chip, buf);
1806
1807 /*
1808 * Cached progamming disabled for now, Not sure if its worth the
1809 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1810 */
1811 cached = 0;
1812
1813 if (!cached || !(chip->options & NAND_CACHEPRG)) {
1814
1815 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1816 status = chip->waitfunc(mtd, chip);
1817 /*
1818 * See if operation failed and additional status checks are
1819 * available
1820 */
1821 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1822 status = chip->errstat(mtd, chip, FL_WRITING, status,
1823 page);
1824
1825 if (status & NAND_STATUS_FAIL)
1826 return -EIO;
1827 } else {
1828 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
1829 status = chip->waitfunc(mtd, chip);
1830 }
1831
1832 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1833 /* Send command to read back the data */
1834 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1835
1836 if (chip->verify_buf(mtd, buf, mtd->writesize))
1837 return -EIO;
1838 #endif
1839 return 0;
1840 }
1841
1842 /**
1843 * nand_fill_oob - [Internal] Transfer client buffer to oob
1844 * @chip: nand chip structure
1845 * @oob: oob data buffer
1846 * @ops: oob ops structure
1847 */
1848 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob,
1849 struct mtd_oob_ops *ops)
1850 {
1851 size_t len = ops->ooblen;
1852
1853 switch(ops->mode) {
1854
1855 case MTD_OOB_PLACE:
1856 case MTD_OOB_RAW:
1857 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
1858 return oob + len;
1859
1860 case MTD_OOB_AUTO: {
1861 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1862 uint32_t boffs = 0, woffs = ops->ooboffs;
1863 size_t bytes = 0;
1864
1865 for(; free->length && len; free++, len -= bytes) {
1866 /* Write request not from offset 0 ? */
1867 if (unlikely(woffs)) {
1868 if (woffs >= free->length) {
1869 woffs -= free->length;
1870 continue;
1871 }
1872 boffs = free->offset + woffs;
1873 bytes = min_t(size_t, len,
1874 (free->length - woffs));
1875 woffs = 0;
1876 } else {
1877 bytes = min_t(size_t, len, free->length);
1878 boffs = free->offset;
1879 }
1880 memcpy(chip->oob_poi + boffs, oob, bytes);
1881 oob += bytes;
1882 }
1883 return oob;
1884 }
1885 default:
1886 BUG();
1887 }
1888 return NULL;
1889 }
1890
1891 #define NOTALIGNED(x) (x & (chip->subpagesize - 1)) != 0
1892
1893 /**
1894 * nand_do_write_ops - [Internal] NAND write with ECC
1895 * @mtd: MTD device structure
1896 * @to: offset to write to
1897 * @ops: oob operations description structure
1898 *
1899 * NAND write with ECC
1900 */
1901 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
1902 struct mtd_oob_ops *ops)
1903 {
1904 int chipnr, realpage, page, blockmask, column;
1905 struct nand_chip *chip = mtd->priv;
1906 uint32_t writelen = ops->len;
1907 uint8_t *oob = ops->oobbuf;
1908 uint8_t *buf = ops->datbuf;
1909 int ret, subpage;
1910
1911 ops->retlen = 0;
1912 if (!writelen)
1913 return 0;
1914
1915 /* reject writes, which are not page aligned */
1916 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
1917 printk(KERN_NOTICE "nand_write: "
1918 "Attempt to write not page aligned data\n");
1919 return -EINVAL;
1920 }
1921
1922 column = to & (mtd->writesize - 1);
1923 subpage = column || (writelen & (mtd->writesize - 1));
1924
1925 if (subpage && oob)
1926 return -EINVAL;
1927
1928 chipnr = (int)(to >> chip->chip_shift);
1929 chip->select_chip(mtd, chipnr);
1930
1931 /* Check, if it is write protected */
1932 if (nand_check_wp(mtd)) {
1933 printk (KERN_NOTICE "nand_do_write_ops: Device is write protected\n");
1934 return -EIO;
1935 }
1936
1937 realpage = (int)(to >> chip->page_shift);
1938 page = realpage & chip->pagemask;
1939 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1940
1941 /* Invalidate the page cache, when we write to the cached page */
1942 if (to <= (chip->pagebuf << chip->page_shift) &&
1943 (chip->pagebuf << chip->page_shift) < (to + ops->len))
1944 chip->pagebuf = -1;
1945
1946 /* If we're not given explicit OOB data, let it be 0xFF */
1947 if (likely(!oob))
1948 memset(chip->oob_poi, 0xff, mtd->oobsize);
1949
1950 while(1) {
1951 int bytes = mtd->writesize;
1952 int cached = writelen > bytes && page != blockmask;
1953 uint8_t *wbuf = buf;
1954
1955 /* Partial page write ? */
1956 if (unlikely(column || writelen < (mtd->writesize - 1))) {
1957 cached = 0;
1958 bytes = min_t(int, bytes - column, (int) writelen);
1959 chip->pagebuf = -1;
1960 memset(chip->buffers->databuf, 0xff, mtd->writesize);
1961 memcpy(&chip->buffers->databuf[column], buf, bytes);
1962 wbuf = chip->buffers->databuf;
1963 }
1964
1965 if (unlikely(oob))
1966 oob = nand_fill_oob(chip, oob, ops);
1967
1968 ret = chip->write_page(mtd, chip, wbuf, page, cached,
1969 (ops->mode == MTD_OOB_RAW));
1970 if (ret)
1971 break;
1972
1973 writelen -= bytes;
1974 if (!writelen)
1975 break;
1976
1977 column = 0;
1978 buf += bytes;
1979 realpage++;
1980
1981 page = realpage & chip->pagemask;
1982 /* Check, if we cross a chip boundary */
1983 if (!page) {
1984 chipnr++;
1985 chip->select_chip(mtd, -1);
1986 chip->select_chip(mtd, chipnr);
1987 }
1988 }
1989
1990 ops->retlen = ops->len - writelen;
1991 if (unlikely(oob))
1992 ops->oobretlen = ops->ooblen;
1993 return ret;
1994 }
1995
1996 /**
1997 * nand_write - [MTD Interface] NAND write with ECC
1998 * @mtd: MTD device structure
1999 * @to: offset to write to
2000 * @len: number of bytes to write
2001 * @retlen: pointer to variable to store the number of written bytes
2002 * @buf: the data to write
2003 *
2004 * NAND write with ECC
2005 */
2006 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2007 size_t *retlen, const uint8_t *buf)
2008 {
2009 struct nand_chip *chip = mtd->priv;
2010 int ret;
2011
2012 /* Do not allow reads past end of device */
2013 if ((to + len) > mtd->size)
2014 return -EINVAL;
2015 if (!len)
2016 return 0;
2017
2018 nand_get_device(chip, mtd, FL_WRITING);
2019
2020 chip->ops.len = len;
2021 chip->ops.datbuf = (uint8_t *)buf;
2022 chip->ops.oobbuf = NULL;
2023
2024 ret = nand_do_write_ops(mtd, to, &chip->ops);
2025
2026 *retlen = chip->ops.retlen;
2027
2028 nand_release_device(mtd);
2029
2030 return ret;
2031 }
2032
2033 /**
2034 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2035 * @mtd: MTD device structure
2036 * @to: offset to write to
2037 * @ops: oob operation description structure
2038 *
2039 * NAND write out-of-band
2040 */
2041 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2042 struct mtd_oob_ops *ops)
2043 {
2044 int chipnr, page, status, len;
2045 struct nand_chip *chip = mtd->priv;
2046
2047 MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n",
2048 (unsigned int)to, (int)ops->ooblen);
2049
2050 if (ops->mode == MTD_OOB_AUTO)
2051 len = chip->ecc.layout->oobavail;
2052 else
2053 len = mtd->oobsize;
2054
2055 /* Do not allow write past end of page */
2056 if ((ops->ooboffs + ops->ooblen) > len) {
2057 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: "
2058 "Attempt to write past end of page\n");
2059 return -EINVAL;
2060 }
2061
2062 if (unlikely(ops->ooboffs >= len)) {
2063 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
2064 "Attempt to start write outside oob\n");
2065 return -EINVAL;
2066 }
2067
2068 /* Do not allow reads past end of device */
2069 if (unlikely(to >= mtd->size ||
2070 ops->ooboffs + ops->ooblen >
2071 ((mtd->size >> chip->page_shift) -
2072 (to >> chip->page_shift)) * len)) {
2073 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
2074 "Attempt write beyond end of device\n");
2075 return -EINVAL;
2076 }
2077
2078 chipnr = (int)(to >> chip->chip_shift);
2079 chip->select_chip(mtd, chipnr);
2080
2081 /* Shift to get page */
2082 page = (int)(to >> chip->page_shift);
2083
2084 /*
2085 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2086 * of my DiskOnChip 2000 test units) will clear the whole data page too
2087 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2088 * it in the doc2000 driver in August 1999. dwmw2.
2089 */
2090 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2091
2092 /* Check, if it is write protected */
2093 if (nand_check_wp(mtd))
2094 return -EROFS;
2095
2096 /* Invalidate the page cache, if we write to the cached page */
2097 if (page == chip->pagebuf)
2098 chip->pagebuf = -1;
2099
2100 memset(chip->oob_poi, 0xff, mtd->oobsize);
2101 nand_fill_oob(chip, ops->oobbuf, ops);
2102 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2103 memset(chip->oob_poi, 0xff, mtd->oobsize);
2104
2105 if (status)
2106 return status;
2107
2108 ops->oobretlen = ops->ooblen;
2109
2110 return 0;
2111 }
2112
2113 /**
2114 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2115 * @mtd: MTD device structure
2116 * @to: offset to write to
2117 * @ops: oob operation description structure
2118 */
2119 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2120 struct mtd_oob_ops *ops)
2121 {
2122 struct nand_chip *chip = mtd->priv;
2123 int ret = -ENOTSUPP;
2124
2125 ops->retlen = 0;
2126
2127 /* Do not allow writes past end of device */
2128 if (ops->datbuf && (to + ops->len) > mtd->size) {
2129 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
2130 "Attempt read beyond end of device\n");
2131 return -EINVAL;
2132 }
2133
2134 nand_get_device(chip, mtd, FL_WRITING);
2135
2136 switch(ops->mode) {
2137 case MTD_OOB_PLACE:
2138 case MTD_OOB_AUTO:
2139 case MTD_OOB_RAW:
2140 break;
2141
2142 default:
2143 goto out;
2144 }
2145
2146 if (!ops->datbuf)
2147 ret = nand_do_write_oob(mtd, to, ops);
2148 else
2149 ret = nand_do_write_ops(mtd, to, ops);
2150
2151 out:
2152 nand_release_device(mtd);
2153 return ret;
2154 }
2155
2156 /**
2157 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2158 * @mtd: MTD device structure
2159 * @page: the page address of the block which will be erased
2160 *
2161 * Standard erase command for NAND chips
2162 */
2163 static void single_erase_cmd(struct mtd_info *mtd, int page)
2164 {
2165 struct nand_chip *chip = mtd->priv;
2166 /* Send commands to erase a block */
2167 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2168 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2169 }
2170
2171 /**
2172 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2173 * @mtd: MTD device structure
2174 * @page: the page address of the block which will be erased
2175 *
2176 * AND multi block erase command function
2177 * Erase 4 consecutive blocks
2178 */
2179 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2180 {
2181 struct nand_chip *chip = mtd->priv;
2182 /* Send commands to erase a block */
2183 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2184 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2185 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2186 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2187 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2188 }
2189
2190 /**
2191 * nand_erase - [MTD Interface] erase block(s)
2192 * @mtd: MTD device structure
2193 * @instr: erase instruction
2194 *
2195 * Erase one ore more blocks
2196 */
2197 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2198 {
2199 return nand_erase_nand(mtd, instr, 0);
2200 }
2201
2202 #define BBT_PAGE_MASK 0xffffff3f
2203 /**
2204 * nand_erase_nand - [Internal] erase block(s)
2205 * @mtd: MTD device structure
2206 * @instr: erase instruction
2207 * @allowbbt: allow erasing the bbt area
2208 *
2209 * Erase one ore more blocks
2210 */
2211 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2212 int allowbbt)
2213 {
2214 int page, len, status, pages_per_block, ret, chipnr;
2215 struct nand_chip *chip = mtd->priv;
2216 int rewrite_bbt[CONFIG_SYS_NAND_MAX_CHIPS]={0};
2217 unsigned int bbt_masked_page = 0xffffffff;
2218
2219 MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%08x, len = %i\n",
2220 (unsigned int) instr->addr, (unsigned int) instr->len);
2221
2222 /* Start address must align on block boundary */
2223 if (instr->addr & ((1 << chip->phys_erase_shift) - 1)) {
2224 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
2225 return -EINVAL;
2226 }
2227
2228 /* Length must align on block boundary */
2229 if (instr->len & ((1 << chip->phys_erase_shift) - 1)) {
2230 MTDDEBUG (MTD_DEBUG_LEVEL0,
2231 "nand_erase: Length not block aligned\n");
2232 return -EINVAL;
2233 }
2234
2235 /* Do not allow erase past end of device */
2236 if ((instr->len + instr->addr) > mtd->size) {
2237 MTDDEBUG (MTD_DEBUG_LEVEL0,
2238 "nand_erase: Erase past end of device\n");
2239 return -EINVAL;
2240 }
2241
2242 instr->fail_addr = 0xffffffff;
2243
2244 /* Grab the lock and see if the device is available */
2245 nand_get_device(chip, mtd, FL_ERASING);
2246
2247 /* Shift to get first page */
2248 page = (int)(instr->addr >> chip->page_shift);
2249 chipnr = (int)(instr->addr >> chip->chip_shift);
2250
2251 /* Calculate pages in each block */
2252 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2253
2254 /* Select the NAND device */
2255 chip->select_chip(mtd, chipnr);
2256
2257 /* Check, if it is write protected */
2258 if (nand_check_wp(mtd)) {
2259 MTDDEBUG (MTD_DEBUG_LEVEL0,
2260 "nand_erase: Device is write protected!!!\n");
2261 instr->state = MTD_ERASE_FAILED;
2262 goto erase_exit;
2263 }
2264
2265 /*
2266 * If BBT requires refresh, set the BBT page mask to see if the BBT
2267 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2268 * can not be matched. This is also done when the bbt is actually
2269 * erased to avoid recusrsive updates
2270 */
2271 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2272 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2273
2274 /* Loop through the pages */
2275 len = instr->len;
2276
2277 instr->state = MTD_ERASING;
2278
2279 while (len) {
2280 /*
2281 * heck if we have a bad block, we do not erase bad blocks !
2282 */
2283 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2284 chip->page_shift, 0, allowbbt)) {
2285 printk(KERN_WARNING "nand_erase: attempt to erase a "
2286 "bad block at page 0x%08x\n", page);
2287 instr->state = MTD_ERASE_FAILED;
2288 goto erase_exit;
2289 }
2290
2291 /*
2292 * Invalidate the page cache, if we erase the block which
2293 * contains the current cached page
2294 */
2295 if (page <= chip->pagebuf && chip->pagebuf <
2296 (page + pages_per_block))
2297 chip->pagebuf = -1;
2298
2299 chip->erase_cmd(mtd, page & chip->pagemask);
2300
2301 status = chip->waitfunc(mtd, chip);
2302
2303 /*
2304 * See if operation failed and additional status checks are
2305 * available
2306 */
2307 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2308 status = chip->errstat(mtd, chip, FL_ERASING,
2309 status, page);
2310
2311 /* See if block erase succeeded */
2312 if (status & NAND_STATUS_FAIL) {
2313 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_erase: "
2314 "Failed erase, page 0x%08x\n", page);
2315 instr->state = MTD_ERASE_FAILED;
2316 instr->fail_addr = (page << chip->page_shift);
2317 goto erase_exit;
2318 }
2319
2320 /*
2321 * If BBT requires refresh, set the BBT rewrite flag to the
2322 * page being erased
2323 */
2324 if (bbt_masked_page != 0xffffffff &&
2325 (page & BBT_PAGE_MASK) == bbt_masked_page)
2326 rewrite_bbt[chipnr] = (page << chip->page_shift);
2327
2328 /* Increment page address and decrement length */
2329 len -= (1 << chip->phys_erase_shift);
2330 page += pages_per_block;
2331
2332 /* Check, if we cross a chip boundary */
2333 if (len && !(page & chip->pagemask)) {
2334 chipnr++;
2335 chip->select_chip(mtd, -1);
2336 chip->select_chip(mtd, chipnr);
2337
2338 /*
2339 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2340 * page mask to see if this BBT should be rewritten
2341 */
2342 if (bbt_masked_page != 0xffffffff &&
2343 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2344 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2345 BBT_PAGE_MASK;
2346 }
2347 }
2348 instr->state = MTD_ERASE_DONE;
2349
2350 erase_exit:
2351
2352 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2353
2354 /* Deselect and wake up anyone waiting on the device */
2355 nand_release_device(mtd);
2356
2357 /* Do call back function */
2358 if (!ret)
2359 mtd_erase_callback(instr);
2360
2361 /*
2362 * If BBT requires refresh and erase was successful, rewrite any
2363 * selected bad block tables
2364 */
2365 if (bbt_masked_page == 0xffffffff || ret)
2366 return ret;
2367
2368 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2369 if (!rewrite_bbt[chipnr])
2370 continue;
2371 /* update the BBT for chip */
2372 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt "
2373 "(%d:0x%0x 0x%0x)\n", chipnr, rewrite_bbt[chipnr],
2374 chip->bbt_td->pages[chipnr]);
2375 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2376 }
2377
2378 /* Return more or less happy */
2379 return ret;
2380 }
2381
2382 /**
2383 * nand_sync - [MTD Interface] sync
2384 * @mtd: MTD device structure
2385 *
2386 * Sync is actually a wait for chip ready function
2387 */
2388 static void nand_sync(struct mtd_info *mtd)
2389 {
2390 struct nand_chip *chip = mtd->priv;
2391
2392 MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n");
2393
2394 /* Grab the lock and see if the device is available */
2395 nand_get_device(chip, mtd, FL_SYNCING);
2396 /* Release it and go back */
2397 nand_release_device(mtd);
2398 }
2399
2400 /**
2401 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2402 * @mtd: MTD device structure
2403 * @offs: offset relative to mtd start
2404 */
2405 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2406 {
2407 /* Check for invalid offset */
2408 if (offs > mtd->size)
2409 return -EINVAL;
2410
2411 return nand_block_checkbad(mtd, offs, 1, 0);
2412 }
2413
2414 /**
2415 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2416 * @mtd: MTD device structure
2417 * @ofs: offset relative to mtd start
2418 */
2419 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2420 {
2421 struct nand_chip *chip = mtd->priv;
2422 int ret;
2423
2424 if ((ret = nand_block_isbad(mtd, ofs))) {
2425 /* If it was bad already, return success and do nothing. */
2426 if (ret > 0)
2427 return 0;
2428 return ret;
2429 }
2430
2431 return chip->block_markbad(mtd, ofs);
2432 }
2433
2434 /**
2435 * nand_suspend - [MTD Interface] Suspend the NAND flash
2436 * @mtd: MTD device structure
2437 */
2438 static int nand_suspend(struct mtd_info *mtd)
2439 {
2440 struct nand_chip *chip = mtd->priv;
2441
2442 return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2443 }
2444
2445 /**
2446 * nand_resume - [MTD Interface] Resume the NAND flash
2447 * @mtd: MTD device structure
2448 */
2449 static void nand_resume(struct mtd_info *mtd)
2450 {
2451 struct nand_chip *chip = mtd->priv;
2452
2453 if (chip->state == FL_PM_SUSPENDED)
2454 nand_release_device(mtd);
2455 else
2456 printk(KERN_ERR "nand_resume() called for a chip which is not "
2457 "in suspended state\n");
2458 }
2459
2460 /*
2461 * Set default functions
2462 */
2463 static void nand_set_defaults(struct nand_chip *chip, int busw)
2464 {
2465 /* check for proper chip_delay setup, set 20us if not */
2466 if (!chip->chip_delay)
2467 chip->chip_delay = 20;
2468
2469 /* check, if a user supplied command function given */
2470 if (chip->cmdfunc == NULL)
2471 chip->cmdfunc = nand_command;
2472
2473 /* check, if a user supplied wait function given */
2474 if (chip->waitfunc == NULL)
2475 chip->waitfunc = nand_wait;
2476
2477 if (!chip->select_chip)
2478 chip->select_chip = nand_select_chip;
2479 if (!chip->read_byte)
2480 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2481 if (!chip->read_word)
2482 chip->read_word = nand_read_word;
2483 if (!chip->block_bad)
2484 chip->block_bad = nand_block_bad;
2485 if (!chip->block_markbad)
2486 chip->block_markbad = nand_default_block_markbad;
2487 if (!chip->write_buf)
2488 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2489 if (!chip->read_buf)
2490 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2491 if (!chip->verify_buf)
2492 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2493 if (!chip->scan_bbt)
2494 chip->scan_bbt = nand_default_bbt;
2495
2496 if (!chip->controller) {
2497 chip->controller = &chip->hwcontrol;
2498
2499 /* XXX U-BOOT XXX */
2500 #if 0
2501 spin_lock_init(&chip->controller->lock);
2502 init_waitqueue_head(&chip->controller->wq);
2503 #endif
2504 }
2505
2506 }
2507
2508 /*
2509 * Get the flash and manufacturer id and lookup if the type is supported
2510 */
2511 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2512 struct nand_chip *chip,
2513 int busw, int *maf_id)
2514 {
2515 struct nand_flash_dev *type = NULL;
2516 int i, dev_id, maf_idx;
2517 int tmp_id, tmp_manf;
2518
2519 /* Select the device */
2520 chip->select_chip(mtd, 0);
2521
2522 /*
2523 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2524 * after power-up
2525 */
2526 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2527
2528 /* Send the command for reading device ID */
2529 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2530
2531 /* Read manufacturer and device IDs */
2532 *maf_id = chip->read_byte(mtd);
2533 dev_id = chip->read_byte(mtd);
2534
2535 /* Try again to make sure, as some systems the bus-hold or other
2536 * interface concerns can cause random data which looks like a
2537 * possibly credible NAND flash to appear. If the two results do
2538 * not match, ignore the device completely.
2539 */
2540
2541 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2542
2543 /* Read manufacturer and device IDs */
2544
2545 tmp_manf = chip->read_byte(mtd);
2546 tmp_id = chip->read_byte(mtd);
2547
2548 if (tmp_manf != *maf_id || tmp_id != dev_id) {
2549 printk(KERN_INFO "%s: second ID read did not match "
2550 "%02x,%02x against %02x,%02x\n", __func__,
2551 *maf_id, dev_id, tmp_manf, tmp_id);
2552 return ERR_PTR(-ENODEV);
2553 }
2554
2555 /* Lookup the flash id */
2556 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2557 if (dev_id == nand_flash_ids[i].id) {
2558 type = &nand_flash_ids[i];
2559 break;
2560 }
2561 }
2562
2563 if (!type)
2564 return ERR_PTR(-ENODEV);
2565
2566 if (!mtd->name)
2567 mtd->name = type->name;
2568
2569 chip->chipsize = type->chipsize << 20;
2570
2571 /* Newer devices have all the information in additional id bytes */
2572 if (!type->pagesize) {
2573 int extid;
2574 /* The 3rd id byte holds MLC / multichip data */
2575 chip->cellinfo = chip->read_byte(mtd);
2576 /* The 4th id byte is the important one */
2577 extid = chip->read_byte(mtd);
2578 /* Calc pagesize */
2579 mtd->writesize = 1024 << (extid & 0x3);
2580 extid >>= 2;
2581 /* Calc oobsize */
2582 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
2583 extid >>= 2;
2584 /* Calc blocksize. Blocksize is multiples of 64KiB */
2585 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2586 extid >>= 2;
2587 /* Get buswidth information */
2588 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2589
2590 } else {
2591 /*
2592 * Old devices have chip data hardcoded in the device id table
2593 */
2594 mtd->erasesize = type->erasesize;
2595 mtd->writesize = type->pagesize;
2596 mtd->oobsize = mtd->writesize / 32;
2597 busw = type->options & NAND_BUSWIDTH_16;
2598 }
2599
2600 /* Try to identify manufacturer */
2601 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
2602 if (nand_manuf_ids[maf_idx].id == *maf_id)
2603 break;
2604 }
2605
2606 /*
2607 * Check, if buswidth is correct. Hardware drivers should set
2608 * chip correct !
2609 */
2610 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2611 printk(KERN_INFO "NAND device: Manufacturer ID:"
2612 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2613 dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2614 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2615 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2616 busw ? 16 : 8);
2617 return ERR_PTR(-EINVAL);
2618 }
2619
2620 /* Calculate the address shift from the page size */
2621 chip->page_shift = ffs(mtd->writesize) - 1;
2622 /* Convert chipsize to number of pages per chip -1. */
2623 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2624
2625 chip->bbt_erase_shift = chip->phys_erase_shift =
2626 ffs(mtd->erasesize) - 1;
2627 chip->chip_shift = ffs(chip->chipsize) - 1;
2628
2629 /* Set the bad block position */
2630 chip->badblockpos = mtd->writesize > 512 ?
2631 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2632
2633 /* Get chip options, preserve non chip based options */
2634 chip->options &= ~NAND_CHIPOPTIONS_MSK;
2635 chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2636
2637 /*
2638 * Set chip as a default. Board drivers can override it, if necessary
2639 */
2640 chip->options |= NAND_NO_AUTOINCR;
2641
2642 /* Check if chip is a not a samsung device. Do not clear the
2643 * options for chips which are not having an extended id.
2644 */
2645 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2646 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2647
2648 /* Check for AND chips with 4 page planes */
2649 if (chip->options & NAND_4PAGE_ARRAY)
2650 chip->erase_cmd = multi_erase_cmd;
2651 else
2652 chip->erase_cmd = single_erase_cmd;
2653
2654 /* Do not replace user supplied command function ! */
2655 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2656 chip->cmdfunc = nand_command_lp;
2657
2658 MTDDEBUG (MTD_DEBUG_LEVEL0, "NAND device: Manufacturer ID:"
2659 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2660 nand_manuf_ids[maf_idx].name, type->name);
2661
2662 return type;
2663 }
2664
2665 /**
2666 * nand_scan_ident - [NAND Interface] Scan for the NAND device
2667 * @mtd: MTD device structure
2668 * @maxchips: Number of chips to scan for
2669 *
2670 * This is the first phase of the normal nand_scan() function. It
2671 * reads the flash ID and sets up MTD fields accordingly.
2672 *
2673 * The mtd->owner field must be set to the module of the caller.
2674 */
2675 int nand_scan_ident(struct mtd_info *mtd, int maxchips)
2676 {
2677 int i, busw, nand_maf_id;
2678 struct nand_chip *chip = mtd->priv;
2679 struct nand_flash_dev *type;
2680
2681 /* Get buswidth to select the correct functions */
2682 busw = chip->options & NAND_BUSWIDTH_16;
2683 /* Set the default functions */
2684 nand_set_defaults(chip, busw);
2685
2686 /* Read the flash type */
2687 type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id);
2688
2689 if (IS_ERR(type)) {
2690 #ifndef CONFIG_SYS_NAND_QUIET_TEST
2691 printk(KERN_WARNING "No NAND device found!!!\n");
2692 #endif
2693 chip->select_chip(mtd, -1);
2694 return PTR_ERR(type);
2695 }
2696
2697 /* Check for a chip array */
2698 for (i = 1; i < maxchips; i++) {
2699 chip->select_chip(mtd, i);
2700 /* See comment in nand_get_flash_type for reset */
2701 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2702 /* Send the command for reading device ID */
2703 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2704 /* Read manufacturer and device IDs */
2705 if (nand_maf_id != chip->read_byte(mtd) ||
2706 type->id != chip->read_byte(mtd))
2707 break;
2708 }
2709 #ifdef DEBUG
2710 if (i > 1)
2711 printk(KERN_INFO "%d NAND chips detected\n", i);
2712 #endif
2713
2714 /* Store the number of chips and calc total size for mtd */
2715 chip->numchips = i;
2716 mtd->size = i * chip->chipsize;
2717
2718 return 0;
2719 }
2720
2721
2722 /**
2723 * nand_scan_tail - [NAND Interface] Scan for the NAND device
2724 * @mtd: MTD device structure
2725 * @maxchips: Number of chips to scan for
2726 *
2727 * This is the second phase of the normal nand_scan() function. It
2728 * fills out all the uninitialized function pointers with the defaults
2729 * and scans for a bad block table if appropriate.
2730 */
2731 int nand_scan_tail(struct mtd_info *mtd)
2732 {
2733 int i;
2734 struct nand_chip *chip = mtd->priv;
2735
2736 if (!(chip->options & NAND_OWN_BUFFERS))
2737 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
2738 if (!chip->buffers)
2739 return -ENOMEM;
2740
2741 /* Set the internal oob buffer location, just after the page data */
2742 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
2743
2744 /*
2745 * If no default placement scheme is given, select an appropriate one
2746 */
2747 if (!chip->ecc.layout) {
2748 switch (mtd->oobsize) {
2749 case 8:
2750 chip->ecc.layout = &nand_oob_8;
2751 break;
2752 case 16:
2753 chip->ecc.layout = &nand_oob_16;
2754 break;
2755 case 64:
2756 chip->ecc.layout = &nand_oob_64;
2757 break;
2758 case 128:
2759 chip->ecc.layout = &nand_oob_128;
2760 break;
2761 default:
2762 printk(KERN_WARNING "No oob scheme defined for "
2763 "oobsize %d\n", mtd->oobsize);
2764 /* BUG(); */
2765 }
2766 }
2767
2768 if (!chip->write_page)
2769 chip->write_page = nand_write_page;
2770
2771 /*
2772 * check ECC mode, default to software if 3byte/512byte hardware ECC is
2773 * selected and we have 256 byte pagesize fallback to software ECC
2774 */
2775 if (!chip->ecc.read_page_raw)
2776 chip->ecc.read_page_raw = nand_read_page_raw;
2777 if (!chip->ecc.write_page_raw)
2778 chip->ecc.write_page_raw = nand_write_page_raw;
2779
2780 switch (chip->ecc.mode) {
2781 case NAND_ECC_HW_OOB_FIRST:
2782 /* Similar to NAND_ECC_HW, but a separate read_page handle */
2783 if (!chip->ecc.calculate || !chip->ecc.correct ||
2784 !chip->ecc.hwctl) {
2785 printk(KERN_WARNING "No ECC functions supplied, "
2786 "Hardware ECC not possible\n");
2787 BUG();
2788 }
2789 if (!chip->ecc.read_page)
2790 chip->ecc.read_page = nand_read_page_hwecc_oob_first;
2791
2792 case NAND_ECC_HW:
2793 /* Use standard hwecc read page function ? */
2794 if (!chip->ecc.read_page)
2795 chip->ecc.read_page = nand_read_page_hwecc;
2796 if (!chip->ecc.write_page)
2797 chip->ecc.write_page = nand_write_page_hwecc;
2798 if (!chip->ecc.read_oob)
2799 chip->ecc.read_oob = nand_read_oob_std;
2800 if (!chip->ecc.write_oob)
2801 chip->ecc.write_oob = nand_write_oob_std;
2802
2803 case NAND_ECC_HW_SYNDROME:
2804 if ((!chip->ecc.calculate || !chip->ecc.correct ||
2805 !chip->ecc.hwctl) &&
2806 (!chip->ecc.read_page ||
2807 chip->ecc.read_page == nand_read_page_hwecc ||
2808 !chip->ecc.write_page ||
2809 chip->ecc.write_page == nand_write_page_hwecc)) {
2810 printk(KERN_WARNING "No ECC functions supplied, "
2811 "Hardware ECC not possible\n");
2812 BUG();
2813 }
2814 /* Use standard syndrome read/write page function ? */
2815 if (!chip->ecc.read_page)
2816 chip->ecc.read_page = nand_read_page_syndrome;
2817 if (!chip->ecc.write_page)
2818 chip->ecc.write_page = nand_write_page_syndrome;
2819 if (!chip->ecc.read_oob)
2820 chip->ecc.read_oob = nand_read_oob_syndrome;
2821 if (!chip->ecc.write_oob)
2822 chip->ecc.write_oob = nand_write_oob_syndrome;
2823
2824 if (mtd->writesize >= chip->ecc.size)
2825 break;
2826 printk(KERN_WARNING "%d byte HW ECC not possible on "
2827 "%d byte page size, fallback to SW ECC\n",
2828 chip->ecc.size, mtd->writesize);
2829 chip->ecc.mode = NAND_ECC_SOFT;
2830
2831 case NAND_ECC_SOFT:
2832 chip->ecc.calculate = nand_calculate_ecc;
2833 chip->ecc.correct = nand_correct_data;
2834 chip->ecc.read_page = nand_read_page_swecc;
2835 chip->ecc.read_subpage = nand_read_subpage;
2836 chip->ecc.write_page = nand_write_page_swecc;
2837 chip->ecc.read_oob = nand_read_oob_std;
2838 chip->ecc.write_oob = nand_write_oob_std;
2839 chip->ecc.size = 256;
2840 chip->ecc.bytes = 3;
2841 break;
2842
2843 case NAND_ECC_NONE:
2844 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
2845 "This is not recommended !!\n");
2846 chip->ecc.read_page = nand_read_page_raw;
2847 chip->ecc.write_page = nand_write_page_raw;
2848 chip->ecc.read_oob = nand_read_oob_std;
2849 chip->ecc.write_oob = nand_write_oob_std;
2850 chip->ecc.size = mtd->writesize;
2851 chip->ecc.bytes = 0;
2852 break;
2853
2854 default:
2855 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
2856 chip->ecc.mode);
2857 BUG();
2858 }
2859
2860 /*
2861 * The number of bytes available for a client to place data into
2862 * the out of band area
2863 */
2864 chip->ecc.layout->oobavail = 0;
2865 for (i = 0; chip->ecc.layout->oobfree[i].length; i++)
2866 chip->ecc.layout->oobavail +=
2867 chip->ecc.layout->oobfree[i].length;
2868 mtd->oobavail = chip->ecc.layout->oobavail;
2869
2870 /*
2871 * Set the number of read / write steps for one page depending on ECC
2872 * mode
2873 */
2874 chip->ecc.steps = mtd->writesize / chip->ecc.size;
2875 if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
2876 printk(KERN_WARNING "Invalid ecc parameters\n");
2877 BUG();
2878 }
2879 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
2880
2881 /*
2882 * Allow subpage writes up to ecc.steps. Not possible for MLC
2883 * FLASH.
2884 */
2885 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2886 !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
2887 switch(chip->ecc.steps) {
2888 case 2:
2889 mtd->subpage_sft = 1;
2890 break;
2891 case 4:
2892 case 8:
2893 mtd->subpage_sft = 2;
2894 break;
2895 }
2896 }
2897 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
2898
2899 /* Initialize state */
2900 chip->state = FL_READY;
2901
2902 /* De-select the device */
2903 chip->select_chip(mtd, -1);
2904
2905 /* Invalidate the pagebuffer reference */
2906 chip->pagebuf = -1;
2907
2908 /* Fill in remaining MTD driver data */
2909 mtd->type = MTD_NANDFLASH;
2910 mtd->flags = MTD_CAP_NANDFLASH;
2911 mtd->erase = nand_erase;
2912 mtd->point = NULL;
2913 mtd->unpoint = NULL;
2914 mtd->read = nand_read;
2915 mtd->write = nand_write;
2916 mtd->read_oob = nand_read_oob;
2917 mtd->write_oob = nand_write_oob;
2918 mtd->sync = nand_sync;
2919 mtd->lock = NULL;
2920 mtd->unlock = NULL;
2921 mtd->suspend = nand_suspend;
2922 mtd->resume = nand_resume;
2923 mtd->block_isbad = nand_block_isbad;
2924 mtd->block_markbad = nand_block_markbad;
2925
2926 /* propagate ecc.layout to mtd_info */
2927 mtd->ecclayout = chip->ecc.layout;
2928
2929 /* Check, if we should skip the bad block table scan */
2930 if (chip->options & NAND_SKIP_BBTSCAN)
2931 chip->options |= NAND_BBT_SCANNED;
2932
2933 return 0;
2934 }
2935
2936 /* module_text_address() isn't exported, and it's mostly a pointless
2937 test if this is a module _anyway_ -- they'd have to try _really_ hard
2938 to call us from in-kernel code if the core NAND support is modular. */
2939 #ifdef MODULE
2940 #define caller_is_module() (1)
2941 #else
2942 #define caller_is_module() \
2943 module_text_address((unsigned long)__builtin_return_address(0))
2944 #endif
2945
2946 /**
2947 * nand_scan - [NAND Interface] Scan for the NAND device
2948 * @mtd: MTD device structure
2949 * @maxchips: Number of chips to scan for
2950 *
2951 * This fills out all the uninitialized function pointers
2952 * with the defaults.
2953 * The flash ID is read and the mtd/chip structures are
2954 * filled with the appropriate values.
2955 * The mtd->owner field must be set to the module of the caller
2956 *
2957 */
2958 int nand_scan(struct mtd_info *mtd, int maxchips)
2959 {
2960 int ret;
2961
2962 /* Many callers got this wrong, so check for it for a while... */
2963 /* XXX U-BOOT XXX */
2964 #if 0
2965 if (!mtd->owner && caller_is_module()) {
2966 printk(KERN_CRIT "nand_scan() called with NULL mtd->owner!\n");
2967 BUG();
2968 }
2969 #endif
2970
2971 ret = nand_scan_ident(mtd, maxchips);
2972 if (!ret)
2973 ret = nand_scan_tail(mtd);
2974 return ret;
2975 }
2976
2977 /**
2978 * nand_release - [NAND Interface] Free resources held by the NAND device
2979 * @mtd: MTD device structure
2980 */
2981 void nand_release(struct mtd_info *mtd)
2982 {
2983 struct nand_chip *chip = mtd->priv;
2984
2985 #ifdef CONFIG_MTD_PARTITIONS
2986 /* Deregister partitions */
2987 del_mtd_partitions(mtd);
2988 #endif
2989 /* Deregister the device */
2990 /* XXX U-BOOT XXX */
2991 #if 0
2992 del_mtd_device(mtd);
2993 #endif
2994
2995 /* Free bad block table memory */
2996 kfree(chip->bbt);
2997 if (!(chip->options & NAND_OWN_BUFFERS))
2998 kfree(chip->buffers);
2999 }
3000
3001 /* XXX U-BOOT XXX */
3002 #if 0
3003 EXPORT_SYMBOL_GPL(nand_scan);
3004 EXPORT_SYMBOL_GPL(nand_scan_ident);
3005 EXPORT_SYMBOL_GPL(nand_scan_tail);
3006 EXPORT_SYMBOL_GPL(nand_release);
3007
3008 static int __init nand_base_init(void)
3009 {
3010 led_trigger_register_simple("nand-disk", &nand_led_trigger);
3011 return 0;
3012 }
3013
3014 static void __exit nand_base_exit(void)
3015 {
3016 led_trigger_unregister_simple(nand_led_trigger);
3017 }
3018
3019 module_init(nand_base_init);
3020 module_exit(nand_base_exit);
3021
3022 MODULE_LICENSE("GPL");
3023 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
3024 MODULE_DESCRIPTION("Generic NAND flash driver code");
3025 #endif