]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/nand_base.c
Merge branch 'master' of git://git.denx.de/u-boot-microblaze
[people/ms/u-boot.git] / drivers / mtd / nand / nand_base.c
1 /*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
8 *
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/doc/nand.html
11 *
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
14 *
15 * Credits:
16 * David Woodhouse for adding multichip support
17 *
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
20 *
21 * TODO:
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 * BBT table is not serialized, has to be fixed
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
32 *
33 */
34
35 #include <common.h>
36
37 #define ENOTSUPP 524 /* Operation is not supported */
38
39 #include <malloc.h>
40 #include <watchdog.h>
41 #include <linux/err.h>
42 #include <linux/mtd/compat.h>
43 #include <linux/mtd/mtd.h>
44 #include <linux/mtd/nand.h>
45 #include <linux/mtd/nand_ecc.h>
46
47 #ifdef CONFIG_MTD_PARTITIONS
48 #include <linux/mtd/partitions.h>
49 #endif
50
51 #include <asm/io.h>
52 #include <asm/errno.h>
53
54 /*
55 * CONFIG_SYS_NAND_RESET_CNT is used as a timeout mechanism when resetting
56 * a flash. NAND flash is initialized prior to interrupts so standard timers
57 * can't be used. CONFIG_SYS_NAND_RESET_CNT should be set to a value
58 * which is greater than (max NAND reset time / NAND status read time).
59 * A conservative default of 200000 (500 us / 25 ns) is used as a default.
60 */
61 #ifndef CONFIG_SYS_NAND_RESET_CNT
62 #define CONFIG_SYS_NAND_RESET_CNT 200000
63 #endif
64
65 /* Define default oob placement schemes for large and small page devices */
66 static struct nand_ecclayout nand_oob_8 = {
67 .eccbytes = 3,
68 .eccpos = {0, 1, 2},
69 .oobfree = {
70 {.offset = 3,
71 .length = 2},
72 {.offset = 6,
73 .length = 2}}
74 };
75
76 static struct nand_ecclayout nand_oob_16 = {
77 .eccbytes = 6,
78 .eccpos = {0, 1, 2, 3, 6, 7},
79 .oobfree = {
80 {.offset = 8,
81 . length = 8}}
82 };
83
84 static struct nand_ecclayout nand_oob_64 = {
85 .eccbytes = 24,
86 .eccpos = {
87 40, 41, 42, 43, 44, 45, 46, 47,
88 48, 49, 50, 51, 52, 53, 54, 55,
89 56, 57, 58, 59, 60, 61, 62, 63},
90 .oobfree = {
91 {.offset = 2,
92 .length = 38}}
93 };
94
95 static struct nand_ecclayout nand_oob_128 = {
96 .eccbytes = 48,
97 .eccpos = {
98 80, 81, 82, 83, 84, 85, 86, 87,
99 88, 89, 90, 91, 92, 93, 94, 95,
100 96, 97, 98, 99, 100, 101, 102, 103,
101 104, 105, 106, 107, 108, 109, 110, 111,
102 112, 113, 114, 115, 116, 117, 118, 119,
103 120, 121, 122, 123, 124, 125, 126, 127},
104 .oobfree = {
105 {.offset = 2,
106 .length = 78}}
107 };
108
109
110 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
111 int new_state);
112
113 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
114 struct mtd_oob_ops *ops);
115
116 static int nand_wait(struct mtd_info *mtd, struct nand_chip *this);
117
118 /**
119 * nand_release_device - [GENERIC] release chip
120 * @mtd: MTD device structure
121 *
122 * Deselect, release chip lock and wake up anyone waiting on the device
123 */
124 static void nand_release_device (struct mtd_info *mtd)
125 {
126 struct nand_chip *this = mtd->priv;
127 this->select_chip(mtd, -1); /* De-select the NAND device */
128 }
129
130 /**
131 * nand_read_byte - [DEFAULT] read one byte from the chip
132 * @mtd: MTD device structure
133 *
134 * Default read function for 8bit buswith
135 */
136 static uint8_t nand_read_byte(struct mtd_info *mtd)
137 {
138 struct nand_chip *chip = mtd->priv;
139 return readb(chip->IO_ADDR_R);
140 }
141
142 /**
143 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
144 * @mtd: MTD device structure
145 *
146 * Default read function for 16bit buswith with
147 * endianess conversion
148 */
149 static uint8_t nand_read_byte16(struct mtd_info *mtd)
150 {
151 struct nand_chip *chip = mtd->priv;
152 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
153 }
154
155 /**
156 * nand_read_word - [DEFAULT] read one word from the chip
157 * @mtd: MTD device structure
158 *
159 * Default read function for 16bit buswith without
160 * endianess conversion
161 */
162 static u16 nand_read_word(struct mtd_info *mtd)
163 {
164 struct nand_chip *chip = mtd->priv;
165 return readw(chip->IO_ADDR_R);
166 }
167
168 /**
169 * nand_select_chip - [DEFAULT] control CE line
170 * @mtd: MTD device structure
171 * @chipnr: chipnumber to select, -1 for deselect
172 *
173 * Default select function for 1 chip devices.
174 */
175 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
176 {
177 struct nand_chip *chip = mtd->priv;
178
179 switch (chipnr) {
180 case -1:
181 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
182 break;
183 case 0:
184 break;
185
186 default:
187 BUG();
188 }
189 }
190
191 /**
192 * nand_write_buf - [DEFAULT] write buffer to chip
193 * @mtd: MTD device structure
194 * @buf: data buffer
195 * @len: number of bytes to write
196 *
197 * Default write function for 8bit buswith
198 */
199 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
200 {
201 int i;
202 struct nand_chip *chip = mtd->priv;
203
204 for (i = 0; i < len; i++)
205 writeb(buf[i], chip->IO_ADDR_W);
206 }
207
208 /**
209 * nand_read_buf - [DEFAULT] read chip data into buffer
210 * @mtd: MTD device structure
211 * @buf: buffer to store date
212 * @len: number of bytes to read
213 *
214 * Default read function for 8bit buswith
215 */
216 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
217 {
218 int i;
219 struct nand_chip *chip = mtd->priv;
220
221 for (i = 0; i < len; i++)
222 buf[i] = readb(chip->IO_ADDR_R);
223 }
224
225 /**
226 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
227 * @mtd: MTD device structure
228 * @buf: buffer containing the data to compare
229 * @len: number of bytes to compare
230 *
231 * Default verify function for 8bit buswith
232 */
233 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
234 {
235 int i;
236 struct nand_chip *chip = mtd->priv;
237
238 for (i = 0; i < len; i++)
239 if (buf[i] != readb(chip->IO_ADDR_R))
240 return -EFAULT;
241 return 0;
242 }
243
244 /**
245 * nand_write_buf16 - [DEFAULT] write buffer to chip
246 * @mtd: MTD device structure
247 * @buf: data buffer
248 * @len: number of bytes to write
249 *
250 * Default write function for 16bit buswith
251 */
252 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
253 {
254 int i;
255 struct nand_chip *chip = mtd->priv;
256 u16 *p = (u16 *) buf;
257 len >>= 1;
258
259 for (i = 0; i < len; i++)
260 writew(p[i], chip->IO_ADDR_W);
261
262 }
263
264 /**
265 * nand_read_buf16 - [DEFAULT] read chip data into buffer
266 * @mtd: MTD device structure
267 * @buf: buffer to store date
268 * @len: number of bytes to read
269 *
270 * Default read function for 16bit buswith
271 */
272 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
273 {
274 int i;
275 struct nand_chip *chip = mtd->priv;
276 u16 *p = (u16 *) buf;
277 len >>= 1;
278
279 for (i = 0; i < len; i++)
280 p[i] = readw(chip->IO_ADDR_R);
281 }
282
283 /**
284 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
285 * @mtd: MTD device structure
286 * @buf: buffer containing the data to compare
287 * @len: number of bytes to compare
288 *
289 * Default verify function for 16bit buswith
290 */
291 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
292 {
293 int i;
294 struct nand_chip *chip = mtd->priv;
295 u16 *p = (u16 *) buf;
296 len >>= 1;
297
298 for (i = 0; i < len; i++)
299 if (p[i] != readw(chip->IO_ADDR_R))
300 return -EFAULT;
301
302 return 0;
303 }
304
305 /**
306 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
307 * @mtd: MTD device structure
308 * @ofs: offset from device start
309 * @getchip: 0, if the chip is already selected
310 *
311 * Check, if the block is bad.
312 */
313 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
314 {
315 int page, chipnr, res = 0;
316 struct nand_chip *chip = mtd->priv;
317 u16 bad;
318
319 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
320
321 if (getchip) {
322 chipnr = (int)(ofs >> chip->chip_shift);
323
324 nand_get_device(chip, mtd, FL_READING);
325
326 /* Select the NAND device */
327 chip->select_chip(mtd, chipnr);
328 }
329
330 if (chip->options & NAND_BUSWIDTH_16) {
331 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
332 page);
333 bad = cpu_to_le16(chip->read_word(mtd));
334 if (chip->badblockpos & 0x1)
335 bad >>= 8;
336 if ((bad & 0xFF) != 0xff)
337 res = 1;
338 } else {
339 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
340 if (chip->read_byte(mtd) != 0xff)
341 res = 1;
342 }
343
344 if (getchip)
345 nand_release_device(mtd);
346
347 return res;
348 }
349
350 /**
351 * nand_default_block_markbad - [DEFAULT] mark a block bad
352 * @mtd: MTD device structure
353 * @ofs: offset from device start
354 *
355 * This is the default implementation, which can be overridden by
356 * a hardware specific driver.
357 */
358 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
359 {
360 struct nand_chip *chip = mtd->priv;
361 uint8_t buf[2] = { 0, 0 };
362 int block, ret;
363
364 /* Get block number */
365 block = (int)(ofs >> chip->bbt_erase_shift);
366 if (chip->bbt)
367 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
368
369 /* Do we have a flash based bad block table ? */
370 if (chip->options & NAND_USE_FLASH_BBT)
371 ret = nand_update_bbt(mtd, ofs);
372 else {
373 /* We write two bytes, so we dont have to mess with 16 bit
374 * access
375 */
376 nand_get_device(chip, mtd, FL_WRITING);
377 ofs += mtd->oobsize;
378 chip->ops.len = chip->ops.ooblen = 2;
379 chip->ops.datbuf = NULL;
380 chip->ops.oobbuf = buf;
381 chip->ops.ooboffs = chip->badblockpos & ~0x01;
382
383 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
384 nand_release_device(mtd);
385 }
386 if (!ret)
387 mtd->ecc_stats.badblocks++;
388
389 return ret;
390 }
391
392 /**
393 * nand_check_wp - [GENERIC] check if the chip is write protected
394 * @mtd: MTD device structure
395 * Check, if the device is write protected
396 *
397 * The function expects, that the device is already selected
398 */
399 static int nand_check_wp(struct mtd_info *mtd)
400 {
401 struct nand_chip *chip = mtd->priv;
402 /* Check the WP bit */
403 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
404 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
405 }
406
407 /**
408 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
409 * @mtd: MTD device structure
410 * @ofs: offset from device start
411 * @getchip: 0, if the chip is already selected
412 * @allowbbt: 1, if its allowed to access the bbt area
413 *
414 * Check, if the block is bad. Either by reading the bad block table or
415 * calling of the scan function.
416 */
417 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
418 int allowbbt)
419 {
420 struct nand_chip *chip = mtd->priv;
421
422 if (!(chip->options & NAND_BBT_SCANNED)) {
423 chip->options |= NAND_BBT_SCANNED;
424 chip->scan_bbt(mtd);
425 }
426
427 if (!chip->bbt)
428 return chip->block_bad(mtd, ofs, getchip);
429
430 /* Return info from the table */
431 return nand_isbad_bbt(mtd, ofs, allowbbt);
432 }
433
434 /*
435 * Wait for the ready pin, after a command
436 * The timeout is catched later.
437 */
438 void nand_wait_ready(struct mtd_info *mtd)
439 {
440 struct nand_chip *chip = mtd->priv;
441 u32 timeo = (CONFIG_SYS_HZ * 20) / 1000;
442
443 reset_timer();
444
445 /* wait until command is processed or timeout occures */
446 while (get_timer(0) < timeo) {
447 if (chip->dev_ready)
448 if (chip->dev_ready(mtd))
449 break;
450 }
451 }
452
453 /**
454 * nand_command - [DEFAULT] Send command to NAND device
455 * @mtd: MTD device structure
456 * @command: the command to be sent
457 * @column: the column address for this command, -1 if none
458 * @page_addr: the page address for this command, -1 if none
459 *
460 * Send command to NAND device. This function is used for small page
461 * devices (256/512 Bytes per page)
462 */
463 static void nand_command(struct mtd_info *mtd, unsigned int command,
464 int column, int page_addr)
465 {
466 register struct nand_chip *chip = mtd->priv;
467 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
468 uint32_t rst_sts_cnt = CONFIG_SYS_NAND_RESET_CNT;
469
470 /*
471 * Write out the command to the device.
472 */
473 if (command == NAND_CMD_SEQIN) {
474 int readcmd;
475
476 if (column >= mtd->writesize) {
477 /* OOB area */
478 column -= mtd->writesize;
479 readcmd = NAND_CMD_READOOB;
480 } else if (column < 256) {
481 /* First 256 bytes --> READ0 */
482 readcmd = NAND_CMD_READ0;
483 } else {
484 column -= 256;
485 readcmd = NAND_CMD_READ1;
486 }
487 chip->cmd_ctrl(mtd, readcmd, ctrl);
488 ctrl &= ~NAND_CTRL_CHANGE;
489 }
490 chip->cmd_ctrl(mtd, command, ctrl);
491
492 /*
493 * Address cycle, when necessary
494 */
495 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
496 /* Serially input address */
497 if (column != -1) {
498 /* Adjust columns for 16 bit buswidth */
499 if (chip->options & NAND_BUSWIDTH_16)
500 column >>= 1;
501 chip->cmd_ctrl(mtd, column, ctrl);
502 ctrl &= ~NAND_CTRL_CHANGE;
503 }
504 if (page_addr != -1) {
505 chip->cmd_ctrl(mtd, page_addr, ctrl);
506 ctrl &= ~NAND_CTRL_CHANGE;
507 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
508 /* One more address cycle for devices > 32MiB */
509 if (chip->chipsize > (32 << 20))
510 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
511 }
512 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
513
514 /*
515 * program and erase have their own busy handlers
516 * status and sequential in needs no delay
517 */
518 switch (command) {
519
520 case NAND_CMD_PAGEPROG:
521 case NAND_CMD_ERASE1:
522 case NAND_CMD_ERASE2:
523 case NAND_CMD_SEQIN:
524 case NAND_CMD_STATUS:
525 return;
526
527 case NAND_CMD_RESET:
528 if (chip->dev_ready)
529 break;
530 udelay(chip->chip_delay);
531 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
532 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
533 chip->cmd_ctrl(mtd,
534 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
535 while (!(chip->read_byte(mtd) & NAND_STATUS_READY) &&
536 (rst_sts_cnt--));
537 return;
538
539 /* This applies to read commands */
540 default:
541 /*
542 * If we don't have access to the busy pin, we apply the given
543 * command delay
544 */
545 if (!chip->dev_ready) {
546 udelay(chip->chip_delay);
547 return;
548 }
549 }
550 /* Apply this short delay always to ensure that we do wait tWB in
551 * any case on any machine. */
552 ndelay(100);
553
554 nand_wait_ready(mtd);
555 }
556
557 /**
558 * nand_command_lp - [DEFAULT] Send command to NAND large page device
559 * @mtd: MTD device structure
560 * @command: the command to be sent
561 * @column: the column address for this command, -1 if none
562 * @page_addr: the page address for this command, -1 if none
563 *
564 * Send command to NAND device. This is the version for the new large page
565 * devices We dont have the separate regions as we have in the small page
566 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
567 */
568 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
569 int column, int page_addr)
570 {
571 register struct nand_chip *chip = mtd->priv;
572 uint32_t rst_sts_cnt = CONFIG_SYS_NAND_RESET_CNT;
573
574 /* Emulate NAND_CMD_READOOB */
575 if (command == NAND_CMD_READOOB) {
576 column += mtd->writesize;
577 command = NAND_CMD_READ0;
578 }
579
580 /* Command latch cycle */
581 chip->cmd_ctrl(mtd, command & 0xff,
582 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
583
584 if (column != -1 || page_addr != -1) {
585 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
586
587 /* Serially input address */
588 if (column != -1) {
589 /* Adjust columns for 16 bit buswidth */
590 if (chip->options & NAND_BUSWIDTH_16)
591 column >>= 1;
592 chip->cmd_ctrl(mtd, column, ctrl);
593 ctrl &= ~NAND_CTRL_CHANGE;
594 chip->cmd_ctrl(mtd, column >> 8, ctrl);
595 }
596 if (page_addr != -1) {
597 chip->cmd_ctrl(mtd, page_addr, ctrl);
598 chip->cmd_ctrl(mtd, page_addr >> 8,
599 NAND_NCE | NAND_ALE);
600 /* One more address cycle for devices > 128MiB */
601 if (chip->chipsize > (128 << 20))
602 chip->cmd_ctrl(mtd, page_addr >> 16,
603 NAND_NCE | NAND_ALE);
604 }
605 }
606 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
607
608 /*
609 * program and erase have their own busy handlers
610 * status, sequential in, and deplete1 need no delay
611 */
612 switch (command) {
613
614 case NAND_CMD_CACHEDPROG:
615 case NAND_CMD_PAGEPROG:
616 case NAND_CMD_ERASE1:
617 case NAND_CMD_ERASE2:
618 case NAND_CMD_SEQIN:
619 case NAND_CMD_RNDIN:
620 case NAND_CMD_STATUS:
621 case NAND_CMD_DEPLETE1:
622 return;
623
624 /*
625 * read error status commands require only a short delay
626 */
627 case NAND_CMD_STATUS_ERROR:
628 case NAND_CMD_STATUS_ERROR0:
629 case NAND_CMD_STATUS_ERROR1:
630 case NAND_CMD_STATUS_ERROR2:
631 case NAND_CMD_STATUS_ERROR3:
632 udelay(chip->chip_delay);
633 return;
634
635 case NAND_CMD_RESET:
636 if (chip->dev_ready)
637 break;
638 udelay(chip->chip_delay);
639 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
640 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
641 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
642 NAND_NCE | NAND_CTRL_CHANGE);
643 while (!(chip->read_byte(mtd) & NAND_STATUS_READY) &&
644 (rst_sts_cnt--));
645 return;
646
647 case NAND_CMD_RNDOUT:
648 /* No ready / busy check necessary */
649 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
650 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
651 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
652 NAND_NCE | NAND_CTRL_CHANGE);
653 return;
654
655 case NAND_CMD_READ0:
656 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
657 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
658 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
659 NAND_NCE | NAND_CTRL_CHANGE);
660
661 /* This applies to read commands */
662 default:
663 /*
664 * If we don't have access to the busy pin, we apply the given
665 * command delay
666 */
667 if (!chip->dev_ready) {
668 udelay(chip->chip_delay);
669 return;
670 }
671 }
672
673 /* Apply this short delay always to ensure that we do wait tWB in
674 * any case on any machine. */
675 ndelay(100);
676
677 nand_wait_ready(mtd);
678 }
679
680 /**
681 * nand_get_device - [GENERIC] Get chip for selected access
682 * @chip: the nand chip descriptor
683 * @mtd: MTD device structure
684 * @new_state: the state which is requested
685 *
686 * Get the device and lock it for exclusive access
687 */
688 static int nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state)
689 {
690 this->state = new_state;
691 return 0;
692 }
693
694 /**
695 * nand_wait - [DEFAULT] wait until the command is done
696 * @mtd: MTD device structure
697 * @chip: NAND chip structure
698 *
699 * Wait for command done. This applies to erase and program only
700 * Erase can take up to 400ms and program up to 20ms according to
701 * general NAND and SmartMedia specs
702 */
703 static int nand_wait(struct mtd_info *mtd, struct nand_chip *this)
704 {
705 unsigned long timeo;
706 int state = this->state;
707
708 if (state == FL_ERASING)
709 timeo = (CONFIG_SYS_HZ * 400) / 1000;
710 else
711 timeo = (CONFIG_SYS_HZ * 20) / 1000;
712
713 if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
714 this->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
715 else
716 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
717
718 reset_timer();
719
720 while (1) {
721 if (get_timer(0) > timeo) {
722 printf("Timeout!");
723 return 0x01;
724 }
725
726 if (this->dev_ready) {
727 if (this->dev_ready(mtd))
728 break;
729 } else {
730 if (this->read_byte(mtd) & NAND_STATUS_READY)
731 break;
732 }
733 }
734 #ifdef PPCHAMELON_NAND_TIMER_HACK
735 reset_timer();
736 while (get_timer(0) < 10);
737 #endif /* PPCHAMELON_NAND_TIMER_HACK */
738
739 return this->read_byte(mtd);
740 }
741
742 /**
743 * nand_read_page_raw - [Intern] read raw page data without ecc
744 * @mtd: mtd info structure
745 * @chip: nand chip info structure
746 * @buf: buffer to store read data
747 * @page: page number to read
748 *
749 * Not for syndrome calculating ecc controllers, which use a special oob layout
750 */
751 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
752 uint8_t *buf, int page)
753 {
754 chip->read_buf(mtd, buf, mtd->writesize);
755 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
756 return 0;
757 }
758
759 /**
760 * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc
761 * @mtd: mtd info structure
762 * @chip: nand chip info structure
763 * @buf: buffer to store read data
764 * @page: page number to read
765 *
766 * We need a special oob layout and handling even when OOB isn't used.
767 */
768 static int nand_read_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
769 uint8_t *buf, int page)
770 {
771 int eccsize = chip->ecc.size;
772 int eccbytes = chip->ecc.bytes;
773 uint8_t *oob = chip->oob_poi;
774 int steps, size;
775
776 for (steps = chip->ecc.steps; steps > 0; steps--) {
777 chip->read_buf(mtd, buf, eccsize);
778 buf += eccsize;
779
780 if (chip->ecc.prepad) {
781 chip->read_buf(mtd, oob, chip->ecc.prepad);
782 oob += chip->ecc.prepad;
783 }
784
785 chip->read_buf(mtd, oob, eccbytes);
786 oob += eccbytes;
787
788 if (chip->ecc.postpad) {
789 chip->read_buf(mtd, oob, chip->ecc.postpad);
790 oob += chip->ecc.postpad;
791 }
792 }
793
794 size = mtd->oobsize - (oob - chip->oob_poi);
795 if (size)
796 chip->read_buf(mtd, oob, size);
797
798 return 0;
799 }
800
801 /**
802 * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
803 * @mtd: mtd info structure
804 * @chip: nand chip info structure
805 * @buf: buffer to store read data
806 * @page: page number to read
807 */
808 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
809 uint8_t *buf, int page)
810 {
811 int i, eccsize = chip->ecc.size;
812 int eccbytes = chip->ecc.bytes;
813 int eccsteps = chip->ecc.steps;
814 uint8_t *p = buf;
815 uint8_t *ecc_calc = chip->buffers->ecccalc;
816 uint8_t *ecc_code = chip->buffers->ecccode;
817 uint32_t *eccpos = chip->ecc.layout->eccpos;
818
819 chip->ecc.read_page_raw(mtd, chip, buf, page);
820
821 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
822 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
823
824 for (i = 0; i < chip->ecc.total; i++)
825 ecc_code[i] = chip->oob_poi[eccpos[i]];
826
827 eccsteps = chip->ecc.steps;
828 p = buf;
829
830 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
831 int stat;
832
833 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
834 if (stat < 0)
835 mtd->ecc_stats.failed++;
836 else
837 mtd->ecc_stats.corrected += stat;
838 }
839 return 0;
840 }
841
842 /**
843 * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
844 * @mtd: mtd info structure
845 * @chip: nand chip info structure
846 * @data_offs: offset of requested data within the page
847 * @readlen: data length
848 * @bufpoi: buffer to store read data
849 */
850 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
851 {
852 int start_step, end_step, num_steps;
853 uint32_t *eccpos = chip->ecc.layout->eccpos;
854 uint8_t *p;
855 int data_col_addr, i, gaps = 0;
856 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
857 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
858
859 /* Column address wihin the page aligned to ECC size (256bytes). */
860 start_step = data_offs / chip->ecc.size;
861 end_step = (data_offs + readlen - 1) / chip->ecc.size;
862 num_steps = end_step - start_step + 1;
863
864 /* Data size aligned to ECC ecc.size*/
865 datafrag_len = num_steps * chip->ecc.size;
866 eccfrag_len = num_steps * chip->ecc.bytes;
867
868 data_col_addr = start_step * chip->ecc.size;
869 /* If we read not a page aligned data */
870 if (data_col_addr != 0)
871 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
872
873 p = bufpoi + data_col_addr;
874 chip->read_buf(mtd, p, datafrag_len);
875
876 /* Calculate ECC */
877 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
878 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
879
880 /* The performance is faster if to position offsets
881 according to ecc.pos. Let make sure here that
882 there are no gaps in ecc positions */
883 for (i = 0; i < eccfrag_len - 1; i++) {
884 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
885 eccpos[i + start_step * chip->ecc.bytes + 1]) {
886 gaps = 1;
887 break;
888 }
889 }
890 if (gaps) {
891 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
892 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
893 } else {
894 /* send the command to read the particular ecc bytes */
895 /* take care about buswidth alignment in read_buf */
896 aligned_pos = eccpos[start_step * chip->ecc.bytes] & ~(busw - 1);
897 aligned_len = eccfrag_len;
898 if (eccpos[start_step * chip->ecc.bytes] & (busw - 1))
899 aligned_len++;
900 if (eccpos[(start_step + num_steps) * chip->ecc.bytes] & (busw - 1))
901 aligned_len++;
902
903 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize + aligned_pos, -1);
904 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
905 }
906
907 for (i = 0; i < eccfrag_len; i++)
908 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + start_step * chip->ecc.bytes]];
909
910 p = bufpoi + data_col_addr;
911 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
912 int stat;
913
914 stat = chip->ecc.correct(mtd, p, &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
915 if (stat == -1)
916 mtd->ecc_stats.failed++;
917 else
918 mtd->ecc_stats.corrected += stat;
919 }
920 return 0;
921 }
922
923 /**
924 * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
925 * @mtd: mtd info structure
926 * @chip: nand chip info structure
927 * @buf: buffer to store read data
928 * @page: page number to read
929 *
930 * Not for syndrome calculating ecc controllers which need a special oob layout
931 */
932 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
933 uint8_t *buf, int page)
934 {
935 int i, eccsize = chip->ecc.size;
936 int eccbytes = chip->ecc.bytes;
937 int eccsteps = chip->ecc.steps;
938 uint8_t *p = buf;
939 uint8_t *ecc_calc = chip->buffers->ecccalc;
940 uint8_t *ecc_code = chip->buffers->ecccode;
941 uint32_t *eccpos = chip->ecc.layout->eccpos;
942
943 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
944 chip->ecc.hwctl(mtd, NAND_ECC_READ);
945 chip->read_buf(mtd, p, eccsize);
946 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
947 }
948 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
949
950 for (i = 0; i < chip->ecc.total; i++)
951 ecc_code[i] = chip->oob_poi[eccpos[i]];
952
953 eccsteps = chip->ecc.steps;
954 p = buf;
955
956 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
957 int stat;
958
959 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
960 if (stat < 0)
961 mtd->ecc_stats.failed++;
962 else
963 mtd->ecc_stats.corrected += stat;
964 }
965 return 0;
966 }
967
968 /**
969 * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
970 * @mtd: mtd info structure
971 * @chip: nand chip info structure
972 * @buf: buffer to store read data
973 * @page: page number to read
974 *
975 * Hardware ECC for large page chips, require OOB to be read first.
976 * For this ECC mode, the write_page method is re-used from ECC_HW.
977 * These methods read/write ECC from the OOB area, unlike the
978 * ECC_HW_SYNDROME support with multiple ECC steps, follows the
979 * "infix ECC" scheme and reads/writes ECC from the data area, by
980 * overwriting the NAND manufacturer bad block markings.
981 */
982 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
983 struct nand_chip *chip, uint8_t *buf, int page)
984 {
985 int i, eccsize = chip->ecc.size;
986 int eccbytes = chip->ecc.bytes;
987 int eccsteps = chip->ecc.steps;
988 uint8_t *p = buf;
989 uint8_t *ecc_code = chip->buffers->ecccode;
990 uint32_t *eccpos = chip->ecc.layout->eccpos;
991 uint8_t *ecc_calc = chip->buffers->ecccalc;
992
993 /* Read the OOB area first */
994 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
995 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
996 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
997
998 for (i = 0; i < chip->ecc.total; i++)
999 ecc_code[i] = chip->oob_poi[eccpos[i]];
1000
1001 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1002 int stat;
1003
1004 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1005 chip->read_buf(mtd, p, eccsize);
1006 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1007
1008 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1009 if (stat < 0)
1010 mtd->ecc_stats.failed++;
1011 else
1012 mtd->ecc_stats.corrected += stat;
1013 }
1014 return 0;
1015 }
1016
1017 /**
1018 * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
1019 * @mtd: mtd info structure
1020 * @chip: nand chip info structure
1021 * @buf: buffer to store read data
1022 * @page: page number to read
1023 *
1024 * The hw generator calculates the error syndrome automatically. Therefor
1025 * we need a special oob layout and handling.
1026 */
1027 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1028 uint8_t *buf, int page)
1029 {
1030 int i, eccsize = chip->ecc.size;
1031 int eccbytes = chip->ecc.bytes;
1032 int eccsteps = chip->ecc.steps;
1033 uint8_t *p = buf;
1034 uint8_t *oob = chip->oob_poi;
1035
1036 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1037 int stat;
1038
1039 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1040 chip->read_buf(mtd, p, eccsize);
1041
1042 if (chip->ecc.prepad) {
1043 chip->read_buf(mtd, oob, chip->ecc.prepad);
1044 oob += chip->ecc.prepad;
1045 }
1046
1047 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1048 chip->read_buf(mtd, oob, eccbytes);
1049 stat = chip->ecc.correct(mtd, p, oob, NULL);
1050
1051 if (stat < 0)
1052 mtd->ecc_stats.failed++;
1053 else
1054 mtd->ecc_stats.corrected += stat;
1055
1056 oob += eccbytes;
1057
1058 if (chip->ecc.postpad) {
1059 chip->read_buf(mtd, oob, chip->ecc.postpad);
1060 oob += chip->ecc.postpad;
1061 }
1062 }
1063
1064 /* Calculate remaining oob bytes */
1065 i = mtd->oobsize - (oob - chip->oob_poi);
1066 if (i)
1067 chip->read_buf(mtd, oob, i);
1068
1069 return 0;
1070 }
1071
1072 /**
1073 * nand_transfer_oob - [Internal] Transfer oob to client buffer
1074 * @chip: nand chip structure
1075 * @oob: oob destination address
1076 * @ops: oob ops structure
1077 * @len: size of oob to transfer
1078 */
1079 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1080 struct mtd_oob_ops *ops, size_t len)
1081 {
1082 switch(ops->mode) {
1083
1084 case MTD_OOB_PLACE:
1085 case MTD_OOB_RAW:
1086 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1087 return oob + len;
1088
1089 case MTD_OOB_AUTO: {
1090 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1091 uint32_t boffs = 0, roffs = ops->ooboffs;
1092 size_t bytes = 0;
1093
1094 for(; free->length && len; free++, len -= bytes) {
1095 /* Read request not from offset 0 ? */
1096 if (unlikely(roffs)) {
1097 if (roffs >= free->length) {
1098 roffs -= free->length;
1099 continue;
1100 }
1101 boffs = free->offset + roffs;
1102 bytes = min_t(size_t, len,
1103 (free->length - roffs));
1104 roffs = 0;
1105 } else {
1106 bytes = min_t(size_t, len, free->length);
1107 boffs = free->offset;
1108 }
1109 memcpy(oob, chip->oob_poi + boffs, bytes);
1110 oob += bytes;
1111 }
1112 return oob;
1113 }
1114 default:
1115 BUG();
1116 }
1117 return NULL;
1118 }
1119
1120 /**
1121 * nand_do_read_ops - [Internal] Read data with ECC
1122 *
1123 * @mtd: MTD device structure
1124 * @from: offset to read from
1125 * @ops: oob ops structure
1126 *
1127 * Internal function. Called with chip held.
1128 */
1129 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1130 struct mtd_oob_ops *ops)
1131 {
1132 int chipnr, page, realpage, col, bytes, aligned;
1133 struct nand_chip *chip = mtd->priv;
1134 struct mtd_ecc_stats stats;
1135 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1136 int sndcmd = 1;
1137 int ret = 0;
1138 uint32_t readlen = ops->len;
1139 uint32_t oobreadlen = ops->ooblen;
1140 uint8_t *bufpoi, *oob, *buf;
1141
1142 stats = mtd->ecc_stats;
1143
1144 chipnr = (int)(from >> chip->chip_shift);
1145 chip->select_chip(mtd, chipnr);
1146
1147 realpage = (int)(from >> chip->page_shift);
1148 page = realpage & chip->pagemask;
1149
1150 col = (int)(from & (mtd->writesize - 1));
1151
1152 buf = ops->datbuf;
1153 oob = ops->oobbuf;
1154
1155 while(1) {
1156 bytes = min(mtd->writesize - col, readlen);
1157 aligned = (bytes == mtd->writesize);
1158
1159 /* Is the current page in the buffer ? */
1160 if (realpage != chip->pagebuf || oob) {
1161 bufpoi = aligned ? buf : chip->buffers->databuf;
1162
1163 if (likely(sndcmd)) {
1164 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1165 sndcmd = 0;
1166 }
1167
1168 /* Now read the page into the buffer */
1169 if (unlikely(ops->mode == MTD_OOB_RAW))
1170 ret = chip->ecc.read_page_raw(mtd, chip,
1171 bufpoi, page);
1172 else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1173 ret = chip->ecc.read_subpage(mtd, chip, col, bytes, bufpoi);
1174 else
1175 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1176 page);
1177 if (ret < 0)
1178 break;
1179
1180 /* Transfer not aligned data */
1181 if (!aligned) {
1182 if (!NAND_SUBPAGE_READ(chip) && !oob)
1183 chip->pagebuf = realpage;
1184 memcpy(buf, chip->buffers->databuf + col, bytes);
1185 }
1186
1187 buf += bytes;
1188
1189 if (unlikely(oob)) {
1190 /* Raw mode does data:oob:data:oob */
1191 if (ops->mode != MTD_OOB_RAW) {
1192 int toread = min(oobreadlen,
1193 chip->ecc.layout->oobavail);
1194 if (toread) {
1195 oob = nand_transfer_oob(chip,
1196 oob, ops, toread);
1197 oobreadlen -= toread;
1198 }
1199 } else
1200 buf = nand_transfer_oob(chip,
1201 buf, ops, mtd->oobsize);
1202 }
1203
1204 if (!(chip->options & NAND_NO_READRDY)) {
1205 /*
1206 * Apply delay or wait for ready/busy pin. Do
1207 * this before the AUTOINCR check, so no
1208 * problems arise if a chip which does auto
1209 * increment is marked as NOAUTOINCR by the
1210 * board driver.
1211 */
1212 if (!chip->dev_ready)
1213 udelay(chip->chip_delay);
1214 else
1215 nand_wait_ready(mtd);
1216 }
1217 } else {
1218 memcpy(buf, chip->buffers->databuf + col, bytes);
1219 buf += bytes;
1220 }
1221
1222 readlen -= bytes;
1223
1224 if (!readlen)
1225 break;
1226
1227 /* For subsequent reads align to page boundary. */
1228 col = 0;
1229 /* Increment page address */
1230 realpage++;
1231
1232 page = realpage & chip->pagemask;
1233 /* Check, if we cross a chip boundary */
1234 if (!page) {
1235 chipnr++;
1236 chip->select_chip(mtd, -1);
1237 chip->select_chip(mtd, chipnr);
1238 }
1239
1240 /* Check, if the chip supports auto page increment
1241 * or if we have hit a block boundary.
1242 */
1243 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1244 sndcmd = 1;
1245 }
1246
1247 ops->retlen = ops->len - (size_t) readlen;
1248 if (oob)
1249 ops->oobretlen = ops->ooblen - oobreadlen;
1250
1251 if (ret)
1252 return ret;
1253
1254 if (mtd->ecc_stats.failed - stats.failed)
1255 return -EBADMSG;
1256
1257 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1258 }
1259
1260 /**
1261 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1262 * @mtd: MTD device structure
1263 * @from: offset to read from
1264 * @len: number of bytes to read
1265 * @retlen: pointer to variable to store the number of read bytes
1266 * @buf: the databuffer to put data
1267 *
1268 * Get hold of the chip and call nand_do_read
1269 */
1270 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1271 size_t *retlen, uint8_t *buf)
1272 {
1273 struct nand_chip *chip = mtd->priv;
1274 int ret;
1275
1276 /* Do not allow reads past end of device */
1277 if ((from + len) > mtd->size)
1278 return -EINVAL;
1279 if (!len)
1280 return 0;
1281
1282 nand_get_device(chip, mtd, FL_READING);
1283
1284 chip->ops.len = len;
1285 chip->ops.datbuf = buf;
1286 chip->ops.oobbuf = NULL;
1287
1288 ret = nand_do_read_ops(mtd, from, &chip->ops);
1289
1290 *retlen = chip->ops.retlen;
1291
1292 nand_release_device(mtd);
1293
1294 return ret;
1295 }
1296
1297 /**
1298 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1299 * @mtd: mtd info structure
1300 * @chip: nand chip info structure
1301 * @page: page number to read
1302 * @sndcmd: flag whether to issue read command or not
1303 */
1304 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1305 int page, int sndcmd)
1306 {
1307 if (sndcmd) {
1308 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1309 sndcmd = 0;
1310 }
1311 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1312 return sndcmd;
1313 }
1314
1315 /**
1316 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1317 * with syndromes
1318 * @mtd: mtd info structure
1319 * @chip: nand chip info structure
1320 * @page: page number to read
1321 * @sndcmd: flag whether to issue read command or not
1322 */
1323 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1324 int page, int sndcmd)
1325 {
1326 uint8_t *buf = chip->oob_poi;
1327 int length = mtd->oobsize;
1328 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1329 int eccsize = chip->ecc.size;
1330 uint8_t *bufpoi = buf;
1331 int i, toread, sndrnd = 0, pos;
1332
1333 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1334 for (i = 0; i < chip->ecc.steps; i++) {
1335 if (sndrnd) {
1336 pos = eccsize + i * (eccsize + chunk);
1337 if (mtd->writesize > 512)
1338 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1339 else
1340 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1341 } else
1342 sndrnd = 1;
1343 toread = min_t(int, length, chunk);
1344 chip->read_buf(mtd, bufpoi, toread);
1345 bufpoi += toread;
1346 length -= toread;
1347 }
1348 if (length > 0)
1349 chip->read_buf(mtd, bufpoi, length);
1350
1351 return 1;
1352 }
1353
1354 /**
1355 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1356 * @mtd: mtd info structure
1357 * @chip: nand chip info structure
1358 * @page: page number to write
1359 */
1360 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1361 int page)
1362 {
1363 int status = 0;
1364 const uint8_t *buf = chip->oob_poi;
1365 int length = mtd->oobsize;
1366
1367 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1368 chip->write_buf(mtd, buf, length);
1369 /* Send command to program the OOB data */
1370 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1371
1372 status = chip->waitfunc(mtd, chip);
1373
1374 return status & NAND_STATUS_FAIL ? -EIO : 0;
1375 }
1376
1377 /**
1378 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1379 * with syndrome - only for large page flash !
1380 * @mtd: mtd info structure
1381 * @chip: nand chip info structure
1382 * @page: page number to write
1383 */
1384 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1385 struct nand_chip *chip, int page)
1386 {
1387 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1388 int eccsize = chip->ecc.size, length = mtd->oobsize;
1389 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1390 const uint8_t *bufpoi = chip->oob_poi;
1391
1392 /*
1393 * data-ecc-data-ecc ... ecc-oob
1394 * or
1395 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1396 */
1397 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1398 pos = steps * (eccsize + chunk);
1399 steps = 0;
1400 } else
1401 pos = eccsize;
1402
1403 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1404 for (i = 0; i < steps; i++) {
1405 if (sndcmd) {
1406 if (mtd->writesize <= 512) {
1407 uint32_t fill = 0xFFFFFFFF;
1408
1409 len = eccsize;
1410 while (len > 0) {
1411 int num = min_t(int, len, 4);
1412 chip->write_buf(mtd, (uint8_t *)&fill,
1413 num);
1414 len -= num;
1415 }
1416 } else {
1417 pos = eccsize + i * (eccsize + chunk);
1418 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1419 }
1420 } else
1421 sndcmd = 1;
1422 len = min_t(int, length, chunk);
1423 chip->write_buf(mtd, bufpoi, len);
1424 bufpoi += len;
1425 length -= len;
1426 }
1427 if (length > 0)
1428 chip->write_buf(mtd, bufpoi, length);
1429
1430 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1431 status = chip->waitfunc(mtd, chip);
1432
1433 return status & NAND_STATUS_FAIL ? -EIO : 0;
1434 }
1435
1436 /**
1437 * nand_do_read_oob - [Intern] NAND read out-of-band
1438 * @mtd: MTD device structure
1439 * @from: offset to read from
1440 * @ops: oob operations description structure
1441 *
1442 * NAND read out-of-band data from the spare area
1443 */
1444 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1445 struct mtd_oob_ops *ops)
1446 {
1447 int page, realpage, chipnr, sndcmd = 1;
1448 struct nand_chip *chip = mtd->priv;
1449 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1450 int readlen = ops->ooblen;
1451 int len;
1452 uint8_t *buf = ops->oobbuf;
1453
1454 MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08Lx, len = %i\n",
1455 (unsigned long long)from, readlen);
1456
1457 if (ops->mode == MTD_OOB_AUTO)
1458 len = chip->ecc.layout->oobavail;
1459 else
1460 len = mtd->oobsize;
1461
1462 if (unlikely(ops->ooboffs >= len)) {
1463 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1464 "Attempt to start read outside oob\n");
1465 return -EINVAL;
1466 }
1467
1468 /* Do not allow reads past end of device */
1469 if (unlikely(from >= mtd->size ||
1470 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1471 (from >> chip->page_shift)) * len)) {
1472 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1473 "Attempt read beyond end of device\n");
1474 return -EINVAL;
1475 }
1476
1477 chipnr = (int)(from >> chip->chip_shift);
1478 chip->select_chip(mtd, chipnr);
1479
1480 /* Shift to get page */
1481 realpage = (int)(from >> chip->page_shift);
1482 page = realpage & chip->pagemask;
1483
1484 while(1) {
1485 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1486
1487 len = min(len, readlen);
1488 buf = nand_transfer_oob(chip, buf, ops, len);
1489
1490 if (!(chip->options & NAND_NO_READRDY)) {
1491 /*
1492 * Apply delay or wait for ready/busy pin. Do this
1493 * before the AUTOINCR check, so no problems arise if a
1494 * chip which does auto increment is marked as
1495 * NOAUTOINCR by the board driver.
1496 */
1497 if (!chip->dev_ready)
1498 udelay(chip->chip_delay);
1499 else
1500 nand_wait_ready(mtd);
1501 }
1502
1503 readlen -= len;
1504 if (!readlen)
1505 break;
1506
1507 /* Increment page address */
1508 realpage++;
1509
1510 page = realpage & chip->pagemask;
1511 /* Check, if we cross a chip boundary */
1512 if (!page) {
1513 chipnr++;
1514 chip->select_chip(mtd, -1);
1515 chip->select_chip(mtd, chipnr);
1516 }
1517
1518 /* Check, if the chip supports auto page increment
1519 * or if we have hit a block boundary.
1520 */
1521 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1522 sndcmd = 1;
1523 }
1524
1525 ops->oobretlen = ops->ooblen;
1526 return 0;
1527 }
1528
1529 /**
1530 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1531 * @mtd: MTD device structure
1532 * @from: offset to read from
1533 * @ops: oob operation description structure
1534 *
1535 * NAND read data and/or out-of-band data
1536 */
1537 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1538 struct mtd_oob_ops *ops)
1539 {
1540 struct nand_chip *chip = mtd->priv;
1541 int ret = -ENOTSUPP;
1542
1543 ops->retlen = 0;
1544
1545 /* Do not allow reads past end of device */
1546 if (ops->datbuf && (from + ops->len) > mtd->size) {
1547 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1548 "Attempt read beyond end of device\n");
1549 return -EINVAL;
1550 }
1551
1552 nand_get_device(chip, mtd, FL_READING);
1553
1554 switch(ops->mode) {
1555 case MTD_OOB_PLACE:
1556 case MTD_OOB_AUTO:
1557 case MTD_OOB_RAW:
1558 break;
1559
1560 default:
1561 goto out;
1562 }
1563
1564 if (!ops->datbuf)
1565 ret = nand_do_read_oob(mtd, from, ops);
1566 else
1567 ret = nand_do_read_ops(mtd, from, ops);
1568
1569 out:
1570 nand_release_device(mtd);
1571 return ret;
1572 }
1573
1574
1575 /**
1576 * nand_write_page_raw - [Intern] raw page write function
1577 * @mtd: mtd info structure
1578 * @chip: nand chip info structure
1579 * @buf: data buffer
1580 *
1581 * Not for syndrome calculating ecc controllers, which use a special oob layout
1582 */
1583 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1584 const uint8_t *buf)
1585 {
1586 chip->write_buf(mtd, buf, mtd->writesize);
1587 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1588 }
1589
1590 /**
1591 * nand_write_page_raw_syndrome - [Intern] raw page write function
1592 * @mtd: mtd info structure
1593 * @chip: nand chip info structure
1594 * @buf: data buffer
1595 *
1596 * We need a special oob layout and handling even when ECC isn't checked.
1597 */
1598 static void nand_write_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1599 const uint8_t *buf)
1600 {
1601 int eccsize = chip->ecc.size;
1602 int eccbytes = chip->ecc.bytes;
1603 uint8_t *oob = chip->oob_poi;
1604 int steps, size;
1605
1606 for (steps = chip->ecc.steps; steps > 0; steps--) {
1607 chip->write_buf(mtd, buf, eccsize);
1608 buf += eccsize;
1609
1610 if (chip->ecc.prepad) {
1611 chip->write_buf(mtd, oob, chip->ecc.prepad);
1612 oob += chip->ecc.prepad;
1613 }
1614
1615 chip->read_buf(mtd, oob, eccbytes);
1616 oob += eccbytes;
1617
1618 if (chip->ecc.postpad) {
1619 chip->write_buf(mtd, oob, chip->ecc.postpad);
1620 oob += chip->ecc.postpad;
1621 }
1622 }
1623
1624 size = mtd->oobsize - (oob - chip->oob_poi);
1625 if (size)
1626 chip->write_buf(mtd, oob, size);
1627 }
1628 /**
1629 * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1630 * @mtd: mtd info structure
1631 * @chip: nand chip info structure
1632 * @buf: data buffer
1633 */
1634 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1635 const uint8_t *buf)
1636 {
1637 int i, eccsize = chip->ecc.size;
1638 int eccbytes = chip->ecc.bytes;
1639 int eccsteps = chip->ecc.steps;
1640 uint8_t *ecc_calc = chip->buffers->ecccalc;
1641 const uint8_t *p = buf;
1642 uint32_t *eccpos = chip->ecc.layout->eccpos;
1643
1644 /* Software ecc calculation */
1645 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1646 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1647
1648 for (i = 0; i < chip->ecc.total; i++)
1649 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1650
1651 chip->ecc.write_page_raw(mtd, chip, buf);
1652 }
1653
1654 /**
1655 * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1656 * @mtd: mtd info structure
1657 * @chip: nand chip info structure
1658 * @buf: data buffer
1659 */
1660 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1661 const uint8_t *buf)
1662 {
1663 int i, eccsize = chip->ecc.size;
1664 int eccbytes = chip->ecc.bytes;
1665 int eccsteps = chip->ecc.steps;
1666 uint8_t *ecc_calc = chip->buffers->ecccalc;
1667 const uint8_t *p = buf;
1668 uint32_t *eccpos = chip->ecc.layout->eccpos;
1669
1670 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1671 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1672 chip->write_buf(mtd, p, eccsize);
1673 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1674 }
1675
1676 for (i = 0; i < chip->ecc.total; i++)
1677 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1678
1679 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1680 }
1681
1682 /**
1683 * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
1684 * @mtd: mtd info structure
1685 * @chip: nand chip info structure
1686 * @buf: data buffer
1687 *
1688 * The hw generator calculates the error syndrome automatically. Therefor
1689 * we need a special oob layout and handling.
1690 */
1691 static void nand_write_page_syndrome(struct mtd_info *mtd,
1692 struct nand_chip *chip, const uint8_t *buf)
1693 {
1694 int i, eccsize = chip->ecc.size;
1695 int eccbytes = chip->ecc.bytes;
1696 int eccsteps = chip->ecc.steps;
1697 const uint8_t *p = buf;
1698 uint8_t *oob = chip->oob_poi;
1699
1700 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1701
1702 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1703 chip->write_buf(mtd, p, eccsize);
1704
1705 if (chip->ecc.prepad) {
1706 chip->write_buf(mtd, oob, chip->ecc.prepad);
1707 oob += chip->ecc.prepad;
1708 }
1709
1710 chip->ecc.calculate(mtd, p, oob);
1711 chip->write_buf(mtd, oob, eccbytes);
1712 oob += eccbytes;
1713
1714 if (chip->ecc.postpad) {
1715 chip->write_buf(mtd, oob, chip->ecc.postpad);
1716 oob += chip->ecc.postpad;
1717 }
1718 }
1719
1720 /* Calculate remaining oob bytes */
1721 i = mtd->oobsize - (oob - chip->oob_poi);
1722 if (i)
1723 chip->write_buf(mtd, oob, i);
1724 }
1725
1726 /**
1727 * nand_write_page - [REPLACEABLE] write one page
1728 * @mtd: MTD device structure
1729 * @chip: NAND chip descriptor
1730 * @buf: the data to write
1731 * @page: page number to write
1732 * @cached: cached programming
1733 * @raw: use _raw version of write_page
1734 */
1735 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1736 const uint8_t *buf, int page, int cached, int raw)
1737 {
1738 int status;
1739
1740 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1741
1742 if (unlikely(raw))
1743 chip->ecc.write_page_raw(mtd, chip, buf);
1744 else
1745 chip->ecc.write_page(mtd, chip, buf);
1746
1747 /*
1748 * Cached progamming disabled for now, Not sure if its worth the
1749 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1750 */
1751 cached = 0;
1752
1753 if (!cached || !(chip->options & NAND_CACHEPRG)) {
1754
1755 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1756 status = chip->waitfunc(mtd, chip);
1757 /*
1758 * See if operation failed and additional status checks are
1759 * available
1760 */
1761 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1762 status = chip->errstat(mtd, chip, FL_WRITING, status,
1763 page);
1764
1765 if (status & NAND_STATUS_FAIL)
1766 return -EIO;
1767 } else {
1768 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
1769 status = chip->waitfunc(mtd, chip);
1770 }
1771
1772 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1773 /* Send command to read back the data */
1774 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1775
1776 if (chip->verify_buf(mtd, buf, mtd->writesize))
1777 return -EIO;
1778 #endif
1779 return 0;
1780 }
1781
1782 /**
1783 * nand_fill_oob - [Internal] Transfer client buffer to oob
1784 * @chip: nand chip structure
1785 * @oob: oob data buffer
1786 * @ops: oob ops structure
1787 */
1788 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob,
1789 struct mtd_oob_ops *ops)
1790 {
1791 size_t len = ops->ooblen;
1792
1793 switch(ops->mode) {
1794
1795 case MTD_OOB_PLACE:
1796 case MTD_OOB_RAW:
1797 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
1798 return oob + len;
1799
1800 case MTD_OOB_AUTO: {
1801 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1802 uint32_t boffs = 0, woffs = ops->ooboffs;
1803 size_t bytes = 0;
1804
1805 for(; free->length && len; free++, len -= bytes) {
1806 /* Write request not from offset 0 ? */
1807 if (unlikely(woffs)) {
1808 if (woffs >= free->length) {
1809 woffs -= free->length;
1810 continue;
1811 }
1812 boffs = free->offset + woffs;
1813 bytes = min_t(size_t, len,
1814 (free->length - woffs));
1815 woffs = 0;
1816 } else {
1817 bytes = min_t(size_t, len, free->length);
1818 boffs = free->offset;
1819 }
1820 memcpy(chip->oob_poi + boffs, oob, bytes);
1821 oob += bytes;
1822 }
1823 return oob;
1824 }
1825 default:
1826 BUG();
1827 }
1828 return NULL;
1829 }
1830
1831 #define NOTALIGNED(x) (x & (chip->subpagesize - 1)) != 0
1832
1833 /**
1834 * nand_do_write_ops - [Internal] NAND write with ECC
1835 * @mtd: MTD device structure
1836 * @to: offset to write to
1837 * @ops: oob operations description structure
1838 *
1839 * NAND write with ECC
1840 */
1841 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
1842 struct mtd_oob_ops *ops)
1843 {
1844 int chipnr, realpage, page, blockmask, column;
1845 struct nand_chip *chip = mtd->priv;
1846 uint32_t writelen = ops->len;
1847 uint8_t *oob = ops->oobbuf;
1848 uint8_t *buf = ops->datbuf;
1849 int ret, subpage;
1850
1851 ops->retlen = 0;
1852 if (!writelen)
1853 return 0;
1854
1855 column = to & (mtd->writesize - 1);
1856 subpage = column || (writelen & (mtd->writesize - 1));
1857
1858 if (subpage && oob)
1859 return -EINVAL;
1860
1861 chipnr = (int)(to >> chip->chip_shift);
1862 chip->select_chip(mtd, chipnr);
1863
1864 /* Check, if it is write protected */
1865 if (nand_check_wp(mtd)) {
1866 printk (KERN_NOTICE "nand_do_write_ops: Device is write protected\n");
1867 return -EIO;
1868 }
1869
1870 realpage = (int)(to >> chip->page_shift);
1871 page = realpage & chip->pagemask;
1872 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1873
1874 /* Invalidate the page cache, when we write to the cached page */
1875 if (to <= (chip->pagebuf << chip->page_shift) &&
1876 (chip->pagebuf << chip->page_shift) < (to + ops->len))
1877 chip->pagebuf = -1;
1878
1879 /* If we're not given explicit OOB data, let it be 0xFF */
1880 if (likely(!oob))
1881 memset(chip->oob_poi, 0xff, mtd->oobsize);
1882
1883 while(1) {
1884 int bytes = mtd->writesize;
1885 int cached = writelen > bytes && page != blockmask;
1886 uint8_t *wbuf = buf;
1887
1888 /* Partial page write ? */
1889 if (unlikely(column || writelen < (mtd->writesize - 1))) {
1890 cached = 0;
1891 bytes = min_t(int, bytes - column, (int) writelen);
1892 chip->pagebuf = -1;
1893 memset(chip->buffers->databuf, 0xff, mtd->writesize);
1894 memcpy(&chip->buffers->databuf[column], buf, bytes);
1895 wbuf = chip->buffers->databuf;
1896 }
1897
1898 if (unlikely(oob))
1899 oob = nand_fill_oob(chip, oob, ops);
1900
1901 ret = chip->write_page(mtd, chip, wbuf, page, cached,
1902 (ops->mode == MTD_OOB_RAW));
1903 if (ret)
1904 break;
1905
1906 writelen -= bytes;
1907 if (!writelen)
1908 break;
1909
1910 column = 0;
1911 buf += bytes;
1912 realpage++;
1913
1914 page = realpage & chip->pagemask;
1915 /* Check, if we cross a chip boundary */
1916 if (!page) {
1917 chipnr++;
1918 chip->select_chip(mtd, -1);
1919 chip->select_chip(mtd, chipnr);
1920 }
1921 }
1922
1923 ops->retlen = ops->len - writelen;
1924 if (unlikely(oob))
1925 ops->oobretlen = ops->ooblen;
1926 return ret;
1927 }
1928
1929 /**
1930 * nand_write - [MTD Interface] NAND write with ECC
1931 * @mtd: MTD device structure
1932 * @to: offset to write to
1933 * @len: number of bytes to write
1934 * @retlen: pointer to variable to store the number of written bytes
1935 * @buf: the data to write
1936 *
1937 * NAND write with ECC
1938 */
1939 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
1940 size_t *retlen, const uint8_t *buf)
1941 {
1942 struct nand_chip *chip = mtd->priv;
1943 int ret;
1944
1945 /* Do not allow reads past end of device */
1946 if ((to + len) > mtd->size)
1947 return -EINVAL;
1948 if (!len)
1949 return 0;
1950
1951 nand_get_device(chip, mtd, FL_WRITING);
1952
1953 chip->ops.len = len;
1954 chip->ops.datbuf = (uint8_t *)buf;
1955 chip->ops.oobbuf = NULL;
1956
1957 ret = nand_do_write_ops(mtd, to, &chip->ops);
1958
1959 *retlen = chip->ops.retlen;
1960
1961 nand_release_device(mtd);
1962
1963 return ret;
1964 }
1965
1966 /**
1967 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
1968 * @mtd: MTD device structure
1969 * @to: offset to write to
1970 * @ops: oob operation description structure
1971 *
1972 * NAND write out-of-band
1973 */
1974 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
1975 struct mtd_oob_ops *ops)
1976 {
1977 int chipnr, page, status, len;
1978 struct nand_chip *chip = mtd->priv;
1979
1980 MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n",
1981 (unsigned int)to, (int)ops->ooblen);
1982
1983 if (ops->mode == MTD_OOB_AUTO)
1984 len = chip->ecc.layout->oobavail;
1985 else
1986 len = mtd->oobsize;
1987
1988 /* Do not allow write past end of page */
1989 if ((ops->ooboffs + ops->ooblen) > len) {
1990 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: "
1991 "Attempt to write past end of page\n");
1992 return -EINVAL;
1993 }
1994
1995 if (unlikely(ops->ooboffs >= len)) {
1996 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1997 "Attempt to start write outside oob\n");
1998 return -EINVAL;
1999 }
2000
2001 /* Do not allow reads past end of device */
2002 if (unlikely(to >= mtd->size ||
2003 ops->ooboffs + ops->ooblen >
2004 ((mtd->size >> chip->page_shift) -
2005 (to >> chip->page_shift)) * len)) {
2006 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
2007 "Attempt write beyond end of device\n");
2008 return -EINVAL;
2009 }
2010
2011 chipnr = (int)(to >> chip->chip_shift);
2012 chip->select_chip(mtd, chipnr);
2013
2014 /* Shift to get page */
2015 page = (int)(to >> chip->page_shift);
2016
2017 /*
2018 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2019 * of my DiskOnChip 2000 test units) will clear the whole data page too
2020 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2021 * it in the doc2000 driver in August 1999. dwmw2.
2022 */
2023 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2024
2025 /* Check, if it is write protected */
2026 if (nand_check_wp(mtd))
2027 return -EROFS;
2028
2029 /* Invalidate the page cache, if we write to the cached page */
2030 if (page == chip->pagebuf)
2031 chip->pagebuf = -1;
2032
2033 memset(chip->oob_poi, 0xff, mtd->oobsize);
2034 nand_fill_oob(chip, ops->oobbuf, ops);
2035 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2036 memset(chip->oob_poi, 0xff, mtd->oobsize);
2037
2038 if (status)
2039 return status;
2040
2041 ops->oobretlen = ops->ooblen;
2042
2043 return 0;
2044 }
2045
2046 /**
2047 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2048 * @mtd: MTD device structure
2049 * @to: offset to write to
2050 * @ops: oob operation description structure
2051 */
2052 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2053 struct mtd_oob_ops *ops)
2054 {
2055 struct nand_chip *chip = mtd->priv;
2056 int ret = -ENOTSUPP;
2057
2058 ops->retlen = 0;
2059
2060 /* Do not allow writes past end of device */
2061 if (ops->datbuf && (to + ops->len) > mtd->size) {
2062 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
2063 "Attempt read beyond end of device\n");
2064 return -EINVAL;
2065 }
2066
2067 nand_get_device(chip, mtd, FL_WRITING);
2068
2069 switch(ops->mode) {
2070 case MTD_OOB_PLACE:
2071 case MTD_OOB_AUTO:
2072 case MTD_OOB_RAW:
2073 break;
2074
2075 default:
2076 goto out;
2077 }
2078
2079 if (!ops->datbuf)
2080 ret = nand_do_write_oob(mtd, to, ops);
2081 else
2082 ret = nand_do_write_ops(mtd, to, ops);
2083
2084 out:
2085 nand_release_device(mtd);
2086 return ret;
2087 }
2088
2089 /**
2090 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2091 * @mtd: MTD device structure
2092 * @page: the page address of the block which will be erased
2093 *
2094 * Standard erase command for NAND chips
2095 */
2096 static void single_erase_cmd(struct mtd_info *mtd, int page)
2097 {
2098 struct nand_chip *chip = mtd->priv;
2099 /* Send commands to erase a block */
2100 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2101 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2102 }
2103
2104 /**
2105 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2106 * @mtd: MTD device structure
2107 * @page: the page address of the block which will be erased
2108 *
2109 * AND multi block erase command function
2110 * Erase 4 consecutive blocks
2111 */
2112 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2113 {
2114 struct nand_chip *chip = mtd->priv;
2115 /* Send commands to erase a block */
2116 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2117 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2118 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2119 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2120 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2121 }
2122
2123 /**
2124 * nand_erase - [MTD Interface] erase block(s)
2125 * @mtd: MTD device structure
2126 * @instr: erase instruction
2127 *
2128 * Erase one ore more blocks
2129 */
2130 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2131 {
2132 return nand_erase_nand(mtd, instr, 0);
2133 }
2134
2135 #define BBT_PAGE_MASK 0xffffff3f
2136 /**
2137 * nand_erase_nand - [Internal] erase block(s)
2138 * @mtd: MTD device structure
2139 * @instr: erase instruction
2140 * @allowbbt: allow erasing the bbt area
2141 *
2142 * Erase one ore more blocks
2143 */
2144 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2145 int allowbbt)
2146 {
2147 int page, status, pages_per_block, ret, chipnr;
2148 struct nand_chip *chip = mtd->priv;
2149 loff_t rewrite_bbt[CONFIG_SYS_NAND_MAX_CHIPS] = {0};
2150 unsigned int bbt_masked_page = 0xffffffff;
2151 loff_t len;
2152
2153 MTDDEBUG(MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%012llx, "
2154 "len = %llu\n", (unsigned long long) instr->addr,
2155 (unsigned long long) instr->len);
2156
2157 /* Start address must align on block boundary */
2158 if (instr->addr & ((1 << chip->phys_erase_shift) - 1)) {
2159 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
2160 return -EINVAL;
2161 }
2162
2163 /* Length must align on block boundary */
2164 if (instr->len & ((1 << chip->phys_erase_shift) - 1)) {
2165 MTDDEBUG (MTD_DEBUG_LEVEL0,
2166 "nand_erase: Length not block aligned\n");
2167 return -EINVAL;
2168 }
2169
2170 /* Do not allow erase past end of device */
2171 if ((instr->len + instr->addr) > mtd->size) {
2172 MTDDEBUG (MTD_DEBUG_LEVEL0,
2173 "nand_erase: Erase past end of device\n");
2174 return -EINVAL;
2175 }
2176
2177 instr->fail_addr = 0xffffffff;
2178
2179 /* Grab the lock and see if the device is available */
2180 nand_get_device(chip, mtd, FL_ERASING);
2181
2182 /* Shift to get first page */
2183 page = (int)(instr->addr >> chip->page_shift);
2184 chipnr = (int)(instr->addr >> chip->chip_shift);
2185
2186 /* Calculate pages in each block */
2187 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2188
2189 /* Select the NAND device */
2190 chip->select_chip(mtd, chipnr);
2191
2192 /* Check, if it is write protected */
2193 if (nand_check_wp(mtd)) {
2194 MTDDEBUG (MTD_DEBUG_LEVEL0,
2195 "nand_erase: Device is write protected!!!\n");
2196 instr->state = MTD_ERASE_FAILED;
2197 goto erase_exit;
2198 }
2199
2200 /*
2201 * If BBT requires refresh, set the BBT page mask to see if the BBT
2202 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2203 * can not be matched. This is also done when the bbt is actually
2204 * erased to avoid recusrsive updates
2205 */
2206 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2207 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2208
2209 /* Loop through the pages */
2210 len = instr->len;
2211
2212 instr->state = MTD_ERASING;
2213
2214 while (len) {
2215 /*
2216 * heck if we have a bad block, we do not erase bad blocks !
2217 */
2218 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2219 chip->page_shift, 0, allowbbt)) {
2220 printk(KERN_WARNING "nand_erase: attempt to erase a "
2221 "bad block at page 0x%08x\n", page);
2222 instr->state = MTD_ERASE_FAILED;
2223 goto erase_exit;
2224 }
2225
2226 /*
2227 * Invalidate the page cache, if we erase the block which
2228 * contains the current cached page
2229 */
2230 if (page <= chip->pagebuf && chip->pagebuf <
2231 (page + pages_per_block))
2232 chip->pagebuf = -1;
2233
2234 chip->erase_cmd(mtd, page & chip->pagemask);
2235
2236 status = chip->waitfunc(mtd, chip);
2237
2238 /*
2239 * See if operation failed and additional status checks are
2240 * available
2241 */
2242 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2243 status = chip->errstat(mtd, chip, FL_ERASING,
2244 status, page);
2245
2246 /* See if block erase succeeded */
2247 if (status & NAND_STATUS_FAIL) {
2248 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_erase: "
2249 "Failed erase, page 0x%08x\n", page);
2250 instr->state = MTD_ERASE_FAILED;
2251 instr->fail_addr = ((loff_t)page << chip->page_shift);
2252 goto erase_exit;
2253 }
2254
2255 /*
2256 * If BBT requires refresh, set the BBT rewrite flag to the
2257 * page being erased
2258 */
2259 if (bbt_masked_page != 0xffffffff &&
2260 (page & BBT_PAGE_MASK) == bbt_masked_page)
2261 rewrite_bbt[chipnr] =
2262 ((loff_t)page << chip->page_shift);
2263
2264 /* Increment page address and decrement length */
2265 len -= (1 << chip->phys_erase_shift);
2266 page += pages_per_block;
2267
2268 /* Check, if we cross a chip boundary */
2269 if (len && !(page & chip->pagemask)) {
2270 chipnr++;
2271 chip->select_chip(mtd, -1);
2272 chip->select_chip(mtd, chipnr);
2273
2274 /*
2275 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2276 * page mask to see if this BBT should be rewritten
2277 */
2278 if (bbt_masked_page != 0xffffffff &&
2279 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2280 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2281 BBT_PAGE_MASK;
2282 }
2283 }
2284 instr->state = MTD_ERASE_DONE;
2285
2286 erase_exit:
2287
2288 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2289
2290 /* Deselect and wake up anyone waiting on the device */
2291 nand_release_device(mtd);
2292
2293 /* Do call back function */
2294 if (!ret)
2295 mtd_erase_callback(instr);
2296
2297 /*
2298 * If BBT requires refresh and erase was successful, rewrite any
2299 * selected bad block tables
2300 */
2301 if (bbt_masked_page == 0xffffffff || ret)
2302 return ret;
2303
2304 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2305 if (!rewrite_bbt[chipnr])
2306 continue;
2307 /* update the BBT for chip */
2308 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt "
2309 "(%d:0x%0llx 0x%0x)\n", chipnr, rewrite_bbt[chipnr],
2310 chip->bbt_td->pages[chipnr]);
2311 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2312 }
2313
2314 /* Return more or less happy */
2315 return ret;
2316 }
2317
2318 /**
2319 * nand_sync - [MTD Interface] sync
2320 * @mtd: MTD device structure
2321 *
2322 * Sync is actually a wait for chip ready function
2323 */
2324 static void nand_sync(struct mtd_info *mtd)
2325 {
2326 struct nand_chip *chip = mtd->priv;
2327
2328 MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n");
2329
2330 /* Grab the lock and see if the device is available */
2331 nand_get_device(chip, mtd, FL_SYNCING);
2332 /* Release it and go back */
2333 nand_release_device(mtd);
2334 }
2335
2336 /**
2337 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2338 * @mtd: MTD device structure
2339 * @offs: offset relative to mtd start
2340 */
2341 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2342 {
2343 /* Check for invalid offset */
2344 if (offs > mtd->size)
2345 return -EINVAL;
2346
2347 return nand_block_checkbad(mtd, offs, 1, 0);
2348 }
2349
2350 /**
2351 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2352 * @mtd: MTD device structure
2353 * @ofs: offset relative to mtd start
2354 */
2355 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2356 {
2357 struct nand_chip *chip = mtd->priv;
2358 int ret;
2359
2360 if ((ret = nand_block_isbad(mtd, ofs))) {
2361 /* If it was bad already, return success and do nothing. */
2362 if (ret > 0)
2363 return 0;
2364 return ret;
2365 }
2366
2367 return chip->block_markbad(mtd, ofs);
2368 }
2369
2370 /*
2371 * Set default functions
2372 */
2373 static void nand_set_defaults(struct nand_chip *chip, int busw)
2374 {
2375 /* check for proper chip_delay setup, set 20us if not */
2376 if (!chip->chip_delay)
2377 chip->chip_delay = 20;
2378
2379 /* check, if a user supplied command function given */
2380 if (chip->cmdfunc == NULL)
2381 chip->cmdfunc = nand_command;
2382
2383 /* check, if a user supplied wait function given */
2384 if (chip->waitfunc == NULL)
2385 chip->waitfunc = nand_wait;
2386
2387 if (!chip->select_chip)
2388 chip->select_chip = nand_select_chip;
2389 if (!chip->read_byte)
2390 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2391 if (!chip->read_word)
2392 chip->read_word = nand_read_word;
2393 if (!chip->block_bad)
2394 chip->block_bad = nand_block_bad;
2395 if (!chip->block_markbad)
2396 chip->block_markbad = nand_default_block_markbad;
2397 if (!chip->write_buf)
2398 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2399 if (!chip->read_buf)
2400 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2401 if (!chip->verify_buf)
2402 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2403 if (!chip->scan_bbt)
2404 chip->scan_bbt = nand_default_bbt;
2405 if (!chip->controller)
2406 chip->controller = &chip->hwcontrol;
2407 }
2408
2409 /*
2410 * Get the flash and manufacturer id and lookup if the type is supported
2411 */
2412 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2413 struct nand_chip *chip,
2414 int busw, int *maf_id)
2415 {
2416 struct nand_flash_dev *type = NULL;
2417 int i, dev_id, maf_idx;
2418 int tmp_id, tmp_manf;
2419
2420 /* Select the device */
2421 chip->select_chip(mtd, 0);
2422
2423 /*
2424 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2425 * after power-up
2426 */
2427 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2428
2429 /* Send the command for reading device ID */
2430 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2431
2432 /* Read manufacturer and device IDs */
2433 *maf_id = chip->read_byte(mtd);
2434 dev_id = chip->read_byte(mtd);
2435
2436 /* Try again to make sure, as some systems the bus-hold or other
2437 * interface concerns can cause random data which looks like a
2438 * possibly credible NAND flash to appear. If the two results do
2439 * not match, ignore the device completely.
2440 */
2441
2442 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2443
2444 /* Read manufacturer and device IDs */
2445
2446 tmp_manf = chip->read_byte(mtd);
2447 tmp_id = chip->read_byte(mtd);
2448
2449 if (tmp_manf != *maf_id || tmp_id != dev_id) {
2450 printk(KERN_INFO "%s: second ID read did not match "
2451 "%02x,%02x against %02x,%02x\n", __func__,
2452 *maf_id, dev_id, tmp_manf, tmp_id);
2453 return ERR_PTR(-ENODEV);
2454 }
2455
2456 /* Lookup the flash id */
2457 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2458 if (dev_id == nand_flash_ids[i].id) {
2459 type = &nand_flash_ids[i];
2460 break;
2461 }
2462 }
2463
2464 if (!type) {
2465 /* supress warning if there is no nand */
2466 if (*maf_id != 0x00 && *maf_id != 0xff &&
2467 dev_id != 0x00 && dev_id != 0xff)
2468 printk(KERN_INFO "%s: unknown NAND device: "
2469 "Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
2470 __func__, *maf_id, dev_id);
2471 return ERR_PTR(-ENODEV);
2472 }
2473
2474 if (!mtd->name)
2475 mtd->name = type->name;
2476
2477 chip->chipsize = (uint64_t)type->chipsize << 20;
2478
2479 /* Newer devices have all the information in additional id bytes */
2480 if (!type->pagesize) {
2481 int extid;
2482 /* The 3rd id byte holds MLC / multichip data */
2483 chip->cellinfo = chip->read_byte(mtd);
2484 /* The 4th id byte is the important one */
2485 extid = chip->read_byte(mtd);
2486 /* Calc pagesize */
2487 mtd->writesize = 1024 << (extid & 0x3);
2488 extid >>= 2;
2489 /* Calc oobsize */
2490 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
2491 extid >>= 2;
2492 /* Calc blocksize. Blocksize is multiples of 64KiB */
2493 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2494 extid >>= 2;
2495 /* Get buswidth information */
2496 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2497
2498 } else {
2499 /*
2500 * Old devices have chip data hardcoded in the device id table
2501 */
2502 mtd->erasesize = type->erasesize;
2503 mtd->writesize = type->pagesize;
2504 mtd->oobsize = mtd->writesize / 32;
2505 busw = type->options & NAND_BUSWIDTH_16;
2506 }
2507
2508 /* Try to identify manufacturer */
2509 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
2510 if (nand_manuf_ids[maf_idx].id == *maf_id)
2511 break;
2512 }
2513
2514 /*
2515 * Check, if buswidth is correct. Hardware drivers should set
2516 * chip correct !
2517 */
2518 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2519 printk(KERN_INFO "NAND device: Manufacturer ID:"
2520 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2521 dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2522 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2523 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2524 busw ? 16 : 8);
2525 return ERR_PTR(-EINVAL);
2526 }
2527
2528 /* Calculate the address shift from the page size */
2529 chip->page_shift = ffs(mtd->writesize) - 1;
2530 /* Convert chipsize to number of pages per chip -1. */
2531 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2532
2533 chip->bbt_erase_shift = chip->phys_erase_shift =
2534 ffs(mtd->erasesize) - 1;
2535 if (chip->chipsize & 0xffffffff)
2536 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
2537 else
2538 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)) + 31;
2539
2540 /* Set the bad block position */
2541 chip->badblockpos = mtd->writesize > 512 ?
2542 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2543
2544 /* Get chip options, preserve non chip based options */
2545 chip->options &= ~NAND_CHIPOPTIONS_MSK;
2546 chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2547
2548 /*
2549 * Set chip as a default. Board drivers can override it, if necessary
2550 */
2551 chip->options |= NAND_NO_AUTOINCR;
2552
2553 /* Check if chip is a not a samsung device. Do not clear the
2554 * options for chips which are not having an extended id.
2555 */
2556 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2557 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2558
2559 /* Check for AND chips with 4 page planes */
2560 if (chip->options & NAND_4PAGE_ARRAY)
2561 chip->erase_cmd = multi_erase_cmd;
2562 else
2563 chip->erase_cmd = single_erase_cmd;
2564
2565 /* Do not replace user supplied command function ! */
2566 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2567 chip->cmdfunc = nand_command_lp;
2568
2569 MTDDEBUG (MTD_DEBUG_LEVEL0, "NAND device: Manufacturer ID:"
2570 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2571 nand_manuf_ids[maf_idx].name, type->name);
2572
2573 return type;
2574 }
2575
2576 /**
2577 * nand_scan_ident - [NAND Interface] Scan for the NAND device
2578 * @mtd: MTD device structure
2579 * @maxchips: Number of chips to scan for
2580 *
2581 * This is the first phase of the normal nand_scan() function. It
2582 * reads the flash ID and sets up MTD fields accordingly.
2583 *
2584 * The mtd->owner field must be set to the module of the caller.
2585 */
2586 int nand_scan_ident(struct mtd_info *mtd, int maxchips)
2587 {
2588 int i, busw, nand_maf_id;
2589 struct nand_chip *chip = mtd->priv;
2590 struct nand_flash_dev *type;
2591
2592 /* Get buswidth to select the correct functions */
2593 busw = chip->options & NAND_BUSWIDTH_16;
2594 /* Set the default functions */
2595 nand_set_defaults(chip, busw);
2596
2597 /* Read the flash type */
2598 type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id);
2599
2600 if (IS_ERR(type)) {
2601 #ifndef CONFIG_SYS_NAND_QUIET_TEST
2602 printk(KERN_WARNING "No NAND device found!!!\n");
2603 #endif
2604 chip->select_chip(mtd, -1);
2605 return PTR_ERR(type);
2606 }
2607
2608 /* Check for a chip array */
2609 for (i = 1; i < maxchips; i++) {
2610 chip->select_chip(mtd, i);
2611 /* See comment in nand_get_flash_type for reset */
2612 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2613 /* Send the command for reading device ID */
2614 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2615 /* Read manufacturer and device IDs */
2616 if (nand_maf_id != chip->read_byte(mtd) ||
2617 type->id != chip->read_byte(mtd))
2618 break;
2619 }
2620 #ifdef DEBUG
2621 if (i > 1)
2622 printk(KERN_INFO "%d NAND chips detected\n", i);
2623 #endif
2624
2625 /* Store the number of chips and calc total size for mtd */
2626 chip->numchips = i;
2627 mtd->size = i * chip->chipsize;
2628
2629 return 0;
2630 }
2631
2632
2633 /**
2634 * nand_scan_tail - [NAND Interface] Scan for the NAND device
2635 * @mtd: MTD device structure
2636 *
2637 * This is the second phase of the normal nand_scan() function. It
2638 * fills out all the uninitialized function pointers with the defaults
2639 * and scans for a bad block table if appropriate.
2640 */
2641 int nand_scan_tail(struct mtd_info *mtd)
2642 {
2643 int i;
2644 struct nand_chip *chip = mtd->priv;
2645
2646 if (!(chip->options & NAND_OWN_BUFFERS))
2647 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
2648 if (!chip->buffers)
2649 return -ENOMEM;
2650
2651 /* Set the internal oob buffer location, just after the page data */
2652 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
2653
2654 /*
2655 * If no default placement scheme is given, select an appropriate one
2656 */
2657 if (!chip->ecc.layout) {
2658 switch (mtd->oobsize) {
2659 case 8:
2660 chip->ecc.layout = &nand_oob_8;
2661 break;
2662 case 16:
2663 chip->ecc.layout = &nand_oob_16;
2664 break;
2665 case 64:
2666 chip->ecc.layout = &nand_oob_64;
2667 break;
2668 case 128:
2669 chip->ecc.layout = &nand_oob_128;
2670 break;
2671 default:
2672 printk(KERN_WARNING "No oob scheme defined for "
2673 "oobsize %d\n", mtd->oobsize);
2674 }
2675 }
2676
2677 if (!chip->write_page)
2678 chip->write_page = nand_write_page;
2679
2680 /*
2681 * check ECC mode, default to software if 3byte/512byte hardware ECC is
2682 * selected and we have 256 byte pagesize fallback to software ECC
2683 */
2684
2685 switch (chip->ecc.mode) {
2686 case NAND_ECC_HW_OOB_FIRST:
2687 /* Similar to NAND_ECC_HW, but a separate read_page handle */
2688 if (!chip->ecc.calculate || !chip->ecc.correct ||
2689 !chip->ecc.hwctl) {
2690 printk(KERN_WARNING "No ECC functions supplied, "
2691 "Hardware ECC not possible\n");
2692 BUG();
2693 }
2694 if (!chip->ecc.read_page)
2695 chip->ecc.read_page = nand_read_page_hwecc_oob_first;
2696
2697 case NAND_ECC_HW:
2698 /* Use standard hwecc read page function ? */
2699 if (!chip->ecc.read_page)
2700 chip->ecc.read_page = nand_read_page_hwecc;
2701 if (!chip->ecc.write_page)
2702 chip->ecc.write_page = nand_write_page_hwecc;
2703 if (!chip->ecc.read_page_raw)
2704 chip->ecc.read_page_raw = nand_read_page_raw;
2705 if (!chip->ecc.write_page_raw)
2706 chip->ecc.write_page_raw = nand_write_page_raw;
2707 if (!chip->ecc.read_oob)
2708 chip->ecc.read_oob = nand_read_oob_std;
2709 if (!chip->ecc.write_oob)
2710 chip->ecc.write_oob = nand_write_oob_std;
2711
2712 case NAND_ECC_HW_SYNDROME:
2713 if ((!chip->ecc.calculate || !chip->ecc.correct ||
2714 !chip->ecc.hwctl) &&
2715 (!chip->ecc.read_page ||
2716 chip->ecc.read_page == nand_read_page_hwecc ||
2717 !chip->ecc.write_page ||
2718 chip->ecc.write_page == nand_write_page_hwecc)) {
2719 printk(KERN_WARNING "No ECC functions supplied, "
2720 "Hardware ECC not possible\n");
2721 BUG();
2722 }
2723 /* Use standard syndrome read/write page function ? */
2724 if (!chip->ecc.read_page)
2725 chip->ecc.read_page = nand_read_page_syndrome;
2726 if (!chip->ecc.write_page)
2727 chip->ecc.write_page = nand_write_page_syndrome;
2728 if (!chip->ecc.read_page_raw)
2729 chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
2730 if (!chip->ecc.write_page_raw)
2731 chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
2732 if (!chip->ecc.read_oob)
2733 chip->ecc.read_oob = nand_read_oob_syndrome;
2734 if (!chip->ecc.write_oob)
2735 chip->ecc.write_oob = nand_write_oob_syndrome;
2736
2737 if (mtd->writesize >= chip->ecc.size)
2738 break;
2739 printk(KERN_WARNING "%d byte HW ECC not possible on "
2740 "%d byte page size, fallback to SW ECC\n",
2741 chip->ecc.size, mtd->writesize);
2742 chip->ecc.mode = NAND_ECC_SOFT;
2743
2744 case NAND_ECC_SOFT:
2745 chip->ecc.calculate = nand_calculate_ecc;
2746 chip->ecc.correct = nand_correct_data;
2747 chip->ecc.read_page = nand_read_page_swecc;
2748 chip->ecc.read_subpage = nand_read_subpage;
2749 chip->ecc.write_page = nand_write_page_swecc;
2750 chip->ecc.read_page_raw = nand_read_page_raw;
2751 chip->ecc.write_page_raw = nand_write_page_raw;
2752 chip->ecc.read_oob = nand_read_oob_std;
2753 chip->ecc.write_oob = nand_write_oob_std;
2754 chip->ecc.size = 256;
2755 chip->ecc.bytes = 3;
2756 break;
2757
2758 case NAND_ECC_NONE:
2759 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
2760 "This is not recommended !!\n");
2761 chip->ecc.read_page = nand_read_page_raw;
2762 chip->ecc.write_page = nand_write_page_raw;
2763 chip->ecc.read_oob = nand_read_oob_std;
2764 chip->ecc.read_page_raw = nand_read_page_raw;
2765 chip->ecc.write_page_raw = nand_write_page_raw;
2766 chip->ecc.write_oob = nand_write_oob_std;
2767 chip->ecc.size = mtd->writesize;
2768 chip->ecc.bytes = 0;
2769 break;
2770
2771 default:
2772 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
2773 chip->ecc.mode);
2774 BUG();
2775 }
2776
2777 /*
2778 * The number of bytes available for a client to place data into
2779 * the out of band area
2780 */
2781 chip->ecc.layout->oobavail = 0;
2782 for (i = 0; chip->ecc.layout->oobfree[i].length
2783 && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
2784 chip->ecc.layout->oobavail +=
2785 chip->ecc.layout->oobfree[i].length;
2786 mtd->oobavail = chip->ecc.layout->oobavail;
2787
2788 /*
2789 * Set the number of read / write steps for one page depending on ECC
2790 * mode
2791 */
2792 chip->ecc.steps = mtd->writesize / chip->ecc.size;
2793 if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
2794 printk(KERN_WARNING "Invalid ecc parameters\n");
2795 BUG();
2796 }
2797 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
2798
2799 /*
2800 * Allow subpage writes up to ecc.steps. Not possible for MLC
2801 * FLASH.
2802 */
2803 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2804 !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
2805 switch(chip->ecc.steps) {
2806 case 2:
2807 mtd->subpage_sft = 1;
2808 break;
2809 case 4:
2810 case 8:
2811 case 16:
2812 mtd->subpage_sft = 2;
2813 break;
2814 }
2815 }
2816 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
2817
2818 /* Initialize state */
2819 chip->state = FL_READY;
2820
2821 /* De-select the device */
2822 chip->select_chip(mtd, -1);
2823
2824 /* Invalidate the pagebuffer reference */
2825 chip->pagebuf = -1;
2826
2827 /* Fill in remaining MTD driver data */
2828 mtd->type = MTD_NANDFLASH;
2829 mtd->flags = MTD_CAP_NANDFLASH;
2830 mtd->erase = nand_erase;
2831 mtd->point = NULL;
2832 mtd->unpoint = NULL;
2833 mtd->read = nand_read;
2834 mtd->write = nand_write;
2835 mtd->read_oob = nand_read_oob;
2836 mtd->write_oob = nand_write_oob;
2837 mtd->sync = nand_sync;
2838 mtd->lock = NULL;
2839 mtd->unlock = NULL;
2840 mtd->block_isbad = nand_block_isbad;
2841 mtd->block_markbad = nand_block_markbad;
2842
2843 /* propagate ecc.layout to mtd_info */
2844 mtd->ecclayout = chip->ecc.layout;
2845
2846 /* Check, if we should skip the bad block table scan */
2847 if (chip->options & NAND_SKIP_BBTSCAN)
2848 chip->options |= NAND_BBT_SCANNED;
2849
2850 return 0;
2851 }
2852
2853 /**
2854 * nand_scan - [NAND Interface] Scan for the NAND device
2855 * @mtd: MTD device structure
2856 * @maxchips: Number of chips to scan for
2857 *
2858 * This fills out all the uninitialized function pointers
2859 * with the defaults.
2860 * The flash ID is read and the mtd/chip structures are
2861 * filled with the appropriate values.
2862 * The mtd->owner field must be set to the module of the caller
2863 *
2864 */
2865 int nand_scan(struct mtd_info *mtd, int maxchips)
2866 {
2867 int ret;
2868
2869 ret = nand_scan_ident(mtd, maxchips);
2870 if (!ret)
2871 ret = nand_scan_tail(mtd);
2872 return ret;
2873 }
2874
2875 /**
2876 * nand_release - [NAND Interface] Free resources held by the NAND device
2877 * @mtd: MTD device structure
2878 */
2879 void nand_release(struct mtd_info *mtd)
2880 {
2881 struct nand_chip *chip = mtd->priv;
2882
2883 #ifdef CONFIG_MTD_PARTITIONS
2884 /* Deregister partitions */
2885 del_mtd_partitions(mtd);
2886 #endif
2887
2888 /* Free bad block table memory */
2889 kfree(chip->bbt);
2890 if (!(chip->options & NAND_OWN_BUFFERS))
2891 kfree(chip->buffers);
2892 }