]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/nand_base.c
rename CFG_ macros to CONFIG_SYS
[people/ms/u-boot.git] / drivers / mtd / nand / nand_base.c
1 /*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
8 *
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/tech/nand.html
11 *
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
14 *
15 * Credits:
16 * David Woodhouse for adding multichip support
17 *
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
20 *
21 * TODO:
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 *
28 * This program is free software; you can redistribute it and/or modify
29 * it under the terms of the GNU General Public License version 2 as
30 * published by the Free Software Foundation.
31 *
32 */
33
34 /* XXX U-BOOT XXX */
35 #if 0
36 #include <linux/module.h>
37 #include <linux/delay.h>
38 #include <linux/errno.h>
39 #include <linux/err.h>
40 #include <linux/sched.h>
41 #include <linux/slab.h>
42 #include <linux/types.h>
43 #include <linux/mtd/mtd.h>
44 #include <linux/mtd/nand.h>
45 #include <linux/mtd/nand_ecc.h>
46 #include <linux/mtd/compatmac.h>
47 #include <linux/interrupt.h>
48 #include <linux/bitops.h>
49 #include <linux/leds.h>
50 #include <asm/io.h>
51
52 #ifdef CONFIG_MTD_PARTITIONS
53 #include <linux/mtd/partitions.h>
54 #endif
55
56 #endif
57
58 #include <common.h>
59
60 #define ENOTSUPP 524 /* Operation is not supported */
61
62 #include <malloc.h>
63 #include <watchdog.h>
64 #include <linux/err.h>
65 #include <linux/mtd/compat.h>
66 #include <linux/mtd/mtd.h>
67 #include <linux/mtd/nand.h>
68 #include <linux/mtd/nand_ecc.h>
69
70 #include <asm/io.h>
71 #include <asm/errno.h>
72
73 #ifdef CONFIG_JFFS2_NAND
74 #include <jffs2/jffs2.h>
75 #endif
76
77 /* Define default oob placement schemes for large and small page devices */
78 static struct nand_ecclayout nand_oob_8 = {
79 .eccbytes = 3,
80 .eccpos = {0, 1, 2},
81 .oobfree = {
82 {.offset = 3,
83 .length = 2},
84 {.offset = 6,
85 .length = 2}}
86 };
87
88 static struct nand_ecclayout nand_oob_16 = {
89 .eccbytes = 6,
90 .eccpos = {0, 1, 2, 3, 6, 7},
91 .oobfree = {
92 {.offset = 8,
93 . length = 8}}
94 };
95
96 static struct nand_ecclayout nand_oob_64 = {
97 .eccbytes = 24,
98 .eccpos = {
99 40, 41, 42, 43, 44, 45, 46, 47,
100 48, 49, 50, 51, 52, 53, 54, 55,
101 56, 57, 58, 59, 60, 61, 62, 63},
102 .oobfree = {
103 {.offset = 2,
104 .length = 38}}
105 };
106
107 static struct nand_ecclayout nand_oob_128 = {
108 .eccbytes = 48,
109 .eccpos = {
110 80, 81, 82, 83, 84, 85, 86, 87,
111 88, 89, 90, 91, 92, 93, 94, 95,
112 96, 97, 98, 99, 100, 101, 102, 103,
113 104, 105, 106, 107, 108, 109, 110, 111,
114 112, 113, 114, 115, 116, 117, 118, 119,
115 120, 121, 122, 123, 124, 125, 126, 127},
116 .oobfree = {
117 {.offset = 2,
118 .length = 78}}
119 };
120
121
122 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
123 int new_state);
124
125 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
126 struct mtd_oob_ops *ops);
127
128 static int nand_wait(struct mtd_info *mtd, struct nand_chip *this);
129
130 /*
131 * For devices which display every fart in the system on a seperate LED. Is
132 * compiled away when LED support is disabled.
133 */
134 /* XXX U-BOOT XXX */
135 #if 0
136 DEFINE_LED_TRIGGER(nand_led_trigger);
137 #endif
138
139 /**
140 * nand_release_device - [GENERIC] release chip
141 * @mtd: MTD device structure
142 *
143 * Deselect, release chip lock and wake up anyone waiting on the device
144 */
145 /* XXX U-BOOT XXX */
146 #if 0
147 static void nand_release_device(struct mtd_info *mtd)
148 {
149 struct nand_chip *chip = mtd->priv;
150
151 /* De-select the NAND device */
152 chip->select_chip(mtd, -1);
153
154 /* Release the controller and the chip */
155 spin_lock(&chip->controller->lock);
156 chip->controller->active = NULL;
157 chip->state = FL_READY;
158 wake_up(&chip->controller->wq);
159 spin_unlock(&chip->controller->lock);
160 }
161 #else
162 static void nand_release_device (struct mtd_info *mtd)
163 {
164 struct nand_chip *this = mtd->priv;
165 this->select_chip(mtd, -1); /* De-select the NAND device */
166 }
167 #endif
168
169 /**
170 * nand_read_byte - [DEFAULT] read one byte from the chip
171 * @mtd: MTD device structure
172 *
173 * Default read function for 8bit buswith
174 */
175 static uint8_t nand_read_byte(struct mtd_info *mtd)
176 {
177 struct nand_chip *chip = mtd->priv;
178 return readb(chip->IO_ADDR_R);
179 }
180
181 /**
182 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
183 * @mtd: MTD device structure
184 *
185 * Default read function for 16bit buswith with
186 * endianess conversion
187 */
188 static uint8_t nand_read_byte16(struct mtd_info *mtd)
189 {
190 struct nand_chip *chip = mtd->priv;
191 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
192 }
193
194 /**
195 * nand_read_word - [DEFAULT] read one word from the chip
196 * @mtd: MTD device structure
197 *
198 * Default read function for 16bit buswith without
199 * endianess conversion
200 */
201 static u16 nand_read_word(struct mtd_info *mtd)
202 {
203 struct nand_chip *chip = mtd->priv;
204 return readw(chip->IO_ADDR_R);
205 }
206
207 /**
208 * nand_select_chip - [DEFAULT] control CE line
209 * @mtd: MTD device structure
210 * @chipnr: chipnumber to select, -1 for deselect
211 *
212 * Default select function for 1 chip devices.
213 */
214 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
215 {
216 struct nand_chip *chip = mtd->priv;
217
218 switch (chipnr) {
219 case -1:
220 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
221 break;
222 case 0:
223 break;
224
225 default:
226 BUG();
227 }
228 }
229
230 /**
231 * nand_write_buf - [DEFAULT] write buffer to chip
232 * @mtd: MTD device structure
233 * @buf: data buffer
234 * @len: number of bytes to write
235 *
236 * Default write function for 8bit buswith
237 */
238 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
239 {
240 int i;
241 struct nand_chip *chip = mtd->priv;
242
243 for (i = 0; i < len; i++)
244 writeb(buf[i], chip->IO_ADDR_W);
245 }
246
247 /**
248 * nand_read_buf - [DEFAULT] read chip data into buffer
249 * @mtd: MTD device structure
250 * @buf: buffer to store date
251 * @len: number of bytes to read
252 *
253 * Default read function for 8bit buswith
254 */
255 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
256 {
257 int i;
258 struct nand_chip *chip = mtd->priv;
259
260 for (i = 0; i < len; i++)
261 buf[i] = readb(chip->IO_ADDR_R);
262 }
263
264 /**
265 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
266 * @mtd: MTD device structure
267 * @buf: buffer containing the data to compare
268 * @len: number of bytes to compare
269 *
270 * Default verify function for 8bit buswith
271 */
272 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
273 {
274 int i;
275 struct nand_chip *chip = mtd->priv;
276
277 for (i = 0; i < len; i++)
278 if (buf[i] != readb(chip->IO_ADDR_R))
279 return -EFAULT;
280 return 0;
281 }
282
283 /**
284 * nand_write_buf16 - [DEFAULT] write buffer to chip
285 * @mtd: MTD device structure
286 * @buf: data buffer
287 * @len: number of bytes to write
288 *
289 * Default write function for 16bit buswith
290 */
291 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
292 {
293 int i;
294 struct nand_chip *chip = mtd->priv;
295 u16 *p = (u16 *) buf;
296 len >>= 1;
297
298 for (i = 0; i < len; i++)
299 writew(p[i], chip->IO_ADDR_W);
300
301 }
302
303 /**
304 * nand_read_buf16 - [DEFAULT] read chip data into buffer
305 * @mtd: MTD device structure
306 * @buf: buffer to store date
307 * @len: number of bytes to read
308 *
309 * Default read function for 16bit buswith
310 */
311 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
312 {
313 int i;
314 struct nand_chip *chip = mtd->priv;
315 u16 *p = (u16 *) buf;
316 len >>= 1;
317
318 for (i = 0; i < len; i++)
319 p[i] = readw(chip->IO_ADDR_R);
320 }
321
322 /**
323 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
324 * @mtd: MTD device structure
325 * @buf: buffer containing the data to compare
326 * @len: number of bytes to compare
327 *
328 * Default verify function for 16bit buswith
329 */
330 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
331 {
332 int i;
333 struct nand_chip *chip = mtd->priv;
334 u16 *p = (u16 *) buf;
335 len >>= 1;
336
337 for (i = 0; i < len; i++)
338 if (p[i] != readw(chip->IO_ADDR_R))
339 return -EFAULT;
340
341 return 0;
342 }
343
344 /**
345 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
346 * @mtd: MTD device structure
347 * @ofs: offset from device start
348 * @getchip: 0, if the chip is already selected
349 *
350 * Check, if the block is bad.
351 */
352 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
353 {
354 int page, chipnr, res = 0;
355 struct nand_chip *chip = mtd->priv;
356 u16 bad;
357
358 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
359
360 if (getchip) {
361 chipnr = (int)(ofs >> chip->chip_shift);
362
363 nand_get_device(chip, mtd, FL_READING);
364
365 /* Select the NAND device */
366 chip->select_chip(mtd, chipnr);
367 }
368
369 if (chip->options & NAND_BUSWIDTH_16) {
370 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
371 page);
372 bad = cpu_to_le16(chip->read_word(mtd));
373 if (chip->badblockpos & 0x1)
374 bad >>= 8;
375 if ((bad & 0xFF) != 0xff)
376 res = 1;
377 } else {
378 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
379 if (chip->read_byte(mtd) != 0xff)
380 res = 1;
381 }
382
383 if (getchip)
384 nand_release_device(mtd);
385
386 return res;
387 }
388
389 /**
390 * nand_default_block_markbad - [DEFAULT] mark a block bad
391 * @mtd: MTD device structure
392 * @ofs: offset from device start
393 *
394 * This is the default implementation, which can be overridden by
395 * a hardware specific driver.
396 */
397 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
398 {
399 struct nand_chip *chip = mtd->priv;
400 uint8_t buf[2] = { 0, 0 };
401 int block, ret;
402
403 /* Get block number */
404 block = (int)(ofs >> chip->bbt_erase_shift);
405 if (chip->bbt)
406 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
407
408 /* Do we have a flash based bad block table ? */
409 if (chip->options & NAND_USE_FLASH_BBT)
410 ret = nand_update_bbt(mtd, ofs);
411 else {
412 /* We write two bytes, so we dont have to mess with 16 bit
413 * access
414 */
415 ofs += mtd->oobsize;
416 chip->ops.len = chip->ops.ooblen = 2;
417 chip->ops.datbuf = NULL;
418 chip->ops.oobbuf = buf;
419 chip->ops.ooboffs = chip->badblockpos & ~0x01;
420
421 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
422 }
423 if (!ret)
424 mtd->ecc_stats.badblocks++;
425 return ret;
426 }
427
428 /**
429 * nand_check_wp - [GENERIC] check if the chip is write protected
430 * @mtd: MTD device structure
431 * Check, if the device is write protected
432 *
433 * The function expects, that the device is already selected
434 */
435 static int nand_check_wp(struct mtd_info *mtd)
436 {
437 struct nand_chip *chip = mtd->priv;
438 /* Check the WP bit */
439 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
440 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
441 }
442
443 /**
444 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
445 * @mtd: MTD device structure
446 * @ofs: offset from device start
447 * @getchip: 0, if the chip is already selected
448 * @allowbbt: 1, if its allowed to access the bbt area
449 *
450 * Check, if the block is bad. Either by reading the bad block table or
451 * calling of the scan function.
452 */
453 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
454 int allowbbt)
455 {
456 struct nand_chip *chip = mtd->priv;
457
458 if (!(chip->options & NAND_BBT_SCANNED)) {
459 chip->scan_bbt(mtd);
460 chip->options |= NAND_BBT_SCANNED;
461 }
462
463 if (!chip->bbt)
464 return chip->block_bad(mtd, ofs, getchip);
465
466 /* Return info from the table */
467 return nand_isbad_bbt(mtd, ofs, allowbbt);
468 }
469
470 /*
471 * Wait for the ready pin, after a command
472 * The timeout is catched later.
473 */
474 /* XXX U-BOOT XXX */
475 #if 0
476 void nand_wait_ready(struct mtd_info *mtd)
477 {
478 struct nand_chip *chip = mtd->priv;
479 unsigned long timeo = jiffies + 2;
480
481 led_trigger_event(nand_led_trigger, LED_FULL);
482 /* wait until command is processed or timeout occures */
483 do {
484 if (chip->dev_ready(mtd))
485 break;
486 touch_softlockup_watchdog();
487 } while (time_before(jiffies, timeo));
488 led_trigger_event(nand_led_trigger, LED_OFF);
489 }
490 EXPORT_SYMBOL_GPL(nand_wait_ready);
491 #else
492 void nand_wait_ready(struct mtd_info *mtd)
493 {
494 struct nand_chip *chip = mtd->priv;
495 u32 timeo = (CONFIG_SYS_HZ * 20) / 1000;
496
497 reset_timer();
498
499 /* wait until command is processed or timeout occures */
500 while (get_timer(0) < timeo) {
501 if (chip->dev_ready)
502 if (chip->dev_ready(mtd))
503 break;
504 }
505 }
506 #endif
507
508 /**
509 * nand_command - [DEFAULT] Send command to NAND device
510 * @mtd: MTD device structure
511 * @command: the command to be sent
512 * @column: the column address for this command, -1 if none
513 * @page_addr: the page address for this command, -1 if none
514 *
515 * Send command to NAND device. This function is used for small page
516 * devices (256/512 Bytes per page)
517 */
518 static void nand_command(struct mtd_info *mtd, unsigned int command,
519 int column, int page_addr)
520 {
521 register struct nand_chip *chip = mtd->priv;
522 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
523
524 /*
525 * Write out the command to the device.
526 */
527 if (command == NAND_CMD_SEQIN) {
528 int readcmd;
529
530 if (column >= mtd->writesize) {
531 /* OOB area */
532 column -= mtd->writesize;
533 readcmd = NAND_CMD_READOOB;
534 } else if (column < 256) {
535 /* First 256 bytes --> READ0 */
536 readcmd = NAND_CMD_READ0;
537 } else {
538 column -= 256;
539 readcmd = NAND_CMD_READ1;
540 }
541 chip->cmd_ctrl(mtd, readcmd, ctrl);
542 ctrl &= ~NAND_CTRL_CHANGE;
543 }
544 chip->cmd_ctrl(mtd, command, ctrl);
545
546 /*
547 * Address cycle, when necessary
548 */
549 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
550 /* Serially input address */
551 if (column != -1) {
552 /* Adjust columns for 16 bit buswidth */
553 if (chip->options & NAND_BUSWIDTH_16)
554 column >>= 1;
555 chip->cmd_ctrl(mtd, column, ctrl);
556 ctrl &= ~NAND_CTRL_CHANGE;
557 }
558 if (page_addr != -1) {
559 chip->cmd_ctrl(mtd, page_addr, ctrl);
560 ctrl &= ~NAND_CTRL_CHANGE;
561 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
562 /* One more address cycle for devices > 32MiB */
563 if (chip->chipsize > (32 << 20))
564 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
565 }
566 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
567
568 /*
569 * program and erase have their own busy handlers
570 * status and sequential in needs no delay
571 */
572 switch (command) {
573
574 case NAND_CMD_PAGEPROG:
575 case NAND_CMD_ERASE1:
576 case NAND_CMD_ERASE2:
577 case NAND_CMD_SEQIN:
578 case NAND_CMD_STATUS:
579 return;
580
581 case NAND_CMD_RESET:
582 if (chip->dev_ready)
583 break;
584 udelay(chip->chip_delay);
585 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
586 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
587 chip->cmd_ctrl(mtd,
588 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
589 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
590 return;
591
592 /* This applies to read commands */
593 default:
594 /*
595 * If we don't have access to the busy pin, we apply the given
596 * command delay
597 */
598 if (!chip->dev_ready) {
599 udelay(chip->chip_delay);
600 return;
601 }
602 }
603 /* Apply this short delay always to ensure that we do wait tWB in
604 * any case on any machine. */
605 ndelay(100);
606
607 nand_wait_ready(mtd);
608 }
609
610 /**
611 * nand_command_lp - [DEFAULT] Send command to NAND large page device
612 * @mtd: MTD device structure
613 * @command: the command to be sent
614 * @column: the column address for this command, -1 if none
615 * @page_addr: the page address for this command, -1 if none
616 *
617 * Send command to NAND device. This is the version for the new large page
618 * devices We dont have the separate regions as we have in the small page
619 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
620 */
621 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
622 int column, int page_addr)
623 {
624 register struct nand_chip *chip = mtd->priv;
625
626 /* Emulate NAND_CMD_READOOB */
627 if (command == NAND_CMD_READOOB) {
628 column += mtd->writesize;
629 command = NAND_CMD_READ0;
630 }
631
632 /* Command latch cycle */
633 chip->cmd_ctrl(mtd, command & 0xff,
634 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
635
636 if (column != -1 || page_addr != -1) {
637 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
638
639 /* Serially input address */
640 if (column != -1) {
641 /* Adjust columns for 16 bit buswidth */
642 if (chip->options & NAND_BUSWIDTH_16)
643 column >>= 1;
644 chip->cmd_ctrl(mtd, column, ctrl);
645 ctrl &= ~NAND_CTRL_CHANGE;
646 chip->cmd_ctrl(mtd, column >> 8, ctrl);
647 }
648 if (page_addr != -1) {
649 chip->cmd_ctrl(mtd, page_addr, ctrl);
650 chip->cmd_ctrl(mtd, page_addr >> 8,
651 NAND_NCE | NAND_ALE);
652 /* One more address cycle for devices > 128MiB */
653 if (chip->chipsize > (128 << 20))
654 chip->cmd_ctrl(mtd, page_addr >> 16,
655 NAND_NCE | NAND_ALE);
656 }
657 }
658 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
659
660 /*
661 * program and erase have their own busy handlers
662 * status, sequential in, and deplete1 need no delay
663 */
664 switch (command) {
665
666 case NAND_CMD_CACHEDPROG:
667 case NAND_CMD_PAGEPROG:
668 case NAND_CMD_ERASE1:
669 case NAND_CMD_ERASE2:
670 case NAND_CMD_SEQIN:
671 case NAND_CMD_RNDIN:
672 case NAND_CMD_STATUS:
673 case NAND_CMD_DEPLETE1:
674 return;
675
676 /*
677 * read error status commands require only a short delay
678 */
679 case NAND_CMD_STATUS_ERROR:
680 case NAND_CMD_STATUS_ERROR0:
681 case NAND_CMD_STATUS_ERROR1:
682 case NAND_CMD_STATUS_ERROR2:
683 case NAND_CMD_STATUS_ERROR3:
684 udelay(chip->chip_delay);
685 return;
686
687 case NAND_CMD_RESET:
688 if (chip->dev_ready)
689 break;
690 udelay(chip->chip_delay);
691 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
692 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
693 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
694 NAND_NCE | NAND_CTRL_CHANGE);
695 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
696 return;
697
698 case NAND_CMD_RNDOUT:
699 /* No ready / busy check necessary */
700 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
701 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
702 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
703 NAND_NCE | NAND_CTRL_CHANGE);
704 return;
705
706 case NAND_CMD_READ0:
707 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
708 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
709 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
710 NAND_NCE | NAND_CTRL_CHANGE);
711
712 /* This applies to read commands */
713 default:
714 /*
715 * If we don't have access to the busy pin, we apply the given
716 * command delay
717 */
718 if (!chip->dev_ready) {
719 udelay(chip->chip_delay);
720 return;
721 }
722 }
723
724 /* Apply this short delay always to ensure that we do wait tWB in
725 * any case on any machine. */
726 ndelay(100);
727
728 nand_wait_ready(mtd);
729 }
730
731 /**
732 * nand_get_device - [GENERIC] Get chip for selected access
733 * @chip: the nand chip descriptor
734 * @mtd: MTD device structure
735 * @new_state: the state which is requested
736 *
737 * Get the device and lock it for exclusive access
738 */
739 /* XXX U-BOOT XXX */
740 #if 0
741 static int
742 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
743 {
744 spinlock_t *lock = &chip->controller->lock;
745 wait_queue_head_t *wq = &chip->controller->wq;
746 DECLARE_WAITQUEUE(wait, current);
747 retry:
748 spin_lock(lock);
749
750 /* Hardware controller shared among independend devices */
751 /* Hardware controller shared among independend devices */
752 if (!chip->controller->active)
753 chip->controller->active = chip;
754
755 if (chip->controller->active == chip && chip->state == FL_READY) {
756 chip->state = new_state;
757 spin_unlock(lock);
758 return 0;
759 }
760 if (new_state == FL_PM_SUSPENDED) {
761 spin_unlock(lock);
762 return (chip->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
763 }
764 set_current_state(TASK_UNINTERRUPTIBLE);
765 add_wait_queue(wq, &wait);
766 spin_unlock(lock);
767 schedule();
768 remove_wait_queue(wq, &wait);
769 goto retry;
770 }
771 #else
772 static int nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state)
773 {
774 this->state = new_state;
775 return 0;
776 }
777 #endif
778
779 /**
780 * nand_wait - [DEFAULT] wait until the command is done
781 * @mtd: MTD device structure
782 * @chip: NAND chip structure
783 *
784 * Wait for command done. This applies to erase and program only
785 * Erase can take up to 400ms and program up to 20ms according to
786 * general NAND and SmartMedia specs
787 */
788 /* XXX U-BOOT XXX */
789 #if 0
790 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
791 {
792
793 unsigned long timeo = jiffies;
794 int status, state = chip->state;
795
796 if (state == FL_ERASING)
797 timeo += (HZ * 400) / 1000;
798 else
799 timeo += (HZ * 20) / 1000;
800
801 led_trigger_event(nand_led_trigger, LED_FULL);
802
803 /* Apply this short delay always to ensure that we do wait tWB in
804 * any case on any machine. */
805 ndelay(100);
806
807 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
808 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
809 else
810 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
811
812 while (time_before(jiffies, timeo)) {
813 if (chip->dev_ready) {
814 if (chip->dev_ready(mtd))
815 break;
816 } else {
817 if (chip->read_byte(mtd) & NAND_STATUS_READY)
818 break;
819 }
820 cond_resched();
821 }
822 led_trigger_event(nand_led_trigger, LED_OFF);
823
824 status = (int)chip->read_byte(mtd);
825 return status;
826 }
827 #else
828 static int nand_wait(struct mtd_info *mtd, struct nand_chip *this)
829 {
830 unsigned long timeo;
831 int state = this->state;
832
833 if (state == FL_ERASING)
834 timeo = (CONFIG_SYS_HZ * 400) / 1000;
835 else
836 timeo = (CONFIG_SYS_HZ * 20) / 1000;
837
838 if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
839 this->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
840 else
841 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
842
843 reset_timer();
844
845 while (1) {
846 if (get_timer(0) > timeo) {
847 printf("Timeout!");
848 return 0x01;
849 }
850
851 if (this->dev_ready) {
852 if (this->dev_ready(mtd))
853 break;
854 } else {
855 if (this->read_byte(mtd) & NAND_STATUS_READY)
856 break;
857 }
858 }
859 #ifdef PPCHAMELON_NAND_TIMER_HACK
860 reset_timer();
861 while (get_timer(0) < 10);
862 #endif /* PPCHAMELON_NAND_TIMER_HACK */
863
864 return this->read_byte(mtd);
865 }
866 #endif
867
868 /**
869 * nand_read_page_raw - [Intern] read raw page data without ecc
870 * @mtd: mtd info structure
871 * @chip: nand chip info structure
872 * @buf: buffer to store read data
873 */
874 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
875 uint8_t *buf)
876 {
877 chip->read_buf(mtd, buf, mtd->writesize);
878 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
879 return 0;
880 }
881
882 /**
883 * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
884 * @mtd: mtd info structure
885 * @chip: nand chip info structure
886 * @buf: buffer to store read data
887 */
888 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
889 uint8_t *buf)
890 {
891 int i, eccsize = chip->ecc.size;
892 int eccbytes = chip->ecc.bytes;
893 int eccsteps = chip->ecc.steps;
894 uint8_t *p = buf;
895 uint8_t *ecc_calc = chip->buffers->ecccalc;
896 uint8_t *ecc_code = chip->buffers->ecccode;
897 uint32_t *eccpos = chip->ecc.layout->eccpos;
898
899 chip->ecc.read_page_raw(mtd, chip, buf);
900
901 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
902 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
903
904 for (i = 0; i < chip->ecc.total; i++)
905 ecc_code[i] = chip->oob_poi[eccpos[i]];
906
907 eccsteps = chip->ecc.steps;
908 p = buf;
909
910 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
911 int stat;
912
913 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
914 if (stat == -1)
915 mtd->ecc_stats.failed++;
916 else
917 mtd->ecc_stats.corrected += stat;
918 }
919 return 0;
920 }
921
922 /**
923 * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
924 * @mtd: mtd info structure
925 * @chip: nand chip info structure
926 * @buf: buffer to store read data
927 *
928 * Not for syndrome calculating ecc controllers which need a special oob layout
929 */
930 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
931 uint8_t *buf)
932 {
933 int i, eccsize = chip->ecc.size;
934 int eccbytes = chip->ecc.bytes;
935 int eccsteps = chip->ecc.steps;
936 uint8_t *p = buf;
937 uint8_t *ecc_calc = chip->buffers->ecccalc;
938 uint8_t *ecc_code = chip->buffers->ecccode;
939 uint32_t *eccpos = chip->ecc.layout->eccpos;
940
941 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
942 chip->ecc.hwctl(mtd, NAND_ECC_READ);
943 chip->read_buf(mtd, p, eccsize);
944 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
945 }
946 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
947
948 for (i = 0; i < chip->ecc.total; i++)
949 ecc_code[i] = chip->oob_poi[eccpos[i]];
950
951 eccsteps = chip->ecc.steps;
952 p = buf;
953
954 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
955 int stat;
956
957 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
958 if (stat == -1)
959 mtd->ecc_stats.failed++;
960 else
961 mtd->ecc_stats.corrected += stat;
962 }
963 return 0;
964 }
965
966 /**
967 * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
968 * @mtd: mtd info structure
969 * @chip: nand chip info structure
970 * @buf: buffer to store read data
971 *
972 * The hw generator calculates the error syndrome automatically. Therefor
973 * we need a special oob layout and handling.
974 */
975 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
976 uint8_t *buf)
977 {
978 int i, eccsize = chip->ecc.size;
979 int eccbytes = chip->ecc.bytes;
980 int eccsteps = chip->ecc.steps;
981 uint8_t *p = buf;
982 uint8_t *oob = chip->oob_poi;
983
984 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
985 int stat;
986
987 chip->ecc.hwctl(mtd, NAND_ECC_READ);
988 chip->read_buf(mtd, p, eccsize);
989
990 if (chip->ecc.prepad) {
991 chip->read_buf(mtd, oob, chip->ecc.prepad);
992 oob += chip->ecc.prepad;
993 }
994
995 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
996 chip->read_buf(mtd, oob, eccbytes);
997 stat = chip->ecc.correct(mtd, p, oob, NULL);
998
999 if (stat == -1)
1000 mtd->ecc_stats.failed++;
1001 else
1002 mtd->ecc_stats.corrected += stat;
1003
1004 oob += eccbytes;
1005
1006 if (chip->ecc.postpad) {
1007 chip->read_buf(mtd, oob, chip->ecc.postpad);
1008 oob += chip->ecc.postpad;
1009 }
1010 }
1011
1012 /* Calculate remaining oob bytes */
1013 i = mtd->oobsize - (oob - chip->oob_poi);
1014 if (i)
1015 chip->read_buf(mtd, oob, i);
1016
1017 return 0;
1018 }
1019
1020 /**
1021 * nand_transfer_oob - [Internal] Transfer oob to client buffer
1022 * @chip: nand chip structure
1023 * @oob: oob destination address
1024 * @ops: oob ops structure
1025 * @len: size of oob to transfer
1026 */
1027 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1028 struct mtd_oob_ops *ops, size_t len)
1029 {
1030 switch(ops->mode) {
1031
1032 case MTD_OOB_PLACE:
1033 case MTD_OOB_RAW:
1034 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1035 return oob + len;
1036
1037 case MTD_OOB_AUTO: {
1038 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1039 uint32_t boffs = 0, roffs = ops->ooboffs;
1040 size_t bytes = 0;
1041
1042 for(; free->length && len; free++, len -= bytes) {
1043 /* Read request not from offset 0 ? */
1044 if (unlikely(roffs)) {
1045 if (roffs >= free->length) {
1046 roffs -= free->length;
1047 continue;
1048 }
1049 boffs = free->offset + roffs;
1050 bytes = min_t(size_t, len,
1051 (free->length - roffs));
1052 roffs = 0;
1053 } else {
1054 bytes = min_t(size_t, len, free->length);
1055 boffs = free->offset;
1056 }
1057 memcpy(oob, chip->oob_poi + boffs, bytes);
1058 oob += bytes;
1059 }
1060 return oob;
1061 }
1062 default:
1063 BUG();
1064 }
1065 return NULL;
1066 }
1067
1068 /**
1069 * nand_do_read_ops - [Internal] Read data with ECC
1070 *
1071 * @mtd: MTD device structure
1072 * @from: offset to read from
1073 * @ops: oob ops structure
1074 *
1075 * Internal function. Called with chip held.
1076 */
1077 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1078 struct mtd_oob_ops *ops)
1079 {
1080 int chipnr, page, realpage, col, bytes, aligned;
1081 struct nand_chip *chip = mtd->priv;
1082 struct mtd_ecc_stats stats;
1083 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1084 int sndcmd = 1;
1085 int ret = 0;
1086 uint32_t readlen = ops->len;
1087 uint32_t oobreadlen = ops->ooblen;
1088 uint8_t *bufpoi, *oob, *buf;
1089
1090 stats = mtd->ecc_stats;
1091
1092 chipnr = (int)(from >> chip->chip_shift);
1093 chip->select_chip(mtd, chipnr);
1094
1095 realpage = (int)(from >> chip->page_shift);
1096 page = realpage & chip->pagemask;
1097
1098 col = (int)(from & (mtd->writesize - 1));
1099
1100 buf = ops->datbuf;
1101 oob = ops->oobbuf;
1102
1103 while(1) {
1104 bytes = min(mtd->writesize - col, readlen);
1105 aligned = (bytes == mtd->writesize);
1106
1107 /* Is the current page in the buffer ? */
1108 if (realpage != chip->pagebuf || oob) {
1109 bufpoi = aligned ? buf : chip->buffers->databuf;
1110
1111 if (likely(sndcmd)) {
1112 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1113 sndcmd = 0;
1114 }
1115
1116 /* Now read the page into the buffer */
1117 if (unlikely(ops->mode == MTD_OOB_RAW))
1118 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi);
1119 else
1120 ret = chip->ecc.read_page(mtd, chip, bufpoi);
1121 if (ret < 0)
1122 break;
1123
1124 /* Transfer not aligned data */
1125 if (!aligned) {
1126 chip->pagebuf = realpage;
1127 memcpy(buf, chip->buffers->databuf + col, bytes);
1128 }
1129
1130 buf += bytes;
1131
1132 if (unlikely(oob)) {
1133 /* Raw mode does data:oob:data:oob */
1134 if (ops->mode != MTD_OOB_RAW) {
1135 int toread = min(oobreadlen,
1136 chip->ecc.layout->oobavail);
1137 if (toread) {
1138 oob = nand_transfer_oob(chip,
1139 oob, ops, toread);
1140 oobreadlen -= toread;
1141 }
1142 } else
1143 buf = nand_transfer_oob(chip,
1144 buf, ops, mtd->oobsize);
1145 }
1146
1147 if (!(chip->options & NAND_NO_READRDY)) {
1148 /*
1149 * Apply delay or wait for ready/busy pin. Do
1150 * this before the AUTOINCR check, so no
1151 * problems arise if a chip which does auto
1152 * increment is marked as NOAUTOINCR by the
1153 * board driver.
1154 */
1155 if (!chip->dev_ready)
1156 udelay(chip->chip_delay);
1157 else
1158 nand_wait_ready(mtd);
1159 }
1160 } else {
1161 memcpy(buf, chip->buffers->databuf + col, bytes);
1162 buf += bytes;
1163 }
1164
1165 readlen -= bytes;
1166
1167 if (!readlen)
1168 break;
1169
1170 /* For subsequent reads align to page boundary. */
1171 col = 0;
1172 /* Increment page address */
1173 realpage++;
1174
1175 page = realpage & chip->pagemask;
1176 /* Check, if we cross a chip boundary */
1177 if (!page) {
1178 chipnr++;
1179 chip->select_chip(mtd, -1);
1180 chip->select_chip(mtd, chipnr);
1181 }
1182
1183 /* Check, if the chip supports auto page increment
1184 * or if we have hit a block boundary.
1185 */
1186 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1187 sndcmd = 1;
1188 }
1189
1190 ops->retlen = ops->len - (size_t) readlen;
1191 if (oob)
1192 ops->oobretlen = ops->ooblen - oobreadlen;
1193
1194 if (ret)
1195 return ret;
1196
1197 if (mtd->ecc_stats.failed - stats.failed)
1198 return -EBADMSG;
1199
1200 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1201 }
1202
1203 /**
1204 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1205 * @mtd: MTD device structure
1206 * @from: offset to read from
1207 * @len: number of bytes to read
1208 * @retlen: pointer to variable to store the number of read bytes
1209 * @buf: the databuffer to put data
1210 *
1211 * Get hold of the chip and call nand_do_read
1212 */
1213 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1214 size_t *retlen, uint8_t *buf)
1215 {
1216 struct nand_chip *chip = mtd->priv;
1217 int ret;
1218
1219 /* Do not allow reads past end of device */
1220 if ((from + len) > mtd->size)
1221 return -EINVAL;
1222 if (!len)
1223 return 0;
1224
1225 nand_get_device(chip, mtd, FL_READING);
1226
1227 chip->ops.len = len;
1228 chip->ops.datbuf = buf;
1229 chip->ops.oobbuf = NULL;
1230
1231 ret = nand_do_read_ops(mtd, from, &chip->ops);
1232
1233 *retlen = chip->ops.retlen;
1234
1235 nand_release_device(mtd);
1236
1237 return ret;
1238 }
1239
1240 /**
1241 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1242 * @mtd: mtd info structure
1243 * @chip: nand chip info structure
1244 * @page: page number to read
1245 * @sndcmd: flag whether to issue read command or not
1246 */
1247 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1248 int page, int sndcmd)
1249 {
1250 if (sndcmd) {
1251 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1252 sndcmd = 0;
1253 }
1254 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1255 return sndcmd;
1256 }
1257
1258 /**
1259 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1260 * with syndromes
1261 * @mtd: mtd info structure
1262 * @chip: nand chip info structure
1263 * @page: page number to read
1264 * @sndcmd: flag whether to issue read command or not
1265 */
1266 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1267 int page, int sndcmd)
1268 {
1269 uint8_t *buf = chip->oob_poi;
1270 int length = mtd->oobsize;
1271 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1272 int eccsize = chip->ecc.size;
1273 uint8_t *bufpoi = buf;
1274 int i, toread, sndrnd = 0, pos;
1275
1276 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1277 for (i = 0; i < chip->ecc.steps; i++) {
1278 if (sndrnd) {
1279 pos = eccsize + i * (eccsize + chunk);
1280 if (mtd->writesize > 512)
1281 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1282 else
1283 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1284 } else
1285 sndrnd = 1;
1286 toread = min_t(int, length, chunk);
1287 chip->read_buf(mtd, bufpoi, toread);
1288 bufpoi += toread;
1289 length -= toread;
1290 }
1291 if (length > 0)
1292 chip->read_buf(mtd, bufpoi, length);
1293
1294 return 1;
1295 }
1296
1297 /**
1298 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1299 * @mtd: mtd info structure
1300 * @chip: nand chip info structure
1301 * @page: page number to write
1302 */
1303 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1304 int page)
1305 {
1306 int status = 0;
1307 const uint8_t *buf = chip->oob_poi;
1308 int length = mtd->oobsize;
1309
1310 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1311 chip->write_buf(mtd, buf, length);
1312 /* Send command to program the OOB data */
1313 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1314
1315 status = chip->waitfunc(mtd, chip);
1316
1317 return status & NAND_STATUS_FAIL ? -EIO : 0;
1318 }
1319
1320 /**
1321 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1322 * with syndrome - only for large page flash !
1323 * @mtd: mtd info structure
1324 * @chip: nand chip info structure
1325 * @page: page number to write
1326 */
1327 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1328 struct nand_chip *chip, int page)
1329 {
1330 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1331 int eccsize = chip->ecc.size, length = mtd->oobsize;
1332 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1333 const uint8_t *bufpoi = chip->oob_poi;
1334
1335 /*
1336 * data-ecc-data-ecc ... ecc-oob
1337 * or
1338 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1339 */
1340 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1341 pos = steps * (eccsize + chunk);
1342 steps = 0;
1343 } else
1344 pos = eccsize;
1345
1346 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1347 for (i = 0; i < steps; i++) {
1348 if (sndcmd) {
1349 if (mtd->writesize <= 512) {
1350 uint32_t fill = 0xFFFFFFFF;
1351
1352 len = eccsize;
1353 while (len > 0) {
1354 int num = min_t(int, len, 4);
1355 chip->write_buf(mtd, (uint8_t *)&fill,
1356 num);
1357 len -= num;
1358 }
1359 } else {
1360 pos = eccsize + i * (eccsize + chunk);
1361 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1362 }
1363 } else
1364 sndcmd = 1;
1365 len = min_t(int, length, chunk);
1366 chip->write_buf(mtd, bufpoi, len);
1367 bufpoi += len;
1368 length -= len;
1369 }
1370 if (length > 0)
1371 chip->write_buf(mtd, bufpoi, length);
1372
1373 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1374 status = chip->waitfunc(mtd, chip);
1375
1376 return status & NAND_STATUS_FAIL ? -EIO : 0;
1377 }
1378
1379 /**
1380 * nand_do_read_oob - [Intern] NAND read out-of-band
1381 * @mtd: MTD device structure
1382 * @from: offset to read from
1383 * @ops: oob operations description structure
1384 *
1385 * NAND read out-of-band data from the spare area
1386 */
1387 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1388 struct mtd_oob_ops *ops)
1389 {
1390 int page, realpage, chipnr, sndcmd = 1;
1391 struct nand_chip *chip = mtd->priv;
1392 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1393 int readlen = ops->ooblen;
1394 int len;
1395 uint8_t *buf = ops->oobbuf;
1396
1397 MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08Lx, len = %i\n",
1398 (unsigned long long)from, readlen);
1399
1400 if (ops->mode == MTD_OOB_AUTO)
1401 len = chip->ecc.layout->oobavail;
1402 else
1403 len = mtd->oobsize;
1404
1405 if (unlikely(ops->ooboffs >= len)) {
1406 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1407 "Attempt to start read outside oob\n");
1408 return -EINVAL;
1409 }
1410
1411 /* Do not allow reads past end of device */
1412 if (unlikely(from >= mtd->size ||
1413 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1414 (from >> chip->page_shift)) * len)) {
1415 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1416 "Attempt read beyond end of device\n");
1417 return -EINVAL;
1418 }
1419
1420 chipnr = (int)(from >> chip->chip_shift);
1421 chip->select_chip(mtd, chipnr);
1422
1423 /* Shift to get page */
1424 realpage = (int)(from >> chip->page_shift);
1425 page = realpage & chip->pagemask;
1426
1427 while(1) {
1428 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1429
1430 len = min(len, readlen);
1431 buf = nand_transfer_oob(chip, buf, ops, len);
1432
1433 if (!(chip->options & NAND_NO_READRDY)) {
1434 /*
1435 * Apply delay or wait for ready/busy pin. Do this
1436 * before the AUTOINCR check, so no problems arise if a
1437 * chip which does auto increment is marked as
1438 * NOAUTOINCR by the board driver.
1439 */
1440 if (!chip->dev_ready)
1441 udelay(chip->chip_delay);
1442 else
1443 nand_wait_ready(mtd);
1444 }
1445
1446 readlen -= len;
1447 if (!readlen)
1448 break;
1449
1450 /* Increment page address */
1451 realpage++;
1452
1453 page = realpage & chip->pagemask;
1454 /* Check, if we cross a chip boundary */
1455 if (!page) {
1456 chipnr++;
1457 chip->select_chip(mtd, -1);
1458 chip->select_chip(mtd, chipnr);
1459 }
1460
1461 /* Check, if the chip supports auto page increment
1462 * or if we have hit a block boundary.
1463 */
1464 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1465 sndcmd = 1;
1466 }
1467
1468 ops->oobretlen = ops->ooblen;
1469 return 0;
1470 }
1471
1472 /**
1473 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1474 * @mtd: MTD device structure
1475 * @from: offset to read from
1476 * @ops: oob operation description structure
1477 *
1478 * NAND read data and/or out-of-band data
1479 */
1480 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1481 struct mtd_oob_ops *ops)
1482 {
1483 struct nand_chip *chip = mtd->priv;
1484 int ret = -ENOTSUPP;
1485
1486 ops->retlen = 0;
1487
1488 /* Do not allow reads past end of device */
1489 if (ops->datbuf && (from + ops->len) > mtd->size) {
1490 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1491 "Attempt read beyond end of device\n");
1492 return -EINVAL;
1493 }
1494
1495 nand_get_device(chip, mtd, FL_READING);
1496
1497 switch(ops->mode) {
1498 case MTD_OOB_PLACE:
1499 case MTD_OOB_AUTO:
1500 case MTD_OOB_RAW:
1501 break;
1502
1503 default:
1504 goto out;
1505 }
1506
1507 if (!ops->datbuf)
1508 ret = nand_do_read_oob(mtd, from, ops);
1509 else
1510 ret = nand_do_read_ops(mtd, from, ops);
1511
1512 out:
1513 nand_release_device(mtd);
1514 return ret;
1515 }
1516
1517
1518 /**
1519 * nand_write_page_raw - [Intern] raw page write function
1520 * @mtd: mtd info structure
1521 * @chip: nand chip info structure
1522 * @buf: data buffer
1523 */
1524 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1525 const uint8_t *buf)
1526 {
1527 chip->write_buf(mtd, buf, mtd->writesize);
1528 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1529 }
1530
1531 /**
1532 * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1533 * @mtd: mtd info structure
1534 * @chip: nand chip info structure
1535 * @buf: data buffer
1536 */
1537 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1538 const uint8_t *buf)
1539 {
1540 int i, eccsize = chip->ecc.size;
1541 int eccbytes = chip->ecc.bytes;
1542 int eccsteps = chip->ecc.steps;
1543 uint8_t *ecc_calc = chip->buffers->ecccalc;
1544 const uint8_t *p = buf;
1545 uint32_t *eccpos = chip->ecc.layout->eccpos;
1546
1547 /* Software ecc calculation */
1548 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1549 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1550
1551 for (i = 0; i < chip->ecc.total; i++)
1552 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1553
1554 chip->ecc.write_page_raw(mtd, chip, buf);
1555 }
1556
1557 /**
1558 * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1559 * @mtd: mtd info structure
1560 * @chip: nand chip info structure
1561 * @buf: data buffer
1562 */
1563 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1564 const uint8_t *buf)
1565 {
1566 int i, eccsize = chip->ecc.size;
1567 int eccbytes = chip->ecc.bytes;
1568 int eccsteps = chip->ecc.steps;
1569 uint8_t *ecc_calc = chip->buffers->ecccalc;
1570 const uint8_t *p = buf;
1571 uint32_t *eccpos = chip->ecc.layout->eccpos;
1572
1573 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1574 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1575 chip->write_buf(mtd, p, eccsize);
1576 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1577 }
1578
1579 for (i = 0; i < chip->ecc.total; i++)
1580 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1581
1582 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1583 }
1584
1585 /**
1586 * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
1587 * @mtd: mtd info structure
1588 * @chip: nand chip info structure
1589 * @buf: data buffer
1590 *
1591 * The hw generator calculates the error syndrome automatically. Therefor
1592 * we need a special oob layout and handling.
1593 */
1594 static void nand_write_page_syndrome(struct mtd_info *mtd,
1595 struct nand_chip *chip, const uint8_t *buf)
1596 {
1597 int i, eccsize = chip->ecc.size;
1598 int eccbytes = chip->ecc.bytes;
1599 int eccsteps = chip->ecc.steps;
1600 const uint8_t *p = buf;
1601 uint8_t *oob = chip->oob_poi;
1602
1603 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1604
1605 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1606 chip->write_buf(mtd, p, eccsize);
1607
1608 if (chip->ecc.prepad) {
1609 chip->write_buf(mtd, oob, chip->ecc.prepad);
1610 oob += chip->ecc.prepad;
1611 }
1612
1613 chip->ecc.calculate(mtd, p, oob);
1614 chip->write_buf(mtd, oob, eccbytes);
1615 oob += eccbytes;
1616
1617 if (chip->ecc.postpad) {
1618 chip->write_buf(mtd, oob, chip->ecc.postpad);
1619 oob += chip->ecc.postpad;
1620 }
1621 }
1622
1623 /* Calculate remaining oob bytes */
1624 i = mtd->oobsize - (oob - chip->oob_poi);
1625 if (i)
1626 chip->write_buf(mtd, oob, i);
1627 }
1628
1629 /**
1630 * nand_write_page - [REPLACEABLE] write one page
1631 * @mtd: MTD device structure
1632 * @chip: NAND chip descriptor
1633 * @buf: the data to write
1634 * @page: page number to write
1635 * @cached: cached programming
1636 * @raw: use _raw version of write_page
1637 */
1638 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1639 const uint8_t *buf, int page, int cached, int raw)
1640 {
1641 int status;
1642
1643 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1644
1645 if (unlikely(raw))
1646 chip->ecc.write_page_raw(mtd, chip, buf);
1647 else
1648 chip->ecc.write_page(mtd, chip, buf);
1649
1650 /*
1651 * Cached progamming disabled for now, Not sure if its worth the
1652 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1653 */
1654 cached = 0;
1655
1656 if (!cached || !(chip->options & NAND_CACHEPRG)) {
1657
1658 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1659 status = chip->waitfunc(mtd, chip);
1660 /*
1661 * See if operation failed and additional status checks are
1662 * available
1663 */
1664 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1665 status = chip->errstat(mtd, chip, FL_WRITING, status,
1666 page);
1667
1668 if (status & NAND_STATUS_FAIL)
1669 return -EIO;
1670 } else {
1671 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
1672 status = chip->waitfunc(mtd, chip);
1673 }
1674
1675 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1676 /* Send command to read back the data */
1677 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1678
1679 if (chip->verify_buf(mtd, buf, mtd->writesize))
1680 return -EIO;
1681 #endif
1682 return 0;
1683 }
1684
1685 /**
1686 * nand_fill_oob - [Internal] Transfer client buffer to oob
1687 * @chip: nand chip structure
1688 * @oob: oob data buffer
1689 * @ops: oob ops structure
1690 */
1691 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob,
1692 struct mtd_oob_ops *ops)
1693 {
1694 size_t len = ops->ooblen;
1695
1696 switch(ops->mode) {
1697
1698 case MTD_OOB_PLACE:
1699 case MTD_OOB_RAW:
1700 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
1701 return oob + len;
1702
1703 case MTD_OOB_AUTO: {
1704 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1705 uint32_t boffs = 0, woffs = ops->ooboffs;
1706 size_t bytes = 0;
1707
1708 for(; free->length && len; free++, len -= bytes) {
1709 /* Write request not from offset 0 ? */
1710 if (unlikely(woffs)) {
1711 if (woffs >= free->length) {
1712 woffs -= free->length;
1713 continue;
1714 }
1715 boffs = free->offset + woffs;
1716 bytes = min_t(size_t, len,
1717 (free->length - woffs));
1718 woffs = 0;
1719 } else {
1720 bytes = min_t(size_t, len, free->length);
1721 boffs = free->offset;
1722 }
1723 memcpy(chip->oob_poi + boffs, oob, bytes);
1724 oob += bytes;
1725 }
1726 return oob;
1727 }
1728 default:
1729 BUG();
1730 }
1731 return NULL;
1732 }
1733
1734 #define NOTALIGNED(x) (x & (chip->subpagesize - 1)) != 0
1735
1736 /**
1737 * nand_do_write_ops - [Internal] NAND write with ECC
1738 * @mtd: MTD device structure
1739 * @to: offset to write to
1740 * @ops: oob operations description structure
1741 *
1742 * NAND write with ECC
1743 */
1744 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
1745 struct mtd_oob_ops *ops)
1746 {
1747 int chipnr, realpage, page, blockmask, column;
1748 struct nand_chip *chip = mtd->priv;
1749 uint32_t writelen = ops->len;
1750 uint8_t *oob = ops->oobbuf;
1751 uint8_t *buf = ops->datbuf;
1752 int ret, subpage;
1753
1754 ops->retlen = 0;
1755 if (!writelen)
1756 return 0;
1757
1758 /* reject writes, which are not page aligned */
1759 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
1760 printk(KERN_NOTICE "nand_write: "
1761 "Attempt to write not page aligned data\n");
1762 return -EINVAL;
1763 }
1764
1765 column = to & (mtd->writesize - 1);
1766 subpage = column || (writelen & (mtd->writesize - 1));
1767
1768 if (subpage && oob)
1769 return -EINVAL;
1770
1771 chipnr = (int)(to >> chip->chip_shift);
1772 chip->select_chip(mtd, chipnr);
1773
1774 /* Check, if it is write protected */
1775 if (nand_check_wp(mtd)) {
1776 printk (KERN_NOTICE "nand_do_write_ops: Device is write protected\n");
1777 return -EIO;
1778 }
1779
1780 realpage = (int)(to >> chip->page_shift);
1781 page = realpage & chip->pagemask;
1782 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1783
1784 /* Invalidate the page cache, when we write to the cached page */
1785 if (to <= (chip->pagebuf << chip->page_shift) &&
1786 (chip->pagebuf << chip->page_shift) < (to + ops->len))
1787 chip->pagebuf = -1;
1788
1789 /* If we're not given explicit OOB data, let it be 0xFF */
1790 if (likely(!oob))
1791 memset(chip->oob_poi, 0xff, mtd->oobsize);
1792
1793 while(1) {
1794 int bytes = mtd->writesize;
1795 int cached = writelen > bytes && page != blockmask;
1796 uint8_t *wbuf = buf;
1797
1798 /* Partial page write ? */
1799 if (unlikely(column || writelen < (mtd->writesize - 1))) {
1800 cached = 0;
1801 bytes = min_t(int, bytes - column, (int) writelen);
1802 chip->pagebuf = -1;
1803 memset(chip->buffers->databuf, 0xff, mtd->writesize);
1804 memcpy(&chip->buffers->databuf[column], buf, bytes);
1805 wbuf = chip->buffers->databuf;
1806 }
1807
1808 if (unlikely(oob))
1809 oob = nand_fill_oob(chip, oob, ops);
1810
1811 ret = chip->write_page(mtd, chip, wbuf, page, cached,
1812 (ops->mode == MTD_OOB_RAW));
1813 if (ret)
1814 break;
1815
1816 writelen -= bytes;
1817 if (!writelen)
1818 break;
1819
1820 column = 0;
1821 buf += bytes;
1822 realpage++;
1823
1824 page = realpage & chip->pagemask;
1825 /* Check, if we cross a chip boundary */
1826 if (!page) {
1827 chipnr++;
1828 chip->select_chip(mtd, -1);
1829 chip->select_chip(mtd, chipnr);
1830 }
1831 }
1832
1833 ops->retlen = ops->len - writelen;
1834 if (unlikely(oob))
1835 ops->oobretlen = ops->ooblen;
1836 return ret;
1837 }
1838
1839 /**
1840 * nand_write - [MTD Interface] NAND write with ECC
1841 * @mtd: MTD device structure
1842 * @to: offset to write to
1843 * @len: number of bytes to write
1844 * @retlen: pointer to variable to store the number of written bytes
1845 * @buf: the data to write
1846 *
1847 * NAND write with ECC
1848 */
1849 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
1850 size_t *retlen, const uint8_t *buf)
1851 {
1852 struct nand_chip *chip = mtd->priv;
1853 int ret;
1854
1855 /* Do not allow reads past end of device */
1856 if ((to + len) > mtd->size)
1857 return -EINVAL;
1858 if (!len)
1859 return 0;
1860
1861 nand_get_device(chip, mtd, FL_WRITING);
1862
1863 chip->ops.len = len;
1864 chip->ops.datbuf = (uint8_t *)buf;
1865 chip->ops.oobbuf = NULL;
1866
1867 ret = nand_do_write_ops(mtd, to, &chip->ops);
1868
1869 *retlen = chip->ops.retlen;
1870
1871 nand_release_device(mtd);
1872
1873 return ret;
1874 }
1875
1876 /**
1877 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
1878 * @mtd: MTD device structure
1879 * @to: offset to write to
1880 * @ops: oob operation description structure
1881 *
1882 * NAND write out-of-band
1883 */
1884 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
1885 struct mtd_oob_ops *ops)
1886 {
1887 int chipnr, page, status, len;
1888 struct nand_chip *chip = mtd->priv;
1889
1890 MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n",
1891 (unsigned int)to, (int)ops->ooblen);
1892
1893 if (ops->mode == MTD_OOB_AUTO)
1894 len = chip->ecc.layout->oobavail;
1895 else
1896 len = mtd->oobsize;
1897
1898 /* Do not allow write past end of page */
1899 if ((ops->ooboffs + ops->ooblen) > len) {
1900 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: "
1901 "Attempt to write past end of page\n");
1902 return -EINVAL;
1903 }
1904
1905 if (unlikely(ops->ooboffs >= len)) {
1906 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1907 "Attempt to start write outside oob\n");
1908 return -EINVAL;
1909 }
1910
1911 /* Do not allow reads past end of device */
1912 if (unlikely(to >= mtd->size ||
1913 ops->ooboffs + ops->ooblen >
1914 ((mtd->size >> chip->page_shift) -
1915 (to >> chip->page_shift)) * len)) {
1916 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1917 "Attempt write beyond end of device\n");
1918 return -EINVAL;
1919 }
1920
1921 chipnr = (int)(to >> chip->chip_shift);
1922 chip->select_chip(mtd, chipnr);
1923
1924 /* Shift to get page */
1925 page = (int)(to >> chip->page_shift);
1926
1927 /*
1928 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
1929 * of my DiskOnChip 2000 test units) will clear the whole data page too
1930 * if we don't do this. I have no clue why, but I seem to have 'fixed'
1931 * it in the doc2000 driver in August 1999. dwmw2.
1932 */
1933 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1934
1935 /* Check, if it is write protected */
1936 if (nand_check_wp(mtd))
1937 return -EROFS;
1938
1939 /* Invalidate the page cache, if we write to the cached page */
1940 if (page == chip->pagebuf)
1941 chip->pagebuf = -1;
1942
1943 memset(chip->oob_poi, 0xff, mtd->oobsize);
1944 nand_fill_oob(chip, ops->oobbuf, ops);
1945 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1946 memset(chip->oob_poi, 0xff, mtd->oobsize);
1947
1948 if (status)
1949 return status;
1950
1951 ops->oobretlen = ops->ooblen;
1952
1953 return 0;
1954 }
1955
1956 /**
1957 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1958 * @mtd: MTD device structure
1959 * @to: offset to write to
1960 * @ops: oob operation description structure
1961 */
1962 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
1963 struct mtd_oob_ops *ops)
1964 {
1965 struct nand_chip *chip = mtd->priv;
1966 int ret = -ENOTSUPP;
1967
1968 ops->retlen = 0;
1969
1970 /* Do not allow writes past end of device */
1971 if (ops->datbuf && (to + ops->len) > mtd->size) {
1972 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1973 "Attempt read beyond end of device\n");
1974 return -EINVAL;
1975 }
1976
1977 nand_get_device(chip, mtd, FL_WRITING);
1978
1979 switch(ops->mode) {
1980 case MTD_OOB_PLACE:
1981 case MTD_OOB_AUTO:
1982 case MTD_OOB_RAW:
1983 break;
1984
1985 default:
1986 goto out;
1987 }
1988
1989 if (!ops->datbuf)
1990 ret = nand_do_write_oob(mtd, to, ops);
1991 else
1992 ret = nand_do_write_ops(mtd, to, ops);
1993
1994 out:
1995 nand_release_device(mtd);
1996 return ret;
1997 }
1998
1999 /**
2000 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2001 * @mtd: MTD device structure
2002 * @page: the page address of the block which will be erased
2003 *
2004 * Standard erase command for NAND chips
2005 */
2006 static void single_erase_cmd(struct mtd_info *mtd, int page)
2007 {
2008 struct nand_chip *chip = mtd->priv;
2009 /* Send commands to erase a block */
2010 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2011 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2012 }
2013
2014 /**
2015 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2016 * @mtd: MTD device structure
2017 * @page: the page address of the block which will be erased
2018 *
2019 * AND multi block erase command function
2020 * Erase 4 consecutive blocks
2021 */
2022 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2023 {
2024 struct nand_chip *chip = mtd->priv;
2025 /* Send commands to erase a block */
2026 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2027 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2028 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2029 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2030 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2031 }
2032
2033 /**
2034 * nand_erase - [MTD Interface] erase block(s)
2035 * @mtd: MTD device structure
2036 * @instr: erase instruction
2037 *
2038 * Erase one ore more blocks
2039 */
2040 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2041 {
2042 return nand_erase_nand(mtd, instr, 0);
2043 }
2044
2045 #define BBT_PAGE_MASK 0xffffff3f
2046 /**
2047 * nand_erase_nand - [Internal] erase block(s)
2048 * @mtd: MTD device structure
2049 * @instr: erase instruction
2050 * @allowbbt: allow erasing the bbt area
2051 *
2052 * Erase one ore more blocks
2053 */
2054 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2055 int allowbbt)
2056 {
2057 int page, len, status, pages_per_block, ret, chipnr;
2058 struct nand_chip *chip = mtd->priv;
2059 int rewrite_bbt[NAND_MAX_CHIPS]={0};
2060 unsigned int bbt_masked_page = 0xffffffff;
2061
2062 MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%08x, len = %i\n",
2063 (unsigned int) instr->addr, (unsigned int) instr->len);
2064
2065 /* Start address must align on block boundary */
2066 if (instr->addr & ((1 << chip->phys_erase_shift) - 1)) {
2067 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
2068 return -EINVAL;
2069 }
2070
2071 /* Length must align on block boundary */
2072 if (instr->len & ((1 << chip->phys_erase_shift) - 1)) {
2073 MTDDEBUG (MTD_DEBUG_LEVEL0,
2074 "nand_erase: Length not block aligned\n");
2075 return -EINVAL;
2076 }
2077
2078 /* Do not allow erase past end of device */
2079 if ((instr->len + instr->addr) > mtd->size) {
2080 MTDDEBUG (MTD_DEBUG_LEVEL0,
2081 "nand_erase: Erase past end of device\n");
2082 return -EINVAL;
2083 }
2084
2085 instr->fail_addr = 0xffffffff;
2086
2087 /* Grab the lock and see if the device is available */
2088 nand_get_device(chip, mtd, FL_ERASING);
2089
2090 /* Shift to get first page */
2091 page = (int)(instr->addr >> chip->page_shift);
2092 chipnr = (int)(instr->addr >> chip->chip_shift);
2093
2094 /* Calculate pages in each block */
2095 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2096
2097 /* Select the NAND device */
2098 chip->select_chip(mtd, chipnr);
2099
2100 /* Check, if it is write protected */
2101 if (nand_check_wp(mtd)) {
2102 MTDDEBUG (MTD_DEBUG_LEVEL0,
2103 "nand_erase: Device is write protected!!!\n");
2104 instr->state = MTD_ERASE_FAILED;
2105 goto erase_exit;
2106 }
2107
2108 /*
2109 * If BBT requires refresh, set the BBT page mask to see if the BBT
2110 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2111 * can not be matched. This is also done when the bbt is actually
2112 * erased to avoid recusrsive updates
2113 */
2114 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2115 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2116
2117 /* Loop through the pages */
2118 len = instr->len;
2119
2120 instr->state = MTD_ERASING;
2121
2122 while (len) {
2123 /*
2124 * heck if we have a bad block, we do not erase bad blocks !
2125 */
2126 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2127 chip->page_shift, 0, allowbbt)) {
2128 printk(KERN_WARNING "nand_erase: attempt to erase a "
2129 "bad block at page 0x%08x\n", page);
2130 instr->state = MTD_ERASE_FAILED;
2131 goto erase_exit;
2132 }
2133
2134 /*
2135 * Invalidate the page cache, if we erase the block which
2136 * contains the current cached page
2137 */
2138 if (page <= chip->pagebuf && chip->pagebuf <
2139 (page + pages_per_block))
2140 chip->pagebuf = -1;
2141
2142 chip->erase_cmd(mtd, page & chip->pagemask);
2143
2144 status = chip->waitfunc(mtd, chip);
2145
2146 /*
2147 * See if operation failed and additional status checks are
2148 * available
2149 */
2150 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2151 status = chip->errstat(mtd, chip, FL_ERASING,
2152 status, page);
2153
2154 /* See if block erase succeeded */
2155 if (status & NAND_STATUS_FAIL) {
2156 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_erase: "
2157 "Failed erase, page 0x%08x\n", page);
2158 instr->state = MTD_ERASE_FAILED;
2159 instr->fail_addr = (page << chip->page_shift);
2160 goto erase_exit;
2161 }
2162
2163 /*
2164 * If BBT requires refresh, set the BBT rewrite flag to the
2165 * page being erased
2166 */
2167 if (bbt_masked_page != 0xffffffff &&
2168 (page & BBT_PAGE_MASK) == bbt_masked_page)
2169 rewrite_bbt[chipnr] = (page << chip->page_shift);
2170
2171 /* Increment page address and decrement length */
2172 len -= (1 << chip->phys_erase_shift);
2173 page += pages_per_block;
2174
2175 /* Check, if we cross a chip boundary */
2176 if (len && !(page & chip->pagemask)) {
2177 chipnr++;
2178 chip->select_chip(mtd, -1);
2179 chip->select_chip(mtd, chipnr);
2180
2181 /*
2182 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2183 * page mask to see if this BBT should be rewritten
2184 */
2185 if (bbt_masked_page != 0xffffffff &&
2186 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2187 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2188 BBT_PAGE_MASK;
2189 }
2190 }
2191 instr->state = MTD_ERASE_DONE;
2192
2193 erase_exit:
2194
2195 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2196 /* Do call back function */
2197 if (!ret)
2198 mtd_erase_callback(instr);
2199
2200 /* Deselect and wake up anyone waiting on the device */
2201 nand_release_device(mtd);
2202
2203 /*
2204 * If BBT requires refresh and erase was successful, rewrite any
2205 * selected bad block tables
2206 */
2207 if (bbt_masked_page == 0xffffffff || ret)
2208 return ret;
2209
2210 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2211 if (!rewrite_bbt[chipnr])
2212 continue;
2213 /* update the BBT for chip */
2214 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt "
2215 "(%d:0x%0x 0x%0x)\n", chipnr, rewrite_bbt[chipnr],
2216 chip->bbt_td->pages[chipnr]);
2217 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2218 }
2219
2220 /* Return more or less happy */
2221 return ret;
2222 }
2223
2224 /**
2225 * nand_sync - [MTD Interface] sync
2226 * @mtd: MTD device structure
2227 *
2228 * Sync is actually a wait for chip ready function
2229 */
2230 static void nand_sync(struct mtd_info *mtd)
2231 {
2232 struct nand_chip *chip = mtd->priv;
2233
2234 MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n");
2235
2236 /* Grab the lock and see if the device is available */
2237 nand_get_device(chip, mtd, FL_SYNCING);
2238 /* Release it and go back */
2239 nand_release_device(mtd);
2240 }
2241
2242 /**
2243 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2244 * @mtd: MTD device structure
2245 * @offs: offset relative to mtd start
2246 */
2247 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2248 {
2249 /* Check for invalid offset */
2250 if (offs > mtd->size)
2251 return -EINVAL;
2252
2253 return nand_block_checkbad(mtd, offs, 1, 0);
2254 }
2255
2256 /**
2257 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2258 * @mtd: MTD device structure
2259 * @ofs: offset relative to mtd start
2260 */
2261 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2262 {
2263 struct nand_chip *chip = mtd->priv;
2264 int ret;
2265
2266 if ((ret = nand_block_isbad(mtd, ofs))) {
2267 /* If it was bad already, return success and do nothing. */
2268 if (ret > 0)
2269 return 0;
2270 return ret;
2271 }
2272
2273 return chip->block_markbad(mtd, ofs);
2274 }
2275
2276 /**
2277 * nand_suspend - [MTD Interface] Suspend the NAND flash
2278 * @mtd: MTD device structure
2279 */
2280 static int nand_suspend(struct mtd_info *mtd)
2281 {
2282 struct nand_chip *chip = mtd->priv;
2283
2284 return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2285 }
2286
2287 /**
2288 * nand_resume - [MTD Interface] Resume the NAND flash
2289 * @mtd: MTD device structure
2290 */
2291 static void nand_resume(struct mtd_info *mtd)
2292 {
2293 struct nand_chip *chip = mtd->priv;
2294
2295 if (chip->state == FL_PM_SUSPENDED)
2296 nand_release_device(mtd);
2297 else
2298 printk(KERN_ERR "nand_resume() called for a chip which is not "
2299 "in suspended state\n");
2300 }
2301
2302 /*
2303 * Set default functions
2304 */
2305 static void nand_set_defaults(struct nand_chip *chip, int busw)
2306 {
2307 /* check for proper chip_delay setup, set 20us if not */
2308 if (!chip->chip_delay)
2309 chip->chip_delay = 20;
2310
2311 /* check, if a user supplied command function given */
2312 if (chip->cmdfunc == NULL)
2313 chip->cmdfunc = nand_command;
2314
2315 /* check, if a user supplied wait function given */
2316 if (chip->waitfunc == NULL)
2317 chip->waitfunc = nand_wait;
2318
2319 if (!chip->select_chip)
2320 chip->select_chip = nand_select_chip;
2321 if (!chip->read_byte)
2322 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2323 if (!chip->read_word)
2324 chip->read_word = nand_read_word;
2325 if (!chip->block_bad)
2326 chip->block_bad = nand_block_bad;
2327 if (!chip->block_markbad)
2328 chip->block_markbad = nand_default_block_markbad;
2329 if (!chip->write_buf)
2330 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2331 if (!chip->read_buf)
2332 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2333 if (!chip->verify_buf)
2334 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2335 if (!chip->scan_bbt)
2336 chip->scan_bbt = nand_default_bbt;
2337
2338 if (!chip->controller) {
2339 chip->controller = &chip->hwcontrol;
2340
2341 /* XXX U-BOOT XXX */
2342 #if 0
2343 spin_lock_init(&chip->controller->lock);
2344 init_waitqueue_head(&chip->controller->wq);
2345 #endif
2346 }
2347
2348 }
2349
2350 /*
2351 * Get the flash and manufacturer id and lookup if the type is supported
2352 */
2353 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2354 struct nand_chip *chip,
2355 int busw, int *maf_id)
2356 {
2357 struct nand_flash_dev *type = NULL;
2358 int i, dev_id, maf_idx;
2359
2360 /* Select the device */
2361 chip->select_chip(mtd, 0);
2362
2363 /* Send the command for reading device ID */
2364 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2365
2366 /* Read manufacturer and device IDs */
2367 *maf_id = chip->read_byte(mtd);
2368 dev_id = chip->read_byte(mtd);
2369
2370 /* Lookup the flash id */
2371 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2372 if (dev_id == nand_flash_ids[i].id) {
2373 type = &nand_flash_ids[i];
2374 break;
2375 }
2376 }
2377
2378 if (!type)
2379 return ERR_PTR(-ENODEV);
2380
2381 if (!mtd->name)
2382 mtd->name = type->name;
2383
2384 chip->chipsize = type->chipsize << 20;
2385
2386 /* Newer devices have all the information in additional id bytes */
2387 if (!type->pagesize) {
2388 int extid;
2389 /* The 3rd id byte holds MLC / multichip data */
2390 chip->cellinfo = chip->read_byte(mtd);
2391 /* The 4th id byte is the important one */
2392 extid = chip->read_byte(mtd);
2393 /* Calc pagesize */
2394 mtd->writesize = 1024 << (extid & 0x3);
2395 extid >>= 2;
2396 /* Calc oobsize */
2397 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
2398 extid >>= 2;
2399 /* Calc blocksize. Blocksize is multiples of 64KiB */
2400 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2401 extid >>= 2;
2402 /* Get buswidth information */
2403 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2404
2405 } else {
2406 /*
2407 * Old devices have chip data hardcoded in the device id table
2408 */
2409 mtd->erasesize = type->erasesize;
2410 mtd->writesize = type->pagesize;
2411 mtd->oobsize = mtd->writesize / 32;
2412 busw = type->options & NAND_BUSWIDTH_16;
2413 }
2414
2415 /* Try to identify manufacturer */
2416 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
2417 if (nand_manuf_ids[maf_idx].id == *maf_id)
2418 break;
2419 }
2420
2421 /*
2422 * Check, if buswidth is correct. Hardware drivers should set
2423 * chip correct !
2424 */
2425 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2426 printk(KERN_INFO "NAND device: Manufacturer ID:"
2427 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2428 dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2429 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2430 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2431 busw ? 16 : 8);
2432 return ERR_PTR(-EINVAL);
2433 }
2434
2435 /* Calculate the address shift from the page size */
2436 chip->page_shift = ffs(mtd->writesize) - 1;
2437 /* Convert chipsize to number of pages per chip -1. */
2438 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2439
2440 chip->bbt_erase_shift = chip->phys_erase_shift =
2441 ffs(mtd->erasesize) - 1;
2442 chip->chip_shift = ffs(chip->chipsize) - 1;
2443
2444 /* Set the bad block position */
2445 chip->badblockpos = mtd->writesize > 512 ?
2446 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2447
2448 /* Get chip options, preserve non chip based options */
2449 chip->options &= ~NAND_CHIPOPTIONS_MSK;
2450 chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2451
2452 /*
2453 * Set chip as a default. Board drivers can override it, if necessary
2454 */
2455 chip->options |= NAND_NO_AUTOINCR;
2456
2457 /* Check if chip is a not a samsung device. Do not clear the
2458 * options for chips which are not having an extended id.
2459 */
2460 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2461 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2462
2463 /* Check for AND chips with 4 page planes */
2464 if (chip->options & NAND_4PAGE_ARRAY)
2465 chip->erase_cmd = multi_erase_cmd;
2466 else
2467 chip->erase_cmd = single_erase_cmd;
2468
2469 /* Do not replace user supplied command function ! */
2470 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2471 chip->cmdfunc = nand_command_lp;
2472
2473 MTDDEBUG (MTD_DEBUG_LEVEL0, "NAND device: Manufacturer ID:"
2474 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2475 nand_manuf_ids[maf_idx].name, type->name);
2476
2477 return type;
2478 }
2479
2480 /**
2481 * nand_scan_ident - [NAND Interface] Scan for the NAND device
2482 * @mtd: MTD device structure
2483 * @maxchips: Number of chips to scan for
2484 *
2485 * This is the first phase of the normal nand_scan() function. It
2486 * reads the flash ID and sets up MTD fields accordingly.
2487 *
2488 * The mtd->owner field must be set to the module of the caller.
2489 */
2490 int nand_scan_ident(struct mtd_info *mtd, int maxchips)
2491 {
2492 int i, busw, nand_maf_id;
2493 struct nand_chip *chip = mtd->priv;
2494 struct nand_flash_dev *type;
2495
2496 /* Get buswidth to select the correct functions */
2497 busw = chip->options & NAND_BUSWIDTH_16;
2498 /* Set the default functions */
2499 nand_set_defaults(chip, busw);
2500
2501 /* Read the flash type */
2502 type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id);
2503
2504 if (IS_ERR(type)) {
2505 printk(KERN_WARNING "No NAND device found!!!\n");
2506 chip->select_chip(mtd, -1);
2507 return PTR_ERR(type);
2508 }
2509
2510 /* Check for a chip array */
2511 for (i = 1; i < maxchips; i++) {
2512 chip->select_chip(mtd, i);
2513 /* Send the command for reading device ID */
2514 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2515 /* Read manufacturer and device IDs */
2516 if (nand_maf_id != chip->read_byte(mtd) ||
2517 type->id != chip->read_byte(mtd))
2518 break;
2519 }
2520 if (i > 1)
2521 printk(KERN_INFO "%d NAND chips detected\n", i);
2522
2523 /* Store the number of chips and calc total size for mtd */
2524 chip->numchips = i;
2525 mtd->size = i * chip->chipsize;
2526
2527 return 0;
2528 }
2529
2530
2531 /**
2532 * nand_scan_tail - [NAND Interface] Scan for the NAND device
2533 * @mtd: MTD device structure
2534 * @maxchips: Number of chips to scan for
2535 *
2536 * This is the second phase of the normal nand_scan() function. It
2537 * fills out all the uninitialized function pointers with the defaults
2538 * and scans for a bad block table if appropriate.
2539 */
2540 int nand_scan_tail(struct mtd_info *mtd)
2541 {
2542 int i;
2543 struct nand_chip *chip = mtd->priv;
2544
2545 if (!(chip->options & NAND_OWN_BUFFERS))
2546 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
2547 if (!chip->buffers)
2548 return -ENOMEM;
2549
2550 /* Set the internal oob buffer location, just after the page data */
2551 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
2552
2553 /*
2554 * If no default placement scheme is given, select an appropriate one
2555 */
2556 if (!chip->ecc.layout) {
2557 switch (mtd->oobsize) {
2558 case 8:
2559 chip->ecc.layout = &nand_oob_8;
2560 break;
2561 case 16:
2562 chip->ecc.layout = &nand_oob_16;
2563 break;
2564 case 64:
2565 chip->ecc.layout = &nand_oob_64;
2566 break;
2567 case 128:
2568 chip->ecc.layout = &nand_oob_128;
2569 break;
2570 default:
2571 printk(KERN_WARNING "No oob scheme defined for "
2572 "oobsize %d\n", mtd->oobsize);
2573 /* BUG(); */
2574 }
2575 }
2576
2577 if (!chip->write_page)
2578 chip->write_page = nand_write_page;
2579
2580 /*
2581 * check ECC mode, default to software if 3byte/512byte hardware ECC is
2582 * selected and we have 256 byte pagesize fallback to software ECC
2583 */
2584 if (!chip->ecc.read_page_raw)
2585 chip->ecc.read_page_raw = nand_read_page_raw;
2586 if (!chip->ecc.write_page_raw)
2587 chip->ecc.write_page_raw = nand_write_page_raw;
2588
2589 switch (chip->ecc.mode) {
2590 case NAND_ECC_HW:
2591 /* Use standard hwecc read page function ? */
2592 if (!chip->ecc.read_page)
2593 chip->ecc.read_page = nand_read_page_hwecc;
2594 if (!chip->ecc.write_page)
2595 chip->ecc.write_page = nand_write_page_hwecc;
2596 if (!chip->ecc.read_oob)
2597 chip->ecc.read_oob = nand_read_oob_std;
2598 if (!chip->ecc.write_oob)
2599 chip->ecc.write_oob = nand_write_oob_std;
2600
2601 case NAND_ECC_HW_SYNDROME:
2602 if ((!chip->ecc.calculate || !chip->ecc.correct ||
2603 !chip->ecc.hwctl) &&
2604 (!chip->ecc.read_page ||
2605 chip->ecc.read_page == nand_read_page_hwecc ||
2606 !chip->ecc.write_page ||
2607 chip->ecc.write_page == nand_write_page_hwecc)) {
2608 printk(KERN_WARNING "No ECC functions supplied, "
2609 "Hardware ECC not possible\n");
2610 BUG();
2611 }
2612 /* Use standard syndrome read/write page function ? */
2613 if (!chip->ecc.read_page)
2614 chip->ecc.read_page = nand_read_page_syndrome;
2615 if (!chip->ecc.write_page)
2616 chip->ecc.write_page = nand_write_page_syndrome;
2617 if (!chip->ecc.read_oob)
2618 chip->ecc.read_oob = nand_read_oob_syndrome;
2619 if (!chip->ecc.write_oob)
2620 chip->ecc.write_oob = nand_write_oob_syndrome;
2621
2622 if (mtd->writesize >= chip->ecc.size)
2623 break;
2624 printk(KERN_WARNING "%d byte HW ECC not possible on "
2625 "%d byte page size, fallback to SW ECC\n",
2626 chip->ecc.size, mtd->writesize);
2627 chip->ecc.mode = NAND_ECC_SOFT;
2628
2629 case NAND_ECC_SOFT:
2630 chip->ecc.calculate = nand_calculate_ecc;
2631 chip->ecc.correct = nand_correct_data;
2632 chip->ecc.read_page = nand_read_page_swecc;
2633 chip->ecc.write_page = nand_write_page_swecc;
2634 chip->ecc.read_oob = nand_read_oob_std;
2635 chip->ecc.write_oob = nand_write_oob_std;
2636 chip->ecc.size = 256;
2637 chip->ecc.bytes = 3;
2638 break;
2639
2640 case NAND_ECC_NONE:
2641 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
2642 "This is not recommended !!\n");
2643 chip->ecc.read_page = nand_read_page_raw;
2644 chip->ecc.write_page = nand_write_page_raw;
2645 chip->ecc.read_oob = nand_read_oob_std;
2646 chip->ecc.write_oob = nand_write_oob_std;
2647 chip->ecc.size = mtd->writesize;
2648 chip->ecc.bytes = 0;
2649 break;
2650
2651 default:
2652 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
2653 chip->ecc.mode);
2654 BUG();
2655 }
2656
2657 /*
2658 * The number of bytes available for a client to place data into
2659 * the out of band area
2660 */
2661 chip->ecc.layout->oobavail = 0;
2662 for (i = 0; chip->ecc.layout->oobfree[i].length; i++)
2663 chip->ecc.layout->oobavail +=
2664 chip->ecc.layout->oobfree[i].length;
2665 mtd->oobavail = chip->ecc.layout->oobavail;
2666
2667 /*
2668 * Set the number of read / write steps for one page depending on ECC
2669 * mode
2670 */
2671 chip->ecc.steps = mtd->writesize / chip->ecc.size;
2672 if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
2673 printk(KERN_WARNING "Invalid ecc parameters\n");
2674 BUG();
2675 }
2676 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
2677
2678 /*
2679 * Allow subpage writes up to ecc.steps. Not possible for MLC
2680 * FLASH.
2681 */
2682 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2683 !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
2684 switch(chip->ecc.steps) {
2685 case 2:
2686 mtd->subpage_sft = 1;
2687 break;
2688 case 4:
2689 case 8:
2690 mtd->subpage_sft = 2;
2691 break;
2692 }
2693 }
2694 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
2695
2696 /* Initialize state */
2697 chip->state = FL_READY;
2698
2699 /* De-select the device */
2700 chip->select_chip(mtd, -1);
2701
2702 /* Invalidate the pagebuffer reference */
2703 chip->pagebuf = -1;
2704
2705 /* Fill in remaining MTD driver data */
2706 mtd->type = MTD_NANDFLASH;
2707 mtd->flags = MTD_CAP_NANDFLASH;
2708 mtd->erase = nand_erase;
2709 mtd->point = NULL;
2710 mtd->unpoint = NULL;
2711 mtd->read = nand_read;
2712 mtd->write = nand_write;
2713 mtd->read_oob = nand_read_oob;
2714 mtd->write_oob = nand_write_oob;
2715 mtd->sync = nand_sync;
2716 mtd->lock = NULL;
2717 mtd->unlock = NULL;
2718 mtd->suspend = nand_suspend;
2719 mtd->resume = nand_resume;
2720 mtd->block_isbad = nand_block_isbad;
2721 mtd->block_markbad = nand_block_markbad;
2722
2723 /* propagate ecc.layout to mtd_info */
2724 mtd->ecclayout = chip->ecc.layout;
2725
2726 /* Check, if we should skip the bad block table scan */
2727 if (chip->options & NAND_SKIP_BBTSCAN)
2728 chip->options |= NAND_BBT_SCANNED;
2729
2730 return 0;
2731 }
2732
2733 /* module_text_address() isn't exported, and it's mostly a pointless
2734 test if this is a module _anyway_ -- they'd have to try _really_ hard
2735 to call us from in-kernel code if the core NAND support is modular. */
2736 #ifdef MODULE
2737 #define caller_is_module() (1)
2738 #else
2739 #define caller_is_module() \
2740 module_text_address((unsigned long)__builtin_return_address(0))
2741 #endif
2742
2743 /**
2744 * nand_scan - [NAND Interface] Scan for the NAND device
2745 * @mtd: MTD device structure
2746 * @maxchips: Number of chips to scan for
2747 *
2748 * This fills out all the uninitialized function pointers
2749 * with the defaults.
2750 * The flash ID is read and the mtd/chip structures are
2751 * filled with the appropriate values.
2752 * The mtd->owner field must be set to the module of the caller
2753 *
2754 */
2755 int nand_scan(struct mtd_info *mtd, int maxchips)
2756 {
2757 int ret;
2758
2759 /* Many callers got this wrong, so check for it for a while... */
2760 /* XXX U-BOOT XXX */
2761 #if 0
2762 if (!mtd->owner && caller_is_module()) {
2763 printk(KERN_CRIT "nand_scan() called with NULL mtd->owner!\n");
2764 BUG();
2765 }
2766 #endif
2767
2768 ret = nand_scan_ident(mtd, maxchips);
2769 if (!ret)
2770 ret = nand_scan_tail(mtd);
2771 return ret;
2772 }
2773
2774 /**
2775 * nand_release - [NAND Interface] Free resources held by the NAND device
2776 * @mtd: MTD device structure
2777 */
2778 void nand_release(struct mtd_info *mtd)
2779 {
2780 struct nand_chip *chip = mtd->priv;
2781
2782 #ifdef CONFIG_MTD_PARTITIONS
2783 /* Deregister partitions */
2784 del_mtd_partitions(mtd);
2785 #endif
2786 /* Deregister the device */
2787 /* XXX U-BOOT XXX */
2788 #if 0
2789 del_mtd_device(mtd);
2790 #endif
2791
2792 /* Free bad block table memory */
2793 kfree(chip->bbt);
2794 if (!(chip->options & NAND_OWN_BUFFERS))
2795 kfree(chip->buffers);
2796 }
2797
2798 /* XXX U-BOOT XXX */
2799 #if 0
2800 EXPORT_SYMBOL_GPL(nand_scan);
2801 EXPORT_SYMBOL_GPL(nand_scan_ident);
2802 EXPORT_SYMBOL_GPL(nand_scan_tail);
2803 EXPORT_SYMBOL_GPL(nand_release);
2804
2805 static int __init nand_base_init(void)
2806 {
2807 led_trigger_register_simple("nand-disk", &nand_led_trigger);
2808 return 0;
2809 }
2810
2811 static void __exit nand_base_exit(void)
2812 {
2813 led_trigger_unregister_simple(nand_led_trigger);
2814 }
2815
2816 module_init(nand_base_init);
2817 module_exit(nand_base_exit);
2818
2819 MODULE_LICENSE("GPL");
2820 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2821 MODULE_DESCRIPTION("Generic NAND flash driver code");
2822 #endif