]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/nand_base.c
Merge branch 'next'
[people/ms/u-boot.git] / drivers / mtd / nand / nand_base.c
1 /*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
8 *
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/doc/nand.html
11 *
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
14 *
15 * Credits:
16 * David Woodhouse for adding multichip support
17 *
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
20 *
21 * TODO:
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 * BBT table is not serialized, has to be fixed
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
32 *
33 */
34
35 /* XXX U-BOOT XXX */
36 #if 0
37 #include <linux/module.h>
38 #include <linux/delay.h>
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
43 #include <linux/types.h>
44 #include <linux/mtd/mtd.h>
45 #include <linux/mtd/nand.h>
46 #include <linux/mtd/nand_ecc.h>
47 #include <linux/mtd/compatmac.h>
48 #include <linux/interrupt.h>
49 #include <linux/bitops.h>
50 #include <linux/leds.h>
51 #include <asm/io.h>
52
53 #ifdef CONFIG_MTD_PARTITIONS
54 #include <linux/mtd/partitions.h>
55 #endif
56
57 #endif
58
59 #include <common.h>
60
61 #define ENOTSUPP 524 /* Operation is not supported */
62
63 #include <malloc.h>
64 #include <watchdog.h>
65 #include <linux/err.h>
66 #include <linux/mtd/compat.h>
67 #include <linux/mtd/mtd.h>
68 #include <linux/mtd/nand.h>
69 #include <linux/mtd/nand_ecc.h>
70
71 #include <asm/io.h>
72 #include <asm/errno.h>
73
74 #ifdef CONFIG_JFFS2_NAND
75 #include <jffs2/jffs2.h>
76 #endif
77
78 /* Define default oob placement schemes for large and small page devices */
79 static struct nand_ecclayout nand_oob_8 = {
80 .eccbytes = 3,
81 .eccpos = {0, 1, 2},
82 .oobfree = {
83 {.offset = 3,
84 .length = 2},
85 {.offset = 6,
86 .length = 2}}
87 };
88
89 static struct nand_ecclayout nand_oob_16 = {
90 .eccbytes = 6,
91 .eccpos = {0, 1, 2, 3, 6, 7},
92 .oobfree = {
93 {.offset = 8,
94 . length = 8}}
95 };
96
97 static struct nand_ecclayout nand_oob_64 = {
98 .eccbytes = 24,
99 .eccpos = {
100 40, 41, 42, 43, 44, 45, 46, 47,
101 48, 49, 50, 51, 52, 53, 54, 55,
102 56, 57, 58, 59, 60, 61, 62, 63},
103 .oobfree = {
104 {.offset = 2,
105 .length = 38}}
106 };
107
108 static struct nand_ecclayout nand_oob_128 = {
109 .eccbytes = 48,
110 .eccpos = {
111 80, 81, 82, 83, 84, 85, 86, 87,
112 88, 89, 90, 91, 92, 93, 94, 95,
113 96, 97, 98, 99, 100, 101, 102, 103,
114 104, 105, 106, 107, 108, 109, 110, 111,
115 112, 113, 114, 115, 116, 117, 118, 119,
116 120, 121, 122, 123, 124, 125, 126, 127},
117 .oobfree = {
118 {.offset = 2,
119 .length = 78}}
120 };
121
122
123 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
124 int new_state);
125
126 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
127 struct mtd_oob_ops *ops);
128
129 static int nand_wait(struct mtd_info *mtd, struct nand_chip *this);
130
131 /*
132 * For devices which display every fart in the system on a separate LED. Is
133 * compiled away when LED support is disabled.
134 */
135 /* XXX U-BOOT XXX */
136 #if 0
137 DEFINE_LED_TRIGGER(nand_led_trigger);
138 #endif
139
140 /**
141 * nand_release_device - [GENERIC] release chip
142 * @mtd: MTD device structure
143 *
144 * Deselect, release chip lock and wake up anyone waiting on the device
145 */
146 /* XXX U-BOOT XXX */
147 #if 0
148 static void nand_release_device(struct mtd_info *mtd)
149 {
150 struct nand_chip *chip = mtd->priv;
151
152 /* De-select the NAND device */
153 chip->select_chip(mtd, -1);
154
155 /* Release the controller and the chip */
156 spin_lock(&chip->controller->lock);
157 chip->controller->active = NULL;
158 chip->state = FL_READY;
159 wake_up(&chip->controller->wq);
160 spin_unlock(&chip->controller->lock);
161 }
162 #else
163 static void nand_release_device (struct mtd_info *mtd)
164 {
165 struct nand_chip *this = mtd->priv;
166 this->select_chip(mtd, -1); /* De-select the NAND device */
167 }
168 #endif
169
170 /**
171 * nand_read_byte - [DEFAULT] read one byte from the chip
172 * @mtd: MTD device structure
173 *
174 * Default read function for 8bit buswith
175 */
176 static uint8_t nand_read_byte(struct mtd_info *mtd)
177 {
178 struct nand_chip *chip = mtd->priv;
179 return readb(chip->IO_ADDR_R);
180 }
181
182 /**
183 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
184 * @mtd: MTD device structure
185 *
186 * Default read function for 16bit buswith with
187 * endianess conversion
188 */
189 static uint8_t nand_read_byte16(struct mtd_info *mtd)
190 {
191 struct nand_chip *chip = mtd->priv;
192 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
193 }
194
195 /**
196 * nand_read_word - [DEFAULT] read one word from the chip
197 * @mtd: MTD device structure
198 *
199 * Default read function for 16bit buswith without
200 * endianess conversion
201 */
202 static u16 nand_read_word(struct mtd_info *mtd)
203 {
204 struct nand_chip *chip = mtd->priv;
205 return readw(chip->IO_ADDR_R);
206 }
207
208 /**
209 * nand_select_chip - [DEFAULT] control CE line
210 * @mtd: MTD device structure
211 * @chipnr: chipnumber to select, -1 for deselect
212 *
213 * Default select function for 1 chip devices.
214 */
215 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
216 {
217 struct nand_chip *chip = mtd->priv;
218
219 switch (chipnr) {
220 case -1:
221 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
222 break;
223 case 0:
224 break;
225
226 default:
227 BUG();
228 }
229 }
230
231 /**
232 * nand_write_buf - [DEFAULT] write buffer to chip
233 * @mtd: MTD device structure
234 * @buf: data buffer
235 * @len: number of bytes to write
236 *
237 * Default write function for 8bit buswith
238 */
239 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
240 {
241 int i;
242 struct nand_chip *chip = mtd->priv;
243
244 for (i = 0; i < len; i++)
245 writeb(buf[i], chip->IO_ADDR_W);
246 }
247
248 /**
249 * nand_read_buf - [DEFAULT] read chip data into buffer
250 * @mtd: MTD device structure
251 * @buf: buffer to store date
252 * @len: number of bytes to read
253 *
254 * Default read function for 8bit buswith
255 */
256 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
257 {
258 int i;
259 struct nand_chip *chip = mtd->priv;
260
261 for (i = 0; i < len; i++)
262 buf[i] = readb(chip->IO_ADDR_R);
263 }
264
265 /**
266 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
267 * @mtd: MTD device structure
268 * @buf: buffer containing the data to compare
269 * @len: number of bytes to compare
270 *
271 * Default verify function for 8bit buswith
272 */
273 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
274 {
275 int i;
276 struct nand_chip *chip = mtd->priv;
277
278 for (i = 0; i < len; i++)
279 if (buf[i] != readb(chip->IO_ADDR_R))
280 return -EFAULT;
281 return 0;
282 }
283
284 /**
285 * nand_write_buf16 - [DEFAULT] write buffer to chip
286 * @mtd: MTD device structure
287 * @buf: data buffer
288 * @len: number of bytes to write
289 *
290 * Default write function for 16bit buswith
291 */
292 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
293 {
294 int i;
295 struct nand_chip *chip = mtd->priv;
296 u16 *p = (u16 *) buf;
297 len >>= 1;
298
299 for (i = 0; i < len; i++)
300 writew(p[i], chip->IO_ADDR_W);
301
302 }
303
304 /**
305 * nand_read_buf16 - [DEFAULT] read chip data into buffer
306 * @mtd: MTD device structure
307 * @buf: buffer to store date
308 * @len: number of bytes to read
309 *
310 * Default read function for 16bit buswith
311 */
312 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
313 {
314 int i;
315 struct nand_chip *chip = mtd->priv;
316 u16 *p = (u16 *) buf;
317 len >>= 1;
318
319 for (i = 0; i < len; i++)
320 p[i] = readw(chip->IO_ADDR_R);
321 }
322
323 /**
324 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
325 * @mtd: MTD device structure
326 * @buf: buffer containing the data to compare
327 * @len: number of bytes to compare
328 *
329 * Default verify function for 16bit buswith
330 */
331 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
332 {
333 int i;
334 struct nand_chip *chip = mtd->priv;
335 u16 *p = (u16 *) buf;
336 len >>= 1;
337
338 for (i = 0; i < len; i++)
339 if (p[i] != readw(chip->IO_ADDR_R))
340 return -EFAULT;
341
342 return 0;
343 }
344
345 /**
346 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
347 * @mtd: MTD device structure
348 * @ofs: offset from device start
349 * @getchip: 0, if the chip is already selected
350 *
351 * Check, if the block is bad.
352 */
353 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
354 {
355 int page, chipnr, res = 0;
356 struct nand_chip *chip = mtd->priv;
357 u16 bad;
358
359 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
360
361 if (getchip) {
362 chipnr = (int)(ofs >> chip->chip_shift);
363
364 nand_get_device(chip, mtd, FL_READING);
365
366 /* Select the NAND device */
367 chip->select_chip(mtd, chipnr);
368 }
369
370 if (chip->options & NAND_BUSWIDTH_16) {
371 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
372 page);
373 bad = cpu_to_le16(chip->read_word(mtd));
374 if (chip->badblockpos & 0x1)
375 bad >>= 8;
376 if ((bad & 0xFF) != 0xff)
377 res = 1;
378 } else {
379 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
380 if (chip->read_byte(mtd) != 0xff)
381 res = 1;
382 }
383
384 if (getchip)
385 nand_release_device(mtd);
386
387 return res;
388 }
389
390 /**
391 * nand_default_block_markbad - [DEFAULT] mark a block bad
392 * @mtd: MTD device structure
393 * @ofs: offset from device start
394 *
395 * This is the default implementation, which can be overridden by
396 * a hardware specific driver.
397 */
398 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
399 {
400 struct nand_chip *chip = mtd->priv;
401 uint8_t buf[2] = { 0, 0 };
402 int block, ret;
403
404 /* Get block number */
405 block = (int)(ofs >> chip->bbt_erase_shift);
406 if (chip->bbt)
407 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
408
409 /* Do we have a flash based bad block table ? */
410 if (chip->options & NAND_USE_FLASH_BBT)
411 ret = nand_update_bbt(mtd, ofs);
412 else {
413 /* We write two bytes, so we dont have to mess with 16 bit
414 * access
415 */
416 nand_get_device(chip, mtd, FL_WRITING);
417 ofs += mtd->oobsize;
418 chip->ops.len = chip->ops.ooblen = 2;
419 chip->ops.datbuf = NULL;
420 chip->ops.oobbuf = buf;
421 chip->ops.ooboffs = chip->badblockpos & ~0x01;
422
423 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
424 nand_release_device(mtd);
425 }
426 if (!ret)
427 mtd->ecc_stats.badblocks++;
428
429 return ret;
430 }
431
432 /**
433 * nand_check_wp - [GENERIC] check if the chip is write protected
434 * @mtd: MTD device structure
435 * Check, if the device is write protected
436 *
437 * The function expects, that the device is already selected
438 */
439 static int nand_check_wp(struct mtd_info *mtd)
440 {
441 struct nand_chip *chip = mtd->priv;
442 /* Check the WP bit */
443 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
444 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
445 }
446
447 /**
448 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
449 * @mtd: MTD device structure
450 * @ofs: offset from device start
451 * @getchip: 0, if the chip is already selected
452 * @allowbbt: 1, if its allowed to access the bbt area
453 *
454 * Check, if the block is bad. Either by reading the bad block table or
455 * calling of the scan function.
456 */
457 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
458 int allowbbt)
459 {
460 struct nand_chip *chip = mtd->priv;
461
462 if (!(chip->options & NAND_BBT_SCANNED)) {
463 chip->options |= NAND_BBT_SCANNED;
464 chip->scan_bbt(mtd);
465 }
466
467 if (!chip->bbt)
468 return chip->block_bad(mtd, ofs, getchip);
469
470 /* Return info from the table */
471 return nand_isbad_bbt(mtd, ofs, allowbbt);
472 }
473
474 /*
475 * Wait for the ready pin, after a command
476 * The timeout is catched later.
477 */
478 /* XXX U-BOOT XXX */
479 #if 0
480 void nand_wait_ready(struct mtd_info *mtd)
481 {
482 struct nand_chip *chip = mtd->priv;
483 unsigned long timeo = jiffies + 2;
484
485 led_trigger_event(nand_led_trigger, LED_FULL);
486 /* wait until command is processed or timeout occures */
487 do {
488 if (chip->dev_ready(mtd))
489 break;
490 touch_softlockup_watchdog();
491 } while (time_before(jiffies, timeo));
492 led_trigger_event(nand_led_trigger, LED_OFF);
493 }
494 EXPORT_SYMBOL_GPL(nand_wait_ready);
495 #else
496 void nand_wait_ready(struct mtd_info *mtd)
497 {
498 struct nand_chip *chip = mtd->priv;
499 u32 timeo = (CONFIG_SYS_HZ * 20) / 1000;
500
501 reset_timer();
502
503 /* wait until command is processed or timeout occures */
504 while (get_timer(0) < timeo) {
505 if (chip->dev_ready)
506 if (chip->dev_ready(mtd))
507 break;
508 }
509 }
510 #endif
511
512 /**
513 * nand_command - [DEFAULT] Send command to NAND device
514 * @mtd: MTD device structure
515 * @command: the command to be sent
516 * @column: the column address for this command, -1 if none
517 * @page_addr: the page address for this command, -1 if none
518 *
519 * Send command to NAND device. This function is used for small page
520 * devices (256/512 Bytes per page)
521 */
522 static void nand_command(struct mtd_info *mtd, unsigned int command,
523 int column, int page_addr)
524 {
525 register struct nand_chip *chip = mtd->priv;
526 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
527
528 /*
529 * Write out the command to the device.
530 */
531 if (command == NAND_CMD_SEQIN) {
532 int readcmd;
533
534 if (column >= mtd->writesize) {
535 /* OOB area */
536 column -= mtd->writesize;
537 readcmd = NAND_CMD_READOOB;
538 } else if (column < 256) {
539 /* First 256 bytes --> READ0 */
540 readcmd = NAND_CMD_READ0;
541 } else {
542 column -= 256;
543 readcmd = NAND_CMD_READ1;
544 }
545 chip->cmd_ctrl(mtd, readcmd, ctrl);
546 ctrl &= ~NAND_CTRL_CHANGE;
547 }
548 chip->cmd_ctrl(mtd, command, ctrl);
549
550 /*
551 * Address cycle, when necessary
552 */
553 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
554 /* Serially input address */
555 if (column != -1) {
556 /* Adjust columns for 16 bit buswidth */
557 if (chip->options & NAND_BUSWIDTH_16)
558 column >>= 1;
559 chip->cmd_ctrl(mtd, column, ctrl);
560 ctrl &= ~NAND_CTRL_CHANGE;
561 }
562 if (page_addr != -1) {
563 chip->cmd_ctrl(mtd, page_addr, ctrl);
564 ctrl &= ~NAND_CTRL_CHANGE;
565 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
566 /* One more address cycle for devices > 32MiB */
567 if (chip->chipsize > (32 << 20))
568 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
569 }
570 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
571
572 /*
573 * program and erase have their own busy handlers
574 * status and sequential in needs no delay
575 */
576 switch (command) {
577
578 case NAND_CMD_PAGEPROG:
579 case NAND_CMD_ERASE1:
580 case NAND_CMD_ERASE2:
581 case NAND_CMD_SEQIN:
582 case NAND_CMD_STATUS:
583 return;
584
585 case NAND_CMD_RESET:
586 if (chip->dev_ready)
587 break;
588 udelay(chip->chip_delay);
589 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
590 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
591 chip->cmd_ctrl(mtd,
592 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
593 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
594 return;
595
596 /* This applies to read commands */
597 default:
598 /*
599 * If we don't have access to the busy pin, we apply the given
600 * command delay
601 */
602 if (!chip->dev_ready) {
603 udelay(chip->chip_delay);
604 return;
605 }
606 }
607 /* Apply this short delay always to ensure that we do wait tWB in
608 * any case on any machine. */
609 ndelay(100);
610
611 nand_wait_ready(mtd);
612 }
613
614 /**
615 * nand_command_lp - [DEFAULT] Send command to NAND large page device
616 * @mtd: MTD device structure
617 * @command: the command to be sent
618 * @column: the column address for this command, -1 if none
619 * @page_addr: the page address for this command, -1 if none
620 *
621 * Send command to NAND device. This is the version for the new large page
622 * devices We dont have the separate regions as we have in the small page
623 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
624 */
625 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
626 int column, int page_addr)
627 {
628 register struct nand_chip *chip = mtd->priv;
629
630 /* Emulate NAND_CMD_READOOB */
631 if (command == NAND_CMD_READOOB) {
632 column += mtd->writesize;
633 command = NAND_CMD_READ0;
634 }
635
636 /* Command latch cycle */
637 chip->cmd_ctrl(mtd, command & 0xff,
638 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
639
640 if (column != -1 || page_addr != -1) {
641 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
642
643 /* Serially input address */
644 if (column != -1) {
645 /* Adjust columns for 16 bit buswidth */
646 if (chip->options & NAND_BUSWIDTH_16)
647 column >>= 1;
648 chip->cmd_ctrl(mtd, column, ctrl);
649 ctrl &= ~NAND_CTRL_CHANGE;
650 chip->cmd_ctrl(mtd, column >> 8, ctrl);
651 }
652 if (page_addr != -1) {
653 chip->cmd_ctrl(mtd, page_addr, ctrl);
654 chip->cmd_ctrl(mtd, page_addr >> 8,
655 NAND_NCE | NAND_ALE);
656 /* One more address cycle for devices > 128MiB */
657 if (chip->chipsize > (128 << 20))
658 chip->cmd_ctrl(mtd, page_addr >> 16,
659 NAND_NCE | NAND_ALE);
660 }
661 }
662 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
663
664 /*
665 * program and erase have their own busy handlers
666 * status, sequential in, and deplete1 need no delay
667 */
668 switch (command) {
669
670 case NAND_CMD_CACHEDPROG:
671 case NAND_CMD_PAGEPROG:
672 case NAND_CMD_ERASE1:
673 case NAND_CMD_ERASE2:
674 case NAND_CMD_SEQIN:
675 case NAND_CMD_RNDIN:
676 case NAND_CMD_STATUS:
677 case NAND_CMD_DEPLETE1:
678 return;
679
680 /*
681 * read error status commands require only a short delay
682 */
683 case NAND_CMD_STATUS_ERROR:
684 case NAND_CMD_STATUS_ERROR0:
685 case NAND_CMD_STATUS_ERROR1:
686 case NAND_CMD_STATUS_ERROR2:
687 case NAND_CMD_STATUS_ERROR3:
688 udelay(chip->chip_delay);
689 return;
690
691 case NAND_CMD_RESET:
692 if (chip->dev_ready)
693 break;
694 udelay(chip->chip_delay);
695 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
696 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
697 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
698 NAND_NCE | NAND_CTRL_CHANGE);
699 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
700 return;
701
702 case NAND_CMD_RNDOUT:
703 /* No ready / busy check necessary */
704 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
705 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
706 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
707 NAND_NCE | NAND_CTRL_CHANGE);
708 return;
709
710 case NAND_CMD_READ0:
711 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
712 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
713 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
714 NAND_NCE | NAND_CTRL_CHANGE);
715
716 /* This applies to read commands */
717 default:
718 /*
719 * If we don't have access to the busy pin, we apply the given
720 * command delay
721 */
722 if (!chip->dev_ready) {
723 udelay(chip->chip_delay);
724 return;
725 }
726 }
727
728 /* Apply this short delay always to ensure that we do wait tWB in
729 * any case on any machine. */
730 ndelay(100);
731
732 nand_wait_ready(mtd);
733 }
734
735 /**
736 * nand_get_device - [GENERIC] Get chip for selected access
737 * @chip: the nand chip descriptor
738 * @mtd: MTD device structure
739 * @new_state: the state which is requested
740 *
741 * Get the device and lock it for exclusive access
742 */
743 /* XXX U-BOOT XXX */
744 #if 0
745 static int
746 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
747 {
748 spinlock_t *lock = &chip->controller->lock;
749 wait_queue_head_t *wq = &chip->controller->wq;
750 DECLARE_WAITQUEUE(wait, current);
751 retry:
752 spin_lock(lock);
753
754 /* Hardware controller shared among independend devices */
755 /* Hardware controller shared among independend devices */
756 if (!chip->controller->active)
757 chip->controller->active = chip;
758
759 if (chip->controller->active == chip && chip->state == FL_READY) {
760 chip->state = new_state;
761 spin_unlock(lock);
762 return 0;
763 }
764 if (new_state == FL_PM_SUSPENDED) {
765 spin_unlock(lock);
766 return (chip->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
767 }
768 set_current_state(TASK_UNINTERRUPTIBLE);
769 add_wait_queue(wq, &wait);
770 spin_unlock(lock);
771 schedule();
772 remove_wait_queue(wq, &wait);
773 goto retry;
774 }
775 #else
776 static int nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state)
777 {
778 this->state = new_state;
779 return 0;
780 }
781 #endif
782
783 /**
784 * nand_wait - [DEFAULT] wait until the command is done
785 * @mtd: MTD device structure
786 * @chip: NAND chip structure
787 *
788 * Wait for command done. This applies to erase and program only
789 * Erase can take up to 400ms and program up to 20ms according to
790 * general NAND and SmartMedia specs
791 */
792 /* XXX U-BOOT XXX */
793 #if 0
794 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
795 {
796
797 unsigned long timeo = jiffies;
798 int status, state = chip->state;
799
800 if (state == FL_ERASING)
801 timeo += (HZ * 400) / 1000;
802 else
803 timeo += (HZ * 20) / 1000;
804
805 led_trigger_event(nand_led_trigger, LED_FULL);
806
807 /* Apply this short delay always to ensure that we do wait tWB in
808 * any case on any machine. */
809 ndelay(100);
810
811 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
812 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
813 else
814 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
815
816 while (time_before(jiffies, timeo)) {
817 if (chip->dev_ready) {
818 if (chip->dev_ready(mtd))
819 break;
820 } else {
821 if (chip->read_byte(mtd) & NAND_STATUS_READY)
822 break;
823 }
824 cond_resched();
825 }
826 led_trigger_event(nand_led_trigger, LED_OFF);
827
828 status = (int)chip->read_byte(mtd);
829 return status;
830 }
831 #else
832 static int nand_wait(struct mtd_info *mtd, struct nand_chip *this)
833 {
834 unsigned long timeo;
835 int state = this->state;
836
837 if (state == FL_ERASING)
838 timeo = (CONFIG_SYS_HZ * 400) / 1000;
839 else
840 timeo = (CONFIG_SYS_HZ * 20) / 1000;
841
842 if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
843 this->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
844 else
845 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
846
847 reset_timer();
848
849 while (1) {
850 if (get_timer(0) > timeo) {
851 printf("Timeout!");
852 return 0x01;
853 }
854
855 if (this->dev_ready) {
856 if (this->dev_ready(mtd))
857 break;
858 } else {
859 if (this->read_byte(mtd) & NAND_STATUS_READY)
860 break;
861 }
862 }
863 #ifdef PPCHAMELON_NAND_TIMER_HACK
864 reset_timer();
865 while (get_timer(0) < 10);
866 #endif /* PPCHAMELON_NAND_TIMER_HACK */
867
868 return this->read_byte(mtd);
869 }
870 #endif
871
872 /**
873 * nand_read_page_raw - [Intern] read raw page data without ecc
874 * @mtd: mtd info structure
875 * @chip: nand chip info structure
876 * @buf: buffer to store read data
877 */
878 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
879 uint8_t *buf)
880 {
881 chip->read_buf(mtd, buf, mtd->writesize);
882 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
883 return 0;
884 }
885
886 /**
887 * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
888 * @mtd: mtd info structure
889 * @chip: nand chip info structure
890 * @buf: buffer to store read data
891 */
892 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
893 uint8_t *buf)
894 {
895 int i, eccsize = chip->ecc.size;
896 int eccbytes = chip->ecc.bytes;
897 int eccsteps = chip->ecc.steps;
898 uint8_t *p = buf;
899 uint8_t *ecc_calc = chip->buffers->ecccalc;
900 uint8_t *ecc_code = chip->buffers->ecccode;
901 uint32_t *eccpos = chip->ecc.layout->eccpos;
902
903 chip->ecc.read_page_raw(mtd, chip, buf);
904
905 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
906 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
907
908 for (i = 0; i < chip->ecc.total; i++)
909 ecc_code[i] = chip->oob_poi[eccpos[i]];
910
911 eccsteps = chip->ecc.steps;
912 p = buf;
913
914 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
915 int stat;
916
917 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
918 if (stat < 0)
919 mtd->ecc_stats.failed++;
920 else
921 mtd->ecc_stats.corrected += stat;
922 }
923 return 0;
924 }
925
926 /**
927 * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
928 * @mtd: mtd info structure
929 * @chip: nand chip info structure
930 * @dataofs offset of requested data within the page
931 * @readlen data length
932 * @buf: buffer to store read data
933 */
934 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
935 {
936 int start_step, end_step, num_steps;
937 uint32_t *eccpos = chip->ecc.layout->eccpos;
938 uint8_t *p;
939 int data_col_addr, i, gaps = 0;
940 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
941 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
942
943 /* Column address wihin the page aligned to ECC size (256bytes). */
944 start_step = data_offs / chip->ecc.size;
945 end_step = (data_offs + readlen - 1) / chip->ecc.size;
946 num_steps = end_step - start_step + 1;
947
948 /* Data size aligned to ECC ecc.size*/
949 datafrag_len = num_steps * chip->ecc.size;
950 eccfrag_len = num_steps * chip->ecc.bytes;
951
952 data_col_addr = start_step * chip->ecc.size;
953 /* If we read not a page aligned data */
954 if (data_col_addr != 0)
955 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
956
957 p = bufpoi + data_col_addr;
958 chip->read_buf(mtd, p, datafrag_len);
959
960 /* Calculate ECC */
961 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
962 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
963
964 /* The performance is faster if to position offsets
965 according to ecc.pos. Let make sure here that
966 there are no gaps in ecc positions */
967 for (i = 0; i < eccfrag_len - 1; i++) {
968 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
969 eccpos[i + start_step * chip->ecc.bytes + 1]) {
970 gaps = 1;
971 break;
972 }
973 }
974 if (gaps) {
975 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
976 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
977 } else {
978 /* send the command to read the particular ecc bytes */
979 /* take care about buswidth alignment in read_buf */
980 aligned_pos = eccpos[start_step * chip->ecc.bytes] & ~(busw - 1);
981 aligned_len = eccfrag_len;
982 if (eccpos[start_step * chip->ecc.bytes] & (busw - 1))
983 aligned_len++;
984 if (eccpos[(start_step + num_steps) * chip->ecc.bytes] & (busw - 1))
985 aligned_len++;
986
987 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize + aligned_pos, -1);
988 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
989 }
990
991 for (i = 0; i < eccfrag_len; i++)
992 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + start_step * chip->ecc.bytes]];
993
994 p = bufpoi + data_col_addr;
995 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
996 int stat;
997
998 stat = chip->ecc.correct(mtd, p, &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
999 if (stat < 0)
1000 mtd->ecc_stats.failed++;
1001 else
1002 mtd->ecc_stats.corrected += stat;
1003 }
1004 return 0;
1005 }
1006
1007 /**
1008 * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
1009 * @mtd: mtd info structure
1010 * @chip: nand chip info structure
1011 * @buf: buffer to store read data
1012 *
1013 * Not for syndrome calculating ecc controllers which need a special oob layout
1014 */
1015 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1016 uint8_t *buf)
1017 {
1018 int i, eccsize = chip->ecc.size;
1019 int eccbytes = chip->ecc.bytes;
1020 int eccsteps = chip->ecc.steps;
1021 uint8_t *p = buf;
1022 uint8_t *ecc_calc = chip->buffers->ecccalc;
1023 uint8_t *ecc_code = chip->buffers->ecccode;
1024 uint32_t *eccpos = chip->ecc.layout->eccpos;
1025
1026 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1027 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1028 chip->read_buf(mtd, p, eccsize);
1029 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1030 }
1031 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1032
1033 for (i = 0; i < chip->ecc.total; i++)
1034 ecc_code[i] = chip->oob_poi[eccpos[i]];
1035
1036 eccsteps = chip->ecc.steps;
1037 p = buf;
1038
1039 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1040 int stat;
1041
1042 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1043 if (stat == -1)
1044 mtd->ecc_stats.failed++;
1045 else
1046 mtd->ecc_stats.corrected += stat;
1047 }
1048 return 0;
1049 }
1050
1051 /**
1052 * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
1053 * @mtd: mtd info structure
1054 * @chip: nand chip info structure
1055 * @buf: buffer to store read data
1056 *
1057 * The hw generator calculates the error syndrome automatically. Therefor
1058 * we need a special oob layout and handling.
1059 */
1060 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1061 uint8_t *buf)
1062 {
1063 int i, eccsize = chip->ecc.size;
1064 int eccbytes = chip->ecc.bytes;
1065 int eccsteps = chip->ecc.steps;
1066 uint8_t *p = buf;
1067 uint8_t *oob = chip->oob_poi;
1068
1069 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1070 int stat;
1071
1072 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1073 chip->read_buf(mtd, p, eccsize);
1074
1075 if (chip->ecc.prepad) {
1076 chip->read_buf(mtd, oob, chip->ecc.prepad);
1077 oob += chip->ecc.prepad;
1078 }
1079
1080 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1081 chip->read_buf(mtd, oob, eccbytes);
1082 stat = chip->ecc.correct(mtd, p, oob, NULL);
1083
1084 if (stat < 0)
1085 mtd->ecc_stats.failed++;
1086 else
1087 mtd->ecc_stats.corrected += stat;
1088
1089 oob += eccbytes;
1090
1091 if (chip->ecc.postpad) {
1092 chip->read_buf(mtd, oob, chip->ecc.postpad);
1093 oob += chip->ecc.postpad;
1094 }
1095 }
1096
1097 /* Calculate remaining oob bytes */
1098 i = mtd->oobsize - (oob - chip->oob_poi);
1099 if (i)
1100 chip->read_buf(mtd, oob, i);
1101
1102 return 0;
1103 }
1104
1105 /**
1106 * nand_transfer_oob - [Internal] Transfer oob to client buffer
1107 * @chip: nand chip structure
1108 * @oob: oob destination address
1109 * @ops: oob ops structure
1110 * @len: size of oob to transfer
1111 */
1112 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1113 struct mtd_oob_ops *ops, size_t len)
1114 {
1115 switch(ops->mode) {
1116
1117 case MTD_OOB_PLACE:
1118 case MTD_OOB_RAW:
1119 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1120 return oob + len;
1121
1122 case MTD_OOB_AUTO: {
1123 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1124 uint32_t boffs = 0, roffs = ops->ooboffs;
1125 size_t bytes = 0;
1126
1127 for(; free->length && len; free++, len -= bytes) {
1128 /* Read request not from offset 0 ? */
1129 if (unlikely(roffs)) {
1130 if (roffs >= free->length) {
1131 roffs -= free->length;
1132 continue;
1133 }
1134 boffs = free->offset + roffs;
1135 bytes = min_t(size_t, len,
1136 (free->length - roffs));
1137 roffs = 0;
1138 } else {
1139 bytes = min_t(size_t, len, free->length);
1140 boffs = free->offset;
1141 }
1142 memcpy(oob, chip->oob_poi + boffs, bytes);
1143 oob += bytes;
1144 }
1145 return oob;
1146 }
1147 default:
1148 BUG();
1149 }
1150 return NULL;
1151 }
1152
1153 /**
1154 * nand_do_read_ops - [Internal] Read data with ECC
1155 *
1156 * @mtd: MTD device structure
1157 * @from: offset to read from
1158 * @ops: oob ops structure
1159 *
1160 * Internal function. Called with chip held.
1161 */
1162 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1163 struct mtd_oob_ops *ops)
1164 {
1165 int chipnr, page, realpage, col, bytes, aligned;
1166 struct nand_chip *chip = mtd->priv;
1167 struct mtd_ecc_stats stats;
1168 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1169 int sndcmd = 1;
1170 int ret = 0;
1171 uint32_t readlen = ops->len;
1172 uint32_t oobreadlen = ops->ooblen;
1173 uint8_t *bufpoi, *oob, *buf;
1174
1175 stats = mtd->ecc_stats;
1176
1177 chipnr = (int)(from >> chip->chip_shift);
1178 chip->select_chip(mtd, chipnr);
1179
1180 realpage = (int)(from >> chip->page_shift);
1181 page = realpage & chip->pagemask;
1182
1183 col = (int)(from & (mtd->writesize - 1));
1184
1185 buf = ops->datbuf;
1186 oob = ops->oobbuf;
1187
1188 while(1) {
1189 bytes = min(mtd->writesize - col, readlen);
1190 aligned = (bytes == mtd->writesize);
1191
1192 /* Is the current page in the buffer ? */
1193 if (realpage != chip->pagebuf || oob) {
1194 bufpoi = aligned ? buf : chip->buffers->databuf;
1195
1196 if (likely(sndcmd)) {
1197 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1198 sndcmd = 0;
1199 }
1200
1201 /* Now read the page into the buffer */
1202 if (unlikely(ops->mode == MTD_OOB_RAW))
1203 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi);
1204 else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1205 ret = chip->ecc.read_subpage(mtd, chip, col, bytes, bufpoi);
1206 else
1207 ret = chip->ecc.read_page(mtd, chip, bufpoi);
1208 if (ret < 0)
1209 break;
1210
1211 /* Transfer not aligned data */
1212 if (!aligned) {
1213 if (!NAND_SUBPAGE_READ(chip) && !oob)
1214 chip->pagebuf = realpage;
1215 memcpy(buf, chip->buffers->databuf + col, bytes);
1216 }
1217
1218 buf += bytes;
1219
1220 if (unlikely(oob)) {
1221 /* Raw mode does data:oob:data:oob */
1222 if (ops->mode != MTD_OOB_RAW) {
1223 int toread = min(oobreadlen,
1224 chip->ecc.layout->oobavail);
1225 if (toread) {
1226 oob = nand_transfer_oob(chip,
1227 oob, ops, toread);
1228 oobreadlen -= toread;
1229 }
1230 } else
1231 buf = nand_transfer_oob(chip,
1232 buf, ops, mtd->oobsize);
1233 }
1234
1235 if (!(chip->options & NAND_NO_READRDY)) {
1236 /*
1237 * Apply delay or wait for ready/busy pin. Do
1238 * this before the AUTOINCR check, so no
1239 * problems arise if a chip which does auto
1240 * increment is marked as NOAUTOINCR by the
1241 * board driver.
1242 */
1243 if (!chip->dev_ready)
1244 udelay(chip->chip_delay);
1245 else
1246 nand_wait_ready(mtd);
1247 }
1248 } else {
1249 memcpy(buf, chip->buffers->databuf + col, bytes);
1250 buf += bytes;
1251 }
1252
1253 readlen -= bytes;
1254
1255 if (!readlen)
1256 break;
1257
1258 /* For subsequent reads align to page boundary. */
1259 col = 0;
1260 /* Increment page address */
1261 realpage++;
1262
1263 page = realpage & chip->pagemask;
1264 /* Check, if we cross a chip boundary */
1265 if (!page) {
1266 chipnr++;
1267 chip->select_chip(mtd, -1);
1268 chip->select_chip(mtd, chipnr);
1269 }
1270
1271 /* Check, if the chip supports auto page increment
1272 * or if we have hit a block boundary.
1273 */
1274 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1275 sndcmd = 1;
1276 }
1277
1278 ops->retlen = ops->len - (size_t) readlen;
1279 if (oob)
1280 ops->oobretlen = ops->ooblen - oobreadlen;
1281
1282 if (ret)
1283 return ret;
1284
1285 if (mtd->ecc_stats.failed - stats.failed)
1286 return -EBADMSG;
1287
1288 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1289 }
1290
1291 /**
1292 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1293 * @mtd: MTD device structure
1294 * @from: offset to read from
1295 * @len: number of bytes to read
1296 * @retlen: pointer to variable to store the number of read bytes
1297 * @buf: the databuffer to put data
1298 *
1299 * Get hold of the chip and call nand_do_read
1300 */
1301 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1302 size_t *retlen, uint8_t *buf)
1303 {
1304 struct nand_chip *chip = mtd->priv;
1305 int ret;
1306
1307 /* Do not allow reads past end of device */
1308 if ((from + len) > mtd->size)
1309 return -EINVAL;
1310 if (!len)
1311 return 0;
1312
1313 nand_get_device(chip, mtd, FL_READING);
1314
1315 chip->ops.len = len;
1316 chip->ops.datbuf = buf;
1317 chip->ops.oobbuf = NULL;
1318
1319 ret = nand_do_read_ops(mtd, from, &chip->ops);
1320
1321 *retlen = chip->ops.retlen;
1322
1323 nand_release_device(mtd);
1324
1325 return ret;
1326 }
1327
1328 /**
1329 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1330 * @mtd: mtd info structure
1331 * @chip: nand chip info structure
1332 * @page: page number to read
1333 * @sndcmd: flag whether to issue read command or not
1334 */
1335 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1336 int page, int sndcmd)
1337 {
1338 if (sndcmd) {
1339 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1340 sndcmd = 0;
1341 }
1342 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1343 return sndcmd;
1344 }
1345
1346 /**
1347 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1348 * with syndromes
1349 * @mtd: mtd info structure
1350 * @chip: nand chip info structure
1351 * @page: page number to read
1352 * @sndcmd: flag whether to issue read command or not
1353 */
1354 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1355 int page, int sndcmd)
1356 {
1357 uint8_t *buf = chip->oob_poi;
1358 int length = mtd->oobsize;
1359 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1360 int eccsize = chip->ecc.size;
1361 uint8_t *bufpoi = buf;
1362 int i, toread, sndrnd = 0, pos;
1363
1364 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1365 for (i = 0; i < chip->ecc.steps; i++) {
1366 if (sndrnd) {
1367 pos = eccsize + i * (eccsize + chunk);
1368 if (mtd->writesize > 512)
1369 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1370 else
1371 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1372 } else
1373 sndrnd = 1;
1374 toread = min_t(int, length, chunk);
1375 chip->read_buf(mtd, bufpoi, toread);
1376 bufpoi += toread;
1377 length -= toread;
1378 }
1379 if (length > 0)
1380 chip->read_buf(mtd, bufpoi, length);
1381
1382 return 1;
1383 }
1384
1385 /**
1386 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1387 * @mtd: mtd info structure
1388 * @chip: nand chip info structure
1389 * @page: page number to write
1390 */
1391 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1392 int page)
1393 {
1394 int status = 0;
1395 const uint8_t *buf = chip->oob_poi;
1396 int length = mtd->oobsize;
1397
1398 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1399 chip->write_buf(mtd, buf, length);
1400 /* Send command to program the OOB data */
1401 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1402
1403 status = chip->waitfunc(mtd, chip);
1404
1405 return status & NAND_STATUS_FAIL ? -EIO : 0;
1406 }
1407
1408 /**
1409 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1410 * with syndrome - only for large page flash !
1411 * @mtd: mtd info structure
1412 * @chip: nand chip info structure
1413 * @page: page number to write
1414 */
1415 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1416 struct nand_chip *chip, int page)
1417 {
1418 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1419 int eccsize = chip->ecc.size, length = mtd->oobsize;
1420 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1421 const uint8_t *bufpoi = chip->oob_poi;
1422
1423 /*
1424 * data-ecc-data-ecc ... ecc-oob
1425 * or
1426 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1427 */
1428 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1429 pos = steps * (eccsize + chunk);
1430 steps = 0;
1431 } else
1432 pos = eccsize;
1433
1434 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1435 for (i = 0; i < steps; i++) {
1436 if (sndcmd) {
1437 if (mtd->writesize <= 512) {
1438 uint32_t fill = 0xFFFFFFFF;
1439
1440 len = eccsize;
1441 while (len > 0) {
1442 int num = min_t(int, len, 4);
1443 chip->write_buf(mtd, (uint8_t *)&fill,
1444 num);
1445 len -= num;
1446 }
1447 } else {
1448 pos = eccsize + i * (eccsize + chunk);
1449 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1450 }
1451 } else
1452 sndcmd = 1;
1453 len = min_t(int, length, chunk);
1454 chip->write_buf(mtd, bufpoi, len);
1455 bufpoi += len;
1456 length -= len;
1457 }
1458 if (length > 0)
1459 chip->write_buf(mtd, bufpoi, length);
1460
1461 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1462 status = chip->waitfunc(mtd, chip);
1463
1464 return status & NAND_STATUS_FAIL ? -EIO : 0;
1465 }
1466
1467 /**
1468 * nand_do_read_oob - [Intern] NAND read out-of-band
1469 * @mtd: MTD device structure
1470 * @from: offset to read from
1471 * @ops: oob operations description structure
1472 *
1473 * NAND read out-of-band data from the spare area
1474 */
1475 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1476 struct mtd_oob_ops *ops)
1477 {
1478 int page, realpage, chipnr, sndcmd = 1;
1479 struct nand_chip *chip = mtd->priv;
1480 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1481 int readlen = ops->ooblen;
1482 int len;
1483 uint8_t *buf = ops->oobbuf;
1484
1485 MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08Lx, len = %i\n",
1486 (unsigned long long)from, readlen);
1487
1488 if (ops->mode == MTD_OOB_AUTO)
1489 len = chip->ecc.layout->oobavail;
1490 else
1491 len = mtd->oobsize;
1492
1493 if (unlikely(ops->ooboffs >= len)) {
1494 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1495 "Attempt to start read outside oob\n");
1496 return -EINVAL;
1497 }
1498
1499 /* Do not allow reads past end of device */
1500 if (unlikely(from >= mtd->size ||
1501 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1502 (from >> chip->page_shift)) * len)) {
1503 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1504 "Attempt read beyond end of device\n");
1505 return -EINVAL;
1506 }
1507
1508 chipnr = (int)(from >> chip->chip_shift);
1509 chip->select_chip(mtd, chipnr);
1510
1511 /* Shift to get page */
1512 realpage = (int)(from >> chip->page_shift);
1513 page = realpage & chip->pagemask;
1514
1515 while(1) {
1516 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1517
1518 len = min(len, readlen);
1519 buf = nand_transfer_oob(chip, buf, ops, len);
1520
1521 if (!(chip->options & NAND_NO_READRDY)) {
1522 /*
1523 * Apply delay or wait for ready/busy pin. Do this
1524 * before the AUTOINCR check, so no problems arise if a
1525 * chip which does auto increment is marked as
1526 * NOAUTOINCR by the board driver.
1527 */
1528 if (!chip->dev_ready)
1529 udelay(chip->chip_delay);
1530 else
1531 nand_wait_ready(mtd);
1532 }
1533
1534 readlen -= len;
1535 if (!readlen)
1536 break;
1537
1538 /* Increment page address */
1539 realpage++;
1540
1541 page = realpage & chip->pagemask;
1542 /* Check, if we cross a chip boundary */
1543 if (!page) {
1544 chipnr++;
1545 chip->select_chip(mtd, -1);
1546 chip->select_chip(mtd, chipnr);
1547 }
1548
1549 /* Check, if the chip supports auto page increment
1550 * or if we have hit a block boundary.
1551 */
1552 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1553 sndcmd = 1;
1554 }
1555
1556 ops->oobretlen = ops->ooblen;
1557 return 0;
1558 }
1559
1560 /**
1561 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1562 * @mtd: MTD device structure
1563 * @from: offset to read from
1564 * @ops: oob operation description structure
1565 *
1566 * NAND read data and/or out-of-band data
1567 */
1568 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1569 struct mtd_oob_ops *ops)
1570 {
1571 struct nand_chip *chip = mtd->priv;
1572 int ret = -ENOTSUPP;
1573
1574 ops->retlen = 0;
1575
1576 /* Do not allow reads past end of device */
1577 if (ops->datbuf && (from + ops->len) > mtd->size) {
1578 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1579 "Attempt read beyond end of device\n");
1580 return -EINVAL;
1581 }
1582
1583 nand_get_device(chip, mtd, FL_READING);
1584
1585 switch(ops->mode) {
1586 case MTD_OOB_PLACE:
1587 case MTD_OOB_AUTO:
1588 case MTD_OOB_RAW:
1589 break;
1590
1591 default:
1592 goto out;
1593 }
1594
1595 if (!ops->datbuf)
1596 ret = nand_do_read_oob(mtd, from, ops);
1597 else
1598 ret = nand_do_read_ops(mtd, from, ops);
1599
1600 out:
1601 nand_release_device(mtd);
1602 return ret;
1603 }
1604
1605
1606 /**
1607 * nand_write_page_raw - [Intern] raw page write function
1608 * @mtd: mtd info structure
1609 * @chip: nand chip info structure
1610 * @buf: data buffer
1611 */
1612 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1613 const uint8_t *buf)
1614 {
1615 chip->write_buf(mtd, buf, mtd->writesize);
1616 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1617 }
1618
1619 /**
1620 * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1621 * @mtd: mtd info structure
1622 * @chip: nand chip info structure
1623 * @buf: data buffer
1624 */
1625 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1626 const uint8_t *buf)
1627 {
1628 int i, eccsize = chip->ecc.size;
1629 int eccbytes = chip->ecc.bytes;
1630 int eccsteps = chip->ecc.steps;
1631 uint8_t *ecc_calc = chip->buffers->ecccalc;
1632 const uint8_t *p = buf;
1633 uint32_t *eccpos = chip->ecc.layout->eccpos;
1634
1635 /* Software ecc calculation */
1636 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1637 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1638
1639 for (i = 0; i < chip->ecc.total; i++)
1640 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1641
1642 chip->ecc.write_page_raw(mtd, chip, buf);
1643 }
1644
1645 /**
1646 * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1647 * @mtd: mtd info structure
1648 * @chip: nand chip info structure
1649 * @buf: data buffer
1650 */
1651 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1652 const uint8_t *buf)
1653 {
1654 int i, eccsize = chip->ecc.size;
1655 int eccbytes = chip->ecc.bytes;
1656 int eccsteps = chip->ecc.steps;
1657 uint8_t *ecc_calc = chip->buffers->ecccalc;
1658 const uint8_t *p = buf;
1659 uint32_t *eccpos = chip->ecc.layout->eccpos;
1660
1661 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1662 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1663 chip->write_buf(mtd, p, eccsize);
1664 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1665 }
1666
1667 for (i = 0; i < chip->ecc.total; i++)
1668 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1669
1670 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1671 }
1672
1673 /**
1674 * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
1675 * @mtd: mtd info structure
1676 * @chip: nand chip info structure
1677 * @buf: data buffer
1678 *
1679 * The hw generator calculates the error syndrome automatically. Therefor
1680 * we need a special oob layout and handling.
1681 */
1682 static void nand_write_page_syndrome(struct mtd_info *mtd,
1683 struct nand_chip *chip, const uint8_t *buf)
1684 {
1685 int i, eccsize = chip->ecc.size;
1686 int eccbytes = chip->ecc.bytes;
1687 int eccsteps = chip->ecc.steps;
1688 const uint8_t *p = buf;
1689 uint8_t *oob = chip->oob_poi;
1690
1691 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1692
1693 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1694 chip->write_buf(mtd, p, eccsize);
1695
1696 if (chip->ecc.prepad) {
1697 chip->write_buf(mtd, oob, chip->ecc.prepad);
1698 oob += chip->ecc.prepad;
1699 }
1700
1701 chip->ecc.calculate(mtd, p, oob);
1702 chip->write_buf(mtd, oob, eccbytes);
1703 oob += eccbytes;
1704
1705 if (chip->ecc.postpad) {
1706 chip->write_buf(mtd, oob, chip->ecc.postpad);
1707 oob += chip->ecc.postpad;
1708 }
1709 }
1710
1711 /* Calculate remaining oob bytes */
1712 i = mtd->oobsize - (oob - chip->oob_poi);
1713 if (i)
1714 chip->write_buf(mtd, oob, i);
1715 }
1716
1717 /**
1718 * nand_write_page - [REPLACEABLE] write one page
1719 * @mtd: MTD device structure
1720 * @chip: NAND chip descriptor
1721 * @buf: the data to write
1722 * @page: page number to write
1723 * @cached: cached programming
1724 * @raw: use _raw version of write_page
1725 */
1726 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1727 const uint8_t *buf, int page, int cached, int raw)
1728 {
1729 int status;
1730
1731 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1732
1733 if (unlikely(raw))
1734 chip->ecc.write_page_raw(mtd, chip, buf);
1735 else
1736 chip->ecc.write_page(mtd, chip, buf);
1737
1738 /*
1739 * Cached progamming disabled for now, Not sure if its worth the
1740 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1741 */
1742 cached = 0;
1743
1744 if (!cached || !(chip->options & NAND_CACHEPRG)) {
1745
1746 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1747 status = chip->waitfunc(mtd, chip);
1748 /*
1749 * See if operation failed and additional status checks are
1750 * available
1751 */
1752 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1753 status = chip->errstat(mtd, chip, FL_WRITING, status,
1754 page);
1755
1756 if (status & NAND_STATUS_FAIL)
1757 return -EIO;
1758 } else {
1759 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
1760 status = chip->waitfunc(mtd, chip);
1761 }
1762
1763 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1764 /* Send command to read back the data */
1765 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1766
1767 if (chip->verify_buf(mtd, buf, mtd->writesize))
1768 return -EIO;
1769 #endif
1770 return 0;
1771 }
1772
1773 /**
1774 * nand_fill_oob - [Internal] Transfer client buffer to oob
1775 * @chip: nand chip structure
1776 * @oob: oob data buffer
1777 * @ops: oob ops structure
1778 */
1779 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob,
1780 struct mtd_oob_ops *ops)
1781 {
1782 size_t len = ops->ooblen;
1783
1784 switch(ops->mode) {
1785
1786 case MTD_OOB_PLACE:
1787 case MTD_OOB_RAW:
1788 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
1789 return oob + len;
1790
1791 case MTD_OOB_AUTO: {
1792 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1793 uint32_t boffs = 0, woffs = ops->ooboffs;
1794 size_t bytes = 0;
1795
1796 for(; free->length && len; free++, len -= bytes) {
1797 /* Write request not from offset 0 ? */
1798 if (unlikely(woffs)) {
1799 if (woffs >= free->length) {
1800 woffs -= free->length;
1801 continue;
1802 }
1803 boffs = free->offset + woffs;
1804 bytes = min_t(size_t, len,
1805 (free->length - woffs));
1806 woffs = 0;
1807 } else {
1808 bytes = min_t(size_t, len, free->length);
1809 boffs = free->offset;
1810 }
1811 memcpy(chip->oob_poi + boffs, oob, bytes);
1812 oob += bytes;
1813 }
1814 return oob;
1815 }
1816 default:
1817 BUG();
1818 }
1819 return NULL;
1820 }
1821
1822 #define NOTALIGNED(x) (x & (chip->subpagesize - 1)) != 0
1823
1824 /**
1825 * nand_do_write_ops - [Internal] NAND write with ECC
1826 * @mtd: MTD device structure
1827 * @to: offset to write to
1828 * @ops: oob operations description structure
1829 *
1830 * NAND write with ECC
1831 */
1832 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
1833 struct mtd_oob_ops *ops)
1834 {
1835 int chipnr, realpage, page, blockmask, column;
1836 struct nand_chip *chip = mtd->priv;
1837 uint32_t writelen = ops->len;
1838 uint8_t *oob = ops->oobbuf;
1839 uint8_t *buf = ops->datbuf;
1840 int ret, subpage;
1841
1842 ops->retlen = 0;
1843 if (!writelen)
1844 return 0;
1845
1846 /* reject writes, which are not page aligned */
1847 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
1848 printk(KERN_NOTICE "nand_write: "
1849 "Attempt to write not page aligned data\n");
1850 return -EINVAL;
1851 }
1852
1853 column = to & (mtd->writesize - 1);
1854 subpage = column || (writelen & (mtd->writesize - 1));
1855
1856 if (subpage && oob)
1857 return -EINVAL;
1858
1859 chipnr = (int)(to >> chip->chip_shift);
1860 chip->select_chip(mtd, chipnr);
1861
1862 /* Check, if it is write protected */
1863 if (nand_check_wp(mtd)) {
1864 printk (KERN_NOTICE "nand_do_write_ops: Device is write protected\n");
1865 return -EIO;
1866 }
1867
1868 realpage = (int)(to >> chip->page_shift);
1869 page = realpage & chip->pagemask;
1870 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1871
1872 /* Invalidate the page cache, when we write to the cached page */
1873 if (to <= (chip->pagebuf << chip->page_shift) &&
1874 (chip->pagebuf << chip->page_shift) < (to + ops->len))
1875 chip->pagebuf = -1;
1876
1877 /* If we're not given explicit OOB data, let it be 0xFF */
1878 if (likely(!oob))
1879 memset(chip->oob_poi, 0xff, mtd->oobsize);
1880
1881 while(1) {
1882 int bytes = mtd->writesize;
1883 int cached = writelen > bytes && page != blockmask;
1884 uint8_t *wbuf = buf;
1885
1886 /* Partial page write ? */
1887 if (unlikely(column || writelen < (mtd->writesize - 1))) {
1888 cached = 0;
1889 bytes = min_t(int, bytes - column, (int) writelen);
1890 chip->pagebuf = -1;
1891 memset(chip->buffers->databuf, 0xff, mtd->writesize);
1892 memcpy(&chip->buffers->databuf[column], buf, bytes);
1893 wbuf = chip->buffers->databuf;
1894 }
1895
1896 if (unlikely(oob))
1897 oob = nand_fill_oob(chip, oob, ops);
1898
1899 ret = chip->write_page(mtd, chip, wbuf, page, cached,
1900 (ops->mode == MTD_OOB_RAW));
1901 if (ret)
1902 break;
1903
1904 writelen -= bytes;
1905 if (!writelen)
1906 break;
1907
1908 column = 0;
1909 buf += bytes;
1910 realpage++;
1911
1912 page = realpage & chip->pagemask;
1913 /* Check, if we cross a chip boundary */
1914 if (!page) {
1915 chipnr++;
1916 chip->select_chip(mtd, -1);
1917 chip->select_chip(mtd, chipnr);
1918 }
1919 }
1920
1921 ops->retlen = ops->len - writelen;
1922 if (unlikely(oob))
1923 ops->oobretlen = ops->ooblen;
1924 return ret;
1925 }
1926
1927 /**
1928 * nand_write - [MTD Interface] NAND write with ECC
1929 * @mtd: MTD device structure
1930 * @to: offset to write to
1931 * @len: number of bytes to write
1932 * @retlen: pointer to variable to store the number of written bytes
1933 * @buf: the data to write
1934 *
1935 * NAND write with ECC
1936 */
1937 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
1938 size_t *retlen, const uint8_t *buf)
1939 {
1940 struct nand_chip *chip = mtd->priv;
1941 int ret;
1942
1943 /* Do not allow reads past end of device */
1944 if ((to + len) > mtd->size)
1945 return -EINVAL;
1946 if (!len)
1947 return 0;
1948
1949 nand_get_device(chip, mtd, FL_WRITING);
1950
1951 chip->ops.len = len;
1952 chip->ops.datbuf = (uint8_t *)buf;
1953 chip->ops.oobbuf = NULL;
1954
1955 ret = nand_do_write_ops(mtd, to, &chip->ops);
1956
1957 *retlen = chip->ops.retlen;
1958
1959 nand_release_device(mtd);
1960
1961 return ret;
1962 }
1963
1964 /**
1965 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
1966 * @mtd: MTD device structure
1967 * @to: offset to write to
1968 * @ops: oob operation description structure
1969 *
1970 * NAND write out-of-band
1971 */
1972 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
1973 struct mtd_oob_ops *ops)
1974 {
1975 int chipnr, page, status, len;
1976 struct nand_chip *chip = mtd->priv;
1977
1978 MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n",
1979 (unsigned int)to, (int)ops->ooblen);
1980
1981 if (ops->mode == MTD_OOB_AUTO)
1982 len = chip->ecc.layout->oobavail;
1983 else
1984 len = mtd->oobsize;
1985
1986 /* Do not allow write past end of page */
1987 if ((ops->ooboffs + ops->ooblen) > len) {
1988 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: "
1989 "Attempt to write past end of page\n");
1990 return -EINVAL;
1991 }
1992
1993 if (unlikely(ops->ooboffs >= len)) {
1994 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1995 "Attempt to start write outside oob\n");
1996 return -EINVAL;
1997 }
1998
1999 /* Do not allow reads past end of device */
2000 if (unlikely(to >= mtd->size ||
2001 ops->ooboffs + ops->ooblen >
2002 ((mtd->size >> chip->page_shift) -
2003 (to >> chip->page_shift)) * len)) {
2004 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
2005 "Attempt write beyond end of device\n");
2006 return -EINVAL;
2007 }
2008
2009 chipnr = (int)(to >> chip->chip_shift);
2010 chip->select_chip(mtd, chipnr);
2011
2012 /* Shift to get page */
2013 page = (int)(to >> chip->page_shift);
2014
2015 /*
2016 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2017 * of my DiskOnChip 2000 test units) will clear the whole data page too
2018 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2019 * it in the doc2000 driver in August 1999. dwmw2.
2020 */
2021 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2022
2023 /* Check, if it is write protected */
2024 if (nand_check_wp(mtd))
2025 return -EROFS;
2026
2027 /* Invalidate the page cache, if we write to the cached page */
2028 if (page == chip->pagebuf)
2029 chip->pagebuf = -1;
2030
2031 memset(chip->oob_poi, 0xff, mtd->oobsize);
2032 nand_fill_oob(chip, ops->oobbuf, ops);
2033 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2034 memset(chip->oob_poi, 0xff, mtd->oobsize);
2035
2036 if (status)
2037 return status;
2038
2039 ops->oobretlen = ops->ooblen;
2040
2041 return 0;
2042 }
2043
2044 /**
2045 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2046 * @mtd: MTD device structure
2047 * @to: offset to write to
2048 * @ops: oob operation description structure
2049 */
2050 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2051 struct mtd_oob_ops *ops)
2052 {
2053 struct nand_chip *chip = mtd->priv;
2054 int ret = -ENOTSUPP;
2055
2056 ops->retlen = 0;
2057
2058 /* Do not allow writes past end of device */
2059 if (ops->datbuf && (to + ops->len) > mtd->size) {
2060 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
2061 "Attempt read beyond end of device\n");
2062 return -EINVAL;
2063 }
2064
2065 nand_get_device(chip, mtd, FL_WRITING);
2066
2067 switch(ops->mode) {
2068 case MTD_OOB_PLACE:
2069 case MTD_OOB_AUTO:
2070 case MTD_OOB_RAW:
2071 break;
2072
2073 default:
2074 goto out;
2075 }
2076
2077 if (!ops->datbuf)
2078 ret = nand_do_write_oob(mtd, to, ops);
2079 else
2080 ret = nand_do_write_ops(mtd, to, ops);
2081
2082 out:
2083 nand_release_device(mtd);
2084 return ret;
2085 }
2086
2087 /**
2088 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2089 * @mtd: MTD device structure
2090 * @page: the page address of the block which will be erased
2091 *
2092 * Standard erase command for NAND chips
2093 */
2094 static void single_erase_cmd(struct mtd_info *mtd, int page)
2095 {
2096 struct nand_chip *chip = mtd->priv;
2097 /* Send commands to erase a block */
2098 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2099 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2100 }
2101
2102 /**
2103 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2104 * @mtd: MTD device structure
2105 * @page: the page address of the block which will be erased
2106 *
2107 * AND multi block erase command function
2108 * Erase 4 consecutive blocks
2109 */
2110 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2111 {
2112 struct nand_chip *chip = mtd->priv;
2113 /* Send commands to erase a block */
2114 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2115 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2116 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2117 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2118 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2119 }
2120
2121 /**
2122 * nand_erase - [MTD Interface] erase block(s)
2123 * @mtd: MTD device structure
2124 * @instr: erase instruction
2125 *
2126 * Erase one ore more blocks
2127 */
2128 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2129 {
2130 return nand_erase_nand(mtd, instr, 0);
2131 }
2132
2133 #define BBT_PAGE_MASK 0xffffff3f
2134 /**
2135 * nand_erase_nand - [Internal] erase block(s)
2136 * @mtd: MTD device structure
2137 * @instr: erase instruction
2138 * @allowbbt: allow erasing the bbt area
2139 *
2140 * Erase one ore more blocks
2141 */
2142 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2143 int allowbbt)
2144 {
2145 int page, len, status, pages_per_block, ret, chipnr;
2146 struct nand_chip *chip = mtd->priv;
2147 int rewrite_bbt[CONFIG_SYS_NAND_MAX_CHIPS]={0};
2148 unsigned int bbt_masked_page = 0xffffffff;
2149
2150 MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%08x, len = %i\n",
2151 (unsigned int) instr->addr, (unsigned int) instr->len);
2152
2153 /* Start address must align on block boundary */
2154 if (instr->addr & ((1 << chip->phys_erase_shift) - 1)) {
2155 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
2156 return -EINVAL;
2157 }
2158
2159 /* Length must align on block boundary */
2160 if (instr->len & ((1 << chip->phys_erase_shift) - 1)) {
2161 MTDDEBUG (MTD_DEBUG_LEVEL0,
2162 "nand_erase: Length not block aligned\n");
2163 return -EINVAL;
2164 }
2165
2166 /* Do not allow erase past end of device */
2167 if ((instr->len + instr->addr) > mtd->size) {
2168 MTDDEBUG (MTD_DEBUG_LEVEL0,
2169 "nand_erase: Erase past end of device\n");
2170 return -EINVAL;
2171 }
2172
2173 instr->fail_addr = 0xffffffff;
2174
2175 /* Grab the lock and see if the device is available */
2176 nand_get_device(chip, mtd, FL_ERASING);
2177
2178 /* Shift to get first page */
2179 page = (int)(instr->addr >> chip->page_shift);
2180 chipnr = (int)(instr->addr >> chip->chip_shift);
2181
2182 /* Calculate pages in each block */
2183 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2184
2185 /* Select the NAND device */
2186 chip->select_chip(mtd, chipnr);
2187
2188 /* Check, if it is write protected */
2189 if (nand_check_wp(mtd)) {
2190 MTDDEBUG (MTD_DEBUG_LEVEL0,
2191 "nand_erase: Device is write protected!!!\n");
2192 instr->state = MTD_ERASE_FAILED;
2193 goto erase_exit;
2194 }
2195
2196 /*
2197 * If BBT requires refresh, set the BBT page mask to see if the BBT
2198 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2199 * can not be matched. This is also done when the bbt is actually
2200 * erased to avoid recusrsive updates
2201 */
2202 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2203 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2204
2205 /* Loop through the pages */
2206 len = instr->len;
2207
2208 instr->state = MTD_ERASING;
2209
2210 while (len) {
2211 /*
2212 * heck if we have a bad block, we do not erase bad blocks !
2213 */
2214 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2215 chip->page_shift, 0, allowbbt)) {
2216 printk(KERN_WARNING "nand_erase: attempt to erase a "
2217 "bad block at page 0x%08x\n", page);
2218 instr->state = MTD_ERASE_FAILED;
2219 goto erase_exit;
2220 }
2221
2222 /*
2223 * Invalidate the page cache, if we erase the block which
2224 * contains the current cached page
2225 */
2226 if (page <= chip->pagebuf && chip->pagebuf <
2227 (page + pages_per_block))
2228 chip->pagebuf = -1;
2229
2230 chip->erase_cmd(mtd, page & chip->pagemask);
2231
2232 status = chip->waitfunc(mtd, chip);
2233
2234 /*
2235 * See if operation failed and additional status checks are
2236 * available
2237 */
2238 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2239 status = chip->errstat(mtd, chip, FL_ERASING,
2240 status, page);
2241
2242 /* See if block erase succeeded */
2243 if (status & NAND_STATUS_FAIL) {
2244 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_erase: "
2245 "Failed erase, page 0x%08x\n", page);
2246 instr->state = MTD_ERASE_FAILED;
2247 instr->fail_addr = (page << chip->page_shift);
2248 goto erase_exit;
2249 }
2250
2251 /*
2252 * If BBT requires refresh, set the BBT rewrite flag to the
2253 * page being erased
2254 */
2255 if (bbt_masked_page != 0xffffffff &&
2256 (page & BBT_PAGE_MASK) == bbt_masked_page)
2257 rewrite_bbt[chipnr] = (page << chip->page_shift);
2258
2259 /* Increment page address and decrement length */
2260 len -= (1 << chip->phys_erase_shift);
2261 page += pages_per_block;
2262
2263 /* Check, if we cross a chip boundary */
2264 if (len && !(page & chip->pagemask)) {
2265 chipnr++;
2266 chip->select_chip(mtd, -1);
2267 chip->select_chip(mtd, chipnr);
2268
2269 /*
2270 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2271 * page mask to see if this BBT should be rewritten
2272 */
2273 if (bbt_masked_page != 0xffffffff &&
2274 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2275 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2276 BBT_PAGE_MASK;
2277 }
2278 }
2279 instr->state = MTD_ERASE_DONE;
2280
2281 erase_exit:
2282
2283 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2284
2285 /* Deselect and wake up anyone waiting on the device */
2286 nand_release_device(mtd);
2287
2288 /* Do call back function */
2289 if (!ret)
2290 mtd_erase_callback(instr);
2291
2292 /*
2293 * If BBT requires refresh and erase was successful, rewrite any
2294 * selected bad block tables
2295 */
2296 if (bbt_masked_page == 0xffffffff || ret)
2297 return ret;
2298
2299 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2300 if (!rewrite_bbt[chipnr])
2301 continue;
2302 /* update the BBT for chip */
2303 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt "
2304 "(%d:0x%0x 0x%0x)\n", chipnr, rewrite_bbt[chipnr],
2305 chip->bbt_td->pages[chipnr]);
2306 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2307 }
2308
2309 /* Return more or less happy */
2310 return ret;
2311 }
2312
2313 /**
2314 * nand_sync - [MTD Interface] sync
2315 * @mtd: MTD device structure
2316 *
2317 * Sync is actually a wait for chip ready function
2318 */
2319 static void nand_sync(struct mtd_info *mtd)
2320 {
2321 struct nand_chip *chip = mtd->priv;
2322
2323 MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n");
2324
2325 /* Grab the lock and see if the device is available */
2326 nand_get_device(chip, mtd, FL_SYNCING);
2327 /* Release it and go back */
2328 nand_release_device(mtd);
2329 }
2330
2331 /**
2332 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2333 * @mtd: MTD device structure
2334 * @offs: offset relative to mtd start
2335 */
2336 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2337 {
2338 /* Check for invalid offset */
2339 if (offs > mtd->size)
2340 return -EINVAL;
2341
2342 return nand_block_checkbad(mtd, offs, 1, 0);
2343 }
2344
2345 /**
2346 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2347 * @mtd: MTD device structure
2348 * @ofs: offset relative to mtd start
2349 */
2350 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2351 {
2352 struct nand_chip *chip = mtd->priv;
2353 int ret;
2354
2355 if ((ret = nand_block_isbad(mtd, ofs))) {
2356 /* If it was bad already, return success and do nothing. */
2357 if (ret > 0)
2358 return 0;
2359 return ret;
2360 }
2361
2362 return chip->block_markbad(mtd, ofs);
2363 }
2364
2365 /**
2366 * nand_suspend - [MTD Interface] Suspend the NAND flash
2367 * @mtd: MTD device structure
2368 */
2369 static int nand_suspend(struct mtd_info *mtd)
2370 {
2371 struct nand_chip *chip = mtd->priv;
2372
2373 return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2374 }
2375
2376 /**
2377 * nand_resume - [MTD Interface] Resume the NAND flash
2378 * @mtd: MTD device structure
2379 */
2380 static void nand_resume(struct mtd_info *mtd)
2381 {
2382 struct nand_chip *chip = mtd->priv;
2383
2384 if (chip->state == FL_PM_SUSPENDED)
2385 nand_release_device(mtd);
2386 else
2387 printk(KERN_ERR "nand_resume() called for a chip which is not "
2388 "in suspended state\n");
2389 }
2390
2391 /*
2392 * Set default functions
2393 */
2394 static void nand_set_defaults(struct nand_chip *chip, int busw)
2395 {
2396 /* check for proper chip_delay setup, set 20us if not */
2397 if (!chip->chip_delay)
2398 chip->chip_delay = 20;
2399
2400 /* check, if a user supplied command function given */
2401 if (chip->cmdfunc == NULL)
2402 chip->cmdfunc = nand_command;
2403
2404 /* check, if a user supplied wait function given */
2405 if (chip->waitfunc == NULL)
2406 chip->waitfunc = nand_wait;
2407
2408 if (!chip->select_chip)
2409 chip->select_chip = nand_select_chip;
2410 if (!chip->read_byte)
2411 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2412 if (!chip->read_word)
2413 chip->read_word = nand_read_word;
2414 if (!chip->block_bad)
2415 chip->block_bad = nand_block_bad;
2416 if (!chip->block_markbad)
2417 chip->block_markbad = nand_default_block_markbad;
2418 if (!chip->write_buf)
2419 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2420 if (!chip->read_buf)
2421 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2422 if (!chip->verify_buf)
2423 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2424 if (!chip->scan_bbt)
2425 chip->scan_bbt = nand_default_bbt;
2426
2427 if (!chip->controller) {
2428 chip->controller = &chip->hwcontrol;
2429
2430 /* XXX U-BOOT XXX */
2431 #if 0
2432 spin_lock_init(&chip->controller->lock);
2433 init_waitqueue_head(&chip->controller->wq);
2434 #endif
2435 }
2436
2437 }
2438
2439 /*
2440 * Get the flash and manufacturer id and lookup if the type is supported
2441 */
2442 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2443 struct nand_chip *chip,
2444 int busw, int *maf_id)
2445 {
2446 struct nand_flash_dev *type = NULL;
2447 int i, dev_id, maf_idx;
2448 int tmp_id, tmp_manf;
2449
2450 /* Select the device */
2451 chip->select_chip(mtd, 0);
2452
2453 /*
2454 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2455 * after power-up
2456 */
2457 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2458
2459 /* Send the command for reading device ID */
2460 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2461
2462 /* Read manufacturer and device IDs */
2463 *maf_id = chip->read_byte(mtd);
2464 dev_id = chip->read_byte(mtd);
2465
2466 /* Try again to make sure, as some systems the bus-hold or other
2467 * interface concerns can cause random data which looks like a
2468 * possibly credible NAND flash to appear. If the two results do
2469 * not match, ignore the device completely.
2470 */
2471
2472 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2473
2474 /* Read manufacturer and device IDs */
2475
2476 tmp_manf = chip->read_byte(mtd);
2477 tmp_id = chip->read_byte(mtd);
2478
2479 if (tmp_manf != *maf_id || tmp_id != dev_id) {
2480 printk(KERN_INFO "%s: second ID read did not match "
2481 "%02x,%02x against %02x,%02x\n", __func__,
2482 *maf_id, dev_id, tmp_manf, tmp_id);
2483 return ERR_PTR(-ENODEV);
2484 }
2485
2486 /* Lookup the flash id */
2487 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2488 if (dev_id == nand_flash_ids[i].id) {
2489 type = &nand_flash_ids[i];
2490 break;
2491 }
2492 }
2493
2494 if (!type)
2495 return ERR_PTR(-ENODEV);
2496
2497 if (!mtd->name)
2498 mtd->name = type->name;
2499
2500 chip->chipsize = type->chipsize << 20;
2501
2502 /* Newer devices have all the information in additional id bytes */
2503 if (!type->pagesize) {
2504 int extid;
2505 /* The 3rd id byte holds MLC / multichip data */
2506 chip->cellinfo = chip->read_byte(mtd);
2507 /* The 4th id byte is the important one */
2508 extid = chip->read_byte(mtd);
2509 /* Calc pagesize */
2510 mtd->writesize = 1024 << (extid & 0x3);
2511 extid >>= 2;
2512 /* Calc oobsize */
2513 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
2514 extid >>= 2;
2515 /* Calc blocksize. Blocksize is multiples of 64KiB */
2516 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2517 extid >>= 2;
2518 /* Get buswidth information */
2519 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2520
2521 } else {
2522 /*
2523 * Old devices have chip data hardcoded in the device id table
2524 */
2525 mtd->erasesize = type->erasesize;
2526 mtd->writesize = type->pagesize;
2527 mtd->oobsize = mtd->writesize / 32;
2528 busw = type->options & NAND_BUSWIDTH_16;
2529 }
2530
2531 /* Try to identify manufacturer */
2532 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
2533 if (nand_manuf_ids[maf_idx].id == *maf_id)
2534 break;
2535 }
2536
2537 /*
2538 * Check, if buswidth is correct. Hardware drivers should set
2539 * chip correct !
2540 */
2541 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2542 printk(KERN_INFO "NAND device: Manufacturer ID:"
2543 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2544 dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2545 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2546 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2547 busw ? 16 : 8);
2548 return ERR_PTR(-EINVAL);
2549 }
2550
2551 /* Calculate the address shift from the page size */
2552 chip->page_shift = ffs(mtd->writesize) - 1;
2553 /* Convert chipsize to number of pages per chip -1. */
2554 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2555
2556 chip->bbt_erase_shift = chip->phys_erase_shift =
2557 ffs(mtd->erasesize) - 1;
2558 chip->chip_shift = ffs(chip->chipsize) - 1;
2559
2560 /* Set the bad block position */
2561 chip->badblockpos = mtd->writesize > 512 ?
2562 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2563
2564 /* Get chip options, preserve non chip based options */
2565 chip->options &= ~NAND_CHIPOPTIONS_MSK;
2566 chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2567
2568 /*
2569 * Set chip as a default. Board drivers can override it, if necessary
2570 */
2571 chip->options |= NAND_NO_AUTOINCR;
2572
2573 /* Check if chip is a not a samsung device. Do not clear the
2574 * options for chips which are not having an extended id.
2575 */
2576 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2577 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2578
2579 /* Check for AND chips with 4 page planes */
2580 if (chip->options & NAND_4PAGE_ARRAY)
2581 chip->erase_cmd = multi_erase_cmd;
2582 else
2583 chip->erase_cmd = single_erase_cmd;
2584
2585 /* Do not replace user supplied command function ! */
2586 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2587 chip->cmdfunc = nand_command_lp;
2588
2589 MTDDEBUG (MTD_DEBUG_LEVEL0, "NAND device: Manufacturer ID:"
2590 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2591 nand_manuf_ids[maf_idx].name, type->name);
2592
2593 return type;
2594 }
2595
2596 /**
2597 * nand_scan_ident - [NAND Interface] Scan for the NAND device
2598 * @mtd: MTD device structure
2599 * @maxchips: Number of chips to scan for
2600 *
2601 * This is the first phase of the normal nand_scan() function. It
2602 * reads the flash ID and sets up MTD fields accordingly.
2603 *
2604 * The mtd->owner field must be set to the module of the caller.
2605 */
2606 int nand_scan_ident(struct mtd_info *mtd, int maxchips)
2607 {
2608 int i, busw, nand_maf_id;
2609 struct nand_chip *chip = mtd->priv;
2610 struct nand_flash_dev *type;
2611
2612 /* Get buswidth to select the correct functions */
2613 busw = chip->options & NAND_BUSWIDTH_16;
2614 /* Set the default functions */
2615 nand_set_defaults(chip, busw);
2616
2617 /* Read the flash type */
2618 type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id);
2619
2620 if (IS_ERR(type)) {
2621 printk(KERN_WARNING "No NAND device found!!!\n");
2622 chip->select_chip(mtd, -1);
2623 return PTR_ERR(type);
2624 }
2625
2626 /* Check for a chip array */
2627 for (i = 1; i < maxchips; i++) {
2628 chip->select_chip(mtd, i);
2629 /* See comment in nand_get_flash_type for reset */
2630 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2631 /* Send the command for reading device ID */
2632 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2633 /* Read manufacturer and device IDs */
2634 if (nand_maf_id != chip->read_byte(mtd) ||
2635 type->id != chip->read_byte(mtd))
2636 break;
2637 }
2638 if (i > 1)
2639 printk(KERN_INFO "%d NAND chips detected\n", i);
2640
2641 /* Store the number of chips and calc total size for mtd */
2642 chip->numchips = i;
2643 mtd->size = i * chip->chipsize;
2644
2645 return 0;
2646 }
2647
2648
2649 /**
2650 * nand_scan_tail - [NAND Interface] Scan for the NAND device
2651 * @mtd: MTD device structure
2652 * @maxchips: Number of chips to scan for
2653 *
2654 * This is the second phase of the normal nand_scan() function. It
2655 * fills out all the uninitialized function pointers with the defaults
2656 * and scans for a bad block table if appropriate.
2657 */
2658 int nand_scan_tail(struct mtd_info *mtd)
2659 {
2660 int i;
2661 struct nand_chip *chip = mtd->priv;
2662
2663 if (!(chip->options & NAND_OWN_BUFFERS))
2664 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
2665 if (!chip->buffers)
2666 return -ENOMEM;
2667
2668 /* Set the internal oob buffer location, just after the page data */
2669 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
2670
2671 /*
2672 * If no default placement scheme is given, select an appropriate one
2673 */
2674 if (!chip->ecc.layout) {
2675 switch (mtd->oobsize) {
2676 case 8:
2677 chip->ecc.layout = &nand_oob_8;
2678 break;
2679 case 16:
2680 chip->ecc.layout = &nand_oob_16;
2681 break;
2682 case 64:
2683 chip->ecc.layout = &nand_oob_64;
2684 break;
2685 case 128:
2686 chip->ecc.layout = &nand_oob_128;
2687 break;
2688 default:
2689 printk(KERN_WARNING "No oob scheme defined for "
2690 "oobsize %d\n", mtd->oobsize);
2691 /* BUG(); */
2692 }
2693 }
2694
2695 if (!chip->write_page)
2696 chip->write_page = nand_write_page;
2697
2698 /*
2699 * check ECC mode, default to software if 3byte/512byte hardware ECC is
2700 * selected and we have 256 byte pagesize fallback to software ECC
2701 */
2702 if (!chip->ecc.read_page_raw)
2703 chip->ecc.read_page_raw = nand_read_page_raw;
2704 if (!chip->ecc.write_page_raw)
2705 chip->ecc.write_page_raw = nand_write_page_raw;
2706
2707 switch (chip->ecc.mode) {
2708 case NAND_ECC_HW:
2709 /* Use standard hwecc read page function ? */
2710 if (!chip->ecc.read_page)
2711 chip->ecc.read_page = nand_read_page_hwecc;
2712 if (!chip->ecc.write_page)
2713 chip->ecc.write_page = nand_write_page_hwecc;
2714 if (!chip->ecc.read_oob)
2715 chip->ecc.read_oob = nand_read_oob_std;
2716 if (!chip->ecc.write_oob)
2717 chip->ecc.write_oob = nand_write_oob_std;
2718
2719 case NAND_ECC_HW_SYNDROME:
2720 if ((!chip->ecc.calculate || !chip->ecc.correct ||
2721 !chip->ecc.hwctl) &&
2722 (!chip->ecc.read_page ||
2723 chip->ecc.read_page == nand_read_page_hwecc ||
2724 !chip->ecc.write_page ||
2725 chip->ecc.write_page == nand_write_page_hwecc)) {
2726 printk(KERN_WARNING "No ECC functions supplied, "
2727 "Hardware ECC not possible\n");
2728 BUG();
2729 }
2730 /* Use standard syndrome read/write page function ? */
2731 if (!chip->ecc.read_page)
2732 chip->ecc.read_page = nand_read_page_syndrome;
2733 if (!chip->ecc.write_page)
2734 chip->ecc.write_page = nand_write_page_syndrome;
2735 if (!chip->ecc.read_oob)
2736 chip->ecc.read_oob = nand_read_oob_syndrome;
2737 if (!chip->ecc.write_oob)
2738 chip->ecc.write_oob = nand_write_oob_syndrome;
2739
2740 if (mtd->writesize >= chip->ecc.size)
2741 break;
2742 printk(KERN_WARNING "%d byte HW ECC not possible on "
2743 "%d byte page size, fallback to SW ECC\n",
2744 chip->ecc.size, mtd->writesize);
2745 chip->ecc.mode = NAND_ECC_SOFT;
2746
2747 case NAND_ECC_SOFT:
2748 chip->ecc.calculate = nand_calculate_ecc;
2749 chip->ecc.correct = nand_correct_data;
2750 chip->ecc.read_page = nand_read_page_swecc;
2751 chip->ecc.read_subpage = nand_read_subpage;
2752 chip->ecc.write_page = nand_write_page_swecc;
2753 chip->ecc.read_oob = nand_read_oob_std;
2754 chip->ecc.write_oob = nand_write_oob_std;
2755 chip->ecc.size = 256;
2756 chip->ecc.bytes = 3;
2757 break;
2758
2759 case NAND_ECC_NONE:
2760 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
2761 "This is not recommended !!\n");
2762 chip->ecc.read_page = nand_read_page_raw;
2763 chip->ecc.write_page = nand_write_page_raw;
2764 chip->ecc.read_oob = nand_read_oob_std;
2765 chip->ecc.write_oob = nand_write_oob_std;
2766 chip->ecc.size = mtd->writesize;
2767 chip->ecc.bytes = 0;
2768 break;
2769
2770 default:
2771 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
2772 chip->ecc.mode);
2773 BUG();
2774 }
2775
2776 /*
2777 * The number of bytes available for a client to place data into
2778 * the out of band area
2779 */
2780 chip->ecc.layout->oobavail = 0;
2781 for (i = 0; chip->ecc.layout->oobfree[i].length; i++)
2782 chip->ecc.layout->oobavail +=
2783 chip->ecc.layout->oobfree[i].length;
2784 mtd->oobavail = chip->ecc.layout->oobavail;
2785
2786 /*
2787 * Set the number of read / write steps for one page depending on ECC
2788 * mode
2789 */
2790 chip->ecc.steps = mtd->writesize / chip->ecc.size;
2791 if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
2792 printk(KERN_WARNING "Invalid ecc parameters\n");
2793 BUG();
2794 }
2795 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
2796
2797 /*
2798 * Allow subpage writes up to ecc.steps. Not possible for MLC
2799 * FLASH.
2800 */
2801 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2802 !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
2803 switch(chip->ecc.steps) {
2804 case 2:
2805 mtd->subpage_sft = 1;
2806 break;
2807 case 4:
2808 case 8:
2809 mtd->subpage_sft = 2;
2810 break;
2811 }
2812 }
2813 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
2814
2815 /* Initialize state */
2816 chip->state = FL_READY;
2817
2818 /* De-select the device */
2819 chip->select_chip(mtd, -1);
2820
2821 /* Invalidate the pagebuffer reference */
2822 chip->pagebuf = -1;
2823
2824 /* Fill in remaining MTD driver data */
2825 mtd->type = MTD_NANDFLASH;
2826 mtd->flags = MTD_CAP_NANDFLASH;
2827 mtd->erase = nand_erase;
2828 mtd->point = NULL;
2829 mtd->unpoint = NULL;
2830 mtd->read = nand_read;
2831 mtd->write = nand_write;
2832 mtd->read_oob = nand_read_oob;
2833 mtd->write_oob = nand_write_oob;
2834 mtd->sync = nand_sync;
2835 mtd->lock = NULL;
2836 mtd->unlock = NULL;
2837 mtd->suspend = nand_suspend;
2838 mtd->resume = nand_resume;
2839 mtd->block_isbad = nand_block_isbad;
2840 mtd->block_markbad = nand_block_markbad;
2841
2842 /* propagate ecc.layout to mtd_info */
2843 mtd->ecclayout = chip->ecc.layout;
2844
2845 /* Check, if we should skip the bad block table scan */
2846 if (chip->options & NAND_SKIP_BBTSCAN)
2847 chip->options |= NAND_BBT_SCANNED;
2848
2849 return 0;
2850 }
2851
2852 /* module_text_address() isn't exported, and it's mostly a pointless
2853 test if this is a module _anyway_ -- they'd have to try _really_ hard
2854 to call us from in-kernel code if the core NAND support is modular. */
2855 #ifdef MODULE
2856 #define caller_is_module() (1)
2857 #else
2858 #define caller_is_module() \
2859 module_text_address((unsigned long)__builtin_return_address(0))
2860 #endif
2861
2862 /**
2863 * nand_scan - [NAND Interface] Scan for the NAND device
2864 * @mtd: MTD device structure
2865 * @maxchips: Number of chips to scan for
2866 *
2867 * This fills out all the uninitialized function pointers
2868 * with the defaults.
2869 * The flash ID is read and the mtd/chip structures are
2870 * filled with the appropriate values.
2871 * The mtd->owner field must be set to the module of the caller
2872 *
2873 */
2874 int nand_scan(struct mtd_info *mtd, int maxchips)
2875 {
2876 int ret;
2877
2878 /* Many callers got this wrong, so check for it for a while... */
2879 /* XXX U-BOOT XXX */
2880 #if 0
2881 if (!mtd->owner && caller_is_module()) {
2882 printk(KERN_CRIT "nand_scan() called with NULL mtd->owner!\n");
2883 BUG();
2884 }
2885 #endif
2886
2887 ret = nand_scan_ident(mtd, maxchips);
2888 if (!ret)
2889 ret = nand_scan_tail(mtd);
2890 return ret;
2891 }
2892
2893 /**
2894 * nand_release - [NAND Interface] Free resources held by the NAND device
2895 * @mtd: MTD device structure
2896 */
2897 void nand_release(struct mtd_info *mtd)
2898 {
2899 struct nand_chip *chip = mtd->priv;
2900
2901 #ifdef CONFIG_MTD_PARTITIONS
2902 /* Deregister partitions */
2903 del_mtd_partitions(mtd);
2904 #endif
2905 /* Deregister the device */
2906 /* XXX U-BOOT XXX */
2907 #if 0
2908 del_mtd_device(mtd);
2909 #endif
2910
2911 /* Free bad block table memory */
2912 kfree(chip->bbt);
2913 if (!(chip->options & NAND_OWN_BUFFERS))
2914 kfree(chip->buffers);
2915 }
2916
2917 /* XXX U-BOOT XXX */
2918 #if 0
2919 EXPORT_SYMBOL_GPL(nand_scan);
2920 EXPORT_SYMBOL_GPL(nand_scan_ident);
2921 EXPORT_SYMBOL_GPL(nand_scan_tail);
2922 EXPORT_SYMBOL_GPL(nand_release);
2923
2924 static int __init nand_base_init(void)
2925 {
2926 led_trigger_register_simple("nand-disk", &nand_led_trigger);
2927 return 0;
2928 }
2929
2930 static void __exit nand_base_exit(void)
2931 {
2932 led_trigger_unregister_simple(nand_led_trigger);
2933 }
2934
2935 module_init(nand_base_init);
2936 module_exit(nand_base_exit);
2937
2938 MODULE_LICENSE("GPL");
2939 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2940 MODULE_DESCRIPTION("Generic NAND flash driver code");
2941 #endif