]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/nand_base.c
Merge branch 'next' of git://git.denx.de/u-boot-nios
[people/ms/u-boot.git] / drivers / mtd / nand / nand_base.c
1 /*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
8 *
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/doc/nand.html
11 *
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
14 *
15 * Credits:
16 * David Woodhouse for adding multichip support
17 *
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
20 *
21 * TODO:
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 * BBT table is not serialized, has to be fixed
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
32 *
33 */
34
35 /* XXX U-BOOT XXX */
36 #if 0
37 #include <linux/module.h>
38 #include <linux/delay.h>
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
43 #include <linux/types.h>
44 #include <linux/mtd/mtd.h>
45 #include <linux/mtd/nand.h>
46 #include <linux/mtd/nand_ecc.h>
47 #include <linux/mtd/compatmac.h>
48 #include <linux/interrupt.h>
49 #include <linux/bitops.h>
50 #include <linux/leds.h>
51 #include <asm/io.h>
52
53 #ifdef CONFIG_MTD_PARTITIONS
54 #include <linux/mtd/partitions.h>
55 #endif
56
57 #endif
58
59 #include <common.h>
60
61 #define ENOTSUPP 524 /* Operation is not supported */
62
63 #include <malloc.h>
64 #include <watchdog.h>
65 #include <linux/err.h>
66 #include <linux/mtd/compat.h>
67 #include <linux/mtd/mtd.h>
68 #include <linux/mtd/nand.h>
69 #include <linux/mtd/nand_ecc.h>
70
71 #ifdef CONFIG_MTD_PARTITIONS
72 #include <linux/mtd/partitions.h>
73 #endif
74
75 #include <asm/io.h>
76 #include <asm/errno.h>
77
78 #ifdef CONFIG_JFFS2_NAND
79 #include <jffs2/jffs2.h>
80 #endif
81
82 /*
83 * CONFIG_SYS_NAND_RESET_CNT is used as a timeout mechanism when resetting
84 * a flash. NAND flash is initialized prior to interrupts so standard timers
85 * can't be used. CONFIG_SYS_NAND_RESET_CNT should be set to a value
86 * which is greater than (max NAND reset time / NAND status read time).
87 * A conservative default of 200000 (500 us / 25 ns) is used as a default.
88 */
89 #ifndef CONFIG_SYS_NAND_RESET_CNT
90 #define CONFIG_SYS_NAND_RESET_CNT 200000
91 #endif
92
93 /* Define default oob placement schemes for large and small page devices */
94 static struct nand_ecclayout nand_oob_8 = {
95 .eccbytes = 3,
96 .eccpos = {0, 1, 2},
97 .oobfree = {
98 {.offset = 3,
99 .length = 2},
100 {.offset = 6,
101 .length = 2}}
102 };
103
104 static struct nand_ecclayout nand_oob_16 = {
105 .eccbytes = 6,
106 .eccpos = {0, 1, 2, 3, 6, 7},
107 .oobfree = {
108 {.offset = 8,
109 . length = 8}}
110 };
111
112 static struct nand_ecclayout nand_oob_64 = {
113 .eccbytes = 24,
114 .eccpos = {
115 40, 41, 42, 43, 44, 45, 46, 47,
116 48, 49, 50, 51, 52, 53, 54, 55,
117 56, 57, 58, 59, 60, 61, 62, 63},
118 .oobfree = {
119 {.offset = 2,
120 .length = 38}}
121 };
122
123 static struct nand_ecclayout nand_oob_128 = {
124 .eccbytes = 48,
125 .eccpos = {
126 80, 81, 82, 83, 84, 85, 86, 87,
127 88, 89, 90, 91, 92, 93, 94, 95,
128 96, 97, 98, 99, 100, 101, 102, 103,
129 104, 105, 106, 107, 108, 109, 110, 111,
130 112, 113, 114, 115, 116, 117, 118, 119,
131 120, 121, 122, 123, 124, 125, 126, 127},
132 .oobfree = {
133 {.offset = 2,
134 .length = 78}}
135 };
136
137
138 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
139 int new_state);
140
141 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
142 struct mtd_oob_ops *ops);
143
144 static int nand_wait(struct mtd_info *mtd, struct nand_chip *this);
145
146 /*
147 * For devices which display every fart in the system on a separate LED. Is
148 * compiled away when LED support is disabled.
149 */
150 /* XXX U-BOOT XXX */
151 #if 0
152 DEFINE_LED_TRIGGER(nand_led_trigger);
153 #endif
154
155 /**
156 * nand_release_device - [GENERIC] release chip
157 * @mtd: MTD device structure
158 *
159 * Deselect, release chip lock and wake up anyone waiting on the device
160 */
161 /* XXX U-BOOT XXX */
162 #if 0
163 static void nand_release_device(struct mtd_info *mtd)
164 {
165 struct nand_chip *chip = mtd->priv;
166
167 /* De-select the NAND device */
168 chip->select_chip(mtd, -1);
169
170 /* Release the controller and the chip */
171 spin_lock(&chip->controller->lock);
172 chip->controller->active = NULL;
173 chip->state = FL_READY;
174 wake_up(&chip->controller->wq);
175 spin_unlock(&chip->controller->lock);
176 }
177 #else
178 static void nand_release_device (struct mtd_info *mtd)
179 {
180 struct nand_chip *this = mtd->priv;
181 this->select_chip(mtd, -1); /* De-select the NAND device */
182 }
183 #endif
184
185 /**
186 * nand_read_byte - [DEFAULT] read one byte from the chip
187 * @mtd: MTD device structure
188 *
189 * Default read function for 8bit buswith
190 */
191 static uint8_t nand_read_byte(struct mtd_info *mtd)
192 {
193 struct nand_chip *chip = mtd->priv;
194 return readb(chip->IO_ADDR_R);
195 }
196
197 /**
198 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
199 * @mtd: MTD device structure
200 *
201 * Default read function for 16bit buswith with
202 * endianess conversion
203 */
204 static uint8_t nand_read_byte16(struct mtd_info *mtd)
205 {
206 struct nand_chip *chip = mtd->priv;
207 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
208 }
209
210 /**
211 * nand_read_word - [DEFAULT] read one word from the chip
212 * @mtd: MTD device structure
213 *
214 * Default read function for 16bit buswith without
215 * endianess conversion
216 */
217 static u16 nand_read_word(struct mtd_info *mtd)
218 {
219 struct nand_chip *chip = mtd->priv;
220 return readw(chip->IO_ADDR_R);
221 }
222
223 /**
224 * nand_select_chip - [DEFAULT] control CE line
225 * @mtd: MTD device structure
226 * @chipnr: chipnumber to select, -1 for deselect
227 *
228 * Default select function for 1 chip devices.
229 */
230 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
231 {
232 struct nand_chip *chip = mtd->priv;
233
234 switch (chipnr) {
235 case -1:
236 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
237 break;
238 case 0:
239 break;
240
241 default:
242 BUG();
243 }
244 }
245
246 /**
247 * nand_write_buf - [DEFAULT] write buffer to chip
248 * @mtd: MTD device structure
249 * @buf: data buffer
250 * @len: number of bytes to write
251 *
252 * Default write function for 8bit buswith
253 */
254 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
255 {
256 int i;
257 struct nand_chip *chip = mtd->priv;
258
259 for (i = 0; i < len; i++)
260 writeb(buf[i], chip->IO_ADDR_W);
261 }
262
263 /**
264 * nand_read_buf - [DEFAULT] read chip data into buffer
265 * @mtd: MTD device structure
266 * @buf: buffer to store date
267 * @len: number of bytes to read
268 *
269 * Default read function for 8bit buswith
270 */
271 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
272 {
273 int i;
274 struct nand_chip *chip = mtd->priv;
275
276 for (i = 0; i < len; i++)
277 buf[i] = readb(chip->IO_ADDR_R);
278 }
279
280 /**
281 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
282 * @mtd: MTD device structure
283 * @buf: buffer containing the data to compare
284 * @len: number of bytes to compare
285 *
286 * Default verify function for 8bit buswith
287 */
288 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
289 {
290 int i;
291 struct nand_chip *chip = mtd->priv;
292
293 for (i = 0; i < len; i++)
294 if (buf[i] != readb(chip->IO_ADDR_R))
295 return -EFAULT;
296 return 0;
297 }
298
299 /**
300 * nand_write_buf16 - [DEFAULT] write buffer to chip
301 * @mtd: MTD device structure
302 * @buf: data buffer
303 * @len: number of bytes to write
304 *
305 * Default write function for 16bit buswith
306 */
307 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
308 {
309 int i;
310 struct nand_chip *chip = mtd->priv;
311 u16 *p = (u16 *) buf;
312 len >>= 1;
313
314 for (i = 0; i < len; i++)
315 writew(p[i], chip->IO_ADDR_W);
316
317 }
318
319 /**
320 * nand_read_buf16 - [DEFAULT] read chip data into buffer
321 * @mtd: MTD device structure
322 * @buf: buffer to store date
323 * @len: number of bytes to read
324 *
325 * Default read function for 16bit buswith
326 */
327 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
328 {
329 int i;
330 struct nand_chip *chip = mtd->priv;
331 u16 *p = (u16 *) buf;
332 len >>= 1;
333
334 for (i = 0; i < len; i++)
335 p[i] = readw(chip->IO_ADDR_R);
336 }
337
338 /**
339 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
340 * @mtd: MTD device structure
341 * @buf: buffer containing the data to compare
342 * @len: number of bytes to compare
343 *
344 * Default verify function for 16bit buswith
345 */
346 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
347 {
348 int i;
349 struct nand_chip *chip = mtd->priv;
350 u16 *p = (u16 *) buf;
351 len >>= 1;
352
353 for (i = 0; i < len; i++)
354 if (p[i] != readw(chip->IO_ADDR_R))
355 return -EFAULT;
356
357 return 0;
358 }
359
360 /**
361 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
362 * @mtd: MTD device structure
363 * @ofs: offset from device start
364 * @getchip: 0, if the chip is already selected
365 *
366 * Check, if the block is bad.
367 */
368 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
369 {
370 int page, chipnr, res = 0;
371 struct nand_chip *chip = mtd->priv;
372 u16 bad;
373
374 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
375
376 if (getchip) {
377 chipnr = (int)(ofs >> chip->chip_shift);
378
379 nand_get_device(chip, mtd, FL_READING);
380
381 /* Select the NAND device */
382 chip->select_chip(mtd, chipnr);
383 }
384
385 if (chip->options & NAND_BUSWIDTH_16) {
386 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
387 page);
388 bad = cpu_to_le16(chip->read_word(mtd));
389 if (chip->badblockpos & 0x1)
390 bad >>= 8;
391 if ((bad & 0xFF) != 0xff)
392 res = 1;
393 } else {
394 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
395 if (chip->read_byte(mtd) != 0xff)
396 res = 1;
397 }
398
399 if (getchip)
400 nand_release_device(mtd);
401
402 return res;
403 }
404
405 /**
406 * nand_default_block_markbad - [DEFAULT] mark a block bad
407 * @mtd: MTD device structure
408 * @ofs: offset from device start
409 *
410 * This is the default implementation, which can be overridden by
411 * a hardware specific driver.
412 */
413 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
414 {
415 struct nand_chip *chip = mtd->priv;
416 uint8_t buf[2] = { 0, 0 };
417 int block, ret;
418
419 /* Get block number */
420 block = (int)(ofs >> chip->bbt_erase_shift);
421 if (chip->bbt)
422 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
423
424 /* Do we have a flash based bad block table ? */
425 if (chip->options & NAND_USE_FLASH_BBT)
426 ret = nand_update_bbt(mtd, ofs);
427 else {
428 /* We write two bytes, so we dont have to mess with 16 bit
429 * access
430 */
431 nand_get_device(chip, mtd, FL_WRITING);
432 ofs += mtd->oobsize;
433 chip->ops.len = chip->ops.ooblen = 2;
434 chip->ops.datbuf = NULL;
435 chip->ops.oobbuf = buf;
436 chip->ops.ooboffs = chip->badblockpos & ~0x01;
437
438 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
439 nand_release_device(mtd);
440 }
441 if (!ret)
442 mtd->ecc_stats.badblocks++;
443
444 return ret;
445 }
446
447 /**
448 * nand_check_wp - [GENERIC] check if the chip is write protected
449 * @mtd: MTD device structure
450 * Check, if the device is write protected
451 *
452 * The function expects, that the device is already selected
453 */
454 static int nand_check_wp(struct mtd_info *mtd)
455 {
456 struct nand_chip *chip = mtd->priv;
457 /* Check the WP bit */
458 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
459 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
460 }
461
462 /**
463 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
464 * @mtd: MTD device structure
465 * @ofs: offset from device start
466 * @getchip: 0, if the chip is already selected
467 * @allowbbt: 1, if its allowed to access the bbt area
468 *
469 * Check, if the block is bad. Either by reading the bad block table or
470 * calling of the scan function.
471 */
472 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
473 int allowbbt)
474 {
475 struct nand_chip *chip = mtd->priv;
476
477 if (!(chip->options & NAND_BBT_SCANNED)) {
478 chip->options |= NAND_BBT_SCANNED;
479 chip->scan_bbt(mtd);
480 }
481
482 if (!chip->bbt)
483 return chip->block_bad(mtd, ofs, getchip);
484
485 /* Return info from the table */
486 return nand_isbad_bbt(mtd, ofs, allowbbt);
487 }
488
489 /*
490 * Wait for the ready pin, after a command
491 * The timeout is catched later.
492 */
493 /* XXX U-BOOT XXX */
494 #if 0
495 void nand_wait_ready(struct mtd_info *mtd)
496 {
497 struct nand_chip *chip = mtd->priv;
498 unsigned long timeo = jiffies + 2;
499
500 led_trigger_event(nand_led_trigger, LED_FULL);
501 /* wait until command is processed or timeout occures */
502 do {
503 if (chip->dev_ready(mtd))
504 break;
505 touch_softlockup_watchdog();
506 } while (time_before(jiffies, timeo));
507 led_trigger_event(nand_led_trigger, LED_OFF);
508 }
509 EXPORT_SYMBOL_GPL(nand_wait_ready);
510 #else
511 void nand_wait_ready(struct mtd_info *mtd)
512 {
513 struct nand_chip *chip = mtd->priv;
514 u32 timeo = (CONFIG_SYS_HZ * 20) / 1000;
515
516 reset_timer();
517
518 /* wait until command is processed or timeout occures */
519 while (get_timer(0) < timeo) {
520 if (chip->dev_ready)
521 if (chip->dev_ready(mtd))
522 break;
523 }
524 }
525 #endif
526
527 /**
528 * nand_command - [DEFAULT] Send command to NAND device
529 * @mtd: MTD device structure
530 * @command: the command to be sent
531 * @column: the column address for this command, -1 if none
532 * @page_addr: the page address for this command, -1 if none
533 *
534 * Send command to NAND device. This function is used for small page
535 * devices (256/512 Bytes per page)
536 */
537 static void nand_command(struct mtd_info *mtd, unsigned int command,
538 int column, int page_addr)
539 {
540 register struct nand_chip *chip = mtd->priv;
541 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
542 uint32_t rst_sts_cnt = CONFIG_SYS_NAND_RESET_CNT;
543
544 /*
545 * Write out the command to the device.
546 */
547 if (command == NAND_CMD_SEQIN) {
548 int readcmd;
549
550 if (column >= mtd->writesize) {
551 /* OOB area */
552 column -= mtd->writesize;
553 readcmd = NAND_CMD_READOOB;
554 } else if (column < 256) {
555 /* First 256 bytes --> READ0 */
556 readcmd = NAND_CMD_READ0;
557 } else {
558 column -= 256;
559 readcmd = NAND_CMD_READ1;
560 }
561 chip->cmd_ctrl(mtd, readcmd, ctrl);
562 ctrl &= ~NAND_CTRL_CHANGE;
563 }
564 chip->cmd_ctrl(mtd, command, ctrl);
565
566 /*
567 * Address cycle, when necessary
568 */
569 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
570 /* Serially input address */
571 if (column != -1) {
572 /* Adjust columns for 16 bit buswidth */
573 if (chip->options & NAND_BUSWIDTH_16)
574 column >>= 1;
575 chip->cmd_ctrl(mtd, column, ctrl);
576 ctrl &= ~NAND_CTRL_CHANGE;
577 }
578 if (page_addr != -1) {
579 chip->cmd_ctrl(mtd, page_addr, ctrl);
580 ctrl &= ~NAND_CTRL_CHANGE;
581 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
582 /* One more address cycle for devices > 32MiB */
583 if (chip->chipsize > (32 << 20))
584 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
585 }
586 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
587
588 /*
589 * program and erase have their own busy handlers
590 * status and sequential in needs no delay
591 */
592 switch (command) {
593
594 case NAND_CMD_PAGEPROG:
595 case NAND_CMD_ERASE1:
596 case NAND_CMD_ERASE2:
597 case NAND_CMD_SEQIN:
598 case NAND_CMD_STATUS:
599 return;
600
601 case NAND_CMD_RESET:
602 if (chip->dev_ready)
603 break;
604 udelay(chip->chip_delay);
605 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
606 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
607 chip->cmd_ctrl(mtd,
608 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
609 while (!(chip->read_byte(mtd) & NAND_STATUS_READY) &&
610 (rst_sts_cnt--));
611 return;
612
613 /* This applies to read commands */
614 default:
615 /*
616 * If we don't have access to the busy pin, we apply the given
617 * command delay
618 */
619 if (!chip->dev_ready) {
620 udelay(chip->chip_delay);
621 return;
622 }
623 }
624 /* Apply this short delay always to ensure that we do wait tWB in
625 * any case on any machine. */
626 ndelay(100);
627
628 nand_wait_ready(mtd);
629 }
630
631 /**
632 * nand_command_lp - [DEFAULT] Send command to NAND large page device
633 * @mtd: MTD device structure
634 * @command: the command to be sent
635 * @column: the column address for this command, -1 if none
636 * @page_addr: the page address for this command, -1 if none
637 *
638 * Send command to NAND device. This is the version for the new large page
639 * devices We dont have the separate regions as we have in the small page
640 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
641 */
642 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
643 int column, int page_addr)
644 {
645 register struct nand_chip *chip = mtd->priv;
646 uint32_t rst_sts_cnt = CONFIG_SYS_NAND_RESET_CNT;
647
648 /* Emulate NAND_CMD_READOOB */
649 if (command == NAND_CMD_READOOB) {
650 column += mtd->writesize;
651 command = NAND_CMD_READ0;
652 }
653
654 /* Command latch cycle */
655 chip->cmd_ctrl(mtd, command & 0xff,
656 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
657
658 if (column != -1 || page_addr != -1) {
659 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
660
661 /* Serially input address */
662 if (column != -1) {
663 /* Adjust columns for 16 bit buswidth */
664 if (chip->options & NAND_BUSWIDTH_16)
665 column >>= 1;
666 chip->cmd_ctrl(mtd, column, ctrl);
667 ctrl &= ~NAND_CTRL_CHANGE;
668 chip->cmd_ctrl(mtd, column >> 8, ctrl);
669 }
670 if (page_addr != -1) {
671 chip->cmd_ctrl(mtd, page_addr, ctrl);
672 chip->cmd_ctrl(mtd, page_addr >> 8,
673 NAND_NCE | NAND_ALE);
674 /* One more address cycle for devices > 128MiB */
675 if (chip->chipsize > (128 << 20))
676 chip->cmd_ctrl(mtd, page_addr >> 16,
677 NAND_NCE | NAND_ALE);
678 }
679 }
680 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
681
682 /*
683 * program and erase have their own busy handlers
684 * status, sequential in, and deplete1 need no delay
685 */
686 switch (command) {
687
688 case NAND_CMD_CACHEDPROG:
689 case NAND_CMD_PAGEPROG:
690 case NAND_CMD_ERASE1:
691 case NAND_CMD_ERASE2:
692 case NAND_CMD_SEQIN:
693 case NAND_CMD_RNDIN:
694 case NAND_CMD_STATUS:
695 case NAND_CMD_DEPLETE1:
696 return;
697
698 /*
699 * read error status commands require only a short delay
700 */
701 case NAND_CMD_STATUS_ERROR:
702 case NAND_CMD_STATUS_ERROR0:
703 case NAND_CMD_STATUS_ERROR1:
704 case NAND_CMD_STATUS_ERROR2:
705 case NAND_CMD_STATUS_ERROR3:
706 udelay(chip->chip_delay);
707 return;
708
709 case NAND_CMD_RESET:
710 if (chip->dev_ready)
711 break;
712 udelay(chip->chip_delay);
713 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
714 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
715 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
716 NAND_NCE | NAND_CTRL_CHANGE);
717 while (!(chip->read_byte(mtd) & NAND_STATUS_READY) &&
718 (rst_sts_cnt--));
719 return;
720
721 case NAND_CMD_RNDOUT:
722 /* No ready / busy check necessary */
723 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
724 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
725 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
726 NAND_NCE | NAND_CTRL_CHANGE);
727 return;
728
729 case NAND_CMD_READ0:
730 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
731 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
732 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
733 NAND_NCE | NAND_CTRL_CHANGE);
734
735 /* This applies to read commands */
736 default:
737 /*
738 * If we don't have access to the busy pin, we apply the given
739 * command delay
740 */
741 if (!chip->dev_ready) {
742 udelay(chip->chip_delay);
743 return;
744 }
745 }
746
747 /* Apply this short delay always to ensure that we do wait tWB in
748 * any case on any machine. */
749 ndelay(100);
750
751 nand_wait_ready(mtd);
752 }
753
754 /**
755 * nand_get_device - [GENERIC] Get chip for selected access
756 * @chip: the nand chip descriptor
757 * @mtd: MTD device structure
758 * @new_state: the state which is requested
759 *
760 * Get the device and lock it for exclusive access
761 */
762 /* XXX U-BOOT XXX */
763 #if 0
764 static int
765 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
766 {
767 spinlock_t *lock = &chip->controller->lock;
768 wait_queue_head_t *wq = &chip->controller->wq;
769 DECLARE_WAITQUEUE(wait, current);
770 retry:
771 spin_lock(lock);
772
773 /* Hardware controller shared among independend devices */
774 /* Hardware controller shared among independend devices */
775 if (!chip->controller->active)
776 chip->controller->active = chip;
777
778 if (chip->controller->active == chip && chip->state == FL_READY) {
779 chip->state = new_state;
780 spin_unlock(lock);
781 return 0;
782 }
783 if (new_state == FL_PM_SUSPENDED) {
784 spin_unlock(lock);
785 return (chip->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
786 }
787 set_current_state(TASK_UNINTERRUPTIBLE);
788 add_wait_queue(wq, &wait);
789 spin_unlock(lock);
790 schedule();
791 remove_wait_queue(wq, &wait);
792 goto retry;
793 }
794 #else
795 static int nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state)
796 {
797 this->state = new_state;
798 return 0;
799 }
800 #endif
801
802 /**
803 * nand_wait - [DEFAULT] wait until the command is done
804 * @mtd: MTD device structure
805 * @chip: NAND chip structure
806 *
807 * Wait for command done. This applies to erase and program only
808 * Erase can take up to 400ms and program up to 20ms according to
809 * general NAND and SmartMedia specs
810 */
811 /* XXX U-BOOT XXX */
812 #if 0
813 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
814 {
815
816 unsigned long timeo = jiffies;
817 int status, state = chip->state;
818
819 if (state == FL_ERASING)
820 timeo += (HZ * 400) / 1000;
821 else
822 timeo += (HZ * 20) / 1000;
823
824 led_trigger_event(nand_led_trigger, LED_FULL);
825
826 /* Apply this short delay always to ensure that we do wait tWB in
827 * any case on any machine. */
828 ndelay(100);
829
830 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
831 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
832 else
833 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
834
835 while (time_before(jiffies, timeo)) {
836 if (chip->dev_ready) {
837 if (chip->dev_ready(mtd))
838 break;
839 } else {
840 if (chip->read_byte(mtd) & NAND_STATUS_READY)
841 break;
842 }
843 cond_resched();
844 }
845 led_trigger_event(nand_led_trigger, LED_OFF);
846
847 status = (int)chip->read_byte(mtd);
848 return status;
849 }
850 #else
851 static int nand_wait(struct mtd_info *mtd, struct nand_chip *this)
852 {
853 unsigned long timeo;
854 int state = this->state;
855
856 if (state == FL_ERASING)
857 timeo = (CONFIG_SYS_HZ * 400) / 1000;
858 else
859 timeo = (CONFIG_SYS_HZ * 20) / 1000;
860
861 if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
862 this->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
863 else
864 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
865
866 reset_timer();
867
868 while (1) {
869 if (get_timer(0) > timeo) {
870 printf("Timeout!");
871 return 0x01;
872 }
873
874 if (this->dev_ready) {
875 if (this->dev_ready(mtd))
876 break;
877 } else {
878 if (this->read_byte(mtd) & NAND_STATUS_READY)
879 break;
880 }
881 }
882 #ifdef PPCHAMELON_NAND_TIMER_HACK
883 reset_timer();
884 while (get_timer(0) < 10);
885 #endif /* PPCHAMELON_NAND_TIMER_HACK */
886
887 return this->read_byte(mtd);
888 }
889 #endif
890
891 /**
892 * nand_read_page_raw - [Intern] read raw page data without ecc
893 * @mtd: mtd info structure
894 * @chip: nand chip info structure
895 * @buf: buffer to store read data
896 * @page: page number to read
897 *
898 * Not for syndrome calculating ecc controllers, which use a special oob layout
899 */
900 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
901 uint8_t *buf, int page)
902 {
903 chip->read_buf(mtd, buf, mtd->writesize);
904 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
905 return 0;
906 }
907
908 /**
909 * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc
910 * @mtd: mtd info structure
911 * @chip: nand chip info structure
912 * @buf: buffer to store read data
913 * @page: page number to read
914 *
915 * We need a special oob layout and handling even when OOB isn't used.
916 */
917 static int nand_read_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
918 uint8_t *buf, int page)
919 {
920 int eccsize = chip->ecc.size;
921 int eccbytes = chip->ecc.bytes;
922 uint8_t *oob = chip->oob_poi;
923 int steps, size;
924
925 for (steps = chip->ecc.steps; steps > 0; steps--) {
926 chip->read_buf(mtd, buf, eccsize);
927 buf += eccsize;
928
929 if (chip->ecc.prepad) {
930 chip->read_buf(mtd, oob, chip->ecc.prepad);
931 oob += chip->ecc.prepad;
932 }
933
934 chip->read_buf(mtd, oob, eccbytes);
935 oob += eccbytes;
936
937 if (chip->ecc.postpad) {
938 chip->read_buf(mtd, oob, chip->ecc.postpad);
939 oob += chip->ecc.postpad;
940 }
941 }
942
943 size = mtd->oobsize - (oob - chip->oob_poi);
944 if (size)
945 chip->read_buf(mtd, oob, size);
946
947 return 0;
948 }
949
950 /**
951 * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
952 * @mtd: mtd info structure
953 * @chip: nand chip info structure
954 * @buf: buffer to store read data
955 * @page: page number to read
956 */
957 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
958 uint8_t *buf, int page)
959 {
960 int i, eccsize = chip->ecc.size;
961 int eccbytes = chip->ecc.bytes;
962 int eccsteps = chip->ecc.steps;
963 uint8_t *p = buf;
964 uint8_t *ecc_calc = chip->buffers->ecccalc;
965 uint8_t *ecc_code = chip->buffers->ecccode;
966 uint32_t *eccpos = chip->ecc.layout->eccpos;
967
968 chip->ecc.read_page_raw(mtd, chip, buf, page);
969
970 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
971 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
972
973 for (i = 0; i < chip->ecc.total; i++)
974 ecc_code[i] = chip->oob_poi[eccpos[i]];
975
976 eccsteps = chip->ecc.steps;
977 p = buf;
978
979 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
980 int stat;
981
982 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
983 if (stat < 0)
984 mtd->ecc_stats.failed++;
985 else
986 mtd->ecc_stats.corrected += stat;
987 }
988 return 0;
989 }
990
991 /**
992 * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
993 * @mtd: mtd info structure
994 * @chip: nand chip info structure
995 * @data_offs: offset of requested data within the page
996 * @readlen: data length
997 * @bufpoi: buffer to store read data
998 */
999 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1000 {
1001 int start_step, end_step, num_steps;
1002 uint32_t *eccpos = chip->ecc.layout->eccpos;
1003 uint8_t *p;
1004 int data_col_addr, i, gaps = 0;
1005 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1006 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1007
1008 /* Column address wihin the page aligned to ECC size (256bytes). */
1009 start_step = data_offs / chip->ecc.size;
1010 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1011 num_steps = end_step - start_step + 1;
1012
1013 /* Data size aligned to ECC ecc.size*/
1014 datafrag_len = num_steps * chip->ecc.size;
1015 eccfrag_len = num_steps * chip->ecc.bytes;
1016
1017 data_col_addr = start_step * chip->ecc.size;
1018 /* If we read not a page aligned data */
1019 if (data_col_addr != 0)
1020 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1021
1022 p = bufpoi + data_col_addr;
1023 chip->read_buf(mtd, p, datafrag_len);
1024
1025 /* Calculate ECC */
1026 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1027 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1028
1029 /* The performance is faster if to position offsets
1030 according to ecc.pos. Let make sure here that
1031 there are no gaps in ecc positions */
1032 for (i = 0; i < eccfrag_len - 1; i++) {
1033 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1034 eccpos[i + start_step * chip->ecc.bytes + 1]) {
1035 gaps = 1;
1036 break;
1037 }
1038 }
1039 if (gaps) {
1040 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1041 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1042 } else {
1043 /* send the command to read the particular ecc bytes */
1044 /* take care about buswidth alignment in read_buf */
1045 aligned_pos = eccpos[start_step * chip->ecc.bytes] & ~(busw - 1);
1046 aligned_len = eccfrag_len;
1047 if (eccpos[start_step * chip->ecc.bytes] & (busw - 1))
1048 aligned_len++;
1049 if (eccpos[(start_step + num_steps) * chip->ecc.bytes] & (busw - 1))
1050 aligned_len++;
1051
1052 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize + aligned_pos, -1);
1053 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1054 }
1055
1056 for (i = 0; i < eccfrag_len; i++)
1057 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + start_step * chip->ecc.bytes]];
1058
1059 p = bufpoi + data_col_addr;
1060 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1061 int stat;
1062
1063 stat = chip->ecc.correct(mtd, p, &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1064 if (stat == -1)
1065 mtd->ecc_stats.failed++;
1066 else
1067 mtd->ecc_stats.corrected += stat;
1068 }
1069 return 0;
1070 }
1071
1072 /**
1073 * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
1074 * @mtd: mtd info structure
1075 * @chip: nand chip info structure
1076 * @buf: buffer to store read data
1077 * @page: page number to read
1078 *
1079 * Not for syndrome calculating ecc controllers which need a special oob layout
1080 */
1081 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1082 uint8_t *buf, int page)
1083 {
1084 int i, eccsize = chip->ecc.size;
1085 int eccbytes = chip->ecc.bytes;
1086 int eccsteps = chip->ecc.steps;
1087 uint8_t *p = buf;
1088 uint8_t *ecc_calc = chip->buffers->ecccalc;
1089 uint8_t *ecc_code = chip->buffers->ecccode;
1090 uint32_t *eccpos = chip->ecc.layout->eccpos;
1091
1092 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1093 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1094 chip->read_buf(mtd, p, eccsize);
1095 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1096 }
1097 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1098
1099 for (i = 0; i < chip->ecc.total; i++)
1100 ecc_code[i] = chip->oob_poi[eccpos[i]];
1101
1102 eccsteps = chip->ecc.steps;
1103 p = buf;
1104
1105 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1106 int stat;
1107
1108 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1109 if (stat < 0)
1110 mtd->ecc_stats.failed++;
1111 else
1112 mtd->ecc_stats.corrected += stat;
1113 }
1114 return 0;
1115 }
1116
1117 /**
1118 * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
1119 * @mtd: mtd info structure
1120 * @chip: nand chip info structure
1121 * @buf: buffer to store read data
1122 * @page: page number to read
1123 *
1124 * Hardware ECC for large page chips, require OOB to be read first.
1125 * For this ECC mode, the write_page method is re-used from ECC_HW.
1126 * These methods read/write ECC from the OOB area, unlike the
1127 * ECC_HW_SYNDROME support with multiple ECC steps, follows the
1128 * "infix ECC" scheme and reads/writes ECC from the data area, by
1129 * overwriting the NAND manufacturer bad block markings.
1130 */
1131 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1132 struct nand_chip *chip, uint8_t *buf, int page)
1133 {
1134 int i, eccsize = chip->ecc.size;
1135 int eccbytes = chip->ecc.bytes;
1136 int eccsteps = chip->ecc.steps;
1137 uint8_t *p = buf;
1138 uint8_t *ecc_code = chip->buffers->ecccode;
1139 uint32_t *eccpos = chip->ecc.layout->eccpos;
1140 uint8_t *ecc_calc = chip->buffers->ecccalc;
1141
1142 /* Read the OOB area first */
1143 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1144 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1145 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1146
1147 for (i = 0; i < chip->ecc.total; i++)
1148 ecc_code[i] = chip->oob_poi[eccpos[i]];
1149
1150 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1151 int stat;
1152
1153 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1154 chip->read_buf(mtd, p, eccsize);
1155 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1156
1157 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1158 if (stat < 0)
1159 mtd->ecc_stats.failed++;
1160 else
1161 mtd->ecc_stats.corrected += stat;
1162 }
1163 return 0;
1164 }
1165
1166 /**
1167 * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
1168 * @mtd: mtd info structure
1169 * @chip: nand chip info structure
1170 * @buf: buffer to store read data
1171 * @page: page number to read
1172 *
1173 * The hw generator calculates the error syndrome automatically. Therefor
1174 * we need a special oob layout and handling.
1175 */
1176 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1177 uint8_t *buf, int page)
1178 {
1179 int i, eccsize = chip->ecc.size;
1180 int eccbytes = chip->ecc.bytes;
1181 int eccsteps = chip->ecc.steps;
1182 uint8_t *p = buf;
1183 uint8_t *oob = chip->oob_poi;
1184
1185 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1186 int stat;
1187
1188 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1189 chip->read_buf(mtd, p, eccsize);
1190
1191 if (chip->ecc.prepad) {
1192 chip->read_buf(mtd, oob, chip->ecc.prepad);
1193 oob += chip->ecc.prepad;
1194 }
1195
1196 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1197 chip->read_buf(mtd, oob, eccbytes);
1198 stat = chip->ecc.correct(mtd, p, oob, NULL);
1199
1200 if (stat < 0)
1201 mtd->ecc_stats.failed++;
1202 else
1203 mtd->ecc_stats.corrected += stat;
1204
1205 oob += eccbytes;
1206
1207 if (chip->ecc.postpad) {
1208 chip->read_buf(mtd, oob, chip->ecc.postpad);
1209 oob += chip->ecc.postpad;
1210 }
1211 }
1212
1213 /* Calculate remaining oob bytes */
1214 i = mtd->oobsize - (oob - chip->oob_poi);
1215 if (i)
1216 chip->read_buf(mtd, oob, i);
1217
1218 return 0;
1219 }
1220
1221 /**
1222 * nand_transfer_oob - [Internal] Transfer oob to client buffer
1223 * @chip: nand chip structure
1224 * @oob: oob destination address
1225 * @ops: oob ops structure
1226 * @len: size of oob to transfer
1227 */
1228 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1229 struct mtd_oob_ops *ops, size_t len)
1230 {
1231 switch(ops->mode) {
1232
1233 case MTD_OOB_PLACE:
1234 case MTD_OOB_RAW:
1235 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1236 return oob + len;
1237
1238 case MTD_OOB_AUTO: {
1239 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1240 uint32_t boffs = 0, roffs = ops->ooboffs;
1241 size_t bytes = 0;
1242
1243 for(; free->length && len; free++, len -= bytes) {
1244 /* Read request not from offset 0 ? */
1245 if (unlikely(roffs)) {
1246 if (roffs >= free->length) {
1247 roffs -= free->length;
1248 continue;
1249 }
1250 boffs = free->offset + roffs;
1251 bytes = min_t(size_t, len,
1252 (free->length - roffs));
1253 roffs = 0;
1254 } else {
1255 bytes = min_t(size_t, len, free->length);
1256 boffs = free->offset;
1257 }
1258 memcpy(oob, chip->oob_poi + boffs, bytes);
1259 oob += bytes;
1260 }
1261 return oob;
1262 }
1263 default:
1264 BUG();
1265 }
1266 return NULL;
1267 }
1268
1269 /**
1270 * nand_do_read_ops - [Internal] Read data with ECC
1271 *
1272 * @mtd: MTD device structure
1273 * @from: offset to read from
1274 * @ops: oob ops structure
1275 *
1276 * Internal function. Called with chip held.
1277 */
1278 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1279 struct mtd_oob_ops *ops)
1280 {
1281 int chipnr, page, realpage, col, bytes, aligned;
1282 struct nand_chip *chip = mtd->priv;
1283 struct mtd_ecc_stats stats;
1284 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1285 int sndcmd = 1;
1286 int ret = 0;
1287 uint32_t readlen = ops->len;
1288 uint32_t oobreadlen = ops->ooblen;
1289 uint8_t *bufpoi, *oob, *buf;
1290
1291 stats = mtd->ecc_stats;
1292
1293 chipnr = (int)(from >> chip->chip_shift);
1294 chip->select_chip(mtd, chipnr);
1295
1296 realpage = (int)(from >> chip->page_shift);
1297 page = realpage & chip->pagemask;
1298
1299 col = (int)(from & (mtd->writesize - 1));
1300
1301 buf = ops->datbuf;
1302 oob = ops->oobbuf;
1303
1304 while(1) {
1305 bytes = min(mtd->writesize - col, readlen);
1306 aligned = (bytes == mtd->writesize);
1307
1308 /* Is the current page in the buffer ? */
1309 if (realpage != chip->pagebuf || oob) {
1310 bufpoi = aligned ? buf : chip->buffers->databuf;
1311
1312 if (likely(sndcmd)) {
1313 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1314 sndcmd = 0;
1315 }
1316
1317 /* Now read the page into the buffer */
1318 if (unlikely(ops->mode == MTD_OOB_RAW))
1319 ret = chip->ecc.read_page_raw(mtd, chip,
1320 bufpoi, page);
1321 else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1322 ret = chip->ecc.read_subpage(mtd, chip, col, bytes, bufpoi);
1323 else
1324 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1325 page);
1326 if (ret < 0)
1327 break;
1328
1329 /* Transfer not aligned data */
1330 if (!aligned) {
1331 if (!NAND_SUBPAGE_READ(chip) && !oob)
1332 chip->pagebuf = realpage;
1333 memcpy(buf, chip->buffers->databuf + col, bytes);
1334 }
1335
1336 buf += bytes;
1337
1338 if (unlikely(oob)) {
1339 /* Raw mode does data:oob:data:oob */
1340 if (ops->mode != MTD_OOB_RAW) {
1341 int toread = min(oobreadlen,
1342 chip->ecc.layout->oobavail);
1343 if (toread) {
1344 oob = nand_transfer_oob(chip,
1345 oob, ops, toread);
1346 oobreadlen -= toread;
1347 }
1348 } else
1349 buf = nand_transfer_oob(chip,
1350 buf, ops, mtd->oobsize);
1351 }
1352
1353 if (!(chip->options & NAND_NO_READRDY)) {
1354 /*
1355 * Apply delay or wait for ready/busy pin. Do
1356 * this before the AUTOINCR check, so no
1357 * problems arise if a chip which does auto
1358 * increment is marked as NOAUTOINCR by the
1359 * board driver.
1360 */
1361 if (!chip->dev_ready)
1362 udelay(chip->chip_delay);
1363 else
1364 nand_wait_ready(mtd);
1365 }
1366 } else {
1367 memcpy(buf, chip->buffers->databuf + col, bytes);
1368 buf += bytes;
1369 }
1370
1371 readlen -= bytes;
1372
1373 if (!readlen)
1374 break;
1375
1376 /* For subsequent reads align to page boundary. */
1377 col = 0;
1378 /* Increment page address */
1379 realpage++;
1380
1381 page = realpage & chip->pagemask;
1382 /* Check, if we cross a chip boundary */
1383 if (!page) {
1384 chipnr++;
1385 chip->select_chip(mtd, -1);
1386 chip->select_chip(mtd, chipnr);
1387 }
1388
1389 /* Check, if the chip supports auto page increment
1390 * or if we have hit a block boundary.
1391 */
1392 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1393 sndcmd = 1;
1394 }
1395
1396 ops->retlen = ops->len - (size_t) readlen;
1397 if (oob)
1398 ops->oobretlen = ops->ooblen - oobreadlen;
1399
1400 if (ret)
1401 return ret;
1402
1403 if (mtd->ecc_stats.failed - stats.failed)
1404 return -EBADMSG;
1405
1406 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1407 }
1408
1409 /**
1410 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1411 * @mtd: MTD device structure
1412 * @from: offset to read from
1413 * @len: number of bytes to read
1414 * @retlen: pointer to variable to store the number of read bytes
1415 * @buf: the databuffer to put data
1416 *
1417 * Get hold of the chip and call nand_do_read
1418 */
1419 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1420 size_t *retlen, uint8_t *buf)
1421 {
1422 struct nand_chip *chip = mtd->priv;
1423 int ret;
1424
1425 /* Do not allow reads past end of device */
1426 if ((from + len) > mtd->size)
1427 return -EINVAL;
1428 if (!len)
1429 return 0;
1430
1431 nand_get_device(chip, mtd, FL_READING);
1432
1433 chip->ops.len = len;
1434 chip->ops.datbuf = buf;
1435 chip->ops.oobbuf = NULL;
1436
1437 ret = nand_do_read_ops(mtd, from, &chip->ops);
1438
1439 *retlen = chip->ops.retlen;
1440
1441 nand_release_device(mtd);
1442
1443 return ret;
1444 }
1445
1446 /**
1447 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1448 * @mtd: mtd info structure
1449 * @chip: nand chip info structure
1450 * @page: page number to read
1451 * @sndcmd: flag whether to issue read command or not
1452 */
1453 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1454 int page, int sndcmd)
1455 {
1456 if (sndcmd) {
1457 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1458 sndcmd = 0;
1459 }
1460 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1461 return sndcmd;
1462 }
1463
1464 /**
1465 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1466 * with syndromes
1467 * @mtd: mtd info structure
1468 * @chip: nand chip info structure
1469 * @page: page number to read
1470 * @sndcmd: flag whether to issue read command or not
1471 */
1472 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1473 int page, int sndcmd)
1474 {
1475 uint8_t *buf = chip->oob_poi;
1476 int length = mtd->oobsize;
1477 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1478 int eccsize = chip->ecc.size;
1479 uint8_t *bufpoi = buf;
1480 int i, toread, sndrnd = 0, pos;
1481
1482 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1483 for (i = 0; i < chip->ecc.steps; i++) {
1484 if (sndrnd) {
1485 pos = eccsize + i * (eccsize + chunk);
1486 if (mtd->writesize > 512)
1487 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1488 else
1489 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1490 } else
1491 sndrnd = 1;
1492 toread = min_t(int, length, chunk);
1493 chip->read_buf(mtd, bufpoi, toread);
1494 bufpoi += toread;
1495 length -= toread;
1496 }
1497 if (length > 0)
1498 chip->read_buf(mtd, bufpoi, length);
1499
1500 return 1;
1501 }
1502
1503 /**
1504 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1505 * @mtd: mtd info structure
1506 * @chip: nand chip info structure
1507 * @page: page number to write
1508 */
1509 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1510 int page)
1511 {
1512 int status = 0;
1513 const uint8_t *buf = chip->oob_poi;
1514 int length = mtd->oobsize;
1515
1516 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1517 chip->write_buf(mtd, buf, length);
1518 /* Send command to program the OOB data */
1519 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1520
1521 status = chip->waitfunc(mtd, chip);
1522
1523 return status & NAND_STATUS_FAIL ? -EIO : 0;
1524 }
1525
1526 /**
1527 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1528 * with syndrome - only for large page flash !
1529 * @mtd: mtd info structure
1530 * @chip: nand chip info structure
1531 * @page: page number to write
1532 */
1533 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1534 struct nand_chip *chip, int page)
1535 {
1536 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1537 int eccsize = chip->ecc.size, length = mtd->oobsize;
1538 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1539 const uint8_t *bufpoi = chip->oob_poi;
1540
1541 /*
1542 * data-ecc-data-ecc ... ecc-oob
1543 * or
1544 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1545 */
1546 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1547 pos = steps * (eccsize + chunk);
1548 steps = 0;
1549 } else
1550 pos = eccsize;
1551
1552 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1553 for (i = 0; i < steps; i++) {
1554 if (sndcmd) {
1555 if (mtd->writesize <= 512) {
1556 uint32_t fill = 0xFFFFFFFF;
1557
1558 len = eccsize;
1559 while (len > 0) {
1560 int num = min_t(int, len, 4);
1561 chip->write_buf(mtd, (uint8_t *)&fill,
1562 num);
1563 len -= num;
1564 }
1565 } else {
1566 pos = eccsize + i * (eccsize + chunk);
1567 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1568 }
1569 } else
1570 sndcmd = 1;
1571 len = min_t(int, length, chunk);
1572 chip->write_buf(mtd, bufpoi, len);
1573 bufpoi += len;
1574 length -= len;
1575 }
1576 if (length > 0)
1577 chip->write_buf(mtd, bufpoi, length);
1578
1579 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1580 status = chip->waitfunc(mtd, chip);
1581
1582 return status & NAND_STATUS_FAIL ? -EIO : 0;
1583 }
1584
1585 /**
1586 * nand_do_read_oob - [Intern] NAND read out-of-band
1587 * @mtd: MTD device structure
1588 * @from: offset to read from
1589 * @ops: oob operations description structure
1590 *
1591 * NAND read out-of-band data from the spare area
1592 */
1593 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1594 struct mtd_oob_ops *ops)
1595 {
1596 int page, realpage, chipnr, sndcmd = 1;
1597 struct nand_chip *chip = mtd->priv;
1598 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1599 int readlen = ops->ooblen;
1600 int len;
1601 uint8_t *buf = ops->oobbuf;
1602
1603 MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08Lx, len = %i\n",
1604 (unsigned long long)from, readlen);
1605
1606 if (ops->mode == MTD_OOB_AUTO)
1607 len = chip->ecc.layout->oobavail;
1608 else
1609 len = mtd->oobsize;
1610
1611 if (unlikely(ops->ooboffs >= len)) {
1612 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1613 "Attempt to start read outside oob\n");
1614 return -EINVAL;
1615 }
1616
1617 /* Do not allow reads past end of device */
1618 if (unlikely(from >= mtd->size ||
1619 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1620 (from >> chip->page_shift)) * len)) {
1621 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1622 "Attempt read beyond end of device\n");
1623 return -EINVAL;
1624 }
1625
1626 chipnr = (int)(from >> chip->chip_shift);
1627 chip->select_chip(mtd, chipnr);
1628
1629 /* Shift to get page */
1630 realpage = (int)(from >> chip->page_shift);
1631 page = realpage & chip->pagemask;
1632
1633 while(1) {
1634 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1635
1636 len = min(len, readlen);
1637 buf = nand_transfer_oob(chip, buf, ops, len);
1638
1639 if (!(chip->options & NAND_NO_READRDY)) {
1640 /*
1641 * Apply delay or wait for ready/busy pin. Do this
1642 * before the AUTOINCR check, so no problems arise if a
1643 * chip which does auto increment is marked as
1644 * NOAUTOINCR by the board driver.
1645 */
1646 if (!chip->dev_ready)
1647 udelay(chip->chip_delay);
1648 else
1649 nand_wait_ready(mtd);
1650 }
1651
1652 readlen -= len;
1653 if (!readlen)
1654 break;
1655
1656 /* Increment page address */
1657 realpage++;
1658
1659 page = realpage & chip->pagemask;
1660 /* Check, if we cross a chip boundary */
1661 if (!page) {
1662 chipnr++;
1663 chip->select_chip(mtd, -1);
1664 chip->select_chip(mtd, chipnr);
1665 }
1666
1667 /* Check, if the chip supports auto page increment
1668 * or if we have hit a block boundary.
1669 */
1670 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1671 sndcmd = 1;
1672 }
1673
1674 ops->oobretlen = ops->ooblen;
1675 return 0;
1676 }
1677
1678 /**
1679 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1680 * @mtd: MTD device structure
1681 * @from: offset to read from
1682 * @ops: oob operation description structure
1683 *
1684 * NAND read data and/or out-of-band data
1685 */
1686 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1687 struct mtd_oob_ops *ops)
1688 {
1689 struct nand_chip *chip = mtd->priv;
1690 int ret = -ENOTSUPP;
1691
1692 ops->retlen = 0;
1693
1694 /* Do not allow reads past end of device */
1695 if (ops->datbuf && (from + ops->len) > mtd->size) {
1696 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1697 "Attempt read beyond end of device\n");
1698 return -EINVAL;
1699 }
1700
1701 nand_get_device(chip, mtd, FL_READING);
1702
1703 switch(ops->mode) {
1704 case MTD_OOB_PLACE:
1705 case MTD_OOB_AUTO:
1706 case MTD_OOB_RAW:
1707 break;
1708
1709 default:
1710 goto out;
1711 }
1712
1713 if (!ops->datbuf)
1714 ret = nand_do_read_oob(mtd, from, ops);
1715 else
1716 ret = nand_do_read_ops(mtd, from, ops);
1717
1718 out:
1719 nand_release_device(mtd);
1720 return ret;
1721 }
1722
1723
1724 /**
1725 * nand_write_page_raw - [Intern] raw page write function
1726 * @mtd: mtd info structure
1727 * @chip: nand chip info structure
1728 * @buf: data buffer
1729 *
1730 * Not for syndrome calculating ecc controllers, which use a special oob layout
1731 */
1732 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1733 const uint8_t *buf)
1734 {
1735 chip->write_buf(mtd, buf, mtd->writesize);
1736 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1737 }
1738
1739 /**
1740 * nand_write_page_raw_syndrome - [Intern] raw page write function
1741 * @mtd: mtd info structure
1742 * @chip: nand chip info structure
1743 * @buf: data buffer
1744 *
1745 * We need a special oob layout and handling even when ECC isn't checked.
1746 */
1747 static void nand_write_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1748 const uint8_t *buf)
1749 {
1750 int eccsize = chip->ecc.size;
1751 int eccbytes = chip->ecc.bytes;
1752 uint8_t *oob = chip->oob_poi;
1753 int steps, size;
1754
1755 for (steps = chip->ecc.steps; steps > 0; steps--) {
1756 chip->write_buf(mtd, buf, eccsize);
1757 buf += eccsize;
1758
1759 if (chip->ecc.prepad) {
1760 chip->write_buf(mtd, oob, chip->ecc.prepad);
1761 oob += chip->ecc.prepad;
1762 }
1763
1764 chip->read_buf(mtd, oob, eccbytes);
1765 oob += eccbytes;
1766
1767 if (chip->ecc.postpad) {
1768 chip->write_buf(mtd, oob, chip->ecc.postpad);
1769 oob += chip->ecc.postpad;
1770 }
1771 }
1772
1773 size = mtd->oobsize - (oob - chip->oob_poi);
1774 if (size)
1775 chip->write_buf(mtd, oob, size);
1776 }
1777 /**
1778 * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1779 * @mtd: mtd info structure
1780 * @chip: nand chip info structure
1781 * @buf: data buffer
1782 */
1783 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1784 const uint8_t *buf)
1785 {
1786 int i, eccsize = chip->ecc.size;
1787 int eccbytes = chip->ecc.bytes;
1788 int eccsteps = chip->ecc.steps;
1789 uint8_t *ecc_calc = chip->buffers->ecccalc;
1790 const uint8_t *p = buf;
1791 uint32_t *eccpos = chip->ecc.layout->eccpos;
1792
1793 /* Software ecc calculation */
1794 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1795 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1796
1797 for (i = 0; i < chip->ecc.total; i++)
1798 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1799
1800 chip->ecc.write_page_raw(mtd, chip, buf);
1801 }
1802
1803 /**
1804 * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1805 * @mtd: mtd info structure
1806 * @chip: nand chip info structure
1807 * @buf: data buffer
1808 */
1809 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1810 const uint8_t *buf)
1811 {
1812 int i, eccsize = chip->ecc.size;
1813 int eccbytes = chip->ecc.bytes;
1814 int eccsteps = chip->ecc.steps;
1815 uint8_t *ecc_calc = chip->buffers->ecccalc;
1816 const uint8_t *p = buf;
1817 uint32_t *eccpos = chip->ecc.layout->eccpos;
1818
1819 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1820 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1821 chip->write_buf(mtd, p, eccsize);
1822 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1823 }
1824
1825 for (i = 0; i < chip->ecc.total; i++)
1826 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1827
1828 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1829 }
1830
1831 /**
1832 * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
1833 * @mtd: mtd info structure
1834 * @chip: nand chip info structure
1835 * @buf: data buffer
1836 *
1837 * The hw generator calculates the error syndrome automatically. Therefor
1838 * we need a special oob layout and handling.
1839 */
1840 static void nand_write_page_syndrome(struct mtd_info *mtd,
1841 struct nand_chip *chip, const uint8_t *buf)
1842 {
1843 int i, eccsize = chip->ecc.size;
1844 int eccbytes = chip->ecc.bytes;
1845 int eccsteps = chip->ecc.steps;
1846 const uint8_t *p = buf;
1847 uint8_t *oob = chip->oob_poi;
1848
1849 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1850
1851 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1852 chip->write_buf(mtd, p, eccsize);
1853
1854 if (chip->ecc.prepad) {
1855 chip->write_buf(mtd, oob, chip->ecc.prepad);
1856 oob += chip->ecc.prepad;
1857 }
1858
1859 chip->ecc.calculate(mtd, p, oob);
1860 chip->write_buf(mtd, oob, eccbytes);
1861 oob += eccbytes;
1862
1863 if (chip->ecc.postpad) {
1864 chip->write_buf(mtd, oob, chip->ecc.postpad);
1865 oob += chip->ecc.postpad;
1866 }
1867 }
1868
1869 /* Calculate remaining oob bytes */
1870 i = mtd->oobsize - (oob - chip->oob_poi);
1871 if (i)
1872 chip->write_buf(mtd, oob, i);
1873 }
1874
1875 /**
1876 * nand_write_page - [REPLACEABLE] write one page
1877 * @mtd: MTD device structure
1878 * @chip: NAND chip descriptor
1879 * @buf: the data to write
1880 * @page: page number to write
1881 * @cached: cached programming
1882 * @raw: use _raw version of write_page
1883 */
1884 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1885 const uint8_t *buf, int page, int cached, int raw)
1886 {
1887 int status;
1888
1889 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1890
1891 if (unlikely(raw))
1892 chip->ecc.write_page_raw(mtd, chip, buf);
1893 else
1894 chip->ecc.write_page(mtd, chip, buf);
1895
1896 /*
1897 * Cached progamming disabled for now, Not sure if its worth the
1898 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1899 */
1900 cached = 0;
1901
1902 if (!cached || !(chip->options & NAND_CACHEPRG)) {
1903
1904 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1905 status = chip->waitfunc(mtd, chip);
1906 /*
1907 * See if operation failed and additional status checks are
1908 * available
1909 */
1910 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1911 status = chip->errstat(mtd, chip, FL_WRITING, status,
1912 page);
1913
1914 if (status & NAND_STATUS_FAIL)
1915 return -EIO;
1916 } else {
1917 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
1918 status = chip->waitfunc(mtd, chip);
1919 }
1920
1921 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1922 /* Send command to read back the data */
1923 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1924
1925 if (chip->verify_buf(mtd, buf, mtd->writesize))
1926 return -EIO;
1927 #endif
1928 return 0;
1929 }
1930
1931 /**
1932 * nand_fill_oob - [Internal] Transfer client buffer to oob
1933 * @chip: nand chip structure
1934 * @oob: oob data buffer
1935 * @ops: oob ops structure
1936 */
1937 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob,
1938 struct mtd_oob_ops *ops)
1939 {
1940 size_t len = ops->ooblen;
1941
1942 switch(ops->mode) {
1943
1944 case MTD_OOB_PLACE:
1945 case MTD_OOB_RAW:
1946 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
1947 return oob + len;
1948
1949 case MTD_OOB_AUTO: {
1950 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1951 uint32_t boffs = 0, woffs = ops->ooboffs;
1952 size_t bytes = 0;
1953
1954 for(; free->length && len; free++, len -= bytes) {
1955 /* Write request not from offset 0 ? */
1956 if (unlikely(woffs)) {
1957 if (woffs >= free->length) {
1958 woffs -= free->length;
1959 continue;
1960 }
1961 boffs = free->offset + woffs;
1962 bytes = min_t(size_t, len,
1963 (free->length - woffs));
1964 woffs = 0;
1965 } else {
1966 bytes = min_t(size_t, len, free->length);
1967 boffs = free->offset;
1968 }
1969 memcpy(chip->oob_poi + boffs, oob, bytes);
1970 oob += bytes;
1971 }
1972 return oob;
1973 }
1974 default:
1975 BUG();
1976 }
1977 return NULL;
1978 }
1979
1980 #define NOTALIGNED(x) (x & (chip->subpagesize - 1)) != 0
1981
1982 /**
1983 * nand_do_write_ops - [Internal] NAND write with ECC
1984 * @mtd: MTD device structure
1985 * @to: offset to write to
1986 * @ops: oob operations description structure
1987 *
1988 * NAND write with ECC
1989 */
1990 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
1991 struct mtd_oob_ops *ops)
1992 {
1993 int chipnr, realpage, page, blockmask, column;
1994 struct nand_chip *chip = mtd->priv;
1995 uint32_t writelen = ops->len;
1996 uint8_t *oob = ops->oobbuf;
1997 uint8_t *buf = ops->datbuf;
1998 int ret, subpage;
1999
2000 ops->retlen = 0;
2001 if (!writelen)
2002 return 0;
2003
2004 /* reject writes, which are not page aligned */
2005 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2006 printk(KERN_NOTICE "nand_write: "
2007 "Attempt to write not page aligned data\n");
2008 return -EINVAL;
2009 }
2010
2011 column = to & (mtd->writesize - 1);
2012 subpage = column || (writelen & (mtd->writesize - 1));
2013
2014 if (subpage && oob)
2015 return -EINVAL;
2016
2017 chipnr = (int)(to >> chip->chip_shift);
2018 chip->select_chip(mtd, chipnr);
2019
2020 /* Check, if it is write protected */
2021 if (nand_check_wp(mtd)) {
2022 printk (KERN_NOTICE "nand_do_write_ops: Device is write protected\n");
2023 return -EIO;
2024 }
2025
2026 realpage = (int)(to >> chip->page_shift);
2027 page = realpage & chip->pagemask;
2028 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2029
2030 /* Invalidate the page cache, when we write to the cached page */
2031 if (to <= (chip->pagebuf << chip->page_shift) &&
2032 (chip->pagebuf << chip->page_shift) < (to + ops->len))
2033 chip->pagebuf = -1;
2034
2035 /* If we're not given explicit OOB data, let it be 0xFF */
2036 if (likely(!oob))
2037 memset(chip->oob_poi, 0xff, mtd->oobsize);
2038
2039 while(1) {
2040 int bytes = mtd->writesize;
2041 int cached = writelen > bytes && page != blockmask;
2042 uint8_t *wbuf = buf;
2043
2044 /* Partial page write ? */
2045 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2046 cached = 0;
2047 bytes = min_t(int, bytes - column, (int) writelen);
2048 chip->pagebuf = -1;
2049 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2050 memcpy(&chip->buffers->databuf[column], buf, bytes);
2051 wbuf = chip->buffers->databuf;
2052 }
2053
2054 if (unlikely(oob))
2055 oob = nand_fill_oob(chip, oob, ops);
2056
2057 ret = chip->write_page(mtd, chip, wbuf, page, cached,
2058 (ops->mode == MTD_OOB_RAW));
2059 if (ret)
2060 break;
2061
2062 writelen -= bytes;
2063 if (!writelen)
2064 break;
2065
2066 column = 0;
2067 buf += bytes;
2068 realpage++;
2069
2070 page = realpage & chip->pagemask;
2071 /* Check, if we cross a chip boundary */
2072 if (!page) {
2073 chipnr++;
2074 chip->select_chip(mtd, -1);
2075 chip->select_chip(mtd, chipnr);
2076 }
2077 }
2078
2079 ops->retlen = ops->len - writelen;
2080 if (unlikely(oob))
2081 ops->oobretlen = ops->ooblen;
2082 return ret;
2083 }
2084
2085 /**
2086 * nand_write - [MTD Interface] NAND write with ECC
2087 * @mtd: MTD device structure
2088 * @to: offset to write to
2089 * @len: number of bytes to write
2090 * @retlen: pointer to variable to store the number of written bytes
2091 * @buf: the data to write
2092 *
2093 * NAND write with ECC
2094 */
2095 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2096 size_t *retlen, const uint8_t *buf)
2097 {
2098 struct nand_chip *chip = mtd->priv;
2099 int ret;
2100
2101 /* Do not allow reads past end of device */
2102 if ((to + len) > mtd->size)
2103 return -EINVAL;
2104 if (!len)
2105 return 0;
2106
2107 nand_get_device(chip, mtd, FL_WRITING);
2108
2109 chip->ops.len = len;
2110 chip->ops.datbuf = (uint8_t *)buf;
2111 chip->ops.oobbuf = NULL;
2112
2113 ret = nand_do_write_ops(mtd, to, &chip->ops);
2114
2115 *retlen = chip->ops.retlen;
2116
2117 nand_release_device(mtd);
2118
2119 return ret;
2120 }
2121
2122 /**
2123 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2124 * @mtd: MTD device structure
2125 * @to: offset to write to
2126 * @ops: oob operation description structure
2127 *
2128 * NAND write out-of-band
2129 */
2130 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2131 struct mtd_oob_ops *ops)
2132 {
2133 int chipnr, page, status, len;
2134 struct nand_chip *chip = mtd->priv;
2135
2136 MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n",
2137 (unsigned int)to, (int)ops->ooblen);
2138
2139 if (ops->mode == MTD_OOB_AUTO)
2140 len = chip->ecc.layout->oobavail;
2141 else
2142 len = mtd->oobsize;
2143
2144 /* Do not allow write past end of page */
2145 if ((ops->ooboffs + ops->ooblen) > len) {
2146 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: "
2147 "Attempt to write past end of page\n");
2148 return -EINVAL;
2149 }
2150
2151 if (unlikely(ops->ooboffs >= len)) {
2152 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
2153 "Attempt to start write outside oob\n");
2154 return -EINVAL;
2155 }
2156
2157 /* Do not allow reads past end of device */
2158 if (unlikely(to >= mtd->size ||
2159 ops->ooboffs + ops->ooblen >
2160 ((mtd->size >> chip->page_shift) -
2161 (to >> chip->page_shift)) * len)) {
2162 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
2163 "Attempt write beyond end of device\n");
2164 return -EINVAL;
2165 }
2166
2167 chipnr = (int)(to >> chip->chip_shift);
2168 chip->select_chip(mtd, chipnr);
2169
2170 /* Shift to get page */
2171 page = (int)(to >> chip->page_shift);
2172
2173 /*
2174 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2175 * of my DiskOnChip 2000 test units) will clear the whole data page too
2176 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2177 * it in the doc2000 driver in August 1999. dwmw2.
2178 */
2179 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2180
2181 /* Check, if it is write protected */
2182 if (nand_check_wp(mtd))
2183 return -EROFS;
2184
2185 /* Invalidate the page cache, if we write to the cached page */
2186 if (page == chip->pagebuf)
2187 chip->pagebuf = -1;
2188
2189 memset(chip->oob_poi, 0xff, mtd->oobsize);
2190 nand_fill_oob(chip, ops->oobbuf, ops);
2191 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2192 memset(chip->oob_poi, 0xff, mtd->oobsize);
2193
2194 if (status)
2195 return status;
2196
2197 ops->oobretlen = ops->ooblen;
2198
2199 return 0;
2200 }
2201
2202 /**
2203 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2204 * @mtd: MTD device structure
2205 * @to: offset to write to
2206 * @ops: oob operation description structure
2207 */
2208 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2209 struct mtd_oob_ops *ops)
2210 {
2211 struct nand_chip *chip = mtd->priv;
2212 int ret = -ENOTSUPP;
2213
2214 ops->retlen = 0;
2215
2216 /* Do not allow writes past end of device */
2217 if (ops->datbuf && (to + ops->len) > mtd->size) {
2218 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
2219 "Attempt read beyond end of device\n");
2220 return -EINVAL;
2221 }
2222
2223 nand_get_device(chip, mtd, FL_WRITING);
2224
2225 switch(ops->mode) {
2226 case MTD_OOB_PLACE:
2227 case MTD_OOB_AUTO:
2228 case MTD_OOB_RAW:
2229 break;
2230
2231 default:
2232 goto out;
2233 }
2234
2235 if (!ops->datbuf)
2236 ret = nand_do_write_oob(mtd, to, ops);
2237 else
2238 ret = nand_do_write_ops(mtd, to, ops);
2239
2240 out:
2241 nand_release_device(mtd);
2242 return ret;
2243 }
2244
2245 /**
2246 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2247 * @mtd: MTD device structure
2248 * @page: the page address of the block which will be erased
2249 *
2250 * Standard erase command for NAND chips
2251 */
2252 static void single_erase_cmd(struct mtd_info *mtd, int page)
2253 {
2254 struct nand_chip *chip = mtd->priv;
2255 /* Send commands to erase a block */
2256 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2257 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2258 }
2259
2260 /**
2261 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2262 * @mtd: MTD device structure
2263 * @page: the page address of the block which will be erased
2264 *
2265 * AND multi block erase command function
2266 * Erase 4 consecutive blocks
2267 */
2268 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2269 {
2270 struct nand_chip *chip = mtd->priv;
2271 /* Send commands to erase a block */
2272 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2273 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2274 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2275 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2276 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2277 }
2278
2279 /**
2280 * nand_erase - [MTD Interface] erase block(s)
2281 * @mtd: MTD device structure
2282 * @instr: erase instruction
2283 *
2284 * Erase one ore more blocks
2285 */
2286 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2287 {
2288 return nand_erase_nand(mtd, instr, 0);
2289 }
2290
2291 #define BBT_PAGE_MASK 0xffffff3f
2292 /**
2293 * nand_erase_nand - [Internal] erase block(s)
2294 * @mtd: MTD device structure
2295 * @instr: erase instruction
2296 * @allowbbt: allow erasing the bbt area
2297 *
2298 * Erase one ore more blocks
2299 */
2300 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2301 int allowbbt)
2302 {
2303 int page, status, pages_per_block, ret, chipnr;
2304 struct nand_chip *chip = mtd->priv;
2305 loff_t rewrite_bbt[CONFIG_SYS_NAND_MAX_CHIPS] = {0};
2306 unsigned int bbt_masked_page = 0xffffffff;
2307 loff_t len;
2308
2309 MTDDEBUG(MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%012llx, "
2310 "len = %llu\n", (unsigned long long) instr->addr,
2311 (unsigned long long) instr->len);
2312
2313 /* Start address must align on block boundary */
2314 if (instr->addr & ((1 << chip->phys_erase_shift) - 1)) {
2315 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
2316 return -EINVAL;
2317 }
2318
2319 /* Length must align on block boundary */
2320 if (instr->len & ((1 << chip->phys_erase_shift) - 1)) {
2321 MTDDEBUG (MTD_DEBUG_LEVEL0,
2322 "nand_erase: Length not block aligned\n");
2323 return -EINVAL;
2324 }
2325
2326 /* Do not allow erase past end of device */
2327 if ((instr->len + instr->addr) > mtd->size) {
2328 MTDDEBUG (MTD_DEBUG_LEVEL0,
2329 "nand_erase: Erase past end of device\n");
2330 return -EINVAL;
2331 }
2332
2333 instr->fail_addr = 0xffffffff;
2334
2335 /* Grab the lock and see if the device is available */
2336 nand_get_device(chip, mtd, FL_ERASING);
2337
2338 /* Shift to get first page */
2339 page = (int)(instr->addr >> chip->page_shift);
2340 chipnr = (int)(instr->addr >> chip->chip_shift);
2341
2342 /* Calculate pages in each block */
2343 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2344
2345 /* Select the NAND device */
2346 chip->select_chip(mtd, chipnr);
2347
2348 /* Check, if it is write protected */
2349 if (nand_check_wp(mtd)) {
2350 MTDDEBUG (MTD_DEBUG_LEVEL0,
2351 "nand_erase: Device is write protected!!!\n");
2352 instr->state = MTD_ERASE_FAILED;
2353 goto erase_exit;
2354 }
2355
2356 /*
2357 * If BBT requires refresh, set the BBT page mask to see if the BBT
2358 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2359 * can not be matched. This is also done when the bbt is actually
2360 * erased to avoid recusrsive updates
2361 */
2362 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2363 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2364
2365 /* Loop through the pages */
2366 len = instr->len;
2367
2368 instr->state = MTD_ERASING;
2369
2370 while (len) {
2371 /*
2372 * heck if we have a bad block, we do not erase bad blocks !
2373 */
2374 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2375 chip->page_shift, 0, allowbbt)) {
2376 printk(KERN_WARNING "nand_erase: attempt to erase a "
2377 "bad block at page 0x%08x\n", page);
2378 instr->state = MTD_ERASE_FAILED;
2379 goto erase_exit;
2380 }
2381
2382 /*
2383 * Invalidate the page cache, if we erase the block which
2384 * contains the current cached page
2385 */
2386 if (page <= chip->pagebuf && chip->pagebuf <
2387 (page + pages_per_block))
2388 chip->pagebuf = -1;
2389
2390 chip->erase_cmd(mtd, page & chip->pagemask);
2391
2392 status = chip->waitfunc(mtd, chip);
2393
2394 /*
2395 * See if operation failed and additional status checks are
2396 * available
2397 */
2398 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2399 status = chip->errstat(mtd, chip, FL_ERASING,
2400 status, page);
2401
2402 /* See if block erase succeeded */
2403 if (status & NAND_STATUS_FAIL) {
2404 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_erase: "
2405 "Failed erase, page 0x%08x\n", page);
2406 instr->state = MTD_ERASE_FAILED;
2407 instr->fail_addr = ((loff_t)page << chip->page_shift);
2408 goto erase_exit;
2409 }
2410
2411 /*
2412 * If BBT requires refresh, set the BBT rewrite flag to the
2413 * page being erased
2414 */
2415 if (bbt_masked_page != 0xffffffff &&
2416 (page & BBT_PAGE_MASK) == bbt_masked_page)
2417 rewrite_bbt[chipnr] =
2418 ((loff_t)page << chip->page_shift);
2419
2420 /* Increment page address and decrement length */
2421 len -= (1 << chip->phys_erase_shift);
2422 page += pages_per_block;
2423
2424 /* Check, if we cross a chip boundary */
2425 if (len && !(page & chip->pagemask)) {
2426 chipnr++;
2427 chip->select_chip(mtd, -1);
2428 chip->select_chip(mtd, chipnr);
2429
2430 /*
2431 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2432 * page mask to see if this BBT should be rewritten
2433 */
2434 if (bbt_masked_page != 0xffffffff &&
2435 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2436 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2437 BBT_PAGE_MASK;
2438 }
2439 }
2440 instr->state = MTD_ERASE_DONE;
2441
2442 erase_exit:
2443
2444 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2445
2446 /* Deselect and wake up anyone waiting on the device */
2447 nand_release_device(mtd);
2448
2449 /* Do call back function */
2450 if (!ret)
2451 mtd_erase_callback(instr);
2452
2453 /*
2454 * If BBT requires refresh and erase was successful, rewrite any
2455 * selected bad block tables
2456 */
2457 if (bbt_masked_page == 0xffffffff || ret)
2458 return ret;
2459
2460 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2461 if (!rewrite_bbt[chipnr])
2462 continue;
2463 /* update the BBT for chip */
2464 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt "
2465 "(%d:0x%0llx 0x%0x)\n", chipnr, rewrite_bbt[chipnr],
2466 chip->bbt_td->pages[chipnr]);
2467 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2468 }
2469
2470 /* Return more or less happy */
2471 return ret;
2472 }
2473
2474 /**
2475 * nand_sync - [MTD Interface] sync
2476 * @mtd: MTD device structure
2477 *
2478 * Sync is actually a wait for chip ready function
2479 */
2480 static void nand_sync(struct mtd_info *mtd)
2481 {
2482 struct nand_chip *chip = mtd->priv;
2483
2484 MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n");
2485
2486 /* Grab the lock and see if the device is available */
2487 nand_get_device(chip, mtd, FL_SYNCING);
2488 /* Release it and go back */
2489 nand_release_device(mtd);
2490 }
2491
2492 /**
2493 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2494 * @mtd: MTD device structure
2495 * @offs: offset relative to mtd start
2496 */
2497 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2498 {
2499 /* Check for invalid offset */
2500 if (offs > mtd->size)
2501 return -EINVAL;
2502
2503 return nand_block_checkbad(mtd, offs, 1, 0);
2504 }
2505
2506 /**
2507 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2508 * @mtd: MTD device structure
2509 * @ofs: offset relative to mtd start
2510 */
2511 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2512 {
2513 struct nand_chip *chip = mtd->priv;
2514 int ret;
2515
2516 if ((ret = nand_block_isbad(mtd, ofs))) {
2517 /* If it was bad already, return success and do nothing. */
2518 if (ret > 0)
2519 return 0;
2520 return ret;
2521 }
2522
2523 return chip->block_markbad(mtd, ofs);
2524 }
2525
2526 /**
2527 * nand_suspend - [MTD Interface] Suspend the NAND flash
2528 * @mtd: MTD device structure
2529 */
2530 static int nand_suspend(struct mtd_info *mtd)
2531 {
2532 struct nand_chip *chip = mtd->priv;
2533
2534 return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2535 }
2536
2537 /**
2538 * nand_resume - [MTD Interface] Resume the NAND flash
2539 * @mtd: MTD device structure
2540 */
2541 static void nand_resume(struct mtd_info *mtd)
2542 {
2543 struct nand_chip *chip = mtd->priv;
2544
2545 if (chip->state == FL_PM_SUSPENDED)
2546 nand_release_device(mtd);
2547 else
2548 printk(KERN_ERR "nand_resume() called for a chip which is not "
2549 "in suspended state\n");
2550 }
2551
2552 /*
2553 * Set default functions
2554 */
2555 static void nand_set_defaults(struct nand_chip *chip, int busw)
2556 {
2557 /* check for proper chip_delay setup, set 20us if not */
2558 if (!chip->chip_delay)
2559 chip->chip_delay = 20;
2560
2561 /* check, if a user supplied command function given */
2562 if (chip->cmdfunc == NULL)
2563 chip->cmdfunc = nand_command;
2564
2565 /* check, if a user supplied wait function given */
2566 if (chip->waitfunc == NULL)
2567 chip->waitfunc = nand_wait;
2568
2569 if (!chip->select_chip)
2570 chip->select_chip = nand_select_chip;
2571 if (!chip->read_byte)
2572 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2573 if (!chip->read_word)
2574 chip->read_word = nand_read_word;
2575 if (!chip->block_bad)
2576 chip->block_bad = nand_block_bad;
2577 if (!chip->block_markbad)
2578 chip->block_markbad = nand_default_block_markbad;
2579 if (!chip->write_buf)
2580 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2581 if (!chip->read_buf)
2582 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2583 if (!chip->verify_buf)
2584 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2585 if (!chip->scan_bbt)
2586 chip->scan_bbt = nand_default_bbt;
2587
2588 if (!chip->controller) {
2589 chip->controller = &chip->hwcontrol;
2590
2591 /* XXX U-BOOT XXX */
2592 #if 0
2593 spin_lock_init(&chip->controller->lock);
2594 init_waitqueue_head(&chip->controller->wq);
2595 #endif
2596 }
2597
2598 }
2599
2600 /*
2601 * Get the flash and manufacturer id and lookup if the type is supported
2602 */
2603 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2604 struct nand_chip *chip,
2605 int busw, int *maf_id)
2606 {
2607 struct nand_flash_dev *type = NULL;
2608 int i, dev_id, maf_idx;
2609 int tmp_id, tmp_manf;
2610
2611 /* Select the device */
2612 chip->select_chip(mtd, 0);
2613
2614 /*
2615 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2616 * after power-up
2617 */
2618 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2619
2620 /* Send the command for reading device ID */
2621 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2622
2623 /* Read manufacturer and device IDs */
2624 *maf_id = chip->read_byte(mtd);
2625 dev_id = chip->read_byte(mtd);
2626
2627 /* Try again to make sure, as some systems the bus-hold or other
2628 * interface concerns can cause random data which looks like a
2629 * possibly credible NAND flash to appear. If the two results do
2630 * not match, ignore the device completely.
2631 */
2632
2633 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2634
2635 /* Read manufacturer and device IDs */
2636
2637 tmp_manf = chip->read_byte(mtd);
2638 tmp_id = chip->read_byte(mtd);
2639
2640 if (tmp_manf != *maf_id || tmp_id != dev_id) {
2641 printk(KERN_INFO "%s: second ID read did not match "
2642 "%02x,%02x against %02x,%02x\n", __func__,
2643 *maf_id, dev_id, tmp_manf, tmp_id);
2644 return ERR_PTR(-ENODEV);
2645 }
2646
2647 /* Lookup the flash id */
2648 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2649 if (dev_id == nand_flash_ids[i].id) {
2650 type = &nand_flash_ids[i];
2651 break;
2652 }
2653 }
2654
2655 if (!type) {
2656 printk(KERN_INFO "%s: unknown NAND device: Manufacturer ID:"
2657 " 0x%02x, Chip ID: 0x%02x\n", __func__,
2658 *maf_id, dev_id);
2659 return ERR_PTR(-ENODEV);
2660 }
2661
2662 if (!mtd->name)
2663 mtd->name = type->name;
2664
2665 chip->chipsize = (uint64_t)type->chipsize << 20;
2666
2667 /* Newer devices have all the information in additional id bytes */
2668 if (!type->pagesize) {
2669 int extid;
2670 /* The 3rd id byte holds MLC / multichip data */
2671 chip->cellinfo = chip->read_byte(mtd);
2672 /* The 4th id byte is the important one */
2673 extid = chip->read_byte(mtd);
2674 /* Calc pagesize */
2675 mtd->writesize = 1024 << (extid & 0x3);
2676 extid >>= 2;
2677 /* Calc oobsize */
2678 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
2679 extid >>= 2;
2680 /* Calc blocksize. Blocksize is multiples of 64KiB */
2681 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2682 extid >>= 2;
2683 /* Get buswidth information */
2684 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2685
2686 } else {
2687 /*
2688 * Old devices have chip data hardcoded in the device id table
2689 */
2690 mtd->erasesize = type->erasesize;
2691 mtd->writesize = type->pagesize;
2692 mtd->oobsize = mtd->writesize / 32;
2693 busw = type->options & NAND_BUSWIDTH_16;
2694 }
2695
2696 /* Try to identify manufacturer */
2697 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
2698 if (nand_manuf_ids[maf_idx].id == *maf_id)
2699 break;
2700 }
2701
2702 /*
2703 * Check, if buswidth is correct. Hardware drivers should set
2704 * chip correct !
2705 */
2706 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2707 printk(KERN_INFO "NAND device: Manufacturer ID:"
2708 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2709 dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2710 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2711 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2712 busw ? 16 : 8);
2713 return ERR_PTR(-EINVAL);
2714 }
2715
2716 /* Calculate the address shift from the page size */
2717 chip->page_shift = ffs(mtd->writesize) - 1;
2718 /* Convert chipsize to number of pages per chip -1. */
2719 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2720
2721 chip->bbt_erase_shift = chip->phys_erase_shift =
2722 ffs(mtd->erasesize) - 1;
2723 if (chip->chipsize & 0xffffffff)
2724 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
2725 else
2726 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)) + 31;
2727
2728 /* Set the bad block position */
2729 chip->badblockpos = mtd->writesize > 512 ?
2730 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2731
2732 /* Get chip options, preserve non chip based options */
2733 chip->options &= ~NAND_CHIPOPTIONS_MSK;
2734 chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2735
2736 /*
2737 * Set chip as a default. Board drivers can override it, if necessary
2738 */
2739 chip->options |= NAND_NO_AUTOINCR;
2740
2741 /* Check if chip is a not a samsung device. Do not clear the
2742 * options for chips which are not having an extended id.
2743 */
2744 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2745 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2746
2747 /* Check for AND chips with 4 page planes */
2748 if (chip->options & NAND_4PAGE_ARRAY)
2749 chip->erase_cmd = multi_erase_cmd;
2750 else
2751 chip->erase_cmd = single_erase_cmd;
2752
2753 /* Do not replace user supplied command function ! */
2754 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2755 chip->cmdfunc = nand_command_lp;
2756
2757 MTDDEBUG (MTD_DEBUG_LEVEL0, "NAND device: Manufacturer ID:"
2758 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2759 nand_manuf_ids[maf_idx].name, type->name);
2760
2761 return type;
2762 }
2763
2764 /**
2765 * nand_scan_ident - [NAND Interface] Scan for the NAND device
2766 * @mtd: MTD device structure
2767 * @maxchips: Number of chips to scan for
2768 *
2769 * This is the first phase of the normal nand_scan() function. It
2770 * reads the flash ID and sets up MTD fields accordingly.
2771 *
2772 * The mtd->owner field must be set to the module of the caller.
2773 */
2774 int nand_scan_ident(struct mtd_info *mtd, int maxchips)
2775 {
2776 int i, busw, nand_maf_id;
2777 struct nand_chip *chip = mtd->priv;
2778 struct nand_flash_dev *type;
2779
2780 /* Get buswidth to select the correct functions */
2781 busw = chip->options & NAND_BUSWIDTH_16;
2782 /* Set the default functions */
2783 nand_set_defaults(chip, busw);
2784
2785 /* Read the flash type */
2786 type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id);
2787
2788 if (IS_ERR(type)) {
2789 #ifndef CONFIG_SYS_NAND_QUIET_TEST
2790 printk(KERN_WARNING "No NAND device found!!!\n");
2791 #endif
2792 chip->select_chip(mtd, -1);
2793 return PTR_ERR(type);
2794 }
2795
2796 /* Check for a chip array */
2797 for (i = 1; i < maxchips; i++) {
2798 chip->select_chip(mtd, i);
2799 /* See comment in nand_get_flash_type for reset */
2800 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2801 /* Send the command for reading device ID */
2802 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2803 /* Read manufacturer and device IDs */
2804 if (nand_maf_id != chip->read_byte(mtd) ||
2805 type->id != chip->read_byte(mtd))
2806 break;
2807 }
2808 #ifdef DEBUG
2809 if (i > 1)
2810 printk(KERN_INFO "%d NAND chips detected\n", i);
2811 #endif
2812
2813 /* Store the number of chips and calc total size for mtd */
2814 chip->numchips = i;
2815 mtd->size = i * chip->chipsize;
2816
2817 return 0;
2818 }
2819
2820
2821 /**
2822 * nand_scan_tail - [NAND Interface] Scan for the NAND device
2823 * @mtd: MTD device structure
2824 *
2825 * This is the second phase of the normal nand_scan() function. It
2826 * fills out all the uninitialized function pointers with the defaults
2827 * and scans for a bad block table if appropriate.
2828 */
2829 int nand_scan_tail(struct mtd_info *mtd)
2830 {
2831 int i;
2832 struct nand_chip *chip = mtd->priv;
2833
2834 if (!(chip->options & NAND_OWN_BUFFERS))
2835 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
2836 if (!chip->buffers)
2837 return -ENOMEM;
2838
2839 /* Set the internal oob buffer location, just after the page data */
2840 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
2841
2842 /*
2843 * If no default placement scheme is given, select an appropriate one
2844 */
2845 if (!chip->ecc.layout) {
2846 switch (mtd->oobsize) {
2847 case 8:
2848 chip->ecc.layout = &nand_oob_8;
2849 break;
2850 case 16:
2851 chip->ecc.layout = &nand_oob_16;
2852 break;
2853 case 64:
2854 chip->ecc.layout = &nand_oob_64;
2855 break;
2856 case 128:
2857 chip->ecc.layout = &nand_oob_128;
2858 break;
2859 default:
2860 printk(KERN_WARNING "No oob scheme defined for "
2861 "oobsize %d\n", mtd->oobsize);
2862 }
2863 }
2864
2865 if (!chip->write_page)
2866 chip->write_page = nand_write_page;
2867
2868 /*
2869 * check ECC mode, default to software if 3byte/512byte hardware ECC is
2870 * selected and we have 256 byte pagesize fallback to software ECC
2871 */
2872
2873 switch (chip->ecc.mode) {
2874 case NAND_ECC_HW_OOB_FIRST:
2875 /* Similar to NAND_ECC_HW, but a separate read_page handle */
2876 if (!chip->ecc.calculate || !chip->ecc.correct ||
2877 !chip->ecc.hwctl) {
2878 printk(KERN_WARNING "No ECC functions supplied, "
2879 "Hardware ECC not possible\n");
2880 BUG();
2881 }
2882 if (!chip->ecc.read_page)
2883 chip->ecc.read_page = nand_read_page_hwecc_oob_first;
2884
2885 case NAND_ECC_HW:
2886 /* Use standard hwecc read page function ? */
2887 if (!chip->ecc.read_page)
2888 chip->ecc.read_page = nand_read_page_hwecc;
2889 if (!chip->ecc.write_page)
2890 chip->ecc.write_page = nand_write_page_hwecc;
2891 if (!chip->ecc.read_page_raw)
2892 chip->ecc.read_page_raw = nand_read_page_raw;
2893 if (!chip->ecc.write_page_raw)
2894 chip->ecc.write_page_raw = nand_write_page_raw;
2895 if (!chip->ecc.read_oob)
2896 chip->ecc.read_oob = nand_read_oob_std;
2897 if (!chip->ecc.write_oob)
2898 chip->ecc.write_oob = nand_write_oob_std;
2899
2900 case NAND_ECC_HW_SYNDROME:
2901 if ((!chip->ecc.calculate || !chip->ecc.correct ||
2902 !chip->ecc.hwctl) &&
2903 (!chip->ecc.read_page ||
2904 chip->ecc.read_page == nand_read_page_hwecc ||
2905 !chip->ecc.write_page ||
2906 chip->ecc.write_page == nand_write_page_hwecc)) {
2907 printk(KERN_WARNING "No ECC functions supplied, "
2908 "Hardware ECC not possible\n");
2909 BUG();
2910 }
2911 /* Use standard syndrome read/write page function ? */
2912 if (!chip->ecc.read_page)
2913 chip->ecc.read_page = nand_read_page_syndrome;
2914 if (!chip->ecc.write_page)
2915 chip->ecc.write_page = nand_write_page_syndrome;
2916 if (!chip->ecc.read_page_raw)
2917 chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
2918 if (!chip->ecc.write_page_raw)
2919 chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
2920 if (!chip->ecc.read_oob)
2921 chip->ecc.read_oob = nand_read_oob_syndrome;
2922 if (!chip->ecc.write_oob)
2923 chip->ecc.write_oob = nand_write_oob_syndrome;
2924
2925 if (mtd->writesize >= chip->ecc.size)
2926 break;
2927 printk(KERN_WARNING "%d byte HW ECC not possible on "
2928 "%d byte page size, fallback to SW ECC\n",
2929 chip->ecc.size, mtd->writesize);
2930 chip->ecc.mode = NAND_ECC_SOFT;
2931
2932 case NAND_ECC_SOFT:
2933 chip->ecc.calculate = nand_calculate_ecc;
2934 chip->ecc.correct = nand_correct_data;
2935 chip->ecc.read_page = nand_read_page_swecc;
2936 chip->ecc.read_subpage = nand_read_subpage;
2937 chip->ecc.write_page = nand_write_page_swecc;
2938 chip->ecc.read_page_raw = nand_read_page_raw;
2939 chip->ecc.write_page_raw = nand_write_page_raw;
2940 chip->ecc.read_oob = nand_read_oob_std;
2941 chip->ecc.write_oob = nand_write_oob_std;
2942 chip->ecc.size = 256;
2943 chip->ecc.bytes = 3;
2944 break;
2945
2946 case NAND_ECC_NONE:
2947 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
2948 "This is not recommended !!\n");
2949 chip->ecc.read_page = nand_read_page_raw;
2950 chip->ecc.write_page = nand_write_page_raw;
2951 chip->ecc.read_oob = nand_read_oob_std;
2952 chip->ecc.read_page_raw = nand_read_page_raw;
2953 chip->ecc.write_page_raw = nand_write_page_raw;
2954 chip->ecc.write_oob = nand_write_oob_std;
2955 chip->ecc.size = mtd->writesize;
2956 chip->ecc.bytes = 0;
2957 break;
2958
2959 default:
2960 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
2961 chip->ecc.mode);
2962 BUG();
2963 }
2964
2965 /*
2966 * The number of bytes available for a client to place data into
2967 * the out of band area
2968 */
2969 chip->ecc.layout->oobavail = 0;
2970 for (i = 0; chip->ecc.layout->oobfree[i].length
2971 && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
2972 chip->ecc.layout->oobavail +=
2973 chip->ecc.layout->oobfree[i].length;
2974 mtd->oobavail = chip->ecc.layout->oobavail;
2975
2976 /*
2977 * Set the number of read / write steps for one page depending on ECC
2978 * mode
2979 */
2980 chip->ecc.steps = mtd->writesize / chip->ecc.size;
2981 if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
2982 printk(KERN_WARNING "Invalid ecc parameters\n");
2983 BUG();
2984 }
2985 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
2986
2987 /*
2988 * Allow subpage writes up to ecc.steps. Not possible for MLC
2989 * FLASH.
2990 */
2991 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2992 !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
2993 switch(chip->ecc.steps) {
2994 case 2:
2995 mtd->subpage_sft = 1;
2996 break;
2997 case 4:
2998 case 8:
2999 case 16:
3000 mtd->subpage_sft = 2;
3001 break;
3002 }
3003 }
3004 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3005
3006 /* Initialize state */
3007 chip->state = FL_READY;
3008
3009 /* De-select the device */
3010 chip->select_chip(mtd, -1);
3011
3012 /* Invalidate the pagebuffer reference */
3013 chip->pagebuf = -1;
3014
3015 /* Fill in remaining MTD driver data */
3016 mtd->type = MTD_NANDFLASH;
3017 mtd->flags = MTD_CAP_NANDFLASH;
3018 mtd->erase = nand_erase;
3019 mtd->point = NULL;
3020 mtd->unpoint = NULL;
3021 mtd->read = nand_read;
3022 mtd->write = nand_write;
3023 mtd->read_oob = nand_read_oob;
3024 mtd->write_oob = nand_write_oob;
3025 mtd->sync = nand_sync;
3026 mtd->lock = NULL;
3027 mtd->unlock = NULL;
3028 mtd->suspend = nand_suspend;
3029 mtd->resume = nand_resume;
3030 mtd->block_isbad = nand_block_isbad;
3031 mtd->block_markbad = nand_block_markbad;
3032
3033 /* propagate ecc.layout to mtd_info */
3034 mtd->ecclayout = chip->ecc.layout;
3035
3036 /* Check, if we should skip the bad block table scan */
3037 if (chip->options & NAND_SKIP_BBTSCAN)
3038 chip->options |= NAND_BBT_SCANNED;
3039
3040 return 0;
3041 }
3042
3043 /* module_text_address() isn't exported, and it's mostly a pointless
3044 test if this is a module _anyway_ -- they'd have to try _really_ hard
3045 to call us from in-kernel code if the core NAND support is modular. */
3046 #ifdef MODULE
3047 #define caller_is_module() (1)
3048 #else
3049 #define caller_is_module() \
3050 module_text_address((unsigned long)__builtin_return_address(0))
3051 #endif
3052
3053 /**
3054 * nand_scan - [NAND Interface] Scan for the NAND device
3055 * @mtd: MTD device structure
3056 * @maxchips: Number of chips to scan for
3057 *
3058 * This fills out all the uninitialized function pointers
3059 * with the defaults.
3060 * The flash ID is read and the mtd/chip structures are
3061 * filled with the appropriate values.
3062 * The mtd->owner field must be set to the module of the caller
3063 *
3064 */
3065 int nand_scan(struct mtd_info *mtd, int maxchips)
3066 {
3067 int ret;
3068
3069 /* Many callers got this wrong, so check for it for a while... */
3070 /* XXX U-BOOT XXX */
3071 #if 0
3072 if (!mtd->owner && caller_is_module()) {
3073 printk(KERN_CRIT "nand_scan() called with NULL mtd->owner!\n");
3074 BUG();
3075 }
3076 #endif
3077
3078 ret = nand_scan_ident(mtd, maxchips);
3079 if (!ret)
3080 ret = nand_scan_tail(mtd);
3081 return ret;
3082 }
3083
3084 /**
3085 * nand_release - [NAND Interface] Free resources held by the NAND device
3086 * @mtd: MTD device structure
3087 */
3088 void nand_release(struct mtd_info *mtd)
3089 {
3090 struct nand_chip *chip = mtd->priv;
3091
3092 #ifdef CONFIG_MTD_PARTITIONS
3093 /* Deregister partitions */
3094 del_mtd_partitions(mtd);
3095 #endif
3096 /* Deregister the device */
3097 /* XXX U-BOOT XXX */
3098 #if 0
3099 del_mtd_device(mtd);
3100 #endif
3101
3102 /* Free bad block table memory */
3103 kfree(chip->bbt);
3104 if (!(chip->options & NAND_OWN_BUFFERS))
3105 kfree(chip->buffers);
3106 }
3107
3108 /* XXX U-BOOT XXX */
3109 #if 0
3110 EXPORT_SYMBOL_GPL(nand_scan);
3111 EXPORT_SYMBOL_GPL(nand_scan_ident);
3112 EXPORT_SYMBOL_GPL(nand_scan_tail);
3113 EXPORT_SYMBOL_GPL(nand_release);
3114
3115 static int __init nand_base_init(void)
3116 {
3117 led_trigger_register_simple("nand-disk", &nand_led_trigger);
3118 return 0;
3119 }
3120
3121 static void __exit nand_base_exit(void)
3122 {
3123 led_trigger_unregister_simple(nand_led_trigger);
3124 }
3125
3126 module_init(nand_base_init);
3127 module_exit(nand_base_exit);
3128
3129 MODULE_LICENSE("GPL");
3130 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
3131 MODULE_DESCRIPTION("Generic NAND flash driver code");
3132 #endif