]> git.ipfire.org Git - people/ms/u-boot.git/blob - net/net.c
arcv2: Set IOC aperture so it covers available DDR
[people/ms/u-boot.git] / net / net.c
1 /*
2 * Copied from Linux Monitor (LiMon) - Networking.
3 *
4 * Copyright 1994 - 2000 Neil Russell.
5 * (See License)
6 * Copyright 2000 Roland Borde
7 * Copyright 2000 Paolo Scaffardi
8 * Copyright 2000-2002 Wolfgang Denk, wd@denx.de
9 * SPDX-License-Identifier: GPL-2.0
10 */
11
12 /*
13 * General Desription:
14 *
15 * The user interface supports commands for BOOTP, RARP, and TFTP.
16 * Also, we support ARP internally. Depending on available data,
17 * these interact as follows:
18 *
19 * BOOTP:
20 *
21 * Prerequisites: - own ethernet address
22 * We want: - own IP address
23 * - TFTP server IP address
24 * - name of bootfile
25 * Next step: ARP
26 *
27 * LINK_LOCAL:
28 *
29 * Prerequisites: - own ethernet address
30 * We want: - own IP address
31 * Next step: ARP
32 *
33 * RARP:
34 *
35 * Prerequisites: - own ethernet address
36 * We want: - own IP address
37 * - TFTP server IP address
38 * Next step: ARP
39 *
40 * ARP:
41 *
42 * Prerequisites: - own ethernet address
43 * - own IP address
44 * - TFTP server IP address
45 * We want: - TFTP server ethernet address
46 * Next step: TFTP
47 *
48 * DHCP:
49 *
50 * Prerequisites: - own ethernet address
51 * We want: - IP, Netmask, ServerIP, Gateway IP
52 * - bootfilename, lease time
53 * Next step: - TFTP
54 *
55 * TFTP:
56 *
57 * Prerequisites: - own ethernet address
58 * - own IP address
59 * - TFTP server IP address
60 * - TFTP server ethernet address
61 * - name of bootfile (if unknown, we use a default name
62 * derived from our own IP address)
63 * We want: - load the boot file
64 * Next step: none
65 *
66 * NFS:
67 *
68 * Prerequisites: - own ethernet address
69 * - own IP address
70 * - name of bootfile (if unknown, we use a default name
71 * derived from our own IP address)
72 * We want: - load the boot file
73 * Next step: none
74 *
75 * SNTP:
76 *
77 * Prerequisites: - own ethernet address
78 * - own IP address
79 * We want: - network time
80 * Next step: none
81 */
82
83
84 #include <common.h>
85 #include <command.h>
86 #include <console.h>
87 #include <environment.h>
88 #include <errno.h>
89 #include <net.h>
90 #include <net/tftp.h>
91 #if defined(CONFIG_LED_STATUS)
92 #include <miiphy.h>
93 #include <status_led.h>
94 #endif
95 #include <watchdog.h>
96 #include <linux/compiler.h>
97 #include "arp.h"
98 #include "bootp.h"
99 #include "cdp.h"
100 #if defined(CONFIG_CMD_DNS)
101 #include "dns.h"
102 #endif
103 #include "link_local.h"
104 #include "nfs.h"
105 #include "ping.h"
106 #include "rarp.h"
107 #if defined(CONFIG_CMD_SNTP)
108 #include "sntp.h"
109 #endif
110
111 DECLARE_GLOBAL_DATA_PTR;
112
113 /** BOOTP EXTENTIONS **/
114
115 /* Our subnet mask (0=unknown) */
116 struct in_addr net_netmask;
117 /* Our gateways IP address */
118 struct in_addr net_gateway;
119 /* Our DNS IP address */
120 struct in_addr net_dns_server;
121 #if defined(CONFIG_BOOTP_DNS2)
122 /* Our 2nd DNS IP address */
123 struct in_addr net_dns_server2;
124 #endif
125
126 #ifdef CONFIG_MCAST_TFTP /* Multicast TFTP */
127 struct in_addr net_mcast_addr;
128 #endif
129
130 /** END OF BOOTP EXTENTIONS **/
131
132 /* Our ethernet address */
133 u8 net_ethaddr[6];
134 /* Boot server enet address */
135 u8 net_server_ethaddr[6];
136 /* Our IP addr (0 = unknown) */
137 struct in_addr net_ip;
138 /* Server IP addr (0 = unknown) */
139 struct in_addr net_server_ip;
140 /* Current receive packet */
141 uchar *net_rx_packet;
142 /* Current rx packet length */
143 int net_rx_packet_len;
144 /* IP packet ID */
145 static unsigned net_ip_id;
146 /* Ethernet bcast address */
147 const u8 net_bcast_ethaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
148 const u8 net_null_ethaddr[6];
149 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER)
150 void (*push_packet)(void *, int len) = 0;
151 #endif
152 /* Network loop state */
153 enum net_loop_state net_state;
154 /* Tried all network devices */
155 int net_restart_wrap;
156 /* Network loop restarted */
157 static int net_restarted;
158 /* At least one device configured */
159 static int net_dev_exists;
160
161 /* XXX in both little & big endian machines 0xFFFF == ntohs(-1) */
162 /* default is without VLAN */
163 ushort net_our_vlan = 0xFFFF;
164 /* ditto */
165 ushort net_native_vlan = 0xFFFF;
166
167 /* Boot File name */
168 char net_boot_file_name[1024];
169 /* The actual transferred size of the bootfile (in bytes) */
170 u32 net_boot_file_size;
171 /* Boot file size in blocks as reported by the DHCP server */
172 u32 net_boot_file_expected_size_in_blocks;
173
174 #if defined(CONFIG_CMD_SNTP)
175 /* NTP server IP address */
176 struct in_addr net_ntp_server;
177 /* offset time from UTC */
178 int net_ntp_time_offset;
179 #endif
180
181 static uchar net_pkt_buf[(PKTBUFSRX+1) * PKTSIZE_ALIGN + PKTALIGN];
182 /* Receive packets */
183 uchar *net_rx_packets[PKTBUFSRX];
184 /* Current UDP RX packet handler */
185 static rxhand_f *udp_packet_handler;
186 /* Current ARP RX packet handler */
187 static rxhand_f *arp_packet_handler;
188 #ifdef CONFIG_CMD_TFTPPUT
189 /* Current ICMP rx handler */
190 static rxhand_icmp_f *packet_icmp_handler;
191 #endif
192 /* Current timeout handler */
193 static thand_f *time_handler;
194 /* Time base value */
195 static ulong time_start;
196 /* Current timeout value */
197 static ulong time_delta;
198 /* THE transmit packet */
199 uchar *net_tx_packet;
200
201 static int net_check_prereq(enum proto_t protocol);
202
203 static int net_try_count;
204
205 int __maybe_unused net_busy_flag;
206
207 /**********************************************************************/
208
209 static int on_bootfile(const char *name, const char *value, enum env_op op,
210 int flags)
211 {
212 if (flags & H_PROGRAMMATIC)
213 return 0;
214
215 switch (op) {
216 case env_op_create:
217 case env_op_overwrite:
218 copy_filename(net_boot_file_name, value,
219 sizeof(net_boot_file_name));
220 break;
221 default:
222 break;
223 }
224
225 return 0;
226 }
227 U_BOOT_ENV_CALLBACK(bootfile, on_bootfile);
228
229 static int on_ipaddr(const char *name, const char *value, enum env_op op,
230 int flags)
231 {
232 if (flags & H_PROGRAMMATIC)
233 return 0;
234
235 net_ip = string_to_ip(value);
236
237 return 0;
238 }
239 U_BOOT_ENV_CALLBACK(ipaddr, on_ipaddr);
240
241 static int on_gatewayip(const char *name, const char *value, enum env_op op,
242 int flags)
243 {
244 if (flags & H_PROGRAMMATIC)
245 return 0;
246
247 net_gateway = string_to_ip(value);
248
249 return 0;
250 }
251 U_BOOT_ENV_CALLBACK(gatewayip, on_gatewayip);
252
253 static int on_netmask(const char *name, const char *value, enum env_op op,
254 int flags)
255 {
256 if (flags & H_PROGRAMMATIC)
257 return 0;
258
259 net_netmask = string_to_ip(value);
260
261 return 0;
262 }
263 U_BOOT_ENV_CALLBACK(netmask, on_netmask);
264
265 static int on_serverip(const char *name, const char *value, enum env_op op,
266 int flags)
267 {
268 if (flags & H_PROGRAMMATIC)
269 return 0;
270
271 net_server_ip = string_to_ip(value);
272
273 return 0;
274 }
275 U_BOOT_ENV_CALLBACK(serverip, on_serverip);
276
277 static int on_nvlan(const char *name, const char *value, enum env_op op,
278 int flags)
279 {
280 if (flags & H_PROGRAMMATIC)
281 return 0;
282
283 net_native_vlan = string_to_vlan(value);
284
285 return 0;
286 }
287 U_BOOT_ENV_CALLBACK(nvlan, on_nvlan);
288
289 static int on_vlan(const char *name, const char *value, enum env_op op,
290 int flags)
291 {
292 if (flags & H_PROGRAMMATIC)
293 return 0;
294
295 net_our_vlan = string_to_vlan(value);
296
297 return 0;
298 }
299 U_BOOT_ENV_CALLBACK(vlan, on_vlan);
300
301 #if defined(CONFIG_CMD_DNS)
302 static int on_dnsip(const char *name, const char *value, enum env_op op,
303 int flags)
304 {
305 if (flags & H_PROGRAMMATIC)
306 return 0;
307
308 net_dns_server = string_to_ip(value);
309
310 return 0;
311 }
312 U_BOOT_ENV_CALLBACK(dnsip, on_dnsip);
313 #endif
314
315 /*
316 * Check if autoload is enabled. If so, use either NFS or TFTP to download
317 * the boot file.
318 */
319 void net_auto_load(void)
320 {
321 #if defined(CONFIG_CMD_NFS)
322 const char *s = getenv("autoload");
323
324 if (s != NULL && strcmp(s, "NFS") == 0) {
325 /*
326 * Use NFS to load the bootfile.
327 */
328 nfs_start();
329 return;
330 }
331 #endif
332 if (getenv_yesno("autoload") == 0) {
333 /*
334 * Just use BOOTP/RARP to configure system;
335 * Do not use TFTP to load the bootfile.
336 */
337 net_set_state(NETLOOP_SUCCESS);
338 return;
339 }
340 tftp_start(TFTPGET);
341 }
342
343 static void net_init_loop(void)
344 {
345 if (eth_get_dev())
346 memcpy(net_ethaddr, eth_get_ethaddr(), 6);
347
348 return;
349 }
350
351 static void net_clear_handlers(void)
352 {
353 net_set_udp_handler(NULL);
354 net_set_arp_handler(NULL);
355 net_set_timeout_handler(0, NULL);
356 }
357
358 static void net_cleanup_loop(void)
359 {
360 net_clear_handlers();
361 }
362
363 void net_init(void)
364 {
365 static int first_call = 1;
366
367 if (first_call) {
368 /*
369 * Setup packet buffers, aligned correctly.
370 */
371 int i;
372
373 net_tx_packet = &net_pkt_buf[0] + (PKTALIGN - 1);
374 net_tx_packet -= (ulong)net_tx_packet % PKTALIGN;
375 for (i = 0; i < PKTBUFSRX; i++) {
376 net_rx_packets[i] = net_tx_packet +
377 (i + 1) * PKTSIZE_ALIGN;
378 }
379 arp_init();
380 net_clear_handlers();
381
382 /* Only need to setup buffer pointers once. */
383 first_call = 0;
384 }
385
386 net_init_loop();
387 }
388
389 /**********************************************************************/
390 /*
391 * Main network processing loop.
392 */
393
394 int net_loop(enum proto_t protocol)
395 {
396 int ret = -EINVAL;
397
398 net_restarted = 0;
399 net_dev_exists = 0;
400 net_try_count = 1;
401 debug_cond(DEBUG_INT_STATE, "--- net_loop Entry\n");
402
403 bootstage_mark_name(BOOTSTAGE_ID_ETH_START, "eth_start");
404 net_init();
405 if (eth_is_on_demand_init() || protocol != NETCONS) {
406 eth_halt();
407 eth_set_current();
408 ret = eth_init();
409 if (ret < 0) {
410 eth_halt();
411 return ret;
412 }
413 } else {
414 eth_init_state_only();
415 }
416 restart:
417 #ifdef CONFIG_USB_KEYBOARD
418 net_busy_flag = 0;
419 #endif
420 net_set_state(NETLOOP_CONTINUE);
421
422 /*
423 * Start the ball rolling with the given start function. From
424 * here on, this code is a state machine driven by received
425 * packets and timer events.
426 */
427 debug_cond(DEBUG_INT_STATE, "--- net_loop Init\n");
428 net_init_loop();
429
430 switch (net_check_prereq(protocol)) {
431 case 1:
432 /* network not configured */
433 eth_halt();
434 return -ENODEV;
435
436 case 2:
437 /* network device not configured */
438 break;
439
440 case 0:
441 net_dev_exists = 1;
442 net_boot_file_size = 0;
443 switch (protocol) {
444 case TFTPGET:
445 #ifdef CONFIG_CMD_TFTPPUT
446 case TFTPPUT:
447 #endif
448 /* always use ARP to get server ethernet address */
449 tftp_start(protocol);
450 break;
451 #ifdef CONFIG_CMD_TFTPSRV
452 case TFTPSRV:
453 tftp_start_server();
454 break;
455 #endif
456 #if defined(CONFIG_CMD_DHCP)
457 case DHCP:
458 bootp_reset();
459 net_ip.s_addr = 0;
460 dhcp_request(); /* Basically same as BOOTP */
461 break;
462 #endif
463
464 case BOOTP:
465 bootp_reset();
466 net_ip.s_addr = 0;
467 bootp_request();
468 break;
469
470 #if defined(CONFIG_CMD_RARP)
471 case RARP:
472 rarp_try = 0;
473 net_ip.s_addr = 0;
474 rarp_request();
475 break;
476 #endif
477 #if defined(CONFIG_CMD_PING)
478 case PING:
479 ping_start();
480 break;
481 #endif
482 #if defined(CONFIG_CMD_NFS)
483 case NFS:
484 nfs_start();
485 break;
486 #endif
487 #if defined(CONFIG_CMD_CDP)
488 case CDP:
489 cdp_start();
490 break;
491 #endif
492 #if defined(CONFIG_NETCONSOLE) && !(CONFIG_SPL_BUILD)
493 case NETCONS:
494 nc_start();
495 break;
496 #endif
497 #if defined(CONFIG_CMD_SNTP)
498 case SNTP:
499 sntp_start();
500 break;
501 #endif
502 #if defined(CONFIG_CMD_DNS)
503 case DNS:
504 dns_start();
505 break;
506 #endif
507 #if defined(CONFIG_CMD_LINK_LOCAL)
508 case LINKLOCAL:
509 link_local_start();
510 break;
511 #endif
512 default:
513 break;
514 }
515
516 break;
517 }
518
519 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
520 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \
521 defined(CONFIG_LED_STATUS) && \
522 defined(CONFIG_LED_STATUS_RED)
523 /*
524 * Echo the inverted link state to the fault LED.
525 */
526 if (miiphy_link(eth_get_dev()->name, CONFIG_SYS_FAULT_MII_ADDR))
527 status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_OFF);
528 else
529 status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_ON);
530 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
531 #endif /* CONFIG_MII, ... */
532 #ifdef CONFIG_USB_KEYBOARD
533 net_busy_flag = 1;
534 #endif
535
536 /*
537 * Main packet reception loop. Loop receiving packets until
538 * someone sets `net_state' to a state that terminates.
539 */
540 for (;;) {
541 WATCHDOG_RESET();
542 #ifdef CONFIG_SHOW_ACTIVITY
543 show_activity(1);
544 #endif
545 if (arp_timeout_check() > 0)
546 time_start = get_timer(0);
547
548 /*
549 * Check the ethernet for a new packet. The ethernet
550 * receive routine will process it.
551 * Most drivers return the most recent packet size, but not
552 * errors that may have happened.
553 */
554 eth_rx();
555
556 /*
557 * Abort if ctrl-c was pressed.
558 */
559 if (ctrlc()) {
560 /* cancel any ARP that may not have completed */
561 net_arp_wait_packet_ip.s_addr = 0;
562
563 net_cleanup_loop();
564 eth_halt();
565 /* Invalidate the last protocol */
566 eth_set_last_protocol(BOOTP);
567
568 puts("\nAbort\n");
569 /* include a debug print as well incase the debug
570 messages are directed to stderr */
571 debug_cond(DEBUG_INT_STATE, "--- net_loop Abort!\n");
572 ret = -EINTR;
573 goto done;
574 }
575
576 /*
577 * Check for a timeout, and run the timeout handler
578 * if we have one.
579 */
580 if (time_handler &&
581 ((get_timer(0) - time_start) > time_delta)) {
582 thand_f *x;
583
584 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
585 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \
586 defined(CONFIG_LED_STATUS) && \
587 defined(CONFIG_LED_STATUS_RED)
588 /*
589 * Echo the inverted link state to the fault LED.
590 */
591 if (miiphy_link(eth_get_dev()->name,
592 CONFIG_SYS_FAULT_MII_ADDR))
593 status_led_set(CONFIG_LED_STATUS_RED,
594 CONFIG_LED_STATUS_OFF);
595 else
596 status_led_set(CONFIG_LED_STATUS_RED,
597 CONFIG_LED_STATUS_ON);
598 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
599 #endif /* CONFIG_MII, ... */
600 debug_cond(DEBUG_INT_STATE, "--- net_loop timeout\n");
601 x = time_handler;
602 time_handler = (thand_f *)0;
603 (*x)();
604 }
605
606 if (net_state == NETLOOP_FAIL)
607 ret = net_start_again();
608
609 switch (net_state) {
610 case NETLOOP_RESTART:
611 net_restarted = 1;
612 goto restart;
613
614 case NETLOOP_SUCCESS:
615 net_cleanup_loop();
616 if (net_boot_file_size > 0) {
617 printf("Bytes transferred = %d (%x hex)\n",
618 net_boot_file_size, net_boot_file_size);
619 setenv_hex("filesize", net_boot_file_size);
620 setenv_hex("fileaddr", load_addr);
621 }
622 if (protocol != NETCONS)
623 eth_halt();
624 else
625 eth_halt_state_only();
626
627 eth_set_last_protocol(protocol);
628
629 ret = net_boot_file_size;
630 debug_cond(DEBUG_INT_STATE, "--- net_loop Success!\n");
631 goto done;
632
633 case NETLOOP_FAIL:
634 net_cleanup_loop();
635 /* Invalidate the last protocol */
636 eth_set_last_protocol(BOOTP);
637 debug_cond(DEBUG_INT_STATE, "--- net_loop Fail!\n");
638 goto done;
639
640 case NETLOOP_CONTINUE:
641 continue;
642 }
643 }
644
645 done:
646 #ifdef CONFIG_USB_KEYBOARD
647 net_busy_flag = 0;
648 #endif
649 #ifdef CONFIG_CMD_TFTPPUT
650 /* Clear out the handlers */
651 net_set_udp_handler(NULL);
652 net_set_icmp_handler(NULL);
653 #endif
654 return ret;
655 }
656
657 /**********************************************************************/
658
659 static void start_again_timeout_handler(void)
660 {
661 net_set_state(NETLOOP_RESTART);
662 }
663
664 int net_start_again(void)
665 {
666 char *nretry;
667 int retry_forever = 0;
668 unsigned long retrycnt = 0;
669 int ret;
670
671 nretry = getenv("netretry");
672 if (nretry) {
673 if (!strcmp(nretry, "yes"))
674 retry_forever = 1;
675 else if (!strcmp(nretry, "no"))
676 retrycnt = 0;
677 else if (!strcmp(nretry, "once"))
678 retrycnt = 1;
679 else
680 retrycnt = simple_strtoul(nretry, NULL, 0);
681 } else {
682 retrycnt = 0;
683 retry_forever = 0;
684 }
685
686 if ((!retry_forever) && (net_try_count >= retrycnt)) {
687 eth_halt();
688 net_set_state(NETLOOP_FAIL);
689 /*
690 * We don't provide a way for the protocol to return an error,
691 * but this is almost always the reason.
692 */
693 return -ETIMEDOUT;
694 }
695
696 net_try_count++;
697
698 eth_halt();
699 #if !defined(CONFIG_NET_DO_NOT_TRY_ANOTHER)
700 eth_try_another(!net_restarted);
701 #endif
702 ret = eth_init();
703 if (net_restart_wrap) {
704 net_restart_wrap = 0;
705 if (net_dev_exists) {
706 net_set_timeout_handler(10000UL,
707 start_again_timeout_handler);
708 net_set_udp_handler(NULL);
709 } else {
710 net_set_state(NETLOOP_FAIL);
711 }
712 } else {
713 net_set_state(NETLOOP_RESTART);
714 }
715 return ret;
716 }
717
718 /**********************************************************************/
719 /*
720 * Miscelaneous bits.
721 */
722
723 static void dummy_handler(uchar *pkt, unsigned dport,
724 struct in_addr sip, unsigned sport,
725 unsigned len)
726 {
727 }
728
729 rxhand_f *net_get_udp_handler(void)
730 {
731 return udp_packet_handler;
732 }
733
734 void net_set_udp_handler(rxhand_f *f)
735 {
736 debug_cond(DEBUG_INT_STATE, "--- net_loop UDP handler set (%p)\n", f);
737 if (f == NULL)
738 udp_packet_handler = dummy_handler;
739 else
740 udp_packet_handler = f;
741 }
742
743 rxhand_f *net_get_arp_handler(void)
744 {
745 return arp_packet_handler;
746 }
747
748 void net_set_arp_handler(rxhand_f *f)
749 {
750 debug_cond(DEBUG_INT_STATE, "--- net_loop ARP handler set (%p)\n", f);
751 if (f == NULL)
752 arp_packet_handler = dummy_handler;
753 else
754 arp_packet_handler = f;
755 }
756
757 #ifdef CONFIG_CMD_TFTPPUT
758 void net_set_icmp_handler(rxhand_icmp_f *f)
759 {
760 packet_icmp_handler = f;
761 }
762 #endif
763
764 void net_set_timeout_handler(ulong iv, thand_f *f)
765 {
766 if (iv == 0) {
767 debug_cond(DEBUG_INT_STATE,
768 "--- net_loop timeout handler cancelled\n");
769 time_handler = (thand_f *)0;
770 } else {
771 debug_cond(DEBUG_INT_STATE,
772 "--- net_loop timeout handler set (%p)\n", f);
773 time_handler = f;
774 time_start = get_timer(0);
775 time_delta = iv * CONFIG_SYS_HZ / 1000;
776 }
777 }
778
779 int net_send_udp_packet(uchar *ether, struct in_addr dest, int dport, int sport,
780 int payload_len)
781 {
782 uchar *pkt;
783 int eth_hdr_size;
784 int pkt_hdr_size;
785
786 /* make sure the net_tx_packet is initialized (net_init() was called) */
787 assert(net_tx_packet != NULL);
788 if (net_tx_packet == NULL)
789 return -1;
790
791 /* convert to new style broadcast */
792 if (dest.s_addr == 0)
793 dest.s_addr = 0xFFFFFFFF;
794
795 /* if broadcast, make the ether address a broadcast and don't do ARP */
796 if (dest.s_addr == 0xFFFFFFFF)
797 ether = (uchar *)net_bcast_ethaddr;
798
799 pkt = (uchar *)net_tx_packet;
800
801 eth_hdr_size = net_set_ether(pkt, ether, PROT_IP);
802 pkt += eth_hdr_size;
803 net_set_udp_header(pkt, dest, dport, sport, payload_len);
804 pkt_hdr_size = eth_hdr_size + IP_UDP_HDR_SIZE;
805
806 /* if MAC address was not discovered yet, do an ARP request */
807 if (memcmp(ether, net_null_ethaddr, 6) == 0) {
808 debug_cond(DEBUG_DEV_PKT, "sending ARP for %pI4\n", &dest);
809
810 /* save the ip and eth addr for the packet to send after arp */
811 net_arp_wait_packet_ip = dest;
812 arp_wait_packet_ethaddr = ether;
813
814 /* size of the waiting packet */
815 arp_wait_tx_packet_size = pkt_hdr_size + payload_len;
816
817 /* and do the ARP request */
818 arp_wait_try = 1;
819 arp_wait_timer_start = get_timer(0);
820 arp_request();
821 return 1; /* waiting */
822 } else {
823 debug_cond(DEBUG_DEV_PKT, "sending UDP to %pI4/%pM\n",
824 &dest, ether);
825 net_send_packet(net_tx_packet, pkt_hdr_size + payload_len);
826 return 0; /* transmitted */
827 }
828 }
829
830 #ifdef CONFIG_IP_DEFRAG
831 /*
832 * This function collects fragments in a single packet, according
833 * to the algorithm in RFC815. It returns NULL or the pointer to
834 * a complete packet, in static storage
835 */
836 #ifndef CONFIG_NET_MAXDEFRAG
837 #define CONFIG_NET_MAXDEFRAG 16384
838 #endif
839 #define IP_PKTSIZE (CONFIG_NET_MAXDEFRAG)
840
841 #define IP_MAXUDP (IP_PKTSIZE - IP_HDR_SIZE)
842
843 /*
844 * this is the packet being assembled, either data or frag control.
845 * Fragments go by 8 bytes, so this union must be 8 bytes long
846 */
847 struct hole {
848 /* first_byte is address of this structure */
849 u16 last_byte; /* last byte in this hole + 1 (begin of next hole) */
850 u16 next_hole; /* index of next (in 8-b blocks), 0 == none */
851 u16 prev_hole; /* index of prev, 0 == none */
852 u16 unused;
853 };
854
855 static struct ip_udp_hdr *__net_defragment(struct ip_udp_hdr *ip, int *lenp)
856 {
857 static uchar pkt_buff[IP_PKTSIZE] __aligned(PKTALIGN);
858 static u16 first_hole, total_len;
859 struct hole *payload, *thisfrag, *h, *newh;
860 struct ip_udp_hdr *localip = (struct ip_udp_hdr *)pkt_buff;
861 uchar *indata = (uchar *)ip;
862 int offset8, start, len, done = 0;
863 u16 ip_off = ntohs(ip->ip_off);
864
865 /* payload starts after IP header, this fragment is in there */
866 payload = (struct hole *)(pkt_buff + IP_HDR_SIZE);
867 offset8 = (ip_off & IP_OFFS);
868 thisfrag = payload + offset8;
869 start = offset8 * 8;
870 len = ntohs(ip->ip_len) - IP_HDR_SIZE;
871
872 if (start + len > IP_MAXUDP) /* fragment extends too far */
873 return NULL;
874
875 if (!total_len || localip->ip_id != ip->ip_id) {
876 /* new (or different) packet, reset structs */
877 total_len = 0xffff;
878 payload[0].last_byte = ~0;
879 payload[0].next_hole = 0;
880 payload[0].prev_hole = 0;
881 first_hole = 0;
882 /* any IP header will work, copy the first we received */
883 memcpy(localip, ip, IP_HDR_SIZE);
884 }
885
886 /*
887 * What follows is the reassembly algorithm. We use the payload
888 * array as a linked list of hole descriptors, as each hole starts
889 * at a multiple of 8 bytes. However, last byte can be whatever value,
890 * so it is represented as byte count, not as 8-byte blocks.
891 */
892
893 h = payload + first_hole;
894 while (h->last_byte < start) {
895 if (!h->next_hole) {
896 /* no hole that far away */
897 return NULL;
898 }
899 h = payload + h->next_hole;
900 }
901
902 /* last fragment may be 1..7 bytes, the "+7" forces acceptance */
903 if (offset8 + ((len + 7) / 8) <= h - payload) {
904 /* no overlap with holes (dup fragment?) */
905 return NULL;
906 }
907
908 if (!(ip_off & IP_FLAGS_MFRAG)) {
909 /* no more fragmentss: truncate this (last) hole */
910 total_len = start + len;
911 h->last_byte = start + len;
912 }
913
914 /*
915 * There is some overlap: fix the hole list. This code doesn't
916 * deal with a fragment that overlaps with two different holes
917 * (thus being a superset of a previously-received fragment).
918 */
919
920 if ((h >= thisfrag) && (h->last_byte <= start + len)) {
921 /* complete overlap with hole: remove hole */
922 if (!h->prev_hole && !h->next_hole) {
923 /* last remaining hole */
924 done = 1;
925 } else if (!h->prev_hole) {
926 /* first hole */
927 first_hole = h->next_hole;
928 payload[h->next_hole].prev_hole = 0;
929 } else if (!h->next_hole) {
930 /* last hole */
931 payload[h->prev_hole].next_hole = 0;
932 } else {
933 /* in the middle of the list */
934 payload[h->next_hole].prev_hole = h->prev_hole;
935 payload[h->prev_hole].next_hole = h->next_hole;
936 }
937
938 } else if (h->last_byte <= start + len) {
939 /* overlaps with final part of the hole: shorten this hole */
940 h->last_byte = start;
941
942 } else if (h >= thisfrag) {
943 /* overlaps with initial part of the hole: move this hole */
944 newh = thisfrag + (len / 8);
945 *newh = *h;
946 h = newh;
947 if (h->next_hole)
948 payload[h->next_hole].prev_hole = (h - payload);
949 if (h->prev_hole)
950 payload[h->prev_hole].next_hole = (h - payload);
951 else
952 first_hole = (h - payload);
953
954 } else {
955 /* fragment sits in the middle: split the hole */
956 newh = thisfrag + (len / 8);
957 *newh = *h;
958 h->last_byte = start;
959 h->next_hole = (newh - payload);
960 newh->prev_hole = (h - payload);
961 if (newh->next_hole)
962 payload[newh->next_hole].prev_hole = (newh - payload);
963 }
964
965 /* finally copy this fragment and possibly return whole packet */
966 memcpy((uchar *)thisfrag, indata + IP_HDR_SIZE, len);
967 if (!done)
968 return NULL;
969
970 localip->ip_len = htons(total_len);
971 *lenp = total_len + IP_HDR_SIZE;
972 return localip;
973 }
974
975 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
976 int *lenp)
977 {
978 u16 ip_off = ntohs(ip->ip_off);
979 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
980 return ip; /* not a fragment */
981 return __net_defragment(ip, lenp);
982 }
983
984 #else /* !CONFIG_IP_DEFRAG */
985
986 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
987 int *lenp)
988 {
989 u16 ip_off = ntohs(ip->ip_off);
990 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
991 return ip; /* not a fragment */
992 return NULL;
993 }
994 #endif
995
996 /**
997 * Receive an ICMP packet. We deal with REDIRECT and PING here, and silently
998 * drop others.
999 *
1000 * @parma ip IP packet containing the ICMP
1001 */
1002 static void receive_icmp(struct ip_udp_hdr *ip, int len,
1003 struct in_addr src_ip, struct ethernet_hdr *et)
1004 {
1005 struct icmp_hdr *icmph = (struct icmp_hdr *)&ip->udp_src;
1006
1007 switch (icmph->type) {
1008 case ICMP_REDIRECT:
1009 if (icmph->code != ICMP_REDIR_HOST)
1010 return;
1011 printf(" ICMP Host Redirect to %pI4 ",
1012 &icmph->un.gateway);
1013 break;
1014 default:
1015 #if defined(CONFIG_CMD_PING)
1016 ping_receive(et, ip, len);
1017 #endif
1018 #ifdef CONFIG_CMD_TFTPPUT
1019 if (packet_icmp_handler)
1020 packet_icmp_handler(icmph->type, icmph->code,
1021 ntohs(ip->udp_dst), src_ip,
1022 ntohs(ip->udp_src), icmph->un.data,
1023 ntohs(ip->udp_len));
1024 #endif
1025 break;
1026 }
1027 }
1028
1029 void net_process_received_packet(uchar *in_packet, int len)
1030 {
1031 struct ethernet_hdr *et;
1032 struct ip_udp_hdr *ip;
1033 struct in_addr dst_ip;
1034 struct in_addr src_ip;
1035 int eth_proto;
1036 #if defined(CONFIG_CMD_CDP)
1037 int iscdp;
1038 #endif
1039 ushort cti = 0, vlanid = VLAN_NONE, myvlanid, mynvlanid;
1040
1041 debug_cond(DEBUG_NET_PKT, "packet received\n");
1042
1043 net_rx_packet = in_packet;
1044 net_rx_packet_len = len;
1045 et = (struct ethernet_hdr *)in_packet;
1046
1047 /* too small packet? */
1048 if (len < ETHER_HDR_SIZE)
1049 return;
1050
1051 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER)
1052 if (push_packet) {
1053 (*push_packet)(in_packet, len);
1054 return;
1055 }
1056 #endif
1057
1058 #if defined(CONFIG_CMD_CDP)
1059 /* keep track if packet is CDP */
1060 iscdp = is_cdp_packet(et->et_dest);
1061 #endif
1062
1063 myvlanid = ntohs(net_our_vlan);
1064 if (myvlanid == (ushort)-1)
1065 myvlanid = VLAN_NONE;
1066 mynvlanid = ntohs(net_native_vlan);
1067 if (mynvlanid == (ushort)-1)
1068 mynvlanid = VLAN_NONE;
1069
1070 eth_proto = ntohs(et->et_protlen);
1071
1072 if (eth_proto < 1514) {
1073 struct e802_hdr *et802 = (struct e802_hdr *)et;
1074 /*
1075 * Got a 802.2 packet. Check the other protocol field.
1076 * XXX VLAN over 802.2+SNAP not implemented!
1077 */
1078 eth_proto = ntohs(et802->et_prot);
1079
1080 ip = (struct ip_udp_hdr *)(in_packet + E802_HDR_SIZE);
1081 len -= E802_HDR_SIZE;
1082
1083 } else if (eth_proto != PROT_VLAN) { /* normal packet */
1084 ip = (struct ip_udp_hdr *)(in_packet + ETHER_HDR_SIZE);
1085 len -= ETHER_HDR_SIZE;
1086
1087 } else { /* VLAN packet */
1088 struct vlan_ethernet_hdr *vet =
1089 (struct vlan_ethernet_hdr *)et;
1090
1091 debug_cond(DEBUG_NET_PKT, "VLAN packet received\n");
1092
1093 /* too small packet? */
1094 if (len < VLAN_ETHER_HDR_SIZE)
1095 return;
1096
1097 /* if no VLAN active */
1098 if ((ntohs(net_our_vlan) & VLAN_IDMASK) == VLAN_NONE
1099 #if defined(CONFIG_CMD_CDP)
1100 && iscdp == 0
1101 #endif
1102 )
1103 return;
1104
1105 cti = ntohs(vet->vet_tag);
1106 vlanid = cti & VLAN_IDMASK;
1107 eth_proto = ntohs(vet->vet_type);
1108
1109 ip = (struct ip_udp_hdr *)(in_packet + VLAN_ETHER_HDR_SIZE);
1110 len -= VLAN_ETHER_HDR_SIZE;
1111 }
1112
1113 debug_cond(DEBUG_NET_PKT, "Receive from protocol 0x%x\n", eth_proto);
1114
1115 #if defined(CONFIG_CMD_CDP)
1116 if (iscdp) {
1117 cdp_receive((uchar *)ip, len);
1118 return;
1119 }
1120 #endif
1121
1122 if ((myvlanid & VLAN_IDMASK) != VLAN_NONE) {
1123 if (vlanid == VLAN_NONE)
1124 vlanid = (mynvlanid & VLAN_IDMASK);
1125 /* not matched? */
1126 if (vlanid != (myvlanid & VLAN_IDMASK))
1127 return;
1128 }
1129
1130 switch (eth_proto) {
1131 case PROT_ARP:
1132 arp_receive(et, ip, len);
1133 break;
1134
1135 #ifdef CONFIG_CMD_RARP
1136 case PROT_RARP:
1137 rarp_receive(ip, len);
1138 break;
1139 #endif
1140 case PROT_IP:
1141 debug_cond(DEBUG_NET_PKT, "Got IP\n");
1142 /* Before we start poking the header, make sure it is there */
1143 if (len < IP_UDP_HDR_SIZE) {
1144 debug("len bad %d < %lu\n", len,
1145 (ulong)IP_UDP_HDR_SIZE);
1146 return;
1147 }
1148 /* Check the packet length */
1149 if (len < ntohs(ip->ip_len)) {
1150 debug("len bad %d < %d\n", len, ntohs(ip->ip_len));
1151 return;
1152 }
1153 len = ntohs(ip->ip_len);
1154 debug_cond(DEBUG_NET_PKT, "len=%d, v=%02x\n",
1155 len, ip->ip_hl_v & 0xff);
1156
1157 /* Can't deal with anything except IPv4 */
1158 if ((ip->ip_hl_v & 0xf0) != 0x40)
1159 return;
1160 /* Can't deal with IP options (headers != 20 bytes) */
1161 if ((ip->ip_hl_v & 0x0f) > 0x05)
1162 return;
1163 /* Check the Checksum of the header */
1164 if (!ip_checksum_ok((uchar *)ip, IP_HDR_SIZE)) {
1165 debug("checksum bad\n");
1166 return;
1167 }
1168 /* If it is not for us, ignore it */
1169 dst_ip = net_read_ip(&ip->ip_dst);
1170 if (net_ip.s_addr && dst_ip.s_addr != net_ip.s_addr &&
1171 dst_ip.s_addr != 0xFFFFFFFF) {
1172 #ifdef CONFIG_MCAST_TFTP
1173 if (net_mcast_addr != dst_ip)
1174 #endif
1175 return;
1176 }
1177 /* Read source IP address for later use */
1178 src_ip = net_read_ip(&ip->ip_src);
1179 /*
1180 * The function returns the unchanged packet if it's not
1181 * a fragment, and either the complete packet or NULL if
1182 * it is a fragment (if !CONFIG_IP_DEFRAG, it returns NULL)
1183 */
1184 ip = net_defragment(ip, &len);
1185 if (!ip)
1186 return;
1187 /*
1188 * watch for ICMP host redirects
1189 *
1190 * There is no real handler code (yet). We just watch
1191 * for ICMP host redirect messages. In case anybody
1192 * sees these messages: please contact me
1193 * (wd@denx.de), or - even better - send me the
1194 * necessary fixes :-)
1195 *
1196 * Note: in all cases where I have seen this so far
1197 * it was a problem with the router configuration,
1198 * for instance when a router was configured in the
1199 * BOOTP reply, but the TFTP server was on the same
1200 * subnet. So this is probably a warning that your
1201 * configuration might be wrong. But I'm not really
1202 * sure if there aren't any other situations.
1203 *
1204 * Simon Glass <sjg@chromium.org>: We get an ICMP when
1205 * we send a tftp packet to a dead connection, or when
1206 * there is no server at the other end.
1207 */
1208 if (ip->ip_p == IPPROTO_ICMP) {
1209 receive_icmp(ip, len, src_ip, et);
1210 return;
1211 } else if (ip->ip_p != IPPROTO_UDP) { /* Only UDP packets */
1212 return;
1213 }
1214
1215 debug_cond(DEBUG_DEV_PKT,
1216 "received UDP (to=%pI4, from=%pI4, len=%d)\n",
1217 &dst_ip, &src_ip, len);
1218
1219 #ifdef CONFIG_UDP_CHECKSUM
1220 if (ip->udp_xsum != 0) {
1221 ulong xsum;
1222 ushort *sumptr;
1223 ushort sumlen;
1224
1225 xsum = ip->ip_p;
1226 xsum += (ntohs(ip->udp_len));
1227 xsum += (ntohl(ip->ip_src.s_addr) >> 16) & 0x0000ffff;
1228 xsum += (ntohl(ip->ip_src.s_addr) >> 0) & 0x0000ffff;
1229 xsum += (ntohl(ip->ip_dst.s_addr) >> 16) & 0x0000ffff;
1230 xsum += (ntohl(ip->ip_dst.s_addr) >> 0) & 0x0000ffff;
1231
1232 sumlen = ntohs(ip->udp_len);
1233 sumptr = (ushort *)&(ip->udp_src);
1234
1235 while (sumlen > 1) {
1236 ushort sumdata;
1237
1238 sumdata = *sumptr++;
1239 xsum += ntohs(sumdata);
1240 sumlen -= 2;
1241 }
1242 if (sumlen > 0) {
1243 ushort sumdata;
1244
1245 sumdata = *(unsigned char *)sumptr;
1246 sumdata = (sumdata << 8) & 0xff00;
1247 xsum += sumdata;
1248 }
1249 while ((xsum >> 16) != 0) {
1250 xsum = (xsum & 0x0000ffff) +
1251 ((xsum >> 16) & 0x0000ffff);
1252 }
1253 if ((xsum != 0x00000000) && (xsum != 0x0000ffff)) {
1254 printf(" UDP wrong checksum %08lx %08x\n",
1255 xsum, ntohs(ip->udp_xsum));
1256 return;
1257 }
1258 }
1259 #endif
1260
1261 #if defined(CONFIG_NETCONSOLE) && !(CONFIG_SPL_BUILD)
1262 nc_input_packet((uchar *)ip + IP_UDP_HDR_SIZE,
1263 src_ip,
1264 ntohs(ip->udp_dst),
1265 ntohs(ip->udp_src),
1266 ntohs(ip->udp_len) - UDP_HDR_SIZE);
1267 #endif
1268 /*
1269 * IP header OK. Pass the packet to the current handler.
1270 */
1271 (*udp_packet_handler)((uchar *)ip + IP_UDP_HDR_SIZE,
1272 ntohs(ip->udp_dst),
1273 src_ip,
1274 ntohs(ip->udp_src),
1275 ntohs(ip->udp_len) - UDP_HDR_SIZE);
1276 break;
1277 }
1278 }
1279
1280 /**********************************************************************/
1281
1282 static int net_check_prereq(enum proto_t protocol)
1283 {
1284 switch (protocol) {
1285 /* Fall through */
1286 #if defined(CONFIG_CMD_PING)
1287 case PING:
1288 if (net_ping_ip.s_addr == 0) {
1289 puts("*** ERROR: ping address not given\n");
1290 return 1;
1291 }
1292 goto common;
1293 #endif
1294 #if defined(CONFIG_CMD_SNTP)
1295 case SNTP:
1296 if (net_ntp_server.s_addr == 0) {
1297 puts("*** ERROR: NTP server address not given\n");
1298 return 1;
1299 }
1300 goto common;
1301 #endif
1302 #if defined(CONFIG_CMD_DNS)
1303 case DNS:
1304 if (net_dns_server.s_addr == 0) {
1305 puts("*** ERROR: DNS server address not given\n");
1306 return 1;
1307 }
1308 goto common;
1309 #endif
1310 #if defined(CONFIG_CMD_NFS)
1311 case NFS:
1312 #endif
1313 /* Fall through */
1314 case TFTPGET:
1315 case TFTPPUT:
1316 if (net_server_ip.s_addr == 0) {
1317 puts("*** ERROR: `serverip' not set\n");
1318 return 1;
1319 }
1320 #if defined(CONFIG_CMD_PING) || defined(CONFIG_CMD_SNTP) || \
1321 defined(CONFIG_CMD_DNS)
1322 common:
1323 #endif
1324 /* Fall through */
1325
1326 case NETCONS:
1327 case TFTPSRV:
1328 if (net_ip.s_addr == 0) {
1329 puts("*** ERROR: `ipaddr' not set\n");
1330 return 1;
1331 }
1332 /* Fall through */
1333
1334 #ifdef CONFIG_CMD_RARP
1335 case RARP:
1336 #endif
1337 case BOOTP:
1338 case CDP:
1339 case DHCP:
1340 case LINKLOCAL:
1341 if (memcmp(net_ethaddr, "\0\0\0\0\0\0", 6) == 0) {
1342 int num = eth_get_dev_index();
1343
1344 switch (num) {
1345 case -1:
1346 puts("*** ERROR: No ethernet found.\n");
1347 return 1;
1348 case 0:
1349 puts("*** ERROR: `ethaddr' not set\n");
1350 break;
1351 default:
1352 printf("*** ERROR: `eth%daddr' not set\n",
1353 num);
1354 break;
1355 }
1356
1357 net_start_again();
1358 return 2;
1359 }
1360 /* Fall through */
1361 default:
1362 return 0;
1363 }
1364 return 0; /* OK */
1365 }
1366 /**********************************************************************/
1367
1368 int
1369 net_eth_hdr_size(void)
1370 {
1371 ushort myvlanid;
1372
1373 myvlanid = ntohs(net_our_vlan);
1374 if (myvlanid == (ushort)-1)
1375 myvlanid = VLAN_NONE;
1376
1377 return ((myvlanid & VLAN_IDMASK) == VLAN_NONE) ? ETHER_HDR_SIZE :
1378 VLAN_ETHER_HDR_SIZE;
1379 }
1380
1381 int net_set_ether(uchar *xet, const uchar *dest_ethaddr, uint prot)
1382 {
1383 struct ethernet_hdr *et = (struct ethernet_hdr *)xet;
1384 ushort myvlanid;
1385
1386 myvlanid = ntohs(net_our_vlan);
1387 if (myvlanid == (ushort)-1)
1388 myvlanid = VLAN_NONE;
1389
1390 memcpy(et->et_dest, dest_ethaddr, 6);
1391 memcpy(et->et_src, net_ethaddr, 6);
1392 if ((myvlanid & VLAN_IDMASK) == VLAN_NONE) {
1393 et->et_protlen = htons(prot);
1394 return ETHER_HDR_SIZE;
1395 } else {
1396 struct vlan_ethernet_hdr *vet =
1397 (struct vlan_ethernet_hdr *)xet;
1398
1399 vet->vet_vlan_type = htons(PROT_VLAN);
1400 vet->vet_tag = htons((0 << 5) | (myvlanid & VLAN_IDMASK));
1401 vet->vet_type = htons(prot);
1402 return VLAN_ETHER_HDR_SIZE;
1403 }
1404 }
1405
1406 int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot)
1407 {
1408 ushort protlen;
1409
1410 memcpy(et->et_dest, addr, 6);
1411 memcpy(et->et_src, net_ethaddr, 6);
1412 protlen = ntohs(et->et_protlen);
1413 if (protlen == PROT_VLAN) {
1414 struct vlan_ethernet_hdr *vet =
1415 (struct vlan_ethernet_hdr *)et;
1416 vet->vet_type = htons(prot);
1417 return VLAN_ETHER_HDR_SIZE;
1418 } else if (protlen > 1514) {
1419 et->et_protlen = htons(prot);
1420 return ETHER_HDR_SIZE;
1421 } else {
1422 /* 802.2 + SNAP */
1423 struct e802_hdr *et802 = (struct e802_hdr *)et;
1424 et802->et_prot = htons(prot);
1425 return E802_HDR_SIZE;
1426 }
1427 }
1428
1429 void net_set_ip_header(uchar *pkt, struct in_addr dest, struct in_addr source)
1430 {
1431 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt;
1432
1433 /*
1434 * Construct an IP header.
1435 */
1436 /* IP_HDR_SIZE / 4 (not including UDP) */
1437 ip->ip_hl_v = 0x45;
1438 ip->ip_tos = 0;
1439 ip->ip_len = htons(IP_HDR_SIZE);
1440 ip->ip_id = htons(net_ip_id++);
1441 ip->ip_off = htons(IP_FLAGS_DFRAG); /* Don't fragment */
1442 ip->ip_ttl = 255;
1443 ip->ip_sum = 0;
1444 /* already in network byte order */
1445 net_copy_ip((void *)&ip->ip_src, &source);
1446 /* already in network byte order */
1447 net_copy_ip((void *)&ip->ip_dst, &dest);
1448 }
1449
1450 void net_set_udp_header(uchar *pkt, struct in_addr dest, int dport, int sport,
1451 int len)
1452 {
1453 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt;
1454
1455 /*
1456 * If the data is an odd number of bytes, zero the
1457 * byte after the last byte so that the checksum
1458 * will work.
1459 */
1460 if (len & 1)
1461 pkt[IP_UDP_HDR_SIZE + len] = 0;
1462
1463 net_set_ip_header(pkt, dest, net_ip);
1464 ip->ip_len = htons(IP_UDP_HDR_SIZE + len);
1465 ip->ip_p = IPPROTO_UDP;
1466 ip->ip_sum = compute_ip_checksum(ip, IP_HDR_SIZE);
1467
1468 ip->udp_src = htons(sport);
1469 ip->udp_dst = htons(dport);
1470 ip->udp_len = htons(UDP_HDR_SIZE + len);
1471 ip->udp_xsum = 0;
1472 }
1473
1474 void copy_filename(char *dst, const char *src, int size)
1475 {
1476 if (*src && (*src == '"')) {
1477 ++src;
1478 --size;
1479 }
1480
1481 while ((--size > 0) && *src && (*src != '"'))
1482 *dst++ = *src++;
1483 *dst = '\0';
1484 }
1485
1486 #if defined(CONFIG_CMD_NFS) || \
1487 defined(CONFIG_CMD_SNTP) || \
1488 defined(CONFIG_CMD_DNS)
1489 /*
1490 * make port a little random (1024-17407)
1491 * This keeps the math somewhat trivial to compute, and seems to work with
1492 * all supported protocols/clients/servers
1493 */
1494 unsigned int random_port(void)
1495 {
1496 return 1024 + (get_timer(0) % 0x4000);
1497 }
1498 #endif
1499
1500 void ip_to_string(struct in_addr x, char *s)
1501 {
1502 x.s_addr = ntohl(x.s_addr);
1503 sprintf(s, "%d.%d.%d.%d",
1504 (int) ((x.s_addr >> 24) & 0xff),
1505 (int) ((x.s_addr >> 16) & 0xff),
1506 (int) ((x.s_addr >> 8) & 0xff),
1507 (int) ((x.s_addr >> 0) & 0xff)
1508 );
1509 }
1510
1511 void vlan_to_string(ushort x, char *s)
1512 {
1513 x = ntohs(x);
1514
1515 if (x == (ushort)-1)
1516 x = VLAN_NONE;
1517
1518 if (x == VLAN_NONE)
1519 strcpy(s, "none");
1520 else
1521 sprintf(s, "%d", x & VLAN_IDMASK);
1522 }
1523
1524 ushort string_to_vlan(const char *s)
1525 {
1526 ushort id;
1527
1528 if (s == NULL)
1529 return htons(VLAN_NONE);
1530
1531 if (*s < '0' || *s > '9')
1532 id = VLAN_NONE;
1533 else
1534 id = (ushort)simple_strtoul(s, NULL, 10);
1535
1536 return htons(id);
1537 }
1538
1539 ushort getenv_vlan(char *var)
1540 {
1541 return string_to_vlan(getenv(var));
1542 }