U-Boot for Freescale i.MX6 This file contains information for the port of U-Boot to the Freescale i.MX6 SoC. 1. CONVENTIONS FOR FUSE ASSIGNMENTS ----------------------------------- 1.1 MAC Address: It is stored in fuse bank 4, with the 32 lsbs in word 2 and the 16 msbs in word 3[15:0]. For i.MX6SX and i.MX6UL, they have two MAC addresses. The second MAC address is stored in fuse bank 4, with the 16 lsb in word 3[31:16] and the 32 msbs in word 4. Example: For reading the MAC address fuses on a MX6Q: - The MAC address is stored in two fuse addresses (the fuse addresses are described in the Fusemap Descriptions table from the mx6q Reference Manual): 0x620[31:0] - MAC_ADDR[31:0] 0x630[15:0] - MAC_ADDR[47:32] In order to use the fuse API, we need to pass the bank and word values, which are calculated as below: Fuse address for the lower MAC address: 0x620 Base address for the fuses: 0x400 (0x620 - 0x400)/0x10 = 0x22 = 34 decimal As the fuses are arranged in banks of 8 words: 34 / 8 = 4 and the remainder is 2, so in this case: bank = 4 word = 2 And the U-Boot command would be: => fuse read 4 2 Reading bank 4: Word 0x00000002: 9f027772 Doing the same for the upper MAC address: Fuse address for the upper MAC address: 0x630 Base address for the fuses: 0x400 (0x630 - 0x400)/0x10 = 0x23 = 35 decimal As the fuses are arranged in banks of 8 words: 35 / 8 = 4 and the remainder is 3, so in this case: bank = 4 word = 3 And the U-Boot command would be: => fuse read 4 3 Reading bank 4: Word 0x00000003: 00000004 ,which matches the ethaddr value: => echo ${ethaddr} 00:04:9f:02:77:72 Some other useful hints: - The 'bank' and 'word' numbers can be easily obtained from the mx6 Reference Manual. For the mx6quad case, please check the "46.5 OCOTP Memory Map/Register Definition" from the "i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 1, 04/2013" document. For example, for the MAC fuses we have: Address: 21B_C620 Value of OTP Bank4 Word2 (MAC Address)(OCOTP_MAC0) 21B_C630 Value of OTP Bank4 Word3 (MAC Address)(OCOTP_MAC1) - The command '=> fuse read 4 2 2' reads the whole MAC addresses at once: => fuse read 4 2 2 Reading bank 4: Word 0x00000002: 9f027772 00000004 2. Using imx_usb_loader for first install with SPL -------------------------------------------------- imx_usb_loader is a very nice tool by Boundary Devices that allow to install U-Boot without a JTAG debugger, using the USB boot mode as described in the manual. It is a replacement for Freescale's MFGTOOLS. The sources can be found here: https://github.com/boundarydevices/imx_usb_loader.git Booting in USB mode, the i.MX6 announces itself to the Linux Host as: Bus 001 Device 111: ID 15a2:0061 Freescale Semiconductor, Inc. imx_usb_loader is able to download a single file (u-boot.imx) to the board. For boards without SPL support, it is enough to issue the command: sudo ../imx_usb_loader/imx_usb -v u-boot.imx In order to load SPL and u-boot.img via imx_usb_loader tool, please refer to doc/README.sdp. 3. Using Secure Boot on i.MX6 machines with SPL support ------------------------------------------------------- This version of U-Boot is able to build a signable version of the SPL as well as a signable version of the U-Boot image. The signature can be verified through High Assurance Boot (HAB). CONFIG_SECURE_BOOT is needed to build those two binaries. After building, you need to create a command sequence file and use Freescales Code Signing Tool to sign both binaries. After creation, the mkimage tool outputs the required information about the HAB Blocks parameter for the CSF. During the build, the information is preserved in log files named as the binaries. (SPL.log and u-boot-ivt.log). More information about the CSF and HAB can be found in the AN4581. https://cache.freescale.com/files/32bit/doc/app_note/AN4581.pdf We don't want to explain how to create a PKI tree or SRK table as this is well explained in the Application Note. Example Output of the SPL (imximage) creation: Image Type: Freescale IMX Boot Image Image Ver: 2 (i.MX53/6/7 compatible) Mode: DCD Data Size: 61440 Bytes = 60.00 kB = 0.06 MB Load Address: 00907420 Entry Point: 00908000 HAB Blocks: 00907400 00000000 0000cc00 Example Output of the u-boot-ivt.img (firmware_ivt) creation: Image Name: U-Boot 2016.11-rc1-31589-g2a4411 Created: Sat Nov 5 21:53:28 2016 Image Type: ARM U-Boot Firmware with HABv4 IVT (uncompressed) Data Size: 352192 Bytes = 343.94 kB = 0.34 MB Load Address: 17800000 Entry Point: 00000000 HAB Blocks: 0x177fffc0 0x0000 0x00054020 The CST (Code Signing Tool) can be downloaded from NXP. # Compile CSF and create signature ./cst --o csf-u-boot.bin < command_sequence_uboot.csf ./cst --o csf-SPL.bin < command_sequence_spl.csf # Append compiled CSF to Binary cat SPL csf-SPL.bin > SPL-signed cat u-boot-ivt.img csf-u-boot.bin > u-boot-signed.img These two signed binaries can be used on an i.MX6 in closed configuration when the according SRK Table Hash has been flashed.