]> git.ipfire.org Git - people/pmueller/ipfire-2.x.git/blob - src/atl1c/atl1c_hw.c
Merge branch 'master' of git://git.ipfire.org/ipfire-2.x
[people/pmueller/ipfire-2.x.git] / src / atl1c / atl1c_hw.c
1 /*
2 * Copyright(c) 2007 Atheros Corporation. All rights reserved.
3 *
4 * Derived from Intel e1000 driver
5 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the Free
9 * Software Foundation; either version 2 of the License, or (at your option)
10 * any later version.
11 *
12 * This program is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 *
17 * You should have received a copy of the GNU General Public License along with
18 * this program; if not, write to the Free Software Foundation, Inc., 59
19 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21 #include <linux/pci.h>
22 #include <linux/delay.h>
23 #include <linux/mii.h>
24 #include <linux/crc32.h>
25
26 #include "atl1c.h"
27
28 /*
29 * check_eeprom_exist
30 * return 1 if eeprom exist
31 */
32 int atl1c_check_eeprom_exist(struct atl1c_hw *hw)
33 {
34 u32 data;
35
36 AT_READ_REG(hw, REG_TWSI_DEBUG, &data);
37 if (data & TWSI_DEBUG_DEV_EXIST)
38 return 1;
39
40 return 0;
41 }
42
43 void atl1c_hw_set_mac_addr(struct atl1c_hw *hw)
44 {
45 u32 value;
46 /*
47 * 00-0B-6A-F6-00-DC
48 * 0: 6AF600DC 1: 000B
49 * low dword
50 */
51 value = (((u32)hw->mac_addr[2]) << 24) |
52 (((u32)hw->mac_addr[3]) << 16) |
53 (((u32)hw->mac_addr[4]) << 8) |
54 (((u32)hw->mac_addr[5])) ;
55 AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
56 /* hight dword */
57 value = (((u32)hw->mac_addr[0]) << 8) |
58 (((u32)hw->mac_addr[1])) ;
59 AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
60 }
61
62 /*
63 * atl1c_get_permanent_address
64 * return 0 if get valid mac address,
65 */
66 static int atl1c_get_permanent_address(struct atl1c_hw *hw)
67 {
68 u32 addr[2];
69 u32 i;
70 u32 otp_ctrl_data;
71 u32 twsi_ctrl_data;
72 u8 eth_addr[ETH_ALEN];
73
74 /* init */
75 addr[0] = addr[1] = 0;
76 AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data);
77 if (atl1c_check_eeprom_exist(hw)) {
78 /* Enable OTP CLK */
79 if (!(otp_ctrl_data & OTP_CTRL_CLK_EN)) {
80 otp_ctrl_data |= OTP_CTRL_CLK_EN;
81 AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
82 AT_WRITE_FLUSH(hw);
83 msleep(1);
84 }
85
86 AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data);
87 twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART;
88 AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data);
89 for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) {
90 msleep(10);
91 AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data);
92 if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0)
93 break;
94 }
95 if (i >= AT_TWSI_EEPROM_TIMEOUT)
96 return -1;
97 }
98 /* Disable OTP_CLK */
99 if (otp_ctrl_data & OTP_CTRL_CLK_EN) {
100 otp_ctrl_data &= ~OTP_CTRL_CLK_EN;
101 AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
102 AT_WRITE_FLUSH(hw);
103 msleep(1);
104 }
105
106 /* maybe MAC-address is from BIOS */
107 AT_READ_REG(hw, REG_MAC_STA_ADDR, &addr[0]);
108 AT_READ_REG(hw, REG_MAC_STA_ADDR + 4, &addr[1]);
109 *(u32 *) &eth_addr[2] = swab32(addr[0]);
110 *(u16 *) &eth_addr[0] = swab16(*(u16 *)&addr[1]);
111
112 if (is_valid_ether_addr(eth_addr)) {
113 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
114 return 0;
115 }
116
117 return -1;
118 }
119
120 bool atl1c_read_eeprom(struct atl1c_hw *hw, u32 offset, u32 *p_value)
121 {
122 int i;
123 int ret = false;
124 u32 otp_ctrl_data;
125 u32 control;
126 u32 data;
127
128 if (offset & 3)
129 return ret; /* address do not align */
130
131 AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data);
132 if (!(otp_ctrl_data & OTP_CTRL_CLK_EN))
133 AT_WRITE_REG(hw, REG_OTP_CTRL,
134 (otp_ctrl_data | OTP_CTRL_CLK_EN));
135
136 AT_WRITE_REG(hw, REG_EEPROM_DATA_LO, 0);
137 control = (offset & EEPROM_CTRL_ADDR_MASK) << EEPROM_CTRL_ADDR_SHIFT;
138 AT_WRITE_REG(hw, REG_EEPROM_CTRL, control);
139
140 for (i = 0; i < 10; i++) {
141 udelay(100);
142 AT_READ_REG(hw, REG_EEPROM_CTRL, &control);
143 if (control & EEPROM_CTRL_RW)
144 break;
145 }
146 if (control & EEPROM_CTRL_RW) {
147 AT_READ_REG(hw, REG_EEPROM_CTRL, &data);
148 AT_READ_REG(hw, REG_EEPROM_DATA_LO, p_value);
149 data = data & 0xFFFF;
150 *p_value = swab32((data << 16) | (*p_value >> 16));
151 ret = true;
152 }
153 if (!(otp_ctrl_data & OTP_CTRL_CLK_EN))
154 AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
155
156 return ret;
157 }
158 /*
159 * Reads the adapter's MAC address from the EEPROM
160 *
161 * hw - Struct containing variables accessed by shared code
162 */
163 int atl1c_read_mac_addr(struct atl1c_hw *hw)
164 {
165 int err = 0;
166
167 err = atl1c_get_permanent_address(hw);
168 if (err)
169 random_ether_addr(hw->perm_mac_addr);
170
171 memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr));
172 return 0;
173 }
174
175 /*
176 * atl1c_hash_mc_addr
177 * purpose
178 * set hash value for a multicast address
179 * hash calcu processing :
180 * 1. calcu 32bit CRC for multicast address
181 * 2. reverse crc with MSB to LSB
182 */
183 u32 atl1c_hash_mc_addr(struct atl1c_hw *hw, u8 *mc_addr)
184 {
185 u32 crc32;
186 u32 value = 0;
187 int i;
188
189 crc32 = ether_crc_le(6, mc_addr);
190 for (i = 0; i < 32; i++)
191 value |= (((crc32 >> i) & 1) << (31 - i));
192
193 return value;
194 }
195
196 /*
197 * Sets the bit in the multicast table corresponding to the hash value.
198 * hw - Struct containing variables accessed by shared code
199 * hash_value - Multicast address hash value
200 */
201 void atl1c_hash_set(struct atl1c_hw *hw, u32 hash_value)
202 {
203 u32 hash_bit, hash_reg;
204 u32 mta;
205
206 /*
207 * The HASH Table is a register array of 2 32-bit registers.
208 * It is treated like an array of 64 bits. We want to set
209 * bit BitArray[hash_value]. So we figure out what register
210 * the bit is in, read it, OR in the new bit, then write
211 * back the new value. The register is determined by the
212 * upper bit of the hash value and the bit within that
213 * register are determined by the lower 5 bits of the value.
214 */
215 hash_reg = (hash_value >> 31) & 0x1;
216 hash_bit = (hash_value >> 26) & 0x1F;
217
218 mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
219
220 mta |= (1 << hash_bit);
221
222 AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
223 }
224
225 /*
226 * Reads the value from a PHY register
227 * hw - Struct containing variables accessed by shared code
228 * reg_addr - address of the PHY register to read
229 */
230 int atl1c_read_phy_reg(struct atl1c_hw *hw, u16 reg_addr, u16 *phy_data)
231 {
232 u32 val;
233 int i;
234
235 val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
236 MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW |
237 MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
238
239 AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
240
241 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
242 udelay(2);
243 AT_READ_REG(hw, REG_MDIO_CTRL, &val);
244 if (!(val & (MDIO_START | MDIO_BUSY)))
245 break;
246 }
247 if (!(val & (MDIO_START | MDIO_BUSY))) {
248 *phy_data = (u16)val;
249 return 0;
250 }
251
252 return -1;
253 }
254
255 /*
256 * Writes a value to a PHY register
257 * hw - Struct containing variables accessed by shared code
258 * reg_addr - address of the PHY register to write
259 * data - data to write to the PHY
260 */
261 int atl1c_write_phy_reg(struct atl1c_hw *hw, u32 reg_addr, u16 phy_data)
262 {
263 int i;
264 u32 val;
265
266 val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
267 (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
268 MDIO_SUP_PREAMBLE | MDIO_START |
269 MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
270
271 AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
272
273 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
274 udelay(2);
275 AT_READ_REG(hw, REG_MDIO_CTRL, &val);
276 if (!(val & (MDIO_START | MDIO_BUSY)))
277 break;
278 }
279
280 if (!(val & (MDIO_START | MDIO_BUSY)))
281 return 0;
282
283 return -1;
284 }
285
286 /*
287 * Configures PHY autoneg and flow control advertisement settings
288 *
289 * hw - Struct containing variables accessed by shared code
290 */
291 static int atl1c_phy_setup_adv(struct atl1c_hw *hw)
292 {
293 u16 mii_adv_data = ADVERTISE_DEFAULT_CAP & ~ADVERTISE_SPEED_MASK;
294 u16 mii_giga_ctrl_data = GIGA_CR_1000T_DEFAULT_CAP &
295 ~GIGA_CR_1000T_SPEED_MASK;
296
297 if (hw->autoneg_advertised & ADVERTISED_10baseT_Half)
298 mii_adv_data |= ADVERTISE_10HALF;
299 if (hw->autoneg_advertised & ADVERTISED_10baseT_Full)
300 mii_adv_data |= ADVERTISE_10FULL;
301 if (hw->autoneg_advertised & ADVERTISED_100baseT_Half)
302 mii_adv_data |= ADVERTISE_100HALF;
303 if (hw->autoneg_advertised & ADVERTISED_100baseT_Full)
304 mii_adv_data |= ADVERTISE_100FULL;
305
306 if (hw->autoneg_advertised & ADVERTISED_Autoneg)
307 mii_adv_data |= ADVERTISE_10HALF | ADVERTISE_10FULL |
308 ADVERTISE_100HALF | ADVERTISE_100FULL;
309
310 if (hw->ctrl_flags & ATL1C_LINK_CAP_1000M) {
311 if (hw->autoneg_advertised & ADVERTISED_1000baseT_Half)
312 mii_giga_ctrl_data |= ADVERTISE_1000HALF;
313 if (hw->autoneg_advertised & ADVERTISED_1000baseT_Full)
314 mii_giga_ctrl_data |= ADVERTISE_1000FULL;
315 if (hw->autoneg_advertised & ADVERTISED_Autoneg)
316 mii_giga_ctrl_data |= ADVERTISE_1000HALF |
317 ADVERTISE_1000FULL;
318 }
319
320 if (atl1c_write_phy_reg(hw, MII_ADVERTISE, mii_adv_data) != 0 ||
321 atl1c_write_phy_reg(hw, MII_GIGA_CR, mii_giga_ctrl_data) != 0)
322 return -1;
323 return 0;
324 }
325
326 void atl1c_phy_disable(struct atl1c_hw *hw)
327 {
328 AT_WRITE_REGW(hw, REG_GPHY_CTRL,
329 GPHY_CTRL_PW_WOL_DIS | GPHY_CTRL_EXT_RESET);
330 }
331
332 static void atl1c_phy_magic_data(struct atl1c_hw *hw)
333 {
334 u16 data;
335
336 data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
337 ((1 & ANA_INTERVAL_SEL_TIMER_MASK) <<
338 ANA_INTERVAL_SEL_TIMER_SHIFT);
339
340 atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_18);
341 atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
342
343 data = (2 & ANA_SERDES_CDR_BW_MASK) | ANA_MS_PAD_DBG |
344 ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
345 ANA_SERDES_EN_LCKDT;
346
347 atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_5);
348 atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
349
350 data = (44 & ANA_LONG_CABLE_TH_100_MASK) |
351 ((33 & ANA_SHORT_CABLE_TH_100_MASK) <<
352 ANA_SHORT_CABLE_TH_100_SHIFT) | ANA_BP_BAD_LINK_ACCUM |
353 ANA_BP_SMALL_BW;
354
355 atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_54);
356 atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
357
358 data = (11 & ANA_IECHO_ADJ_MASK) | ((11 & ANA_IECHO_ADJ_MASK) <<
359 ANA_IECHO_ADJ_2_SHIFT) | ((8 & ANA_IECHO_ADJ_MASK) <<
360 ANA_IECHO_ADJ_1_SHIFT) | ((8 & ANA_IECHO_ADJ_MASK) <<
361 ANA_IECHO_ADJ_0_SHIFT);
362
363 atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_4);
364 atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
365
366 data = ANA_RESTART_CAL | ((7 & ANA_MANUL_SWICH_ON_MASK) <<
367 ANA_MANUL_SWICH_ON_SHIFT) | ANA_MAN_ENABLE |
368 ANA_SEL_HSP | ANA_EN_HB | ANA_OEN_125M;
369
370 atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_0);
371 atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
372
373 if (hw->ctrl_flags & ATL1C_HIB_DISABLE) {
374 atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_41);
375 if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &data) != 0)
376 return;
377 data &= ~ANA_TOP_PS_EN;
378 atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
379
380 atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_11);
381 if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &data) != 0)
382 return;
383 data &= ~ANA_PS_HIB_EN;
384 atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
385 }
386 }
387
388 int atl1c_phy_reset(struct atl1c_hw *hw)
389 {
390 struct atl1c_adapter *adapter = hw->adapter;
391 struct pci_dev *pdev = adapter->pdev;
392 u32 phy_ctrl_data = GPHY_CTRL_DEFAULT;
393 u32 mii_ier_data = IER_LINK_UP | IER_LINK_DOWN;
394 int err;
395
396 if (hw->ctrl_flags & ATL1C_HIB_DISABLE)
397 phy_ctrl_data &= ~GPHY_CTRL_HIB_EN;
398
399 AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data);
400 AT_WRITE_FLUSH(hw);
401 msleep(40);
402 phy_ctrl_data |= GPHY_CTRL_EXT_RESET;
403 AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data);
404 AT_WRITE_FLUSH(hw);
405 msleep(10);
406
407 /*Enable PHY LinkChange Interrupt */
408 err = atl1c_write_phy_reg(hw, MII_IER, mii_ier_data);
409 if (err) {
410 if (netif_msg_hw(adapter))
411 dev_err(&pdev->dev,
412 "Error enable PHY linkChange Interrupt\n");
413 return err;
414 }
415 if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION))
416 atl1c_phy_magic_data(hw);
417 return 0;
418 }
419
420 int atl1c_phy_init(struct atl1c_hw *hw)
421 {
422 struct atl1c_adapter *adapter = (struct atl1c_adapter *)hw->adapter;
423 struct pci_dev *pdev = adapter->pdev;
424 int ret_val;
425 u16 mii_bmcr_data = BMCR_RESET;
426 u16 phy_id1, phy_id2;
427
428 if ((atl1c_read_phy_reg(hw, MII_PHYSID1, &phy_id1) != 0) ||
429 (atl1c_read_phy_reg(hw, MII_PHYSID2, &phy_id2) != 0)) {
430 if (netif_msg_link(adapter))
431 dev_err(&pdev->dev, "Error get phy ID\n");
432 return -1;
433 }
434 switch (hw->media_type) {
435 case MEDIA_TYPE_AUTO_SENSOR:
436 ret_val = atl1c_phy_setup_adv(hw);
437 if (ret_val) {
438 if (netif_msg_link(adapter))
439 dev_err(&pdev->dev,
440 "Error Setting up Auto-Negotiation\n");
441 return ret_val;
442 }
443 mii_bmcr_data |= BMCR_AUTO_NEG_EN | BMCR_RESTART_AUTO_NEG;
444 break;
445 case MEDIA_TYPE_100M_FULL:
446 mii_bmcr_data |= BMCR_SPEED_100 | BMCR_FULL_DUPLEX;
447 break;
448 case MEDIA_TYPE_100M_HALF:
449 mii_bmcr_data |= BMCR_SPEED_100;
450 break;
451 case MEDIA_TYPE_10M_FULL:
452 mii_bmcr_data |= BMCR_SPEED_10 | BMCR_FULL_DUPLEX;
453 break;
454 case MEDIA_TYPE_10M_HALF:
455 mii_bmcr_data |= BMCR_SPEED_10;
456 break;
457 default:
458 if (netif_msg_link(adapter))
459 dev_err(&pdev->dev, "Wrong Media type %d\n",
460 hw->media_type);
461 return -1;
462 break;
463 }
464
465 ret_val = atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data);
466 if (ret_val)
467 return ret_val;
468 hw->phy_configured = true;
469
470 return 0;
471 }
472
473 /*
474 * Detects the current speed and duplex settings of the hardware.
475 *
476 * hw - Struct containing variables accessed by shared code
477 * speed - Speed of the connection
478 * duplex - Duplex setting of the connection
479 */
480 int atl1c_get_speed_and_duplex(struct atl1c_hw *hw, u16 *speed, u16 *duplex)
481 {
482 int err;
483 u16 phy_data;
484
485 /* Read PHY Specific Status Register (17) */
486 err = atl1c_read_phy_reg(hw, MII_GIGA_PSSR, &phy_data);
487 if (err)
488 return err;
489
490 if (!(phy_data & GIGA_PSSR_SPD_DPLX_RESOLVED))
491 return -1;
492
493 switch (phy_data & GIGA_PSSR_SPEED) {
494 case GIGA_PSSR_1000MBS:
495 *speed = SPEED_1000;
496 break;
497 case GIGA_PSSR_100MBS:
498 *speed = SPEED_100;
499 break;
500 case GIGA_PSSR_10MBS:
501 *speed = SPEED_10;
502 break;
503 default:
504 return -1;
505 break;
506 }
507
508 if (phy_data & GIGA_PSSR_DPLX)
509 *duplex = FULL_DUPLEX;
510 else
511 *duplex = HALF_DUPLEX;
512
513 return 0;
514 }
515
516 int atl1c_restart_autoneg(struct atl1c_hw *hw)
517 {
518 int err = 0;
519 u16 mii_bmcr_data = BMCR_RESET;
520
521 err = atl1c_phy_setup_adv(hw);
522 if (err)
523 return err;
524 mii_bmcr_data |= BMCR_AUTO_NEG_EN | BMCR_RESTART_AUTO_NEG;
525
526 return atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data);
527 }