]> git.ipfire.org Git - people/pmueller/ipfire-2.x.git/blob - src/et131x/et1310_eeprom.c
Fix watchdog backup include.
[people/pmueller/ipfire-2.x.git] / src / et131x / et1310_eeprom.c
1 /*
2 * Agere Systems Inc.
3 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
4 *
5 * Copyright © 2005 Agere Systems Inc.
6 * All rights reserved.
7 * http://www.agere.com
8 *
9 *------------------------------------------------------------------------------
10 *
11 * et1310_eeprom.c - Code used to access the device's EEPROM
12 *
13 *------------------------------------------------------------------------------
14 *
15 * SOFTWARE LICENSE
16 *
17 * This software is provided subject to the following terms and conditions,
18 * which you should read carefully before using the software. Using this
19 * software indicates your acceptance of these terms and conditions. If you do
20 * not agree with these terms and conditions, do not use the software.
21 *
22 * Copyright © 2005 Agere Systems Inc.
23 * All rights reserved.
24 *
25 * Redistribution and use in source or binary forms, with or without
26 * modifications, are permitted provided that the following conditions are met:
27 *
28 * . Redistributions of source code must retain the above copyright notice, this
29 * list of conditions and the following Disclaimer as comments in the code as
30 * well as in the documentation and/or other materials provided with the
31 * distribution.
32 *
33 * . Redistributions in binary form must reproduce the above copyright notice,
34 * this list of conditions and the following Disclaimer in the documentation
35 * and/or other materials provided with the distribution.
36 *
37 * . Neither the name of Agere Systems Inc. nor the names of the contributors
38 * may be used to endorse or promote products derived from this software
39 * without specific prior written permission.
40 *
41 * Disclaimer
42 *
43 * THIS SOFTWARE IS PROVIDED \93AS IS\94 AND ANY EXPRESS OR IMPLIED WARRANTIES,
44 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
45 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
46 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
47 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
48 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
49 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
50 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
51 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
52 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
53 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
54 * DAMAGE.
55 *
56 */
57
58 #include "et131x_version.h"
59 #include "et131x_debug.h"
60 #include "et131x_defs.h"
61
62 #include <linux/pci.h>
63 #include <linux/init.h>
64 #include <linux/module.h>
65 #include <linux/types.h>
66 #include <linux/kernel.h>
67
68 #include <linux/sched.h>
69 #include <linux/ptrace.h>
70 #include <linux/slab.h>
71 #include <linux/ctype.h>
72 #include <linux/string.h>
73 #include <linux/timer.h>
74 #include <linux/interrupt.h>
75 #include <linux/in.h>
76 #include <linux/delay.h>
77 #include <asm/io.h>
78 #include <asm/system.h>
79 #include <asm/bitops.h>
80
81 #include <linux/netdevice.h>
82 #include <linux/etherdevice.h>
83 #include <linux/skbuff.h>
84 #include <linux/if_arp.h>
85 #include <linux/ioport.h>
86
87 #include "et1310_phy.h"
88 #include "et1310_pm.h"
89 #include "et1310_jagcore.h"
90 #include "et1310_eeprom.h"
91
92 #include "et131x_adapter.h"
93 #include "et131x_initpci.h"
94 #include "et131x_isr.h"
95
96 #include "et1310_tx.h"
97
98
99 /*
100 * EEPROM Defines
101 */
102
103 /* LBCIF Register Groups (addressed via 32-bit offsets) */
104 #define LBCIF_DWORD0_GROUP_OFFSET 0xAC
105 #define LBCIF_DWORD1_GROUP_OFFSET 0xB0
106
107 /* LBCIF Registers (addressed via 8-bit offsets) */
108 #define LBCIF_ADDRESS_REGISTER_OFFSET 0xAC
109 #define LBCIF_DATA_REGISTER_OFFSET 0xB0
110 #define LBCIF_CONTROL_REGISTER_OFFSET 0xB1
111 #define LBCIF_STATUS_REGISTER_OFFSET 0xB2
112
113 /* LBCIF Control Register Bits */
114 #define LBCIF_CONTROL_SEQUENTIAL_READ 0x01
115 #define LBCIF_CONTROL_PAGE_WRITE 0x02
116 #define LBCIF_CONTROL_UNUSED1 0x04
117 #define LBCIF_CONTROL_EEPROM_RELOAD 0x08
118 #define LBCIF_CONTROL_UNUSED2 0x10
119 #define LBCIF_CONTROL_TWO_BYTE_ADDR 0x20
120 #define LBCIF_CONTROL_I2C_WRITE 0x40
121 #define LBCIF_CONTROL_LBCIF_ENABLE 0x80
122
123 /* LBCIF Status Register Bits */
124 #define LBCIF_STATUS_PHY_QUEUE_AVAIL 0x01
125 #define LBCIF_STATUS_I2C_IDLE 0x02
126 #define LBCIF_STATUS_ACK_ERROR 0x04
127 #define LBCIF_STATUS_GENERAL_ERROR 0x08
128 #define LBCIF_STATUS_UNUSED 0x30
129 #define LBCIF_STATUS_CHECKSUM_ERROR 0x40
130 #define LBCIF_STATUS_EEPROM_PRESENT 0x80
131
132 /* Miscellaneous Constraints */
133 #define MAX_NUM_REGISTER_POLLS 1000
134 #define MAX_NUM_WRITE_RETRIES 2
135
136 /*
137 * Define macros that allow individual register values to be extracted from a
138 * DWORD1 register grouping
139 */
140 #define EXTRACT_DATA_REGISTER(x) (uint8_t)(x & 0xFF)
141 #define EXTRACT_STATUS_REGISTER(x) (uint8_t)((x >> 16) & 0xFF)
142 #define EXTRACT_CONTROL_REG(x) (uint8_t)((x >> 8) & 0xFF)
143
144 /**
145 * EepromWriteByte - Write a byte to the ET1310's EEPROM
146 * @pAdapter: pointer to our private adapter structure
147 * @unAddress: the address to write
148 * @bData: the value to write
149 * @unEepronId: the ID of the EEPROM
150 * @unAddressingMode: how the EEPROM is to be accessed
151 *
152 * Returns SUCCESS or FAILURE
153 */
154 int32_t EepromWriteByte(struct et131x_adapter *pAdapter, uint32_t unAddress,
155 uint8_t bData, uint32_t unEepromId,
156 uint32_t unAddressingMode)
157 {
158 struct pci_dev *pdev = pAdapter->pdev;
159 int32_t nIndex;
160 int32_t nRetries;
161 int32_t nError = false;
162 int32_t nI2CWriteActive = 0;
163 int32_t nWriteSuccessful = 0;
164 uint8_t bControl;
165 uint8_t bStatus = 0;
166 uint32_t unDword1 = 0;
167 uint32_t unData = 0;
168
169 /*
170 * The following excerpt is from "Serial EEPROM HW Design
171 * Specification" Version 0.92 (9/20/2004):
172 *
173 * Single Byte Writes
174 *
175 * For an EEPROM, an I2C single byte write is defined as a START
176 * condition followed by the device address, EEPROM address, one byte
177 * of data and a STOP condition. The STOP condition will trigger the
178 * EEPROM's internally timed write cycle to the nonvolatile memory.
179 * All inputs are disabled during this write cycle and the EEPROM will
180 * not respond to any access until the internal write is complete.
181 * The steps to execute a single byte write are as follows:
182 *
183 * 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
184 * bits 7,1:0 both equal to 1, at least once after reset.
185 * Subsequent operations need only to check that bits 1:0 are
186 * equal to 1 prior to starting a single byte write.
187 *
188 * 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0,
189 * and bits 1:0 both =0. Bit 5 should be set according to the
190 * type of EEPROM being accessed (1=two byte addressing, 0=one
191 * byte addressing).
192 *
193 * 3. Write the address to the LBCIF Address Register.
194 *
195 * 4. Write the data to the LBCIF Data Register (the I2C write will
196 * begin).
197 *
198 * 5. Monitor bit 1:0 of the LBCIF Status Register. When bits 1:0 are
199 * both equal to 1, the I2C write has completed and the internal
200 * write cycle of the EEPROM is about to start. (bits 1:0 = 01 is
201 * a legal state while waiting from both equal to 1, but bits
202 * 1:0 = 10 is invalid and implies that something is broken).
203 *
204 * 6. Check bit 3 of the LBCIF Status Register. If equal to 1, an
205 * error has occurred.
206 *
207 * 7. Check bit 2 of the LBCIF Status Register. If equal to 1 an ACK
208 * error has occurred on the address phase of the write. This
209 * could be due to an actual hardware failure or the EEPROM may
210 * still be in its internal write cycle from a previous write.
211 * This write operation was ignored and must be repeated later.
212 *
213 * 8. Set bit 6 of the LBCIF Control Register = 0. If another write is
214 * required, go to step 1.
215 */
216
217 /* Step 1: */
218 for (nIndex = 0; nIndex < MAX_NUM_REGISTER_POLLS; nIndex++) {
219 /* Read registers grouped in DWORD1 */
220 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP_OFFSET,
221 &unDword1)) {
222 nError = 1;
223 break;
224 }
225
226 bStatus = EXTRACT_STATUS_REGISTER(unDword1);
227
228 if (bStatus & LBCIF_STATUS_PHY_QUEUE_AVAIL &&
229 bStatus & LBCIF_STATUS_I2C_IDLE) {
230 /* bits 1:0 are equal to 1 */
231 break;
232 }
233 }
234
235 if (nError || (nIndex >= MAX_NUM_REGISTER_POLLS)) {
236 return FAILURE;
237 }
238
239 /* Step 2: */
240 bControl = 0;
241 bControl |= LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE;
242
243 if (unAddressingMode == DUAL_BYTE) {
244 bControl |= LBCIF_CONTROL_TWO_BYTE_ADDR;
245 }
246
247 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER_OFFSET,
248 bControl)) {
249 return FAILURE;
250 }
251
252 nI2CWriteActive = 1;
253
254 /* Prepare EEPROM address for Step 3 */
255 unAddress |= (unAddressingMode == DUAL_BYTE) ?
256 (unEepromId << 16) : (unEepromId << 8);
257
258 for (nRetries = 0; nRetries < MAX_NUM_WRITE_RETRIES; nRetries++) {
259 /* Step 3:*/
260 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER_OFFSET,
261 unAddress)) {
262 break;
263 }
264
265 /* Step 4: */
266 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER_OFFSET,
267 bData)) {
268 break;
269 }
270
271 /* Step 5: */
272 for (nIndex = 0; nIndex < MAX_NUM_REGISTER_POLLS; nIndex++) {
273 /* Read registers grouped in DWORD1 */
274 if (pci_read_config_dword(pdev,
275 LBCIF_DWORD1_GROUP_OFFSET,
276 &unDword1)) {
277 nError = 1;
278 break;
279 }
280
281 bStatus = EXTRACT_STATUS_REGISTER(unDword1);
282
283 if (bStatus & LBCIF_STATUS_PHY_QUEUE_AVAIL &&
284 bStatus & LBCIF_STATUS_I2C_IDLE) {
285 /* I2C write complete */
286 break;
287 }
288 }
289
290 if (nError || (nIndex >= MAX_NUM_REGISTER_POLLS)) {
291 break;
292 }
293
294 /*
295 * Step 6: Don't break here if we are revision 1, this is
296 * so we do a blind write for load bug.
297 */
298 if (bStatus & LBCIF_STATUS_GENERAL_ERROR
299 && pAdapter->RevisionID == 0) {
300 break;
301 }
302
303 /* Step 7 */
304 if (bStatus & LBCIF_STATUS_ACK_ERROR) {
305 /*
306 * This could be due to an actual hardware failure
307 * or the EEPROM may still be in its internal write
308 * cycle from a previous write. This write operation
309 * was ignored and must be repeated later.
310 */
311 udelay(10);
312 continue;
313 }
314
315 nWriteSuccessful = 1;
316 break;
317 }
318
319 /* Step 8: */
320 udelay(10);
321 nIndex = 0;
322 while (nI2CWriteActive) {
323 bControl &= ~LBCIF_CONTROL_I2C_WRITE;
324
325 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER_OFFSET,
326 bControl)) {
327 nWriteSuccessful = 0;
328 }
329
330 /* Do read until internal ACK_ERROR goes away meaning write
331 * completed
332 */
333 do {
334 pci_write_config_dword(pdev,
335 LBCIF_ADDRESS_REGISTER_OFFSET,
336 unAddress);
337 do {
338 pci_read_config_dword(pdev,
339 LBCIF_DATA_REGISTER_OFFSET, &unData);
340 } while ((unData & 0x00010000) == 0);
341 } while (unData & 0x00040000);
342
343 bControl = EXTRACT_CONTROL_REG(unData);
344
345 if (bControl != 0xC0 || nIndex == 10000) {
346 break;
347 }
348
349 nIndex++;
350 }
351
352 return nWriteSuccessful ? SUCCESS : FAILURE;
353 }
354
355 /**
356 * EepromReadByte - Read a byte from the ET1310's EEPROM
357 * @pAdapter: pointer to our private adapter structure
358 * @unAddress: the address from which to read
359 * @pbData: a pointer to a byte in which to store the value of the read
360 * @unEepronId: the ID of the EEPROM
361 * @unAddressingMode: how the EEPROM is to be accessed
362 *
363 * Returns SUCCESS or FAILURE
364 */
365 int32_t EepromReadByte(struct et131x_adapter *pAdapter, uint32_t unAddress,
366 uint8_t *pbData, uint32_t unEepromId,
367 uint32_t unAddressingMode)
368 {
369 struct pci_dev *pdev = pAdapter->pdev;
370 int32_t nIndex;
371 int32_t nError = 0;
372 uint8_t bControl;
373 uint8_t bStatus = 0;
374 uint32_t unDword1 = 0;
375
376 /*
377 * The following excerpt is from "Serial EEPROM HW Design
378 * Specification" Version 0.92 (9/20/2004):
379 *
380 * Single Byte Reads
381 *
382 * A single byte read is similar to the single byte write, with the
383 * exception of the data flow:
384 *
385 * 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
386 * bits 7,1:0 both equal to 1, at least once after reset.
387 * Subsequent operations need only to check that bits 1:0 are equal
388 * to 1 prior to starting a single byte read.
389 *
390 * 2. Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
391 * and bits 1:0 both =0. Bit 5 should be set according to the type
392 * of EEPROM being accessed (1=two byte addressing, 0=one byte
393 * addressing).
394 *
395 * 3. Write the address to the LBCIF Address Register (I2C read will
396 * begin).
397 *
398 * 4. Monitor bit 0 of the LBCIF Status Register. When =1, I2C read
399 * is complete. (if bit 1 =1 and bit 0 stays =0, a hardware failure
400 * has occurred).
401 *
402 * 5. Check bit 2 of the LBCIF Status Register. If =1, then an error
403 * has occurred. The data that has been returned from the PHY may
404 * be invalid.
405 *
406 * 6. Regardless of error status, read data byte from LBCIF Data
407 * Register. If another byte is required, go to step 1.
408 */
409
410 /* Step 1: */
411 for (nIndex = 0; nIndex < MAX_NUM_REGISTER_POLLS; nIndex++) {
412 /* Read registers grouped in DWORD1 */
413 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP_OFFSET,
414 &unDword1)) {
415 nError = 1;
416 break;
417 }
418
419 bStatus = EXTRACT_STATUS_REGISTER(unDword1);
420
421 if (bStatus & LBCIF_STATUS_PHY_QUEUE_AVAIL &&
422 bStatus & LBCIF_STATUS_I2C_IDLE) {
423 /* bits 1:0 are equal to 1 */
424 break;
425 }
426 }
427
428 if (nError || (nIndex >= MAX_NUM_REGISTER_POLLS)) {
429 return FAILURE;
430 }
431
432 /* Step 2: */
433 bControl = 0;
434 bControl |= LBCIF_CONTROL_LBCIF_ENABLE;
435
436 if (unAddressingMode == DUAL_BYTE) {
437 bControl |= LBCIF_CONTROL_TWO_BYTE_ADDR;
438 }
439
440 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER_OFFSET,
441 bControl)) {
442 return FAILURE;
443 }
444
445 /* Step 3: */
446 unAddress |= (unAddressingMode == DUAL_BYTE) ?
447 (unEepromId << 16) : (unEepromId << 8);
448
449 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER_OFFSET,
450 unAddress)) {
451 return FAILURE;
452 }
453
454 /* Step 4: */
455 for (nIndex = 0; nIndex < MAX_NUM_REGISTER_POLLS; nIndex++) {
456 /* Read registers grouped in DWORD1 */
457 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP_OFFSET,
458 &unDword1)) {
459 nError = 1;
460 break;
461 }
462
463 bStatus = EXTRACT_STATUS_REGISTER(unDword1);
464
465 if (bStatus & LBCIF_STATUS_PHY_QUEUE_AVAIL
466 && bStatus & LBCIF_STATUS_I2C_IDLE) {
467 /* I2C read complete */
468 break;
469 }
470 }
471
472 if (nError || (nIndex >= MAX_NUM_REGISTER_POLLS)) {
473 return FAILURE;
474 }
475
476 /* Step 6: */
477 *pbData = EXTRACT_DATA_REGISTER(unDword1);
478
479 return (bStatus & LBCIF_STATUS_ACK_ERROR) ? FAILURE : SUCCESS;
480 }