]> git.ipfire.org Git - thirdparty/gcc.git/blame - libiberty/hashtab.c
Fortran: Check that the ICE does not reappear [PR102597]
[thirdparty/gcc.git] / libiberty / hashtab.c
CommitLineData
a2f945c6 1/* An expandable hash tables datatype.
a945c346 2 Copyright (C) 1999-2024 Free Software Foundation, Inc.
a2f945c6
VM
3 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
4
5This file is part of the libiberty library.
6Libiberty is free software; you can redistribute it and/or
7modify it under the terms of the GNU Library General Public
8License as published by the Free Software Foundation; either
9version 2 of the License, or (at your option) any later version.
10
11Libiberty is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14Library General Public License for more details.
15
16You should have received a copy of the GNU Library General Public
17License along with libiberty; see the file COPYING.LIB. If
ee58dffd
NC
18not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
19Boston, MA 02110-1301, USA. */
a2f945c6
VM
20
21/* This package implements basic hash table functionality. It is possible
22 to search for an entry, create an entry and destroy an entry.
23
24 Elements in the table are generic pointers.
25
26 The size of the table is not fixed; if the occupancy of the table
27 grows too high the hash table will be expanded.
28
29 The abstract data implementation is based on generalized Algorithm D
30 from Knuth's book "The art of computer programming". Hash table is
31 expanded by creation of new hash table and transferring elements from
32 the old table to the new table. */
33
34#ifdef HAVE_CONFIG_H
35#include "config.h"
36#endif
37
6de9b8ff
PDM
38#include <sys/types.h>
39
a2f945c6
VM
40#ifdef HAVE_STDLIB_H
41#include <stdlib.h>
42#endif
d11ec6f0
ZW
43#ifdef HAVE_STRING_H
44#include <string.h>
45#endif
cf8e4b78
DH
46#ifdef HAVE_MALLOC_H
47#include <malloc.h>
48#endif
9bf3c9cc
RH
49#ifdef HAVE_LIMITS_H
50#include <limits.h>
51#endif
50cb834f
RO
52#ifdef HAVE_INTTYPES_H
53#include <inttypes.h>
54#endif
9bf3c9cc
RH
55#ifdef HAVE_STDINT_H
56#include <stdint.h>
57#endif
cf8e4b78 58
36dd3a44
JL
59#include <stdio.h>
60
a2f945c6 61#include "libiberty.h"
9bf3c9cc 62#include "ansidecl.h"
a2f945c6
VM
63#include "hashtab.h"
64
9bf3c9cc
RH
65#ifndef CHAR_BIT
66#define CHAR_BIT 8
67#endif
68
6da879de
GDR
69static unsigned int higher_prime_index (unsigned long);
70static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
71static hashval_t htab_mod (hashval_t, htab_t);
72static hashval_t htab_mod_m2 (hashval_t, htab_t);
73static hashval_t hash_pointer (const void *);
74static int eq_pointer (const void *, const void *);
75static int htab_expand (htab_t);
50b009c5 76static void **find_empty_slot_for_expand (htab_t, hashval_t);
18a94a2f
MM
77
78/* At some point, we could make these be NULL, and modify the
79 hash-table routines to handle NULL specially; that would avoid
80 function-call overhead for the common case of hashing pointers. */
81htab_hash htab_hash_pointer = hash_pointer;
82htab_eq htab_eq_pointer = eq_pointer;
0194e877 83
9bf3c9cc
RH
84/* Table of primes and multiplicative inverses.
85
86 Note that these are not minimally reduced inverses. Unlike when generating
87 code to divide by a constant, we want to be able to use the same algorithm
88 all the time. All of these inverses (are implied to) have bit 32 set.
89
90 For the record, here's the function that computed the table; it's a
91 vastly simplified version of the function of the same name from gcc. */
92
93#if 0
94unsigned int
95ceil_log2 (unsigned int x)
96{
97 int i;
98 for (i = 31; i >= 0 ; --i)
99 if (x > (1u << i))
100 return i+1;
101 abort ();
102}
a2f945c6 103
9bf3c9cc
RH
104unsigned int
105choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
106{
107 unsigned long long mhigh;
108 double nx;
109 int lgup, post_shift;
110 int pow, pow2;
111 int n = 32, precision = 32;
112
113 lgup = ceil_log2 (d);
114 pow = n + lgup;
115 pow2 = n + lgup - precision;
116
117 nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
118 mhigh = nx / d;
119
120 *shiftp = lgup - 1;
121 *mlp = mhigh;
122 return mhigh >> 32;
123}
124#endif
125
126struct prime_ent
127{
128 hashval_t prime;
129 hashval_t inv;
130 hashval_t inv_m2; /* inverse of prime-2 */
131 hashval_t shift;
132};
133
134static struct prime_ent const prime_tab[] = {
135 { 7, 0x24924925, 0x9999999b, 2 },
136 { 13, 0x3b13b13c, 0x745d1747, 3 },
137 { 31, 0x08421085, 0x1a7b9612, 4 },
138 { 61, 0x0c9714fc, 0x15b1e5f8, 5 },
139 { 127, 0x02040811, 0x0624dd30, 6 },
140 { 251, 0x05197f7e, 0x073260a5, 7 },
141 { 509, 0x01824366, 0x02864fc8, 8 },
142 { 1021, 0x00c0906d, 0x014191f7, 9 },
143 { 2039, 0x0121456f, 0x0161e69e, 10 },
144 { 4093, 0x00300902, 0x00501908, 11 },
145 { 8191, 0x00080041, 0x00180241, 12 },
146 { 16381, 0x000c0091, 0x00140191, 13 },
147 { 32749, 0x002605a5, 0x002a06e6, 14 },
148 { 65521, 0x000f00e2, 0x00110122, 15 },
149 { 131071, 0x00008001, 0x00018003, 16 },
150 { 262139, 0x00014002, 0x0001c004, 17 },
151 { 524287, 0x00002001, 0x00006001, 18 },
152 { 1048573, 0x00003001, 0x00005001, 19 },
153 { 2097143, 0x00004801, 0x00005801, 20 },
154 { 4194301, 0x00000c01, 0x00001401, 21 },
155 { 8388593, 0x00001e01, 0x00002201, 22 },
156 { 16777213, 0x00000301, 0x00000501, 23 },
157 { 33554393, 0x00001381, 0x00001481, 24 },
158 { 67108859, 0x00000141, 0x000001c1, 25 },
159 { 134217689, 0x000004e1, 0x00000521, 26 },
160 { 268435399, 0x00000391, 0x000003b1, 27 },
161 { 536870909, 0x00000019, 0x00000029, 28 },
162 { 1073741789, 0x0000008d, 0x00000095, 29 },
163 { 2147483647, 0x00000003, 0x00000007, 30 },
164 /* Avoid "decimal constant so large it is unsigned" for 4294967291. */
165 { 0xfffffffb, 0x00000006, 0x00000008, 31 }
166};
167
168/* The following function returns an index into the above table of the
169 nearest prime number which is greater than N, and near a power of two. */
170
171static unsigned int
6da879de 172higher_prime_index (unsigned long n)
a2f945c6 173{
9bf3c9cc
RH
174 unsigned int low = 0;
175 unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
a4c9b97e
MM
176
177 while (low != high)
178 {
9bf3c9cc
RH
179 unsigned int mid = low + (high - low) / 2;
180 if (n > prime_tab[mid].prime)
a4c9b97e
MM
181 low = mid + 1;
182 else
183 high = mid;
184 }
185
186 /* If we've run out of primes, abort. */
9bf3c9cc 187 if (n > prime_tab[low].prime)
a4c9b97e
MM
188 {
189 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
190 abort ();
191 }
192
9bf3c9cc 193 return low;
a2f945c6
VM
194}
195
18a94a2f
MM
196/* Returns non-zero if P1 and P2 are equal. */
197
4feeaae3 198static int
50b009c5 199eq_pointer (const void *p1, const void *p2)
18a94a2f
MM
200{
201 return p1 == p2;
202}
203
d9175b87 204
d7cf8390
GDR
205/* The parens around the function names in the next two definitions
206 are essential in order to prevent macro expansions of the name.
207 The bodies, however, are expanded as expected, so they are not
208 recursive definitions. */
209
210/* Return the current size of given hash table. */
211
212#define htab_size(htab) ((htab)->size)
213
214size_t
215(htab_size) (htab_t htab)
d9175b87 216{
d7cf8390 217 return htab_size (htab);
d9175b87
RH
218}
219
220/* Return the current number of elements in given hash table. */
221
d7cf8390
GDR
222#define htab_elements(htab) ((htab)->n_elements - (htab)->n_deleted)
223
224size_t
225(htab_elements) (htab_t htab)
d9175b87 226{
d7cf8390 227 return htab_elements (htab);
d9175b87
RH
228}
229
9bf3c9cc
RH
230/* Return X % Y. */
231
232static inline hashval_t
6da879de 233htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
9bf3c9cc
RH
234{
235 /* The multiplicative inverses computed above are for 32-bit types, and
236 requires that we be able to compute a highpart multiply. */
237#ifdef UNSIGNED_64BIT_TYPE
238 __extension__ typedef UNSIGNED_64BIT_TYPE ull;
239 if (sizeof (hashval_t) * CHAR_BIT <= 32)
240 {
241 hashval_t t1, t2, t3, t4, q, r;
242
243 t1 = ((ull)x * inv) >> 32;
244 t2 = x - t1;
245 t3 = t2 >> 1;
246 t4 = t1 + t3;
247 q = t4 >> shift;
248 r = x - (q * y);
249
250 return r;
251 }
252#endif
253
254 /* Otherwise just use the native division routines. */
255 return x % y;
256}
257
d9175b87
RH
258/* Compute the primary hash for HASH given HTAB's current size. */
259
260static inline hashval_t
6da879de 261htab_mod (hashval_t hash, htab_t htab)
d9175b87 262{
9bf3c9cc
RH
263 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
264 return htab_mod_1 (hash, p->prime, p->inv, p->shift);
d9175b87
RH
265}
266
267/* Compute the secondary hash for HASH given HTAB's current size. */
268
269static inline hashval_t
6da879de 270htab_mod_m2 (hashval_t hash, htab_t htab)
d9175b87 271{
9bf3c9cc
RH
272 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
273 return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
d9175b87
RH
274}
275
a2f945c6
VM
276/* This function creates table with length slightly longer than given
277 source length. Created hash table is initiated as empty (all the
a3648cfc 278 hash table entries are HTAB_EMPTY_ENTRY). The function returns the
e2500fed 279 created hash table, or NULL if memory allocation fails. */
a2f945c6 280
5194cf08 281htab_t
6da879de
GDR
282htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
283 htab_del del_f, htab_alloc alloc_f, htab_free free_f)
a9429e29
LB
284{
285 return htab_create_typed_alloc (size, hash_f, eq_f, del_f, alloc_f, alloc_f,
286 free_f);
287}
288
289/* As above, but uses the variants of ALLOC_F and FREE_F which accept
290 an extra argument. */
291
292htab_t
293htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
294 htab_del del_f, void *alloc_arg,
295 htab_alloc_with_arg alloc_f,
296 htab_free_with_arg free_f)
a2f945c6 297{
5194cf08 298 htab_t result;
9bf3c9cc
RH
299 unsigned int size_prime_index;
300
301 size_prime_index = higher_prime_index (size);
302 size = prime_tab[size_prime_index].prime;
a2f945c6 303
a9429e29 304 result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
d50d20ec
HPN
305 if (result == NULL)
306 return NULL;
50b009c5 307 result->entries = (void **) (*alloc_f) (alloc_arg, size, sizeof (void *));
d50d20ec
HPN
308 if (result->entries == NULL)
309 {
e2500fed 310 if (free_f != NULL)
a9429e29 311 (*free_f) (alloc_arg, result);
d50d20ec
HPN
312 return NULL;
313 }
d50d20ec 314 result->size = size;
9bf3c9cc 315 result->size_prime_index = size_prime_index;
d50d20ec
HPN
316 result->hash_f = hash_f;
317 result->eq_f = eq_f;
318 result->del_f = del_f;
a9429e29
LB
319 result->alloc_arg = alloc_arg;
320 result->alloc_with_arg_f = alloc_f;
321 result->free_with_arg_f = free_f;
a2f945c6
VM
322 return result;
323}
324
a9429e29
LB
325/*
326
996c0cb0
RW
327@deftypefn Supplemental htab_t htab_create_typed_alloc (size_t @var{size}, @
328htab_hash @var{hash_f}, htab_eq @var{eq_f}, htab_del @var{del_f}, @
329htab_alloc @var{alloc_tab_f}, htab_alloc @var{alloc_f}, @
a9429e29
LB
330htab_free @var{free_f})
331
332This function creates a hash table that uses two different allocators
333@var{alloc_tab_f} and @var{alloc_f} to use for allocating the table itself
334and its entries respectively. This is useful when variables of different
335types need to be allocated with different allocators.
336
337The created hash table is slightly larger than @var{size} and it is
338initially empty (all the hash table entries are @code{HTAB_EMPTY_ENTRY}).
339The function returns the created hash table, or @code{NULL} if memory
340allocation fails.
341
342@end deftypefn
343
344*/
74828682
DJ
345
346htab_t
a9429e29
LB
347htab_create_typed_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
348 htab_del del_f, htab_alloc alloc_tab_f,
349 htab_alloc alloc_f, htab_free free_f)
74828682
DJ
350{
351 htab_t result;
9bf3c9cc
RH
352 unsigned int size_prime_index;
353
354 size_prime_index = higher_prime_index (size);
355 size = prime_tab[size_prime_index].prime;
74828682 356
a9429e29 357 result = (htab_t) (*alloc_tab_f) (1, sizeof (struct htab));
74828682
DJ
358 if (result == NULL)
359 return NULL;
50b009c5 360 result->entries = (void **) (*alloc_f) (size, sizeof (void *));
74828682
DJ
361 if (result->entries == NULL)
362 {
363 if (free_f != NULL)
a9429e29 364 (*free_f) (result);
74828682
DJ
365 return NULL;
366 }
367 result->size = size;
9bf3c9cc 368 result->size_prime_index = size_prime_index;
74828682
DJ
369 result->hash_f = hash_f;
370 result->eq_f = eq_f;
371 result->del_f = del_f;
a9429e29
LB
372 result->alloc_f = alloc_f;
373 result->free_f = free_f;
74828682
DJ
374 return result;
375}
376
a9429e29 377
74828682
DJ
378/* Update the function pointers and allocation parameter in the htab_t. */
379
380void
6da879de 381htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
50b009c5 382 htab_del del_f, void *alloc_arg,
6da879de 383 htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
74828682
DJ
384{
385 htab->hash_f = hash_f;
386 htab->eq_f = eq_f;
387 htab->del_f = del_f;
388 htab->alloc_arg = alloc_arg;
389 htab->alloc_with_arg_f = alloc_f;
390 htab->free_with_arg_f = free_f;
391}
392
045b3a49
GK
393/* These functions exist solely for backward compatibility. */
394
395#undef htab_create
396htab_t
6da879de 397htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
045b3a49
GK
398{
399 return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
400}
401
402htab_t
6da879de 403htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
045b3a49
GK
404{
405 return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
406}
407
a2f945c6
VM
408/* This function frees all memory allocated for given hash table.
409 Naturally the hash table must already exist. */
410
411void
6da879de 412htab_delete (htab_t htab)
a2f945c6 413{
d9175b87 414 size_t size = htab_size (htab);
50b009c5 415 void **entries = htab->entries;
5dc9cffd 416 int i;
e38992e8 417
5dc9cffd 418 if (htab->del_f)
d9175b87 419 for (i = size - 1; i >= 0; i--)
a3648cfc 420 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
d9175b87 421 (*htab->del_f) (entries[i]);
5dc9cffd 422
e2500fed
GK
423 if (htab->free_f != NULL)
424 {
d9175b87 425 (*htab->free_f) (entries);
e2500fed
GK
426 (*htab->free_f) (htab);
427 }
74828682
DJ
428 else if (htab->free_with_arg_f != NULL)
429 {
d9175b87 430 (*htab->free_with_arg_f) (htab->alloc_arg, entries);
74828682
DJ
431 (*htab->free_with_arg_f) (htab->alloc_arg, htab);
432 }
a2f945c6
VM
433}
434
435/* This function clears all entries in the given hash table. */
436
437void
6da879de 438htab_empty (htab_t htab)
a2f945c6 439{
d9175b87 440 size_t size = htab_size (htab);
50b009c5 441 void **entries = htab->entries;
5dc9cffd 442 int i;
e38992e8 443
5dc9cffd 444 if (htab->del_f)
d9175b87 445 for (i = size - 1; i >= 0; i--)
a3648cfc 446 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
d9175b87 447 (*htab->del_f) (entries[i]);
5dc9cffd 448
3050098b 449 /* Instead of clearing megabyte, downsize the table. */
50b009c5 450 if (size > 1024*1024 / sizeof (void *))
3050098b 451 {
50b009c5 452 int nindex = higher_prime_index (1024 / sizeof (void *));
3050098b
JH
453 int nsize = prime_tab[nindex].prime;
454
455 if (htab->free_f != NULL)
456 (*htab->free_f) (htab->entries);
457 else if (htab->free_with_arg_f != NULL)
458 (*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
459 if (htab->alloc_with_arg_f != NULL)
50b009c5 460 htab->entries = (void **) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
5dac43b4 461 sizeof (void *));
3050098b 462 else
5dac43b4 463 htab->entries = (void **) (*htab->alloc_f) (nsize, sizeof (void *));
3050098b
JH
464 htab->size = nsize;
465 htab->size_prime_index = nindex;
466 }
467 else
50b009c5 468 memset (entries, 0, size * sizeof (void *));
3050098b
JH
469 htab->n_deleted = 0;
470 htab->n_elements = 0;
a2f945c6
VM
471}
472
8c5d513f
BS
473/* Similar to htab_find_slot, but without several unwanted side effects:
474 - Does not call htab->eq_f when it finds an existing entry.
475 - Does not change the count of elements/searches/collisions in the
476 hash table.
477 This function also assumes there are no deleted entries in the table.
478 HASH is the hash value for the element to be inserted. */
e38992e8 479
50b009c5 480static void **
6da879de 481find_empty_slot_for_expand (htab_t htab, hashval_t hash)
8c5d513f 482{
d9175b87
RH
483 hashval_t index = htab_mod (hash, htab);
484 size_t size = htab_size (htab);
50b009c5 485 void **slot = htab->entries + index;
4fc4e478
RH
486 hashval_t hash2;
487
a3648cfc 488 if (*slot == HTAB_EMPTY_ENTRY)
4fc4e478 489 return slot;
a3648cfc 490 else if (*slot == HTAB_DELETED_ENTRY)
4fc4e478 491 abort ();
8c5d513f 492
d9175b87 493 hash2 = htab_mod_m2 (hash, htab);
8c5d513f
BS
494 for (;;)
495 {
4fc4e478
RH
496 index += hash2;
497 if (index >= size)
498 index -= size;
e38992e8 499
4fc4e478 500 slot = htab->entries + index;
a3648cfc 501 if (*slot == HTAB_EMPTY_ENTRY)
8c5d513f 502 return slot;
a3648cfc 503 else if (*slot == HTAB_DELETED_ENTRY)
8c5d513f 504 abort ();
8c5d513f
BS
505 }
506}
507
a2f945c6
VM
508/* The following function changes size of memory allocated for the
509 entries and repeatedly inserts the table elements. The occupancy
510 of the table after the call will be about 50%. Naturally the hash
511 table must already exist. Remember also that the place of the
d50d20ec
HPN
512 table entries is changed. If memory allocation failures are allowed,
513 this function will return zero, indicating that the table could not be
514 expanded. If all goes well, it will return a non-zero value. */
a2f945c6 515
d50d20ec 516static int
6da879de 517htab_expand (htab_t htab)
a2f945c6 518{
50b009c5
ML
519 void **oentries;
520 void **olimit;
521 void **p;
522 void **nentries;
9bf3c9cc
RH
523 size_t nsize, osize, elts;
524 unsigned int oindex, nindex;
5194cf08
ZW
525
526 oentries = htab->entries;
9bf3c9cc
RH
527 oindex = htab->size_prime_index;
528 osize = htab->size;
529 olimit = oentries + osize;
530 elts = htab_elements (htab);
5194cf08 531
0a8e3de3
JH
532 /* Resize only when table after removal of unused elements is either
533 too full or too empty. */
9bf3c9cc
RH
534 if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
535 {
536 nindex = higher_prime_index (elts * 2);
537 nsize = prime_tab[nindex].prime;
538 }
0a8e3de3 539 else
9bf3c9cc
RH
540 {
541 nindex = oindex;
542 nsize = osize;
543 }
d50d20ec 544
74828682 545 if (htab->alloc_with_arg_f != NULL)
50b009c5 546 nentries = (void **) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
5dac43b4 547 sizeof (void *));
74828682 548 else
5dac43b4 549 nentries = (void **) (*htab->alloc_f) (nsize, sizeof (void *));
e2500fed
GK
550 if (nentries == NULL)
551 return 0;
552 htab->entries = nentries;
120cdf68 553 htab->size = nsize;
9bf3c9cc 554 htab->size_prime_index = nindex;
5194cf08
ZW
555 htab->n_elements -= htab->n_deleted;
556 htab->n_deleted = 0;
557
558 p = oentries;
559 do
560 {
50b009c5 561 void *x = *p;
e38992e8 562
a3648cfc 563 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
5194cf08 564 {
50b009c5 565 void **q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
e38992e8 566
5194cf08
ZW
567 *q = x;
568 }
e38992e8 569
5194cf08
ZW
570 p++;
571 }
572 while (p < olimit);
e38992e8 573
e2500fed
GK
574 if (htab->free_f != NULL)
575 (*htab->free_f) (oentries);
74828682
DJ
576 else if (htab->free_with_arg_f != NULL)
577 (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
d50d20ec 578 return 1;
a2f945c6
VM
579}
580
5194cf08
ZW
581/* This function searches for a hash table entry equal to the given
582 element. It cannot be used to insert or delete an element. */
583
50b009c5
ML
584void *
585htab_find_with_hash (htab_t htab, const void *element, hashval_t hash)
a2f945c6 586{
d9175b87 587 hashval_t index, hash2;
5194cf08 588 size_t size;
50b009c5 589 void *entry;
5194cf08
ZW
590
591 htab->searches++;
d9175b87
RH
592 size = htab_size (htab);
593 index = htab_mod (hash, htab);
a2f945c6 594
0194e877 595 entry = htab->entries[index];
a3648cfc
DB
596 if (entry == HTAB_EMPTY_ENTRY
597 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
0194e877
ZW
598 return entry;
599
d9175b87 600 hash2 = htab_mod_m2 (hash, htab);
5194cf08 601 for (;;)
a2f945c6 602 {
5194cf08
ZW
603 htab->collisions++;
604 index += hash2;
605 if (index >= size)
606 index -= size;
0194e877
ZW
607
608 entry = htab->entries[index];
a3648cfc
DB
609 if (entry == HTAB_EMPTY_ENTRY
610 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
0194e877 611 return entry;
a2f945c6 612 }
5194cf08
ZW
613}
614
8c5d513f
BS
615/* Like htab_find_slot_with_hash, but compute the hash value from the
616 element. */
e38992e8 617
50b009c5
ML
618void *
619htab_find (htab_t htab, const void *element)
8c5d513f
BS
620{
621 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
622}
623
5194cf08
ZW
624/* This function searches for a hash table slot containing an entry
625 equal to the given element. To delete an entry, call this with
6a88516c
BE
626 insert=NO_INSERT, then call htab_clear_slot on the slot returned
627 (possibly after doing some checks). To insert an entry, call this
628 with insert=INSERT, then write the value you want into the returned
629 slot. When inserting an entry, NULL may be returned if memory
630 allocation fails. */
5194cf08 631
50b009c5
ML
632void **
633htab_find_slot_with_hash (htab_t htab, const void *element,
6da879de 634 hashval_t hash, enum insert_option insert)
5194cf08 635{
50b009c5 636 void **first_deleted_slot;
d9175b87 637 hashval_t index, hash2;
5194cf08 638 size_t size;
50b009c5 639 void *entry;
5194cf08 640
d9175b87
RH
641 size = htab_size (htab);
642 if (insert == INSERT && size * 3 <= htab->n_elements * 4)
643 {
644 if (htab_expand (htab) == 0)
645 return NULL;
646 size = htab_size (htab);
647 }
5194cf08 648
d9175b87 649 index = htab_mod (hash, htab);
5194cf08 650
a2f945c6 651 htab->searches++;
5194cf08
ZW
652 first_deleted_slot = NULL;
653
4fc4e478 654 entry = htab->entries[index];
a3648cfc 655 if (entry == HTAB_EMPTY_ENTRY)
4fc4e478 656 goto empty_entry;
a3648cfc 657 else if (entry == HTAB_DELETED_ENTRY)
4fc4e478
RH
658 first_deleted_slot = &htab->entries[index];
659 else if ((*htab->eq_f) (entry, element))
660 return &htab->entries[index];
661
d9175b87 662 hash2 = htab_mod_m2 (hash, htab);
5194cf08 663 for (;;)
a2f945c6 664 {
4fc4e478
RH
665 htab->collisions++;
666 index += hash2;
667 if (index >= size)
668 index -= size;
669
670 entry = htab->entries[index];
a3648cfc 671 if (entry == HTAB_EMPTY_ENTRY)
4fc4e478 672 goto empty_entry;
a3648cfc 673 else if (entry == HTAB_DELETED_ENTRY)
5194cf08
ZW
674 {
675 if (!first_deleted_slot)
676 first_deleted_slot = &htab->entries[index];
677 }
4fc4e478 678 else if ((*htab->eq_f) (entry, element))
e38992e8 679 return &htab->entries[index];
a2f945c6 680 }
4fc4e478
RH
681
682 empty_entry:
683 if (insert == NO_INSERT)
684 return NULL;
685
4fc4e478
RH
686 if (first_deleted_slot)
687 {
e0432c1c 688 htab->n_deleted--;
a3648cfc 689 *first_deleted_slot = HTAB_EMPTY_ENTRY;
4fc4e478
RH
690 return first_deleted_slot;
691 }
692
e0432c1c 693 htab->n_elements++;
4fc4e478 694 return &htab->entries[index];
a2f945c6
VM
695}
696
8c5d513f
BS
697/* Like htab_find_slot_with_hash, but compute the hash value from the
698 element. */
e38992e8 699
50b009c5
ML
700void **
701htab_find_slot (htab_t htab, const void *element, enum insert_option insert)
8c5d513f
BS
702{
703 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
704 insert);
705}
706
7f96816a
JL
707/* This function deletes an element with the given value from hash
708 table (the hash is computed from the element). If there is no matching
709 element in the hash table, this function does nothing. */
710
711void
50b009c5 712htab_remove_elt (htab_t htab, const void *element)
7f96816a
JL
713{
714 htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
715}
716
717
5194cf08
ZW
718/* This function deletes an element with the given value from hash
719 table. If there is no matching element in the hash table, this
720 function does nothing. */
a2f945c6
VM
721
722void
50b009c5 723htab_remove_elt_with_hash (htab_t htab, const void *element, hashval_t hash)
a2f945c6 724{
50b009c5 725 void **slot;
a2f945c6 726
7f96816a 727 slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
62de703f 728 if (slot == NULL)
5194cf08
ZW
729 return;
730
5dc9cffd
ZW
731 if (htab->del_f)
732 (*htab->del_f) (*slot);
733
a3648cfc 734 *slot = HTAB_DELETED_ENTRY;
5194cf08 735 htab->n_deleted++;
a2f945c6
VM
736}
737
5194cf08
ZW
738/* This function clears a specified slot in a hash table. It is
739 useful when you've already done the lookup and don't want to do it
740 again. */
ed38f5d5
ZW
741
742void
50b009c5 743htab_clear_slot (htab_t htab, void **slot)
ed38f5d5 744{
d9175b87 745 if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
a3648cfc 746 || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
ed38f5d5 747 abort ();
e38992e8 748
5dc9cffd
ZW
749 if (htab->del_f)
750 (*htab->del_f) (*slot);
e38992e8 751
a3648cfc 752 *slot = HTAB_DELETED_ENTRY;
5194cf08 753 htab->n_deleted++;
ed38f5d5
ZW
754}
755
756/* This function scans over the entire hash table calling
757 CALLBACK for each live entry. If CALLBACK returns false,
758 the iteration stops. INFO is passed as CALLBACK's second
759 argument. */
760
761void
50b009c5 762htab_traverse_noresize (htab_t htab, htab_trav callback, void *info)
ed38f5d5 763{
50b009c5
ML
764 void **slot;
765 void **limit;
a3648cfc 766
0a8e3de3 767 slot = htab->entries;
d9175b87 768 limit = slot + htab_size (htab);
e38992e8 769
5194cf08
ZW
770 do
771 {
50b009c5 772 void *x = *slot;
e38992e8 773
a3648cfc 774 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
8c5d513f 775 if (!(*callback) (slot, info))
5194cf08
ZW
776 break;
777 }
778 while (++slot < limit);
ed38f5d5
ZW
779}
780
dbccdc42
JH
781/* Like htab_traverse_noresize, but does resize the table when it is
782 too empty to improve effectivity of subsequent calls. */
783
784void
50b009c5 785htab_traverse (htab_t htab, htab_trav callback, void *info)
dbccdc42 786{
a46f975b
JJ
787 size_t size = htab_size (htab);
788 if (htab_elements (htab) * 8 < size && size > 32)
dbccdc42
JH
789 htab_expand (htab);
790
791 htab_traverse_noresize (htab, callback, info);
792}
793
e38992e8
RK
794/* Return the fraction of fixed collisions during all work with given
795 hash table. */
a2f945c6 796
5194cf08 797double
6da879de 798htab_collisions (htab_t htab)
a2f945c6 799{
e38992e8 800 if (htab->searches == 0)
5194cf08 801 return 0.0;
e38992e8
RK
802
803 return (double) htab->collisions / (double) htab->searches;
a2f945c6 804}
9e0ba685 805
0ed5305d
RH
806/* Hash P as a null-terminated string.
807
808 Copied from gcc/hashtable.c. Zack had the following to say with respect
809 to applicability, though note that unlike hashtable.c, this hash table
810 implementation re-hashes rather than chain buckets.
811
812 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
813 From: Zack Weinberg <zackw@panix.com>
814 Date: Fri, 17 Aug 2001 02:15:56 -0400
815
816 I got it by extracting all the identifiers from all the source code
817 I had lying around in mid-1999, and testing many recurrences of
818 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
819 prime numbers or the appropriate identity. This was the best one.
820 I don't remember exactly what constituted "best", except I was
821 looking at bucket-length distributions mostly.
822
823 So it should be very good at hashing identifiers, but might not be
824 as good at arbitrary strings.
825
826 I'll add that it thoroughly trounces the hash functions recommended
827 for this use at http://burtleburtle.net/bob/hash/index.html, both
828 on speed and bucket distribution. I haven't tried it against the
829 function they just started using for Perl's hashes. */
9e0ba685
RH
830
831hashval_t
50b009c5 832htab_hash_string (const void *p)
9e0ba685
RH
833{
834 const unsigned char *str = (const unsigned char *) p;
835 hashval_t r = 0;
836 unsigned char c;
837
838 while ((c = *str++) != 0)
839 r = r * 67 + c - 113;
840
841 return r;
842}
5cc5a0d0 843
77380c68
TT
844/* An equality function for null-terminated strings. */
845int
846htab_eq_string (const void *a, const void *b)
847{
848 return strcmp ((const char *) a, (const char *) b) == 0;
849}
850
5cc5a0d0
JM
851/* DERIVED FROM:
852--------------------------------------------------------------------
853lookup2.c, by Bob Jenkins, December 1996, Public Domain.
854hash(), hash2(), hash3, and mix() are externally useful functions.
855Routines to test the hash are included if SELF_TEST is defined.
856You can use this free for any purpose. It has no warranty.
857--------------------------------------------------------------------
858*/
859
860/*
861--------------------------------------------------------------------
862mix -- mix 3 32-bit values reversibly.
863For every delta with one or two bit set, and the deltas of all three
864 high bits or all three low bits, whether the original value of a,b,c
865 is almost all zero or is uniformly distributed,
866* If mix() is run forward or backward, at least 32 bits in a,b,c
867 have at least 1/4 probability of changing.
868* If mix() is run forward, every bit of c will change between 1/3 and
869 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
870mix() was built out of 36 single-cycle latency instructions in a
871 structure that could supported 2x parallelism, like so:
872 a -= b;
873 a -= c; x = (c>>13);
874 b -= c; a ^= x;
875 b -= a; x = (a<<8);
876 c -= a; b ^= x;
877 c -= b; x = (b>>13);
878 ...
879 Unfortunately, superscalar Pentiums and Sparcs can't take advantage
880 of that parallelism. They've also turned some of those single-cycle
881 latency instructions into multi-cycle latency instructions. Still,
882 this is the fastest good hash I could find. There were about 2^^68
883 to choose from. I only looked at a billion or so.
884--------------------------------------------------------------------
885*/
886/* same, but slower, works on systems that might have 8 byte hashval_t's */
887#define mix(a,b,c) \
888{ \
889 a -= b; a -= c; a ^= (c>>13); \
890 b -= c; b -= a; b ^= (a<< 8); \
891 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
892 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
893 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
894 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
895 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
896 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
897 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
898}
899
900/*
901--------------------------------------------------------------------
902hash() -- hash a variable-length key into a 32-bit value
903 k : the key (the unaligned variable-length array of bytes)
904 len : the length of the key, counting by bytes
905 level : can be any 4-byte value
906Returns a 32-bit value. Every bit of the key affects every bit of
907the return value. Every 1-bit and 2-bit delta achieves avalanche.
908About 36+6len instructions.
909
910The best hash table sizes are powers of 2. There is no need to do
911mod a prime (mod is sooo slow!). If you need less than 32 bits,
912use a bitmask. For example, if you need only 10 bits, do
913 h = (h & hashmask(10));
914In which case, the hash table should have hashsize(10) elements.
915
916If you are hashing n strings (ub1 **)k, do it like this:
917 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
918
919By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this
920code any way you wish, private, educational, or commercial. It's free.
921
922See http://burtleburtle.net/bob/hash/evahash.html
923Use for hash table lookup, or anything where one collision in 2^32 is
924acceptable. Do NOT use for cryptographic purposes.
925--------------------------------------------------------------------
926*/
927
6da879de 928hashval_t
50b009c5 929iterative_hash (const void *k_in /* the key */,
6da879de
GDR
930 register size_t length /* the length of the key */,
931 register hashval_t initval /* the previous hash, or
932 an arbitrary value */)
5cc5a0d0
JM
933{
934 register const unsigned char *k = (const unsigned char *)k_in;
935 register hashval_t a,b,c,len;
936
937 /* Set up the internal state */
938 len = length;
939 a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
940 c = initval; /* the previous hash value */
941
942 /*---------------------------------------- handle most of the key */
52ac4c6b
RB
943 /* Provide specialization for the aligned case for targets that cannot
944 efficiently perform misaligned loads of a merged access. */
945 if ((((size_t)k)&3) == 0)
946 while (len >= 12)
5cc5a0d0 947 {
52ac4c6b
RB
948 a += (k[0] | ((hashval_t)k[1]<<8) | ((hashval_t)k[2]<<16) | ((hashval_t)k[3]<<24));
949 b += (k[4] | ((hashval_t)k[5]<<8) | ((hashval_t)k[6]<<16) | ((hashval_t)k[7]<<24));
950 c += (k[8] | ((hashval_t)k[9]<<8) | ((hashval_t)k[10]<<16)| ((hashval_t)k[11]<<24));
5cc5a0d0
JM
951 mix(a,b,c);
952 k += 12; len -= 12;
953 }
954 else /* unaligned */
5cc5a0d0
JM
955 while (len >= 12)
956 {
52ac4c6b
RB
957 a += (k[0] | ((hashval_t)k[1]<<8) | ((hashval_t)k[2]<<16) | ((hashval_t)k[3]<<24));
958 b += (k[4] | ((hashval_t)k[5]<<8) | ((hashval_t)k[6]<<16) | ((hashval_t)k[7]<<24));
959 c += (k[8] | ((hashval_t)k[9]<<8) | ((hashval_t)k[10]<<16)| ((hashval_t)k[11]<<24));
5cc5a0d0
JM
960 mix(a,b,c);
961 k += 12; len -= 12;
962 }
963
964 /*------------------------------------- handle the last 11 bytes */
965 c += length;
966 switch(len) /* all the case statements fall through */
967 {
c4ec8585
MW
968 case 11: c+=((hashval_t)k[10]<<24); /* fall through */
969 case 10: c+=((hashval_t)k[9]<<16); /* fall through */
970 case 9 : c+=((hashval_t)k[8]<<8); /* fall through */
5cc5a0d0 971 /* the first byte of c is reserved for the length */
c4ec8585
MW
972 case 8 : b+=((hashval_t)k[7]<<24); /* fall through */
973 case 7 : b+=((hashval_t)k[6]<<16); /* fall through */
974 case 6 : b+=((hashval_t)k[5]<<8); /* fall through */
975 case 5 : b+=k[4]; /* fall through */
976 case 4 : a+=((hashval_t)k[3]<<24); /* fall through */
977 case 3 : a+=((hashval_t)k[2]<<16); /* fall through */
978 case 2 : a+=((hashval_t)k[1]<<8); /* fall through */
5cc5a0d0
JM
979 case 1 : a+=k[0];
980 /* case 0: nothing left to add */
981 }
982 mix(a,b,c);
983 /*-------------------------------------------- report the result */
984 return c;
985}
86210f13
AK
986
987/* Returns a hash code for pointer P. Simplified version of evahash */
988
989static hashval_t
50b009c5 990hash_pointer (const void *p)
86210f13
AK
991{
992 intptr_t v = (intptr_t) p;
993 unsigned a, b, c;
994
995 a = b = 0x9e3779b9;
b768e8cf
DE
996 a += v >> (sizeof (intptr_t) * CHAR_BIT / 2);
997 b += v & (((intptr_t) 1 << (sizeof (intptr_t) * CHAR_BIT / 2)) - 1);
86210f13
AK
998 c = 0x42135234;
999 mix (a, b, c);
1000 return c;
1001}