]> git.ipfire.org Git - thirdparty/gcc.git/blob - libiberty/hashtab.c
Daily bump.
[thirdparty/gcc.git] / libiberty / hashtab.c
1 /* An expandable hash tables datatype.
2 Copyright (C) 1999-2020 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
4
5 This file is part of the libiberty library.
6 Libiberty is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
10
11 Libiberty is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
15
16 You should have received a copy of the GNU Library General Public
17 License along with libiberty; see the file COPYING.LIB. If
18 not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
19 Boston, MA 02110-1301, USA. */
20
21 /* This package implements basic hash table functionality. It is possible
22 to search for an entry, create an entry and destroy an entry.
23
24 Elements in the table are generic pointers.
25
26 The size of the table is not fixed; if the occupancy of the table
27 grows too high the hash table will be expanded.
28
29 The abstract data implementation is based on generalized Algorithm D
30 from Knuth's book "The art of computer programming". Hash table is
31 expanded by creation of new hash table and transferring elements from
32 the old table to the new table. */
33
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
37
38 #include <sys/types.h>
39
40 #ifdef HAVE_STDLIB_H
41 #include <stdlib.h>
42 #endif
43 #ifdef HAVE_STRING_H
44 #include <string.h>
45 #endif
46 #ifdef HAVE_MALLOC_H
47 #include <malloc.h>
48 #endif
49 #ifdef HAVE_LIMITS_H
50 #include <limits.h>
51 #endif
52 #ifdef HAVE_INTTYPES_H
53 #include <inttypes.h>
54 #endif
55 #ifdef HAVE_STDINT_H
56 #include <stdint.h>
57 #endif
58
59 #include <stdio.h>
60
61 #include "libiberty.h"
62 #include "ansidecl.h"
63 #include "hashtab.h"
64
65 #ifndef CHAR_BIT
66 #define CHAR_BIT 8
67 #endif
68
69 static unsigned int higher_prime_index (unsigned long);
70 static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
71 static hashval_t htab_mod (hashval_t, htab_t);
72 static hashval_t htab_mod_m2 (hashval_t, htab_t);
73 static hashval_t hash_pointer (const void *);
74 static int eq_pointer (const void *, const void *);
75 static int htab_expand (htab_t);
76 static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
77
78 /* At some point, we could make these be NULL, and modify the
79 hash-table routines to handle NULL specially; that would avoid
80 function-call overhead for the common case of hashing pointers. */
81 htab_hash htab_hash_pointer = hash_pointer;
82 htab_eq htab_eq_pointer = eq_pointer;
83
84 /* Table of primes and multiplicative inverses.
85
86 Note that these are not minimally reduced inverses. Unlike when generating
87 code to divide by a constant, we want to be able to use the same algorithm
88 all the time. All of these inverses (are implied to) have bit 32 set.
89
90 For the record, here's the function that computed the table; it's a
91 vastly simplified version of the function of the same name from gcc. */
92
93 #if 0
94 unsigned int
95 ceil_log2 (unsigned int x)
96 {
97 int i;
98 for (i = 31; i >= 0 ; --i)
99 if (x > (1u << i))
100 return i+1;
101 abort ();
102 }
103
104 unsigned int
105 choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
106 {
107 unsigned long long mhigh;
108 double nx;
109 int lgup, post_shift;
110 int pow, pow2;
111 int n = 32, precision = 32;
112
113 lgup = ceil_log2 (d);
114 pow = n + lgup;
115 pow2 = n + lgup - precision;
116
117 nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
118 mhigh = nx / d;
119
120 *shiftp = lgup - 1;
121 *mlp = mhigh;
122 return mhigh >> 32;
123 }
124 #endif
125
126 struct prime_ent
127 {
128 hashval_t prime;
129 hashval_t inv;
130 hashval_t inv_m2; /* inverse of prime-2 */
131 hashval_t shift;
132 };
133
134 static struct prime_ent const prime_tab[] = {
135 { 7, 0x24924925, 0x9999999b, 2 },
136 { 13, 0x3b13b13c, 0x745d1747, 3 },
137 { 31, 0x08421085, 0x1a7b9612, 4 },
138 { 61, 0x0c9714fc, 0x15b1e5f8, 5 },
139 { 127, 0x02040811, 0x0624dd30, 6 },
140 { 251, 0x05197f7e, 0x073260a5, 7 },
141 { 509, 0x01824366, 0x02864fc8, 8 },
142 { 1021, 0x00c0906d, 0x014191f7, 9 },
143 { 2039, 0x0121456f, 0x0161e69e, 10 },
144 { 4093, 0x00300902, 0x00501908, 11 },
145 { 8191, 0x00080041, 0x00180241, 12 },
146 { 16381, 0x000c0091, 0x00140191, 13 },
147 { 32749, 0x002605a5, 0x002a06e6, 14 },
148 { 65521, 0x000f00e2, 0x00110122, 15 },
149 { 131071, 0x00008001, 0x00018003, 16 },
150 { 262139, 0x00014002, 0x0001c004, 17 },
151 { 524287, 0x00002001, 0x00006001, 18 },
152 { 1048573, 0x00003001, 0x00005001, 19 },
153 { 2097143, 0x00004801, 0x00005801, 20 },
154 { 4194301, 0x00000c01, 0x00001401, 21 },
155 { 8388593, 0x00001e01, 0x00002201, 22 },
156 { 16777213, 0x00000301, 0x00000501, 23 },
157 { 33554393, 0x00001381, 0x00001481, 24 },
158 { 67108859, 0x00000141, 0x000001c1, 25 },
159 { 134217689, 0x000004e1, 0x00000521, 26 },
160 { 268435399, 0x00000391, 0x000003b1, 27 },
161 { 536870909, 0x00000019, 0x00000029, 28 },
162 { 1073741789, 0x0000008d, 0x00000095, 29 },
163 { 2147483647, 0x00000003, 0x00000007, 30 },
164 /* Avoid "decimal constant so large it is unsigned" for 4294967291. */
165 { 0xfffffffb, 0x00000006, 0x00000008, 31 }
166 };
167
168 /* The following function returns an index into the above table of the
169 nearest prime number which is greater than N, and near a power of two. */
170
171 static unsigned int
172 higher_prime_index (unsigned long n)
173 {
174 unsigned int low = 0;
175 unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
176
177 while (low != high)
178 {
179 unsigned int mid = low + (high - low) / 2;
180 if (n > prime_tab[mid].prime)
181 low = mid + 1;
182 else
183 high = mid;
184 }
185
186 /* If we've run out of primes, abort. */
187 if (n > prime_tab[low].prime)
188 {
189 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
190 abort ();
191 }
192
193 return low;
194 }
195
196 /* Returns non-zero if P1 and P2 are equal. */
197
198 static int
199 eq_pointer (const PTR p1, const PTR p2)
200 {
201 return p1 == p2;
202 }
203
204
205 /* The parens around the function names in the next two definitions
206 are essential in order to prevent macro expansions of the name.
207 The bodies, however, are expanded as expected, so they are not
208 recursive definitions. */
209
210 /* Return the current size of given hash table. */
211
212 #define htab_size(htab) ((htab)->size)
213
214 size_t
215 (htab_size) (htab_t htab)
216 {
217 return htab_size (htab);
218 }
219
220 /* Return the current number of elements in given hash table. */
221
222 #define htab_elements(htab) ((htab)->n_elements - (htab)->n_deleted)
223
224 size_t
225 (htab_elements) (htab_t htab)
226 {
227 return htab_elements (htab);
228 }
229
230 /* Return X % Y. */
231
232 static inline hashval_t
233 htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
234 {
235 /* The multiplicative inverses computed above are for 32-bit types, and
236 requires that we be able to compute a highpart multiply. */
237 #ifdef UNSIGNED_64BIT_TYPE
238 __extension__ typedef UNSIGNED_64BIT_TYPE ull;
239 if (sizeof (hashval_t) * CHAR_BIT <= 32)
240 {
241 hashval_t t1, t2, t3, t4, q, r;
242
243 t1 = ((ull)x * inv) >> 32;
244 t2 = x - t1;
245 t3 = t2 >> 1;
246 t4 = t1 + t3;
247 q = t4 >> shift;
248 r = x - (q * y);
249
250 return r;
251 }
252 #endif
253
254 /* Otherwise just use the native division routines. */
255 return x % y;
256 }
257
258 /* Compute the primary hash for HASH given HTAB's current size. */
259
260 static inline hashval_t
261 htab_mod (hashval_t hash, htab_t htab)
262 {
263 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
264 return htab_mod_1 (hash, p->prime, p->inv, p->shift);
265 }
266
267 /* Compute the secondary hash for HASH given HTAB's current size. */
268
269 static inline hashval_t
270 htab_mod_m2 (hashval_t hash, htab_t htab)
271 {
272 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
273 return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
274 }
275
276 /* This function creates table with length slightly longer than given
277 source length. Created hash table is initiated as empty (all the
278 hash table entries are HTAB_EMPTY_ENTRY). The function returns the
279 created hash table, or NULL if memory allocation fails. */
280
281 htab_t
282 htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
283 htab_del del_f, htab_alloc alloc_f, htab_free free_f)
284 {
285 return htab_create_typed_alloc (size, hash_f, eq_f, del_f, alloc_f, alloc_f,
286 free_f);
287 }
288
289 /* As above, but uses the variants of ALLOC_F and FREE_F which accept
290 an extra argument. */
291
292 htab_t
293 htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
294 htab_del del_f, void *alloc_arg,
295 htab_alloc_with_arg alloc_f,
296 htab_free_with_arg free_f)
297 {
298 htab_t result;
299 unsigned int size_prime_index;
300
301 size_prime_index = higher_prime_index (size);
302 size = prime_tab[size_prime_index].prime;
303
304 result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
305 if (result == NULL)
306 return NULL;
307 result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
308 if (result->entries == NULL)
309 {
310 if (free_f != NULL)
311 (*free_f) (alloc_arg, result);
312 return NULL;
313 }
314 result->size = size;
315 result->size_prime_index = size_prime_index;
316 result->hash_f = hash_f;
317 result->eq_f = eq_f;
318 result->del_f = del_f;
319 result->alloc_arg = alloc_arg;
320 result->alloc_with_arg_f = alloc_f;
321 result->free_with_arg_f = free_f;
322 return result;
323 }
324
325 /*
326
327 @deftypefn Supplemental htab_t htab_create_typed_alloc (size_t @var{size}, @
328 htab_hash @var{hash_f}, htab_eq @var{eq_f}, htab_del @var{del_f}, @
329 htab_alloc @var{alloc_tab_f}, htab_alloc @var{alloc_f}, @
330 htab_free @var{free_f})
331
332 This function creates a hash table that uses two different allocators
333 @var{alloc_tab_f} and @var{alloc_f} to use for allocating the table itself
334 and its entries respectively. This is useful when variables of different
335 types need to be allocated with different allocators.
336
337 The created hash table is slightly larger than @var{size} and it is
338 initially empty (all the hash table entries are @code{HTAB_EMPTY_ENTRY}).
339 The function returns the created hash table, or @code{NULL} if memory
340 allocation fails.
341
342 @end deftypefn
343
344 */
345
346 htab_t
347 htab_create_typed_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
348 htab_del del_f, htab_alloc alloc_tab_f,
349 htab_alloc alloc_f, htab_free free_f)
350 {
351 htab_t result;
352 unsigned int size_prime_index;
353
354 size_prime_index = higher_prime_index (size);
355 size = prime_tab[size_prime_index].prime;
356
357 result = (htab_t) (*alloc_tab_f) (1, sizeof (struct htab));
358 if (result == NULL)
359 return NULL;
360 result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
361 if (result->entries == NULL)
362 {
363 if (free_f != NULL)
364 (*free_f) (result);
365 return NULL;
366 }
367 result->size = size;
368 result->size_prime_index = size_prime_index;
369 result->hash_f = hash_f;
370 result->eq_f = eq_f;
371 result->del_f = del_f;
372 result->alloc_f = alloc_f;
373 result->free_f = free_f;
374 return result;
375 }
376
377
378 /* Update the function pointers and allocation parameter in the htab_t. */
379
380 void
381 htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
382 htab_del del_f, PTR alloc_arg,
383 htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
384 {
385 htab->hash_f = hash_f;
386 htab->eq_f = eq_f;
387 htab->del_f = del_f;
388 htab->alloc_arg = alloc_arg;
389 htab->alloc_with_arg_f = alloc_f;
390 htab->free_with_arg_f = free_f;
391 }
392
393 /* These functions exist solely for backward compatibility. */
394
395 #undef htab_create
396 htab_t
397 htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
398 {
399 return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
400 }
401
402 htab_t
403 htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
404 {
405 return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
406 }
407
408 /* This function frees all memory allocated for given hash table.
409 Naturally the hash table must already exist. */
410
411 void
412 htab_delete (htab_t htab)
413 {
414 size_t size = htab_size (htab);
415 PTR *entries = htab->entries;
416 int i;
417
418 if (htab->del_f)
419 for (i = size - 1; i >= 0; i--)
420 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
421 (*htab->del_f) (entries[i]);
422
423 if (htab->free_f != NULL)
424 {
425 (*htab->free_f) (entries);
426 (*htab->free_f) (htab);
427 }
428 else if (htab->free_with_arg_f != NULL)
429 {
430 (*htab->free_with_arg_f) (htab->alloc_arg, entries);
431 (*htab->free_with_arg_f) (htab->alloc_arg, htab);
432 }
433 }
434
435 /* This function clears all entries in the given hash table. */
436
437 void
438 htab_empty (htab_t htab)
439 {
440 size_t size = htab_size (htab);
441 PTR *entries = htab->entries;
442 int i;
443
444 if (htab->del_f)
445 for (i = size - 1; i >= 0; i--)
446 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
447 (*htab->del_f) (entries[i]);
448
449 /* Instead of clearing megabyte, downsize the table. */
450 if (size > 1024*1024 / sizeof (PTR))
451 {
452 int nindex = higher_prime_index (1024 / sizeof (PTR));
453 int nsize = prime_tab[nindex].prime;
454
455 if (htab->free_f != NULL)
456 (*htab->free_f) (htab->entries);
457 else if (htab->free_with_arg_f != NULL)
458 (*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
459 if (htab->alloc_with_arg_f != NULL)
460 htab->entries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
461 sizeof (PTR *));
462 else
463 htab->entries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
464 htab->size = nsize;
465 htab->size_prime_index = nindex;
466 }
467 else
468 memset (entries, 0, size * sizeof (PTR));
469 htab->n_deleted = 0;
470 htab->n_elements = 0;
471 }
472
473 /* Similar to htab_find_slot, but without several unwanted side effects:
474 - Does not call htab->eq_f when it finds an existing entry.
475 - Does not change the count of elements/searches/collisions in the
476 hash table.
477 This function also assumes there are no deleted entries in the table.
478 HASH is the hash value for the element to be inserted. */
479
480 static PTR *
481 find_empty_slot_for_expand (htab_t htab, hashval_t hash)
482 {
483 hashval_t index = htab_mod (hash, htab);
484 size_t size = htab_size (htab);
485 PTR *slot = htab->entries + index;
486 hashval_t hash2;
487
488 if (*slot == HTAB_EMPTY_ENTRY)
489 return slot;
490 else if (*slot == HTAB_DELETED_ENTRY)
491 abort ();
492
493 hash2 = htab_mod_m2 (hash, htab);
494 for (;;)
495 {
496 index += hash2;
497 if (index >= size)
498 index -= size;
499
500 slot = htab->entries + index;
501 if (*slot == HTAB_EMPTY_ENTRY)
502 return slot;
503 else if (*slot == HTAB_DELETED_ENTRY)
504 abort ();
505 }
506 }
507
508 /* The following function changes size of memory allocated for the
509 entries and repeatedly inserts the table elements. The occupancy
510 of the table after the call will be about 50%. Naturally the hash
511 table must already exist. Remember also that the place of the
512 table entries is changed. If memory allocation failures are allowed,
513 this function will return zero, indicating that the table could not be
514 expanded. If all goes well, it will return a non-zero value. */
515
516 static int
517 htab_expand (htab_t htab)
518 {
519 PTR *oentries;
520 PTR *olimit;
521 PTR *p;
522 PTR *nentries;
523 size_t nsize, osize, elts;
524 unsigned int oindex, nindex;
525
526 oentries = htab->entries;
527 oindex = htab->size_prime_index;
528 osize = htab->size;
529 olimit = oentries + osize;
530 elts = htab_elements (htab);
531
532 /* Resize only when table after removal of unused elements is either
533 too full or too empty. */
534 if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
535 {
536 nindex = higher_prime_index (elts * 2);
537 nsize = prime_tab[nindex].prime;
538 }
539 else
540 {
541 nindex = oindex;
542 nsize = osize;
543 }
544
545 if (htab->alloc_with_arg_f != NULL)
546 nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
547 sizeof (PTR *));
548 else
549 nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
550 if (nentries == NULL)
551 return 0;
552 htab->entries = nentries;
553 htab->size = nsize;
554 htab->size_prime_index = nindex;
555 htab->n_elements -= htab->n_deleted;
556 htab->n_deleted = 0;
557
558 p = oentries;
559 do
560 {
561 PTR x = *p;
562
563 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
564 {
565 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
566
567 *q = x;
568 }
569
570 p++;
571 }
572 while (p < olimit);
573
574 if (htab->free_f != NULL)
575 (*htab->free_f) (oentries);
576 else if (htab->free_with_arg_f != NULL)
577 (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
578 return 1;
579 }
580
581 /* This function searches for a hash table entry equal to the given
582 element. It cannot be used to insert or delete an element. */
583
584 PTR
585 htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
586 {
587 hashval_t index, hash2;
588 size_t size;
589 PTR entry;
590
591 htab->searches++;
592 size = htab_size (htab);
593 index = htab_mod (hash, htab);
594
595 entry = htab->entries[index];
596 if (entry == HTAB_EMPTY_ENTRY
597 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
598 return entry;
599
600 hash2 = htab_mod_m2 (hash, htab);
601 for (;;)
602 {
603 htab->collisions++;
604 index += hash2;
605 if (index >= size)
606 index -= size;
607
608 entry = htab->entries[index];
609 if (entry == HTAB_EMPTY_ENTRY
610 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
611 return entry;
612 }
613 }
614
615 /* Like htab_find_slot_with_hash, but compute the hash value from the
616 element. */
617
618 PTR
619 htab_find (htab_t htab, const PTR element)
620 {
621 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
622 }
623
624 /* This function searches for a hash table slot containing an entry
625 equal to the given element. To delete an entry, call this with
626 insert=NO_INSERT, then call htab_clear_slot on the slot returned
627 (possibly after doing some checks). To insert an entry, call this
628 with insert=INSERT, then write the value you want into the returned
629 slot. When inserting an entry, NULL may be returned if memory
630 allocation fails. */
631
632 PTR *
633 htab_find_slot_with_hash (htab_t htab, const PTR element,
634 hashval_t hash, enum insert_option insert)
635 {
636 PTR *first_deleted_slot;
637 hashval_t index, hash2;
638 size_t size;
639 PTR entry;
640
641 size = htab_size (htab);
642 if (insert == INSERT && size * 3 <= htab->n_elements * 4)
643 {
644 if (htab_expand (htab) == 0)
645 return NULL;
646 size = htab_size (htab);
647 }
648
649 index = htab_mod (hash, htab);
650
651 htab->searches++;
652 first_deleted_slot = NULL;
653
654 entry = htab->entries[index];
655 if (entry == HTAB_EMPTY_ENTRY)
656 goto empty_entry;
657 else if (entry == HTAB_DELETED_ENTRY)
658 first_deleted_slot = &htab->entries[index];
659 else if ((*htab->eq_f) (entry, element))
660 return &htab->entries[index];
661
662 hash2 = htab_mod_m2 (hash, htab);
663 for (;;)
664 {
665 htab->collisions++;
666 index += hash2;
667 if (index >= size)
668 index -= size;
669
670 entry = htab->entries[index];
671 if (entry == HTAB_EMPTY_ENTRY)
672 goto empty_entry;
673 else if (entry == HTAB_DELETED_ENTRY)
674 {
675 if (!first_deleted_slot)
676 first_deleted_slot = &htab->entries[index];
677 }
678 else if ((*htab->eq_f) (entry, element))
679 return &htab->entries[index];
680 }
681
682 empty_entry:
683 if (insert == NO_INSERT)
684 return NULL;
685
686 if (first_deleted_slot)
687 {
688 htab->n_deleted--;
689 *first_deleted_slot = HTAB_EMPTY_ENTRY;
690 return first_deleted_slot;
691 }
692
693 htab->n_elements++;
694 return &htab->entries[index];
695 }
696
697 /* Like htab_find_slot_with_hash, but compute the hash value from the
698 element. */
699
700 PTR *
701 htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
702 {
703 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
704 insert);
705 }
706
707 /* This function deletes an element with the given value from hash
708 table (the hash is computed from the element). If there is no matching
709 element in the hash table, this function does nothing. */
710
711 void
712 htab_remove_elt (htab_t htab, const PTR element)
713 {
714 htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
715 }
716
717
718 /* This function deletes an element with the given value from hash
719 table. If there is no matching element in the hash table, this
720 function does nothing. */
721
722 void
723 htab_remove_elt_with_hash (htab_t htab, const PTR element, hashval_t hash)
724 {
725 PTR *slot;
726
727 slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
728 if (slot == NULL)
729 return;
730
731 if (htab->del_f)
732 (*htab->del_f) (*slot);
733
734 *slot = HTAB_DELETED_ENTRY;
735 htab->n_deleted++;
736 }
737
738 /* This function clears a specified slot in a hash table. It is
739 useful when you've already done the lookup and don't want to do it
740 again. */
741
742 void
743 htab_clear_slot (htab_t htab, PTR *slot)
744 {
745 if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
746 || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
747 abort ();
748
749 if (htab->del_f)
750 (*htab->del_f) (*slot);
751
752 *slot = HTAB_DELETED_ENTRY;
753 htab->n_deleted++;
754 }
755
756 /* This function scans over the entire hash table calling
757 CALLBACK for each live entry. If CALLBACK returns false,
758 the iteration stops. INFO is passed as CALLBACK's second
759 argument. */
760
761 void
762 htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
763 {
764 PTR *slot;
765 PTR *limit;
766
767 slot = htab->entries;
768 limit = slot + htab_size (htab);
769
770 do
771 {
772 PTR x = *slot;
773
774 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
775 if (!(*callback) (slot, info))
776 break;
777 }
778 while (++slot < limit);
779 }
780
781 /* Like htab_traverse_noresize, but does resize the table when it is
782 too empty to improve effectivity of subsequent calls. */
783
784 void
785 htab_traverse (htab_t htab, htab_trav callback, PTR info)
786 {
787 size_t size = htab_size (htab);
788 if (htab_elements (htab) * 8 < size && size > 32)
789 htab_expand (htab);
790
791 htab_traverse_noresize (htab, callback, info);
792 }
793
794 /* Return the fraction of fixed collisions during all work with given
795 hash table. */
796
797 double
798 htab_collisions (htab_t htab)
799 {
800 if (htab->searches == 0)
801 return 0.0;
802
803 return (double) htab->collisions / (double) htab->searches;
804 }
805
806 /* Hash P as a null-terminated string.
807
808 Copied from gcc/hashtable.c. Zack had the following to say with respect
809 to applicability, though note that unlike hashtable.c, this hash table
810 implementation re-hashes rather than chain buckets.
811
812 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
813 From: Zack Weinberg <zackw@panix.com>
814 Date: Fri, 17 Aug 2001 02:15:56 -0400
815
816 I got it by extracting all the identifiers from all the source code
817 I had lying around in mid-1999, and testing many recurrences of
818 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
819 prime numbers or the appropriate identity. This was the best one.
820 I don't remember exactly what constituted "best", except I was
821 looking at bucket-length distributions mostly.
822
823 So it should be very good at hashing identifiers, but might not be
824 as good at arbitrary strings.
825
826 I'll add that it thoroughly trounces the hash functions recommended
827 for this use at http://burtleburtle.net/bob/hash/index.html, both
828 on speed and bucket distribution. I haven't tried it against the
829 function they just started using for Perl's hashes. */
830
831 hashval_t
832 htab_hash_string (const PTR p)
833 {
834 const unsigned char *str = (const unsigned char *) p;
835 hashval_t r = 0;
836 unsigned char c;
837
838 while ((c = *str++) != 0)
839 r = r * 67 + c - 113;
840
841 return r;
842 }
843
844 /* DERIVED FROM:
845 --------------------------------------------------------------------
846 lookup2.c, by Bob Jenkins, December 1996, Public Domain.
847 hash(), hash2(), hash3, and mix() are externally useful functions.
848 Routines to test the hash are included if SELF_TEST is defined.
849 You can use this free for any purpose. It has no warranty.
850 --------------------------------------------------------------------
851 */
852
853 /*
854 --------------------------------------------------------------------
855 mix -- mix 3 32-bit values reversibly.
856 For every delta with one or two bit set, and the deltas of all three
857 high bits or all three low bits, whether the original value of a,b,c
858 is almost all zero or is uniformly distributed,
859 * If mix() is run forward or backward, at least 32 bits in a,b,c
860 have at least 1/4 probability of changing.
861 * If mix() is run forward, every bit of c will change between 1/3 and
862 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
863 mix() was built out of 36 single-cycle latency instructions in a
864 structure that could supported 2x parallelism, like so:
865 a -= b;
866 a -= c; x = (c>>13);
867 b -= c; a ^= x;
868 b -= a; x = (a<<8);
869 c -= a; b ^= x;
870 c -= b; x = (b>>13);
871 ...
872 Unfortunately, superscalar Pentiums and Sparcs can't take advantage
873 of that parallelism. They've also turned some of those single-cycle
874 latency instructions into multi-cycle latency instructions. Still,
875 this is the fastest good hash I could find. There were about 2^^68
876 to choose from. I only looked at a billion or so.
877 --------------------------------------------------------------------
878 */
879 /* same, but slower, works on systems that might have 8 byte hashval_t's */
880 #define mix(a,b,c) \
881 { \
882 a -= b; a -= c; a ^= (c>>13); \
883 b -= c; b -= a; b ^= (a<< 8); \
884 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
885 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
886 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
887 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
888 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
889 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
890 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
891 }
892
893 /*
894 --------------------------------------------------------------------
895 hash() -- hash a variable-length key into a 32-bit value
896 k : the key (the unaligned variable-length array of bytes)
897 len : the length of the key, counting by bytes
898 level : can be any 4-byte value
899 Returns a 32-bit value. Every bit of the key affects every bit of
900 the return value. Every 1-bit and 2-bit delta achieves avalanche.
901 About 36+6len instructions.
902
903 The best hash table sizes are powers of 2. There is no need to do
904 mod a prime (mod is sooo slow!). If you need less than 32 bits,
905 use a bitmask. For example, if you need only 10 bits, do
906 h = (h & hashmask(10));
907 In which case, the hash table should have hashsize(10) elements.
908
909 If you are hashing n strings (ub1 **)k, do it like this:
910 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
911
912 By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this
913 code any way you wish, private, educational, or commercial. It's free.
914
915 See http://burtleburtle.net/bob/hash/evahash.html
916 Use for hash table lookup, or anything where one collision in 2^32 is
917 acceptable. Do NOT use for cryptographic purposes.
918 --------------------------------------------------------------------
919 */
920
921 hashval_t
922 iterative_hash (const PTR k_in /* the key */,
923 register size_t length /* the length of the key */,
924 register hashval_t initval /* the previous hash, or
925 an arbitrary value */)
926 {
927 register const unsigned char *k = (const unsigned char *)k_in;
928 register hashval_t a,b,c,len;
929
930 /* Set up the internal state */
931 len = length;
932 a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
933 c = initval; /* the previous hash value */
934
935 /*---------------------------------------- handle most of the key */
936 #ifndef WORDS_BIGENDIAN
937 /* On a little-endian machine, if the data is 4-byte aligned we can hash
938 by word for better speed. This gives nondeterministic results on
939 big-endian machines. */
940 if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
941 while (len >= 12) /* aligned */
942 {
943 a += *(hashval_t *)(k+0);
944 b += *(hashval_t *)(k+4);
945 c += *(hashval_t *)(k+8);
946 mix(a,b,c);
947 k += 12; len -= 12;
948 }
949 else /* unaligned */
950 #endif
951 while (len >= 12)
952 {
953 a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
954 b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
955 c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
956 mix(a,b,c);
957 k += 12; len -= 12;
958 }
959
960 /*------------------------------------- handle the last 11 bytes */
961 c += length;
962 switch(len) /* all the case statements fall through */
963 {
964 case 11: c+=((hashval_t)k[10]<<24); /* fall through */
965 case 10: c+=((hashval_t)k[9]<<16); /* fall through */
966 case 9 : c+=((hashval_t)k[8]<<8); /* fall through */
967 /* the first byte of c is reserved for the length */
968 case 8 : b+=((hashval_t)k[7]<<24); /* fall through */
969 case 7 : b+=((hashval_t)k[6]<<16); /* fall through */
970 case 6 : b+=((hashval_t)k[5]<<8); /* fall through */
971 case 5 : b+=k[4]; /* fall through */
972 case 4 : a+=((hashval_t)k[3]<<24); /* fall through */
973 case 3 : a+=((hashval_t)k[2]<<16); /* fall through */
974 case 2 : a+=((hashval_t)k[1]<<8); /* fall through */
975 case 1 : a+=k[0];
976 /* case 0: nothing left to add */
977 }
978 mix(a,b,c);
979 /*-------------------------------------------- report the result */
980 return c;
981 }
982
983 /* Returns a hash code for pointer P. Simplified version of evahash */
984
985 static hashval_t
986 hash_pointer (const PTR p)
987 {
988 intptr_t v = (intptr_t) p;
989 unsigned a, b, c;
990
991 a = b = 0x9e3779b9;
992 a += v >> (sizeof (intptr_t) * CHAR_BIT / 2);
993 b += v & (((intptr_t) 1 << (sizeof (intptr_t) * CHAR_BIT / 2)) - 1);
994 c = 0x42135234;
995 mix (a, b, c);
996 return c;
997 }