]> git.ipfire.org Git - thirdparty/git.git/blob - hashmap.c
A bit more topics before -rc1
[thirdparty/git.git] / hashmap.c
1 /*
2 * Generic implementation of hash-based key value mappings.
3 */
4 #include "cache.h"
5 #include "hashmap.h"
6
7 #define FNV32_BASE ((unsigned int) 0x811c9dc5)
8 #define FNV32_PRIME ((unsigned int) 0x01000193)
9
10 unsigned int strhash(const char *str)
11 {
12 unsigned int c, hash = FNV32_BASE;
13 while ((c = (unsigned char) *str++))
14 hash = (hash * FNV32_PRIME) ^ c;
15 return hash;
16 }
17
18 unsigned int strihash(const char *str)
19 {
20 unsigned int c, hash = FNV32_BASE;
21 while ((c = (unsigned char) *str++)) {
22 if (c >= 'a' && c <= 'z')
23 c -= 'a' - 'A';
24 hash = (hash * FNV32_PRIME) ^ c;
25 }
26 return hash;
27 }
28
29 unsigned int memhash(const void *buf, size_t len)
30 {
31 unsigned int hash = FNV32_BASE;
32 unsigned char *ucbuf = (unsigned char *) buf;
33 while (len--) {
34 unsigned int c = *ucbuf++;
35 hash = (hash * FNV32_PRIME) ^ c;
36 }
37 return hash;
38 }
39
40 unsigned int memihash(const void *buf, size_t len)
41 {
42 unsigned int hash = FNV32_BASE;
43 unsigned char *ucbuf = (unsigned char *) buf;
44 while (len--) {
45 unsigned int c = *ucbuf++;
46 if (c >= 'a' && c <= 'z')
47 c -= 'a' - 'A';
48 hash = (hash * FNV32_PRIME) ^ c;
49 }
50 return hash;
51 }
52
53 /*
54 * Incorporate another chunk of data into a memihash
55 * computation.
56 */
57 unsigned int memihash_cont(unsigned int hash_seed, const void *buf, size_t len)
58 {
59 unsigned int hash = hash_seed;
60 unsigned char *ucbuf = (unsigned char *) buf;
61 while (len--) {
62 unsigned int c = *ucbuf++;
63 if (c >= 'a' && c <= 'z')
64 c -= 'a' - 'A';
65 hash = (hash * FNV32_PRIME) ^ c;
66 }
67 return hash;
68 }
69
70 #define HASHMAP_INITIAL_SIZE 64
71 /* grow / shrink by 2^2 */
72 #define HASHMAP_RESIZE_BITS 2
73 /* load factor in percent */
74 #define HASHMAP_LOAD_FACTOR 80
75
76 static void alloc_table(struct hashmap *map, unsigned int size)
77 {
78 map->tablesize = size;
79 map->table = xcalloc(size, sizeof(struct hashmap_entry *));
80
81 /* calculate resize thresholds for new size */
82 map->grow_at = (unsigned int) ((uint64_t) size * HASHMAP_LOAD_FACTOR / 100);
83 if (size <= HASHMAP_INITIAL_SIZE)
84 map->shrink_at = 0;
85 else
86 /*
87 * The shrink-threshold must be slightly smaller than
88 * (grow-threshold / resize-factor) to prevent erratic resizing,
89 * thus we divide by (resize-factor + 1).
90 */
91 map->shrink_at = map->grow_at / ((1 << HASHMAP_RESIZE_BITS) + 1);
92 }
93
94 static inline int entry_equals(const struct hashmap *map,
95 const struct hashmap_entry *e1,
96 const struct hashmap_entry *e2,
97 const void *keydata)
98 {
99 return (e1 == e2) ||
100 (e1->hash == e2->hash &&
101 !map->cmpfn(map->cmpfn_data, e1, e2, keydata));
102 }
103
104 static inline unsigned int bucket(const struct hashmap *map,
105 const struct hashmap_entry *key)
106 {
107 return key->hash & (map->tablesize - 1);
108 }
109
110 int hashmap_bucket(const struct hashmap *map, unsigned int hash)
111 {
112 return hash & (map->tablesize - 1);
113 }
114
115 static void rehash(struct hashmap *map, unsigned int newsize)
116 {
117 /* map->table MUST NOT be NULL when this function is called */
118 unsigned int i, oldsize = map->tablesize;
119 struct hashmap_entry **oldtable = map->table;
120
121 alloc_table(map, newsize);
122 for (i = 0; i < oldsize; i++) {
123 struct hashmap_entry *e = oldtable[i];
124 while (e) {
125 struct hashmap_entry *next = e->next;
126 unsigned int b = bucket(map, e);
127 e->next = map->table[b];
128 map->table[b] = e;
129 e = next;
130 }
131 }
132 free(oldtable);
133 }
134
135 static inline struct hashmap_entry **find_entry_ptr(const struct hashmap *map,
136 const struct hashmap_entry *key, const void *keydata)
137 {
138 /* map->table MUST NOT be NULL when this function is called */
139 struct hashmap_entry **e = &map->table[bucket(map, key)];
140 while (*e && !entry_equals(map, *e, key, keydata))
141 e = &(*e)->next;
142 return e;
143 }
144
145 static int always_equal(const void *unused_cmp_data,
146 const struct hashmap_entry *unused1,
147 const struct hashmap_entry *unused2,
148 const void *unused_keydata)
149 {
150 return 0;
151 }
152
153 void hashmap_init(struct hashmap *map, hashmap_cmp_fn equals_function,
154 const void *cmpfn_data, size_t initial_size)
155 {
156 unsigned int size = HASHMAP_INITIAL_SIZE;
157
158 memset(map, 0, sizeof(*map));
159
160 map->cmpfn = equals_function ? equals_function : always_equal;
161 map->cmpfn_data = cmpfn_data;
162
163 /* calculate initial table size and allocate the table */
164 initial_size = (unsigned int) ((uint64_t) initial_size * 100
165 / HASHMAP_LOAD_FACTOR);
166 while (initial_size > size)
167 size <<= HASHMAP_RESIZE_BITS;
168 alloc_table(map, size);
169
170 /*
171 * Keep track of the number of items in the map and
172 * allow the map to automatically grow as necessary.
173 */
174 map->do_count_items = 1;
175 }
176
177 static void free_individual_entries(struct hashmap *map, ssize_t entry_offset)
178 {
179 struct hashmap_iter iter;
180 struct hashmap_entry *e;
181
182 hashmap_iter_init(map, &iter);
183 while ((e = hashmap_iter_next(&iter)))
184 /*
185 * like container_of, but using caller-calculated
186 * offset (caller being hashmap_clear_and_free)
187 */
188 free((char *)e - entry_offset);
189 }
190
191 void hashmap_partial_clear_(struct hashmap *map, ssize_t entry_offset)
192 {
193 if (!map || !map->table)
194 return;
195 if (entry_offset >= 0) /* called by hashmap_clear_entries */
196 free_individual_entries(map, entry_offset);
197 memset(map->table, 0, map->tablesize * sizeof(struct hashmap_entry *));
198 map->shrink_at = 0;
199 map->private_size = 0;
200 }
201
202 void hashmap_clear_(struct hashmap *map, ssize_t entry_offset)
203 {
204 if (!map || !map->table)
205 return;
206 if (entry_offset >= 0) /* called by hashmap_clear_and_free */
207 free_individual_entries(map, entry_offset);
208 free(map->table);
209 memset(map, 0, sizeof(*map));
210 }
211
212 struct hashmap_entry *hashmap_get(const struct hashmap *map,
213 const struct hashmap_entry *key,
214 const void *keydata)
215 {
216 if (!map->table)
217 return NULL;
218 return *find_entry_ptr(map, key, keydata);
219 }
220
221 struct hashmap_entry *hashmap_get_next(const struct hashmap *map,
222 const struct hashmap_entry *entry)
223 {
224 struct hashmap_entry *e = entry->next;
225 for (; e; e = e->next)
226 if (entry_equals(map, entry, e, NULL))
227 return e;
228 return NULL;
229 }
230
231 void hashmap_add(struct hashmap *map, struct hashmap_entry *entry)
232 {
233 unsigned int b;
234
235 if (!map->table)
236 alloc_table(map, HASHMAP_INITIAL_SIZE);
237
238 b = bucket(map, entry);
239 /* add entry */
240 entry->next = map->table[b];
241 map->table[b] = entry;
242
243 /* fix size and rehash if appropriate */
244 if (map->do_count_items) {
245 map->private_size++;
246 if (map->private_size > map->grow_at)
247 rehash(map, map->tablesize << HASHMAP_RESIZE_BITS);
248 }
249 }
250
251 struct hashmap_entry *hashmap_remove(struct hashmap *map,
252 const struct hashmap_entry *key,
253 const void *keydata)
254 {
255 struct hashmap_entry *old;
256 struct hashmap_entry **e;
257
258 if (!map->table)
259 return NULL;
260 e = find_entry_ptr(map, key, keydata);
261 if (!*e)
262 return NULL;
263
264 /* remove existing entry */
265 old = *e;
266 *e = old->next;
267 old->next = NULL;
268
269 /* fix size and rehash if appropriate */
270 if (map->do_count_items) {
271 map->private_size--;
272 if (map->private_size < map->shrink_at)
273 rehash(map, map->tablesize >> HASHMAP_RESIZE_BITS);
274 }
275
276 return old;
277 }
278
279 struct hashmap_entry *hashmap_put(struct hashmap *map,
280 struct hashmap_entry *entry)
281 {
282 struct hashmap_entry *old = hashmap_remove(map, entry, NULL);
283 hashmap_add(map, entry);
284 return old;
285 }
286
287 void hashmap_iter_init(struct hashmap *map, struct hashmap_iter *iter)
288 {
289 iter->map = map;
290 iter->tablepos = 0;
291 iter->next = NULL;
292 }
293
294 struct hashmap_entry *hashmap_iter_next(struct hashmap_iter *iter)
295 {
296 struct hashmap_entry *current = iter->next;
297 for (;;) {
298 if (current) {
299 iter->next = current->next;
300 return current;
301 }
302
303 if (iter->tablepos >= iter->map->tablesize)
304 return NULL;
305
306 current = iter->map->table[iter->tablepos++];
307 }
308 }
309
310 struct pool_entry {
311 struct hashmap_entry ent;
312 size_t len;
313 unsigned char data[FLEX_ARRAY];
314 };
315
316 static int pool_entry_cmp(const void *unused_cmp_data,
317 const struct hashmap_entry *eptr,
318 const struct hashmap_entry *entry_or_key,
319 const void *keydata)
320 {
321 const struct pool_entry *e1, *e2;
322
323 e1 = container_of(eptr, const struct pool_entry, ent);
324 e2 = container_of(entry_or_key, const struct pool_entry, ent);
325
326 return e1->data != keydata &&
327 (e1->len != e2->len || memcmp(e1->data, keydata, e1->len));
328 }
329
330 const void *memintern(const void *data, size_t len)
331 {
332 static struct hashmap map;
333 struct pool_entry key, *e;
334
335 /* initialize string pool hashmap */
336 if (!map.tablesize)
337 hashmap_init(&map, pool_entry_cmp, NULL, 0);
338
339 /* lookup interned string in pool */
340 hashmap_entry_init(&key.ent, memhash(data, len));
341 key.len = len;
342 e = hashmap_get_entry(&map, &key, ent, data);
343 if (!e) {
344 /* not found: create it */
345 FLEX_ALLOC_MEM(e, data, data, len);
346 hashmap_entry_init(&e->ent, key.ent.hash);
347 e->len = len;
348 hashmap_add(&map, &e->ent);
349 }
350 return e->data;
351 }