]> git.ipfire.org Git - thirdparty/git.git/blob - run-command.c
Sync with maint
[thirdparty/git.git] / run-command.c
1 #include "cache.h"
2 #include "run-command.h"
3 #include "exec-cmd.h"
4 #include "sigchain.h"
5 #include "argv-array.h"
6 #include "thread-utils.h"
7 #include "strbuf.h"
8 #include "string-list.h"
9 #include "quote.h"
10
11 void child_process_init(struct child_process *child)
12 {
13 memset(child, 0, sizeof(*child));
14 argv_array_init(&child->args);
15 argv_array_init(&child->env_array);
16 }
17
18 void child_process_clear(struct child_process *child)
19 {
20 argv_array_clear(&child->args);
21 argv_array_clear(&child->env_array);
22 }
23
24 struct child_to_clean {
25 pid_t pid;
26 struct child_process *process;
27 struct child_to_clean *next;
28 };
29 static struct child_to_clean *children_to_clean;
30 static int installed_child_cleanup_handler;
31
32 static void cleanup_children(int sig, int in_signal)
33 {
34 struct child_to_clean *children_to_wait_for = NULL;
35
36 while (children_to_clean) {
37 struct child_to_clean *p = children_to_clean;
38 children_to_clean = p->next;
39
40 if (p->process && !in_signal) {
41 struct child_process *process = p->process;
42 if (process->clean_on_exit_handler) {
43 trace_printf(
44 "trace: run_command: running exit handler for pid %"
45 PRIuMAX, (uintmax_t)p->pid
46 );
47 process->clean_on_exit_handler(process);
48 }
49 }
50
51 kill(p->pid, sig);
52
53 if (p->process && p->process->wait_after_clean) {
54 p->next = children_to_wait_for;
55 children_to_wait_for = p;
56 } else {
57 if (!in_signal)
58 free(p);
59 }
60 }
61
62 while (children_to_wait_for) {
63 struct child_to_clean *p = children_to_wait_for;
64 children_to_wait_for = p->next;
65
66 while (waitpid(p->pid, NULL, 0) < 0 && errno == EINTR)
67 ; /* spin waiting for process exit or error */
68
69 if (!in_signal)
70 free(p);
71 }
72 }
73
74 static void cleanup_children_on_signal(int sig)
75 {
76 cleanup_children(sig, 1);
77 sigchain_pop(sig);
78 raise(sig);
79 }
80
81 static void cleanup_children_on_exit(void)
82 {
83 cleanup_children(SIGTERM, 0);
84 }
85
86 static void mark_child_for_cleanup(pid_t pid, struct child_process *process)
87 {
88 struct child_to_clean *p = xmalloc(sizeof(*p));
89 p->pid = pid;
90 p->process = process;
91 p->next = children_to_clean;
92 children_to_clean = p;
93
94 if (!installed_child_cleanup_handler) {
95 atexit(cleanup_children_on_exit);
96 sigchain_push_common(cleanup_children_on_signal);
97 installed_child_cleanup_handler = 1;
98 }
99 }
100
101 static void clear_child_for_cleanup(pid_t pid)
102 {
103 struct child_to_clean **pp;
104
105 for (pp = &children_to_clean; *pp; pp = &(*pp)->next) {
106 struct child_to_clean *clean_me = *pp;
107
108 if (clean_me->pid == pid) {
109 *pp = clean_me->next;
110 free(clean_me);
111 return;
112 }
113 }
114 }
115
116 static inline void close_pair(int fd[2])
117 {
118 close(fd[0]);
119 close(fd[1]);
120 }
121
122 int is_executable(const char *name)
123 {
124 struct stat st;
125
126 if (stat(name, &st) || /* stat, not lstat */
127 !S_ISREG(st.st_mode))
128 return 0;
129
130 #if defined(GIT_WINDOWS_NATIVE)
131 /*
132 * On Windows there is no executable bit. The file extension
133 * indicates whether it can be run as an executable, and Git
134 * has special-handling to detect scripts and launch them
135 * through the indicated script interpreter. We test for the
136 * file extension first because virus scanners may make
137 * it quite expensive to open many files.
138 */
139 if (ends_with(name, ".exe"))
140 return S_IXUSR;
141
142 {
143 /*
144 * Now that we know it does not have an executable extension,
145 * peek into the file instead.
146 */
147 char buf[3] = { 0 };
148 int n;
149 int fd = open(name, O_RDONLY);
150 st.st_mode &= ~S_IXUSR;
151 if (fd >= 0) {
152 n = read(fd, buf, 2);
153 if (n == 2)
154 /* look for a she-bang */
155 if (!strcmp(buf, "#!"))
156 st.st_mode |= S_IXUSR;
157 close(fd);
158 }
159 }
160 #endif
161 return st.st_mode & S_IXUSR;
162 }
163
164 /*
165 * Search $PATH for a command. This emulates the path search that
166 * execvp would perform, without actually executing the command so it
167 * can be used before fork() to prepare to run a command using
168 * execve() or after execvp() to diagnose why it failed.
169 *
170 * The caller should ensure that file contains no directory
171 * separators.
172 *
173 * Returns the path to the command, as found in $PATH or NULL if the
174 * command could not be found. The caller inherits ownership of the memory
175 * used to store the resultant path.
176 *
177 * This should not be used on Windows, where the $PATH search rules
178 * are more complicated (e.g., a search for "foo" should find
179 * "foo.exe").
180 */
181 static char *locate_in_PATH(const char *file)
182 {
183 const char *p = getenv("PATH");
184 struct strbuf buf = STRBUF_INIT;
185
186 if (!p || !*p)
187 return NULL;
188
189 while (1) {
190 const char *end = strchrnul(p, ':');
191
192 strbuf_reset(&buf);
193
194 /* POSIX specifies an empty entry as the current directory. */
195 if (end != p) {
196 strbuf_add(&buf, p, end - p);
197 strbuf_addch(&buf, '/');
198 }
199 strbuf_addstr(&buf, file);
200
201 if (is_executable(buf.buf))
202 return strbuf_detach(&buf, NULL);
203
204 if (!*end)
205 break;
206 p = end + 1;
207 }
208
209 strbuf_release(&buf);
210 return NULL;
211 }
212
213 static int exists_in_PATH(const char *file)
214 {
215 char *r = locate_in_PATH(file);
216 free(r);
217 return r != NULL;
218 }
219
220 int sane_execvp(const char *file, char * const argv[])
221 {
222 #ifndef GIT_WINDOWS_NATIVE
223 /*
224 * execvp() doesn't return, so we all we can do is tell trace2
225 * what we are about to do and let it leave a hint in the log
226 * (unless of course the execvp() fails).
227 *
228 * we skip this for Windows because the compat layer already
229 * has to emulate the execvp() call anyway.
230 */
231 int exec_id = trace2_exec(file, (const char **)argv);
232 #endif
233
234 if (!execvp(file, argv))
235 return 0; /* cannot happen ;-) */
236
237 #ifndef GIT_WINDOWS_NATIVE
238 {
239 int ec = errno;
240 trace2_exec_result(exec_id, ec);
241 errno = ec;
242 }
243 #endif
244
245 /*
246 * When a command can't be found because one of the directories
247 * listed in $PATH is unsearchable, execvp reports EACCES, but
248 * careful usability testing (read: analysis of occasional bug
249 * reports) reveals that "No such file or directory" is more
250 * intuitive.
251 *
252 * We avoid commands with "/", because execvp will not do $PATH
253 * lookups in that case.
254 *
255 * The reassignment of EACCES to errno looks like a no-op below,
256 * but we need to protect against exists_in_PATH overwriting errno.
257 */
258 if (errno == EACCES && !strchr(file, '/'))
259 errno = exists_in_PATH(file) ? EACCES : ENOENT;
260 else if (errno == ENOTDIR && !strchr(file, '/'))
261 errno = ENOENT;
262 return -1;
263 }
264
265 static const char **prepare_shell_cmd(struct argv_array *out, const char **argv)
266 {
267 if (!argv[0])
268 BUG("shell command is empty");
269
270 if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) {
271 #ifndef GIT_WINDOWS_NATIVE
272 argv_array_push(out, SHELL_PATH);
273 #else
274 argv_array_push(out, "sh");
275 #endif
276 argv_array_push(out, "-c");
277
278 /*
279 * If we have no extra arguments, we do not even need to
280 * bother with the "$@" magic.
281 */
282 if (!argv[1])
283 argv_array_push(out, argv[0]);
284 else
285 argv_array_pushf(out, "%s \"$@\"", argv[0]);
286 }
287
288 argv_array_pushv(out, argv);
289 return out->argv;
290 }
291
292 #ifndef GIT_WINDOWS_NATIVE
293 static int child_notifier = -1;
294
295 enum child_errcode {
296 CHILD_ERR_CHDIR,
297 CHILD_ERR_DUP2,
298 CHILD_ERR_CLOSE,
299 CHILD_ERR_SIGPROCMASK,
300 CHILD_ERR_ENOENT,
301 CHILD_ERR_SILENT,
302 CHILD_ERR_ERRNO
303 };
304
305 struct child_err {
306 enum child_errcode err;
307 int syserr; /* errno */
308 };
309
310 static void child_die(enum child_errcode err)
311 {
312 struct child_err buf;
313
314 buf.err = err;
315 buf.syserr = errno;
316
317 /* write(2) on buf smaller than PIPE_BUF (min 512) is atomic: */
318 xwrite(child_notifier, &buf, sizeof(buf));
319 _exit(1);
320 }
321
322 static void child_dup2(int fd, int to)
323 {
324 if (dup2(fd, to) < 0)
325 child_die(CHILD_ERR_DUP2);
326 }
327
328 static void child_close(int fd)
329 {
330 if (close(fd))
331 child_die(CHILD_ERR_CLOSE);
332 }
333
334 static void child_close_pair(int fd[2])
335 {
336 child_close(fd[0]);
337 child_close(fd[1]);
338 }
339
340 /*
341 * parent will make it look like the child spewed a fatal error and died
342 * this is needed to prevent changes to t0061.
343 */
344 static void fake_fatal(const char *err, va_list params)
345 {
346 vreportf("fatal: ", err, params);
347 }
348
349 static void child_error_fn(const char *err, va_list params)
350 {
351 const char msg[] = "error() should not be called in child\n";
352 xwrite(2, msg, sizeof(msg) - 1);
353 }
354
355 static void child_warn_fn(const char *err, va_list params)
356 {
357 const char msg[] = "warn() should not be called in child\n";
358 xwrite(2, msg, sizeof(msg) - 1);
359 }
360
361 static void NORETURN child_die_fn(const char *err, va_list params)
362 {
363 const char msg[] = "die() should not be called in child\n";
364 xwrite(2, msg, sizeof(msg) - 1);
365 _exit(2);
366 }
367
368 /* this runs in the parent process */
369 static void child_err_spew(struct child_process *cmd, struct child_err *cerr)
370 {
371 static void (*old_errfn)(const char *err, va_list params);
372
373 old_errfn = get_error_routine();
374 set_error_routine(fake_fatal);
375 errno = cerr->syserr;
376
377 switch (cerr->err) {
378 case CHILD_ERR_CHDIR:
379 error_errno("exec '%s': cd to '%s' failed",
380 cmd->argv[0], cmd->dir);
381 break;
382 case CHILD_ERR_DUP2:
383 error_errno("dup2() in child failed");
384 break;
385 case CHILD_ERR_CLOSE:
386 error_errno("close() in child failed");
387 break;
388 case CHILD_ERR_SIGPROCMASK:
389 error_errno("sigprocmask failed restoring signals");
390 break;
391 case CHILD_ERR_ENOENT:
392 error_errno("cannot run %s", cmd->argv[0]);
393 break;
394 case CHILD_ERR_SILENT:
395 break;
396 case CHILD_ERR_ERRNO:
397 error_errno("cannot exec '%s'", cmd->argv[0]);
398 break;
399 }
400 set_error_routine(old_errfn);
401 }
402
403 static int prepare_cmd(struct argv_array *out, const struct child_process *cmd)
404 {
405 if (!cmd->argv[0])
406 BUG("command is empty");
407
408 /*
409 * Add SHELL_PATH so in the event exec fails with ENOEXEC we can
410 * attempt to interpret the command with 'sh'.
411 */
412 argv_array_push(out, SHELL_PATH);
413
414 if (cmd->git_cmd) {
415 prepare_git_cmd(out, cmd->argv);
416 } else if (cmd->use_shell) {
417 prepare_shell_cmd(out, cmd->argv);
418 } else {
419 argv_array_pushv(out, cmd->argv);
420 }
421
422 /*
423 * If there are no '/' characters in the command then perform a path
424 * lookup and use the resolved path as the command to exec. If there
425 * are '/' characters, we have exec attempt to invoke the command
426 * directly.
427 */
428 if (!strchr(out->argv[1], '/')) {
429 char *program = locate_in_PATH(out->argv[1]);
430 if (program) {
431 free((char *)out->argv[1]);
432 out->argv[1] = program;
433 } else {
434 argv_array_clear(out);
435 errno = ENOENT;
436 return -1;
437 }
438 }
439
440 return 0;
441 }
442
443 static char **prep_childenv(const char *const *deltaenv)
444 {
445 extern char **environ;
446 char **childenv;
447 struct string_list env = STRING_LIST_INIT_DUP;
448 struct strbuf key = STRBUF_INIT;
449 const char *const *p;
450 int i;
451
452 /* Construct a sorted string list consisting of the current environ */
453 for (p = (const char *const *) environ; p && *p; p++) {
454 const char *equals = strchr(*p, '=');
455
456 if (equals) {
457 strbuf_reset(&key);
458 strbuf_add(&key, *p, equals - *p);
459 string_list_append(&env, key.buf)->util = (void *) *p;
460 } else {
461 string_list_append(&env, *p)->util = (void *) *p;
462 }
463 }
464 string_list_sort(&env);
465
466 /* Merge in 'deltaenv' with the current environ */
467 for (p = deltaenv; p && *p; p++) {
468 const char *equals = strchr(*p, '=');
469
470 if (equals) {
471 /* ('key=value'), insert or replace entry */
472 strbuf_reset(&key);
473 strbuf_add(&key, *p, equals - *p);
474 string_list_insert(&env, key.buf)->util = (void *) *p;
475 } else {
476 /* otherwise ('key') remove existing entry */
477 string_list_remove(&env, *p, 0);
478 }
479 }
480
481 /* Create an array of 'char *' to be used as the childenv */
482 ALLOC_ARRAY(childenv, env.nr + 1);
483 for (i = 0; i < env.nr; i++)
484 childenv[i] = env.items[i].util;
485 childenv[env.nr] = NULL;
486
487 string_list_clear(&env, 0);
488 strbuf_release(&key);
489 return childenv;
490 }
491
492 struct atfork_state {
493 #ifndef NO_PTHREADS
494 int cs;
495 #endif
496 sigset_t old;
497 };
498
499 #define CHECK_BUG(err, msg) \
500 do { \
501 int e = (err); \
502 if (e) \
503 BUG("%s: %s", msg, strerror(e)); \
504 } while(0)
505
506 static void atfork_prepare(struct atfork_state *as)
507 {
508 sigset_t all;
509
510 if (sigfillset(&all))
511 die_errno("sigfillset");
512 #ifdef NO_PTHREADS
513 if (sigprocmask(SIG_SETMASK, &all, &as->old))
514 die_errno("sigprocmask");
515 #else
516 CHECK_BUG(pthread_sigmask(SIG_SETMASK, &all, &as->old),
517 "blocking all signals");
518 CHECK_BUG(pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &as->cs),
519 "disabling cancellation");
520 #endif
521 }
522
523 static void atfork_parent(struct atfork_state *as)
524 {
525 #ifdef NO_PTHREADS
526 if (sigprocmask(SIG_SETMASK, &as->old, NULL))
527 die_errno("sigprocmask");
528 #else
529 CHECK_BUG(pthread_setcancelstate(as->cs, NULL),
530 "re-enabling cancellation");
531 CHECK_BUG(pthread_sigmask(SIG_SETMASK, &as->old, NULL),
532 "restoring signal mask");
533 #endif
534 }
535 #endif /* GIT_WINDOWS_NATIVE */
536
537 static inline void set_cloexec(int fd)
538 {
539 int flags = fcntl(fd, F_GETFD);
540 if (flags >= 0)
541 fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
542 }
543
544 static int wait_or_whine(pid_t pid, const char *argv0, int in_signal)
545 {
546 int status, code = -1;
547 pid_t waiting;
548 int failed_errno = 0;
549
550 while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR)
551 ; /* nothing */
552 if (in_signal)
553 return 0;
554
555 if (waiting < 0) {
556 failed_errno = errno;
557 error_errno("waitpid for %s failed", argv0);
558 } else if (waiting != pid) {
559 error("waitpid is confused (%s)", argv0);
560 } else if (WIFSIGNALED(status)) {
561 code = WTERMSIG(status);
562 if (code != SIGINT && code != SIGQUIT && code != SIGPIPE)
563 error("%s died of signal %d", argv0, code);
564 /*
565 * This return value is chosen so that code & 0xff
566 * mimics the exit code that a POSIX shell would report for
567 * a program that died from this signal.
568 */
569 code += 128;
570 } else if (WIFEXITED(status)) {
571 code = WEXITSTATUS(status);
572 } else {
573 error("waitpid is confused (%s)", argv0);
574 }
575
576 clear_child_for_cleanup(pid);
577
578 errno = failed_errno;
579 return code;
580 }
581
582 static void trace_add_env(struct strbuf *dst, const char *const *deltaenv)
583 {
584 struct string_list envs = STRING_LIST_INIT_DUP;
585 const char *const *e;
586 int i;
587 int printed_unset = 0;
588
589 /* Last one wins, see run-command.c:prep_childenv() for context */
590 for (e = deltaenv; e && *e; e++) {
591 struct strbuf key = STRBUF_INIT;
592 char *equals = strchr(*e, '=');
593
594 if (equals) {
595 strbuf_add(&key, *e, equals - *e);
596 string_list_insert(&envs, key.buf)->util = equals + 1;
597 } else {
598 string_list_insert(&envs, *e)->util = NULL;
599 }
600 strbuf_release(&key);
601 }
602
603 /* "unset X Y...;" */
604 for (i = 0; i < envs.nr; i++) {
605 const char *var = envs.items[i].string;
606 const char *val = envs.items[i].util;
607
608 if (val || !getenv(var))
609 continue;
610
611 if (!printed_unset) {
612 strbuf_addstr(dst, " unset");
613 printed_unset = 1;
614 }
615 strbuf_addf(dst, " %s", var);
616 }
617 if (printed_unset)
618 strbuf_addch(dst, ';');
619
620 /* ... followed by "A=B C=D ..." */
621 for (i = 0; i < envs.nr; i++) {
622 const char *var = envs.items[i].string;
623 const char *val = envs.items[i].util;
624 const char *oldval;
625
626 if (!val)
627 continue;
628
629 oldval = getenv(var);
630 if (oldval && !strcmp(val, oldval))
631 continue;
632
633 strbuf_addf(dst, " %s=", var);
634 sq_quote_buf_pretty(dst, val);
635 }
636 string_list_clear(&envs, 0);
637 }
638
639 static void trace_run_command(const struct child_process *cp)
640 {
641 struct strbuf buf = STRBUF_INIT;
642
643 if (!trace_want(&trace_default_key))
644 return;
645
646 strbuf_addstr(&buf, "trace: run_command:");
647 if (cp->dir) {
648 strbuf_addstr(&buf, " cd ");
649 sq_quote_buf_pretty(&buf, cp->dir);
650 strbuf_addch(&buf, ';');
651 }
652 /*
653 * The caller is responsible for initializing cp->env from
654 * cp->env_array if needed. We only check one place.
655 */
656 if (cp->env)
657 trace_add_env(&buf, cp->env);
658 if (cp->git_cmd)
659 strbuf_addstr(&buf, " git");
660 sq_quote_argv_pretty(&buf, cp->argv);
661
662 trace_printf("%s", buf.buf);
663 strbuf_release(&buf);
664 }
665
666 int start_command(struct child_process *cmd)
667 {
668 int need_in, need_out, need_err;
669 int fdin[2], fdout[2], fderr[2];
670 int failed_errno;
671 char *str;
672
673 if (!cmd->argv)
674 cmd->argv = cmd->args.argv;
675 if (!cmd->env)
676 cmd->env = cmd->env_array.argv;
677
678 /*
679 * In case of errors we must keep the promise to close FDs
680 * that have been passed in via ->in and ->out.
681 */
682
683 need_in = !cmd->no_stdin && cmd->in < 0;
684 if (need_in) {
685 if (pipe(fdin) < 0) {
686 failed_errno = errno;
687 if (cmd->out > 0)
688 close(cmd->out);
689 str = "standard input";
690 goto fail_pipe;
691 }
692 cmd->in = fdin[1];
693 }
694
695 need_out = !cmd->no_stdout
696 && !cmd->stdout_to_stderr
697 && cmd->out < 0;
698 if (need_out) {
699 if (pipe(fdout) < 0) {
700 failed_errno = errno;
701 if (need_in)
702 close_pair(fdin);
703 else if (cmd->in)
704 close(cmd->in);
705 str = "standard output";
706 goto fail_pipe;
707 }
708 cmd->out = fdout[0];
709 }
710
711 need_err = !cmd->no_stderr && cmd->err < 0;
712 if (need_err) {
713 if (pipe(fderr) < 0) {
714 failed_errno = errno;
715 if (need_in)
716 close_pair(fdin);
717 else if (cmd->in)
718 close(cmd->in);
719 if (need_out)
720 close_pair(fdout);
721 else if (cmd->out)
722 close(cmd->out);
723 str = "standard error";
724 fail_pipe:
725 error("cannot create %s pipe for %s: %s",
726 str, cmd->argv[0], strerror(failed_errno));
727 child_process_clear(cmd);
728 errno = failed_errno;
729 return -1;
730 }
731 cmd->err = fderr[0];
732 }
733
734 trace2_child_start(cmd);
735 trace_run_command(cmd);
736
737 fflush(NULL);
738
739 #ifndef GIT_WINDOWS_NATIVE
740 {
741 int notify_pipe[2];
742 int null_fd = -1;
743 char **childenv;
744 struct argv_array argv = ARGV_ARRAY_INIT;
745 struct child_err cerr;
746 struct atfork_state as;
747
748 if (prepare_cmd(&argv, cmd) < 0) {
749 failed_errno = errno;
750 cmd->pid = -1;
751 if (!cmd->silent_exec_failure)
752 error_errno("cannot run %s", cmd->argv[0]);
753 goto end_of_spawn;
754 }
755
756 if (pipe(notify_pipe))
757 notify_pipe[0] = notify_pipe[1] = -1;
758
759 if (cmd->no_stdin || cmd->no_stdout || cmd->no_stderr) {
760 null_fd = open("/dev/null", O_RDWR | O_CLOEXEC);
761 if (null_fd < 0)
762 die_errno(_("open /dev/null failed"));
763 set_cloexec(null_fd);
764 }
765
766 childenv = prep_childenv(cmd->env);
767 atfork_prepare(&as);
768
769 /*
770 * NOTE: In order to prevent deadlocking when using threads special
771 * care should be taken with the function calls made in between the
772 * fork() and exec() calls. No calls should be made to functions which
773 * require acquiring a lock (e.g. malloc) as the lock could have been
774 * held by another thread at the time of forking, causing the lock to
775 * never be released in the child process. This means only
776 * Async-Signal-Safe functions are permitted in the child.
777 */
778 cmd->pid = fork();
779 failed_errno = errno;
780 if (!cmd->pid) {
781 int sig;
782 /*
783 * Ensure the default die/error/warn routines do not get
784 * called, they can take stdio locks and malloc.
785 */
786 set_die_routine(child_die_fn);
787 set_error_routine(child_error_fn);
788 set_warn_routine(child_warn_fn);
789
790 close(notify_pipe[0]);
791 set_cloexec(notify_pipe[1]);
792 child_notifier = notify_pipe[1];
793
794 if (cmd->no_stdin)
795 child_dup2(null_fd, 0);
796 else if (need_in) {
797 child_dup2(fdin[0], 0);
798 child_close_pair(fdin);
799 } else if (cmd->in) {
800 child_dup2(cmd->in, 0);
801 child_close(cmd->in);
802 }
803
804 if (cmd->no_stderr)
805 child_dup2(null_fd, 2);
806 else if (need_err) {
807 child_dup2(fderr[1], 2);
808 child_close_pair(fderr);
809 } else if (cmd->err > 1) {
810 child_dup2(cmd->err, 2);
811 child_close(cmd->err);
812 }
813
814 if (cmd->no_stdout)
815 child_dup2(null_fd, 1);
816 else if (cmd->stdout_to_stderr)
817 child_dup2(2, 1);
818 else if (need_out) {
819 child_dup2(fdout[1], 1);
820 child_close_pair(fdout);
821 } else if (cmd->out > 1) {
822 child_dup2(cmd->out, 1);
823 child_close(cmd->out);
824 }
825
826 if (cmd->dir && chdir(cmd->dir))
827 child_die(CHILD_ERR_CHDIR);
828
829 /*
830 * restore default signal handlers here, in case
831 * we catch a signal right before execve below
832 */
833 for (sig = 1; sig < NSIG; sig++) {
834 /* ignored signals get reset to SIG_DFL on execve */
835 if (signal(sig, SIG_DFL) == SIG_IGN)
836 signal(sig, SIG_IGN);
837 }
838
839 if (sigprocmask(SIG_SETMASK, &as.old, NULL) != 0)
840 child_die(CHILD_ERR_SIGPROCMASK);
841
842 /*
843 * Attempt to exec using the command and arguments starting at
844 * argv.argv[1]. argv.argv[0] contains SHELL_PATH which will
845 * be used in the event exec failed with ENOEXEC at which point
846 * we will try to interpret the command using 'sh'.
847 */
848 execve(argv.argv[1], (char *const *) argv.argv + 1,
849 (char *const *) childenv);
850 if (errno == ENOEXEC)
851 execve(argv.argv[0], (char *const *) argv.argv,
852 (char *const *) childenv);
853
854 if (errno == ENOENT) {
855 if (cmd->silent_exec_failure)
856 child_die(CHILD_ERR_SILENT);
857 child_die(CHILD_ERR_ENOENT);
858 } else {
859 child_die(CHILD_ERR_ERRNO);
860 }
861 }
862 atfork_parent(&as);
863 if (cmd->pid < 0)
864 error_errno("cannot fork() for %s", cmd->argv[0]);
865 else if (cmd->clean_on_exit)
866 mark_child_for_cleanup(cmd->pid, cmd);
867
868 /*
869 * Wait for child's exec. If the exec succeeds (or if fork()
870 * failed), EOF is seen immediately by the parent. Otherwise, the
871 * child process sends a child_err struct.
872 * Note that use of this infrastructure is completely advisory,
873 * therefore, we keep error checks minimal.
874 */
875 close(notify_pipe[1]);
876 if (xread(notify_pipe[0], &cerr, sizeof(cerr)) == sizeof(cerr)) {
877 /*
878 * At this point we know that fork() succeeded, but exec()
879 * failed. Errors have been reported to our stderr.
880 */
881 wait_or_whine(cmd->pid, cmd->argv[0], 0);
882 child_err_spew(cmd, &cerr);
883 failed_errno = errno;
884 cmd->pid = -1;
885 }
886 close(notify_pipe[0]);
887
888 if (null_fd >= 0)
889 close(null_fd);
890 argv_array_clear(&argv);
891 free(childenv);
892 }
893 end_of_spawn:
894
895 #else
896 {
897 int fhin = 0, fhout = 1, fherr = 2;
898 const char **sargv = cmd->argv;
899 struct argv_array nargv = ARGV_ARRAY_INIT;
900
901 if (cmd->no_stdin)
902 fhin = open("/dev/null", O_RDWR);
903 else if (need_in)
904 fhin = dup(fdin[0]);
905 else if (cmd->in)
906 fhin = dup(cmd->in);
907
908 if (cmd->no_stderr)
909 fherr = open("/dev/null", O_RDWR);
910 else if (need_err)
911 fherr = dup(fderr[1]);
912 else if (cmd->err > 2)
913 fherr = dup(cmd->err);
914
915 if (cmd->no_stdout)
916 fhout = open("/dev/null", O_RDWR);
917 else if (cmd->stdout_to_stderr)
918 fhout = dup(fherr);
919 else if (need_out)
920 fhout = dup(fdout[1]);
921 else if (cmd->out > 1)
922 fhout = dup(cmd->out);
923
924 if (cmd->git_cmd)
925 cmd->argv = prepare_git_cmd(&nargv, cmd->argv);
926 else if (cmd->use_shell)
927 cmd->argv = prepare_shell_cmd(&nargv, cmd->argv);
928
929 cmd->pid = mingw_spawnvpe(cmd->argv[0], cmd->argv, (char**) cmd->env,
930 cmd->dir, fhin, fhout, fherr);
931 failed_errno = errno;
932 if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT))
933 error_errno("cannot spawn %s", cmd->argv[0]);
934 if (cmd->clean_on_exit && cmd->pid >= 0)
935 mark_child_for_cleanup(cmd->pid, cmd);
936
937 argv_array_clear(&nargv);
938 cmd->argv = sargv;
939 if (fhin != 0)
940 close(fhin);
941 if (fhout != 1)
942 close(fhout);
943 if (fherr != 2)
944 close(fherr);
945 }
946 #endif
947
948 if (cmd->pid < 0) {
949 trace2_child_exit(cmd, -1);
950
951 if (need_in)
952 close_pair(fdin);
953 else if (cmd->in)
954 close(cmd->in);
955 if (need_out)
956 close_pair(fdout);
957 else if (cmd->out)
958 close(cmd->out);
959 if (need_err)
960 close_pair(fderr);
961 else if (cmd->err)
962 close(cmd->err);
963 child_process_clear(cmd);
964 errno = failed_errno;
965 return -1;
966 }
967
968 if (need_in)
969 close(fdin[0]);
970 else if (cmd->in)
971 close(cmd->in);
972
973 if (need_out)
974 close(fdout[1]);
975 else if (cmd->out)
976 close(cmd->out);
977
978 if (need_err)
979 close(fderr[1]);
980 else if (cmd->err)
981 close(cmd->err);
982
983 return 0;
984 }
985
986 int finish_command(struct child_process *cmd)
987 {
988 int ret = wait_or_whine(cmd->pid, cmd->argv[0], 0);
989 trace2_child_exit(cmd, ret);
990 child_process_clear(cmd);
991 return ret;
992 }
993
994 int finish_command_in_signal(struct child_process *cmd)
995 {
996 int ret = wait_or_whine(cmd->pid, cmd->argv[0], 1);
997 trace2_child_exit(cmd, ret);
998 return ret;
999 }
1000
1001
1002 int run_command(struct child_process *cmd)
1003 {
1004 int code;
1005
1006 if (cmd->out < 0 || cmd->err < 0)
1007 BUG("run_command with a pipe can cause deadlock");
1008
1009 code = start_command(cmd);
1010 if (code)
1011 return code;
1012 return finish_command(cmd);
1013 }
1014
1015 int run_command_v_opt(const char **argv, int opt)
1016 {
1017 return run_command_v_opt_cd_env(argv, opt, NULL, NULL);
1018 }
1019
1020 int run_command_v_opt_tr2(const char **argv, int opt, const char *tr2_class)
1021 {
1022 return run_command_v_opt_cd_env_tr2(argv, opt, NULL, NULL, tr2_class);
1023 }
1024
1025 int run_command_v_opt_cd_env(const char **argv, int opt, const char *dir, const char *const *env)
1026 {
1027 return run_command_v_opt_cd_env_tr2(argv, opt, dir, env, NULL);
1028 }
1029
1030 int run_command_v_opt_cd_env_tr2(const char **argv, int opt, const char *dir,
1031 const char *const *env, const char *tr2_class)
1032 {
1033 struct child_process cmd = CHILD_PROCESS_INIT;
1034 cmd.argv = argv;
1035 cmd.no_stdin = opt & RUN_COMMAND_NO_STDIN ? 1 : 0;
1036 cmd.git_cmd = opt & RUN_GIT_CMD ? 1 : 0;
1037 cmd.stdout_to_stderr = opt & RUN_COMMAND_STDOUT_TO_STDERR ? 1 : 0;
1038 cmd.silent_exec_failure = opt & RUN_SILENT_EXEC_FAILURE ? 1 : 0;
1039 cmd.use_shell = opt & RUN_USING_SHELL ? 1 : 0;
1040 cmd.clean_on_exit = opt & RUN_CLEAN_ON_EXIT ? 1 : 0;
1041 cmd.dir = dir;
1042 cmd.env = env;
1043 cmd.trace2_child_class = tr2_class;
1044 return run_command(&cmd);
1045 }
1046
1047 #ifndef NO_PTHREADS
1048 static pthread_t main_thread;
1049 static int main_thread_set;
1050 static pthread_key_t async_key;
1051 static pthread_key_t async_die_counter;
1052
1053 static void *run_thread(void *data)
1054 {
1055 struct async *async = data;
1056 intptr_t ret;
1057
1058 if (async->isolate_sigpipe) {
1059 sigset_t mask;
1060 sigemptyset(&mask);
1061 sigaddset(&mask, SIGPIPE);
1062 if (pthread_sigmask(SIG_BLOCK, &mask, NULL) < 0) {
1063 ret = error("unable to block SIGPIPE in async thread");
1064 return (void *)ret;
1065 }
1066 }
1067
1068 pthread_setspecific(async_key, async);
1069 ret = async->proc(async->proc_in, async->proc_out, async->data);
1070 return (void *)ret;
1071 }
1072
1073 static NORETURN void die_async(const char *err, va_list params)
1074 {
1075 vreportf("fatal: ", err, params);
1076
1077 if (in_async()) {
1078 struct async *async = pthread_getspecific(async_key);
1079 if (async->proc_in >= 0)
1080 close(async->proc_in);
1081 if (async->proc_out >= 0)
1082 close(async->proc_out);
1083 pthread_exit((void *)128);
1084 }
1085
1086 exit(128);
1087 }
1088
1089 static int async_die_is_recursing(void)
1090 {
1091 void *ret = pthread_getspecific(async_die_counter);
1092 pthread_setspecific(async_die_counter, (void *)1);
1093 return ret != NULL;
1094 }
1095
1096 int in_async(void)
1097 {
1098 if (!main_thread_set)
1099 return 0; /* no asyncs started yet */
1100 return !pthread_equal(main_thread, pthread_self());
1101 }
1102
1103 static void NORETURN async_exit(int code)
1104 {
1105 pthread_exit((void *)(intptr_t)code);
1106 }
1107
1108 #else
1109
1110 static struct {
1111 void (**handlers)(void);
1112 size_t nr;
1113 size_t alloc;
1114 } git_atexit_hdlrs;
1115
1116 static int git_atexit_installed;
1117
1118 static void git_atexit_dispatch(void)
1119 {
1120 size_t i;
1121
1122 for (i=git_atexit_hdlrs.nr ; i ; i--)
1123 git_atexit_hdlrs.handlers[i-1]();
1124 }
1125
1126 static void git_atexit_clear(void)
1127 {
1128 free(git_atexit_hdlrs.handlers);
1129 memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs));
1130 git_atexit_installed = 0;
1131 }
1132
1133 #undef atexit
1134 int git_atexit(void (*handler)(void))
1135 {
1136 ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc);
1137 git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler;
1138 if (!git_atexit_installed) {
1139 if (atexit(&git_atexit_dispatch))
1140 return -1;
1141 git_atexit_installed = 1;
1142 }
1143 return 0;
1144 }
1145 #define atexit git_atexit
1146
1147 static int process_is_async;
1148 int in_async(void)
1149 {
1150 return process_is_async;
1151 }
1152
1153 static void NORETURN async_exit(int code)
1154 {
1155 exit(code);
1156 }
1157
1158 #endif
1159
1160 void check_pipe(int err)
1161 {
1162 if (err == EPIPE) {
1163 if (in_async())
1164 async_exit(141);
1165
1166 signal(SIGPIPE, SIG_DFL);
1167 raise(SIGPIPE);
1168 /* Should never happen, but just in case... */
1169 exit(141);
1170 }
1171 }
1172
1173 int start_async(struct async *async)
1174 {
1175 int need_in, need_out;
1176 int fdin[2], fdout[2];
1177 int proc_in, proc_out;
1178
1179 need_in = async->in < 0;
1180 if (need_in) {
1181 if (pipe(fdin) < 0) {
1182 if (async->out > 0)
1183 close(async->out);
1184 return error_errno("cannot create pipe");
1185 }
1186 async->in = fdin[1];
1187 }
1188
1189 need_out = async->out < 0;
1190 if (need_out) {
1191 if (pipe(fdout) < 0) {
1192 if (need_in)
1193 close_pair(fdin);
1194 else if (async->in)
1195 close(async->in);
1196 return error_errno("cannot create pipe");
1197 }
1198 async->out = fdout[0];
1199 }
1200
1201 if (need_in)
1202 proc_in = fdin[0];
1203 else if (async->in)
1204 proc_in = async->in;
1205 else
1206 proc_in = -1;
1207
1208 if (need_out)
1209 proc_out = fdout[1];
1210 else if (async->out)
1211 proc_out = async->out;
1212 else
1213 proc_out = -1;
1214
1215 #ifdef NO_PTHREADS
1216 /* Flush stdio before fork() to avoid cloning buffers */
1217 fflush(NULL);
1218
1219 async->pid = fork();
1220 if (async->pid < 0) {
1221 error_errno("fork (async) failed");
1222 goto error;
1223 }
1224 if (!async->pid) {
1225 if (need_in)
1226 close(fdin[1]);
1227 if (need_out)
1228 close(fdout[0]);
1229 git_atexit_clear();
1230 process_is_async = 1;
1231 exit(!!async->proc(proc_in, proc_out, async->data));
1232 }
1233
1234 mark_child_for_cleanup(async->pid, NULL);
1235
1236 if (need_in)
1237 close(fdin[0]);
1238 else if (async->in)
1239 close(async->in);
1240
1241 if (need_out)
1242 close(fdout[1]);
1243 else if (async->out)
1244 close(async->out);
1245 #else
1246 if (!main_thread_set) {
1247 /*
1248 * We assume that the first time that start_async is called
1249 * it is from the main thread.
1250 */
1251 main_thread_set = 1;
1252 main_thread = pthread_self();
1253 pthread_key_create(&async_key, NULL);
1254 pthread_key_create(&async_die_counter, NULL);
1255 set_die_routine(die_async);
1256 set_die_is_recursing_routine(async_die_is_recursing);
1257 }
1258
1259 if (proc_in >= 0)
1260 set_cloexec(proc_in);
1261 if (proc_out >= 0)
1262 set_cloexec(proc_out);
1263 async->proc_in = proc_in;
1264 async->proc_out = proc_out;
1265 {
1266 int err = pthread_create(&async->tid, NULL, run_thread, async);
1267 if (err) {
1268 error(_("cannot create async thread: %s"), strerror(err));
1269 goto error;
1270 }
1271 }
1272 #endif
1273 return 0;
1274
1275 error:
1276 if (need_in)
1277 close_pair(fdin);
1278 else if (async->in)
1279 close(async->in);
1280
1281 if (need_out)
1282 close_pair(fdout);
1283 else if (async->out)
1284 close(async->out);
1285 return -1;
1286 }
1287
1288 int finish_async(struct async *async)
1289 {
1290 #ifdef NO_PTHREADS
1291 return wait_or_whine(async->pid, "child process", 0);
1292 #else
1293 void *ret = (void *)(intptr_t)(-1);
1294
1295 if (pthread_join(async->tid, &ret))
1296 error("pthread_join failed");
1297 return (int)(intptr_t)ret;
1298 #endif
1299 }
1300
1301 int async_with_fork(void)
1302 {
1303 #ifdef NO_PTHREADS
1304 return 1;
1305 #else
1306 return 0;
1307 #endif
1308 }
1309
1310 const char *find_hook(const char *name)
1311 {
1312 static struct strbuf path = STRBUF_INIT;
1313
1314 strbuf_reset(&path);
1315 strbuf_git_path(&path, "hooks/%s", name);
1316 if (access(path.buf, X_OK) < 0) {
1317 int err = errno;
1318
1319 #ifdef STRIP_EXTENSION
1320 strbuf_addstr(&path, STRIP_EXTENSION);
1321 if (access(path.buf, X_OK) >= 0)
1322 return path.buf;
1323 if (errno == EACCES)
1324 err = errno;
1325 #endif
1326
1327 if (err == EACCES && advice_ignored_hook) {
1328 static struct string_list advise_given = STRING_LIST_INIT_DUP;
1329
1330 if (!string_list_lookup(&advise_given, name)) {
1331 string_list_insert(&advise_given, name);
1332 advise(_("The '%s' hook was ignored because "
1333 "it's not set as executable.\n"
1334 "You can disable this warning with "
1335 "`git config advice.ignoredHook false`."),
1336 path.buf);
1337 }
1338 }
1339 return NULL;
1340 }
1341 return path.buf;
1342 }
1343
1344 int run_hook_ve(const char *const *env, const char *name, va_list args)
1345 {
1346 struct child_process hook = CHILD_PROCESS_INIT;
1347 const char *p;
1348
1349 p = find_hook(name);
1350 if (!p)
1351 return 0;
1352
1353 argv_array_push(&hook.args, p);
1354 while ((p = va_arg(args, const char *)))
1355 argv_array_push(&hook.args, p);
1356 hook.env = env;
1357 hook.no_stdin = 1;
1358 hook.stdout_to_stderr = 1;
1359 hook.trace2_hook_name = name;
1360
1361 return run_command(&hook);
1362 }
1363
1364 int run_hook_le(const char *const *env, const char *name, ...)
1365 {
1366 va_list args;
1367 int ret;
1368
1369 va_start(args, name);
1370 ret = run_hook_ve(env, name, args);
1371 va_end(args);
1372
1373 return ret;
1374 }
1375
1376 struct io_pump {
1377 /* initialized by caller */
1378 int fd;
1379 int type; /* POLLOUT or POLLIN */
1380 union {
1381 struct {
1382 const char *buf;
1383 size_t len;
1384 } out;
1385 struct {
1386 struct strbuf *buf;
1387 size_t hint;
1388 } in;
1389 } u;
1390
1391 /* returned by pump_io */
1392 int error; /* 0 for success, otherwise errno */
1393
1394 /* internal use */
1395 struct pollfd *pfd;
1396 };
1397
1398 static int pump_io_round(struct io_pump *slots, int nr, struct pollfd *pfd)
1399 {
1400 int pollsize = 0;
1401 int i;
1402
1403 for (i = 0; i < nr; i++) {
1404 struct io_pump *io = &slots[i];
1405 if (io->fd < 0)
1406 continue;
1407 pfd[pollsize].fd = io->fd;
1408 pfd[pollsize].events = io->type;
1409 io->pfd = &pfd[pollsize++];
1410 }
1411
1412 if (!pollsize)
1413 return 0;
1414
1415 if (poll(pfd, pollsize, -1) < 0) {
1416 if (errno == EINTR)
1417 return 1;
1418 die_errno("poll failed");
1419 }
1420
1421 for (i = 0; i < nr; i++) {
1422 struct io_pump *io = &slots[i];
1423
1424 if (io->fd < 0)
1425 continue;
1426
1427 if (!(io->pfd->revents & (POLLOUT|POLLIN|POLLHUP|POLLERR|POLLNVAL)))
1428 continue;
1429
1430 if (io->type == POLLOUT) {
1431 ssize_t len = xwrite(io->fd,
1432 io->u.out.buf, io->u.out.len);
1433 if (len < 0) {
1434 io->error = errno;
1435 close(io->fd);
1436 io->fd = -1;
1437 } else {
1438 io->u.out.buf += len;
1439 io->u.out.len -= len;
1440 if (!io->u.out.len) {
1441 close(io->fd);
1442 io->fd = -1;
1443 }
1444 }
1445 }
1446
1447 if (io->type == POLLIN) {
1448 ssize_t len = strbuf_read_once(io->u.in.buf,
1449 io->fd, io->u.in.hint);
1450 if (len < 0)
1451 io->error = errno;
1452 if (len <= 0) {
1453 close(io->fd);
1454 io->fd = -1;
1455 }
1456 }
1457 }
1458
1459 return 1;
1460 }
1461
1462 static int pump_io(struct io_pump *slots, int nr)
1463 {
1464 struct pollfd *pfd;
1465 int i;
1466
1467 for (i = 0; i < nr; i++)
1468 slots[i].error = 0;
1469
1470 ALLOC_ARRAY(pfd, nr);
1471 while (pump_io_round(slots, nr, pfd))
1472 ; /* nothing */
1473 free(pfd);
1474
1475 /* There may be multiple errno values, so just pick the first. */
1476 for (i = 0; i < nr; i++) {
1477 if (slots[i].error) {
1478 errno = slots[i].error;
1479 return -1;
1480 }
1481 }
1482 return 0;
1483 }
1484
1485
1486 int pipe_command(struct child_process *cmd,
1487 const char *in, size_t in_len,
1488 struct strbuf *out, size_t out_hint,
1489 struct strbuf *err, size_t err_hint)
1490 {
1491 struct io_pump io[3];
1492 int nr = 0;
1493
1494 if (in)
1495 cmd->in = -1;
1496 if (out)
1497 cmd->out = -1;
1498 if (err)
1499 cmd->err = -1;
1500
1501 if (start_command(cmd) < 0)
1502 return -1;
1503
1504 if (in) {
1505 io[nr].fd = cmd->in;
1506 io[nr].type = POLLOUT;
1507 io[nr].u.out.buf = in;
1508 io[nr].u.out.len = in_len;
1509 nr++;
1510 }
1511 if (out) {
1512 io[nr].fd = cmd->out;
1513 io[nr].type = POLLIN;
1514 io[nr].u.in.buf = out;
1515 io[nr].u.in.hint = out_hint;
1516 nr++;
1517 }
1518 if (err) {
1519 io[nr].fd = cmd->err;
1520 io[nr].type = POLLIN;
1521 io[nr].u.in.buf = err;
1522 io[nr].u.in.hint = err_hint;
1523 nr++;
1524 }
1525
1526 if (pump_io(io, nr) < 0) {
1527 finish_command(cmd); /* throw away exit code */
1528 return -1;
1529 }
1530
1531 return finish_command(cmd);
1532 }
1533
1534 enum child_state {
1535 GIT_CP_FREE,
1536 GIT_CP_WORKING,
1537 GIT_CP_WAIT_CLEANUP,
1538 };
1539
1540 struct parallel_processes {
1541 void *data;
1542
1543 int max_processes;
1544 int nr_processes;
1545
1546 get_next_task_fn get_next_task;
1547 start_failure_fn start_failure;
1548 task_finished_fn task_finished;
1549
1550 struct {
1551 enum child_state state;
1552 struct child_process process;
1553 struct strbuf err;
1554 void *data;
1555 } *children;
1556 /*
1557 * The struct pollfd is logically part of *children,
1558 * but the system call expects it as its own array.
1559 */
1560 struct pollfd *pfd;
1561
1562 unsigned shutdown : 1;
1563
1564 int output_owner;
1565 struct strbuf buffered_output; /* of finished children */
1566 };
1567
1568 static int default_start_failure(struct strbuf *out,
1569 void *pp_cb,
1570 void *pp_task_cb)
1571 {
1572 return 0;
1573 }
1574
1575 static int default_task_finished(int result,
1576 struct strbuf *out,
1577 void *pp_cb,
1578 void *pp_task_cb)
1579 {
1580 return 0;
1581 }
1582
1583 static void kill_children(struct parallel_processes *pp, int signo)
1584 {
1585 int i, n = pp->max_processes;
1586
1587 for (i = 0; i < n; i++)
1588 if (pp->children[i].state == GIT_CP_WORKING)
1589 kill(pp->children[i].process.pid, signo);
1590 }
1591
1592 static struct parallel_processes *pp_for_signal;
1593
1594 static void handle_children_on_signal(int signo)
1595 {
1596 kill_children(pp_for_signal, signo);
1597 sigchain_pop(signo);
1598 raise(signo);
1599 }
1600
1601 static void pp_init(struct parallel_processes *pp,
1602 int n,
1603 get_next_task_fn get_next_task,
1604 start_failure_fn start_failure,
1605 task_finished_fn task_finished,
1606 void *data)
1607 {
1608 int i;
1609
1610 if (n < 1)
1611 n = online_cpus();
1612
1613 pp->max_processes = n;
1614
1615 trace_printf("run_processes_parallel: preparing to run up to %d tasks", n);
1616
1617 pp->data = data;
1618 if (!get_next_task)
1619 BUG("you need to specify a get_next_task function");
1620 pp->get_next_task = get_next_task;
1621
1622 pp->start_failure = start_failure ? start_failure : default_start_failure;
1623 pp->task_finished = task_finished ? task_finished : default_task_finished;
1624
1625 pp->nr_processes = 0;
1626 pp->output_owner = 0;
1627 pp->shutdown = 0;
1628 pp->children = xcalloc(n, sizeof(*pp->children));
1629 pp->pfd = xcalloc(n, sizeof(*pp->pfd));
1630 strbuf_init(&pp->buffered_output, 0);
1631
1632 for (i = 0; i < n; i++) {
1633 strbuf_init(&pp->children[i].err, 0);
1634 child_process_init(&pp->children[i].process);
1635 pp->pfd[i].events = POLLIN | POLLHUP;
1636 pp->pfd[i].fd = -1;
1637 }
1638
1639 pp_for_signal = pp;
1640 sigchain_push_common(handle_children_on_signal);
1641 }
1642
1643 static void pp_cleanup(struct parallel_processes *pp)
1644 {
1645 int i;
1646
1647 trace_printf("run_processes_parallel: done");
1648 for (i = 0; i < pp->max_processes; i++) {
1649 strbuf_release(&pp->children[i].err);
1650 child_process_clear(&pp->children[i].process);
1651 }
1652
1653 free(pp->children);
1654 free(pp->pfd);
1655
1656 /*
1657 * When get_next_task added messages to the buffer in its last
1658 * iteration, the buffered output is non empty.
1659 */
1660 strbuf_write(&pp->buffered_output, stderr);
1661 strbuf_release(&pp->buffered_output);
1662
1663 sigchain_pop_common();
1664 }
1665
1666 /* returns
1667 * 0 if a new task was started.
1668 * 1 if no new jobs was started (get_next_task ran out of work, non critical
1669 * problem with starting a new command)
1670 * <0 no new job was started, user wishes to shutdown early. Use negative code
1671 * to signal the children.
1672 */
1673 static int pp_start_one(struct parallel_processes *pp)
1674 {
1675 int i, code;
1676
1677 for (i = 0; i < pp->max_processes; i++)
1678 if (pp->children[i].state == GIT_CP_FREE)
1679 break;
1680 if (i == pp->max_processes)
1681 BUG("bookkeeping is hard");
1682
1683 code = pp->get_next_task(&pp->children[i].process,
1684 &pp->children[i].err,
1685 pp->data,
1686 &pp->children[i].data);
1687 if (!code) {
1688 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1689 strbuf_reset(&pp->children[i].err);
1690 return 1;
1691 }
1692 pp->children[i].process.err = -1;
1693 pp->children[i].process.stdout_to_stderr = 1;
1694 pp->children[i].process.no_stdin = 1;
1695
1696 if (start_command(&pp->children[i].process)) {
1697 code = pp->start_failure(&pp->children[i].err,
1698 pp->data,
1699 pp->children[i].data);
1700 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1701 strbuf_reset(&pp->children[i].err);
1702 if (code)
1703 pp->shutdown = 1;
1704 return code;
1705 }
1706
1707 pp->nr_processes++;
1708 pp->children[i].state = GIT_CP_WORKING;
1709 pp->pfd[i].fd = pp->children[i].process.err;
1710 return 0;
1711 }
1712
1713 static void pp_buffer_stderr(struct parallel_processes *pp, int output_timeout)
1714 {
1715 int i;
1716
1717 while ((i = poll(pp->pfd, pp->max_processes, output_timeout)) < 0) {
1718 if (errno == EINTR)
1719 continue;
1720 pp_cleanup(pp);
1721 die_errno("poll");
1722 }
1723
1724 /* Buffer output from all pipes. */
1725 for (i = 0; i < pp->max_processes; i++) {
1726 if (pp->children[i].state == GIT_CP_WORKING &&
1727 pp->pfd[i].revents & (POLLIN | POLLHUP)) {
1728 int n = strbuf_read_once(&pp->children[i].err,
1729 pp->children[i].process.err, 0);
1730 if (n == 0) {
1731 close(pp->children[i].process.err);
1732 pp->children[i].state = GIT_CP_WAIT_CLEANUP;
1733 } else if (n < 0)
1734 if (errno != EAGAIN)
1735 die_errno("read");
1736 }
1737 }
1738 }
1739
1740 static void pp_output(struct parallel_processes *pp)
1741 {
1742 int i = pp->output_owner;
1743 if (pp->children[i].state == GIT_CP_WORKING &&
1744 pp->children[i].err.len) {
1745 strbuf_write(&pp->children[i].err, stderr);
1746 strbuf_reset(&pp->children[i].err);
1747 }
1748 }
1749
1750 static int pp_collect_finished(struct parallel_processes *pp)
1751 {
1752 int i, code;
1753 int n = pp->max_processes;
1754 int result = 0;
1755
1756 while (pp->nr_processes > 0) {
1757 for (i = 0; i < pp->max_processes; i++)
1758 if (pp->children[i].state == GIT_CP_WAIT_CLEANUP)
1759 break;
1760 if (i == pp->max_processes)
1761 break;
1762
1763 code = finish_command(&pp->children[i].process);
1764
1765 code = pp->task_finished(code,
1766 &pp->children[i].err, pp->data,
1767 pp->children[i].data);
1768
1769 if (code)
1770 result = code;
1771 if (code < 0)
1772 break;
1773
1774 pp->nr_processes--;
1775 pp->children[i].state = GIT_CP_FREE;
1776 pp->pfd[i].fd = -1;
1777 child_process_init(&pp->children[i].process);
1778
1779 if (i != pp->output_owner) {
1780 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1781 strbuf_reset(&pp->children[i].err);
1782 } else {
1783 strbuf_write(&pp->children[i].err, stderr);
1784 strbuf_reset(&pp->children[i].err);
1785
1786 /* Output all other finished child processes */
1787 strbuf_write(&pp->buffered_output, stderr);
1788 strbuf_reset(&pp->buffered_output);
1789
1790 /*
1791 * Pick next process to output live.
1792 * NEEDSWORK:
1793 * For now we pick it randomly by doing a round
1794 * robin. Later we may want to pick the one with
1795 * the most output or the longest or shortest
1796 * running process time.
1797 */
1798 for (i = 0; i < n; i++)
1799 if (pp->children[(pp->output_owner + i) % n].state == GIT_CP_WORKING)
1800 break;
1801 pp->output_owner = (pp->output_owner + i) % n;
1802 }
1803 }
1804 return result;
1805 }
1806
1807 int run_processes_parallel(int n,
1808 get_next_task_fn get_next_task,
1809 start_failure_fn start_failure,
1810 task_finished_fn task_finished,
1811 void *pp_cb)
1812 {
1813 int i, code;
1814 int output_timeout = 100;
1815 int spawn_cap = 4;
1816 struct parallel_processes pp;
1817
1818 pp_init(&pp, n, get_next_task, start_failure, task_finished, pp_cb);
1819 while (1) {
1820 for (i = 0;
1821 i < spawn_cap && !pp.shutdown &&
1822 pp.nr_processes < pp.max_processes;
1823 i++) {
1824 code = pp_start_one(&pp);
1825 if (!code)
1826 continue;
1827 if (code < 0) {
1828 pp.shutdown = 1;
1829 kill_children(&pp, -code);
1830 }
1831 break;
1832 }
1833 if (!pp.nr_processes)
1834 break;
1835 pp_buffer_stderr(&pp, output_timeout);
1836 pp_output(&pp);
1837 code = pp_collect_finished(&pp);
1838 if (code) {
1839 pp.shutdown = 1;
1840 if (code < 0)
1841 kill_children(&pp, -code);
1842 }
1843 }
1844
1845 pp_cleanup(&pp);
1846 return 0;
1847 }
1848
1849 int run_processes_parallel_tr2(int n, get_next_task_fn get_next_task,
1850 start_failure_fn start_failure,
1851 task_finished_fn task_finished, void *pp_cb,
1852 const char *tr2_category, const char *tr2_label)
1853 {
1854 int result;
1855
1856 trace2_region_enter_printf(tr2_category, tr2_label, NULL, "max:%d",
1857 ((n < 1) ? online_cpus() : n));
1858
1859 result = run_processes_parallel(n, get_next_task, start_failure,
1860 task_finished, pp_cb);
1861
1862 trace2_region_leave(tr2_category, tr2_label, NULL);
1863
1864 return result;
1865 }