]> git.ipfire.org Git - thirdparty/iw.git/blob - util.c
41277b5bf042019fd28f805860a95f5cb7218fb8
[thirdparty/iw.git] / util.c
1 #include <ctype.h>
2 #include <netlink/attr.h>
3 #include <errno.h>
4 #include <stdbool.h>
5 #include "iw.h"
6 #include "nl80211.h"
7
8 void mac_addr_n2a(char *mac_addr, const unsigned char *arg)
9 {
10 int i, l;
11
12 l = 0;
13 for (i = 0; i < ETH_ALEN ; i++) {
14 if (i == 0) {
15 sprintf(mac_addr+l, "%02x", arg[i]);
16 l += 2;
17 } else {
18 sprintf(mac_addr+l, ":%02x", arg[i]);
19 l += 3;
20 }
21 }
22 }
23
24 int mac_addr_a2n(unsigned char *mac_addr, char *arg)
25 {
26 int i;
27
28 for (i = 0; i < ETH_ALEN ; i++) {
29 int temp;
30 char *cp = strchr(arg, ':');
31 if (cp) {
32 *cp = 0;
33 cp++;
34 }
35 if (sscanf(arg, "%x", &temp) != 1)
36 return -1;
37 if (temp < 0 || temp > 255)
38 return -1;
39
40 mac_addr[i] = temp;
41 if (!cp)
42 break;
43 arg = cp;
44 }
45 if (i < ETH_ALEN - 1)
46 return -1;
47
48 return 0;
49 }
50
51 int parse_hex_mask(char *hexmask, unsigned char **result, size_t *result_len,
52 unsigned char **mask)
53 {
54 size_t len = strlen(hexmask) / 2;
55 unsigned char *result_val;
56 unsigned char *result_mask = NULL;
57
58 int pos = 0;
59
60 *result_len = 0;
61
62 result_val = calloc(len + 2, 1);
63 if (!result_val)
64 goto error;
65 *result = result_val;
66 if (mask) {
67 result_mask = calloc(DIV_ROUND_UP(len, 8) + 2, 1);
68 if (!result_mask)
69 goto error;
70 *mask = result_mask;
71 }
72
73 while (1) {
74 char *cp = strchr(hexmask, ':');
75 if (cp) {
76 *cp = 0;
77 cp++;
78 }
79
80 if (result_mask && (strcmp(hexmask, "-") == 0 ||
81 strcmp(hexmask, "xx") == 0 ||
82 strcmp(hexmask, "--") == 0)) {
83 /* skip this byte and leave mask bit unset */
84 } else {
85 int temp, mask_pos;
86 char *end;
87
88 temp = strtoul(hexmask, &end, 16);
89 if (*end)
90 goto error;
91 if (temp < 0 || temp > 255)
92 goto error;
93 result_val[pos] = temp;
94
95 mask_pos = pos / 8;
96 if (result_mask)
97 result_mask[mask_pos] |= 1 << (pos % 8);
98 }
99
100 (*result_len)++;
101 pos++;
102
103 if (!cp)
104 break;
105 hexmask = cp;
106 }
107
108 return 0;
109 error:
110 free(result_val);
111 free(result_mask);
112 return -1;
113 }
114
115 unsigned char *parse_hex(char *hex, size_t *outlen)
116 {
117 unsigned char *result;
118
119 if (parse_hex_mask(hex, &result, outlen, NULL))
120 return NULL;
121 return result;
122 }
123
124 static const char *ifmodes[NL80211_IFTYPE_MAX + 1] = {
125 "unspecified",
126 "IBSS",
127 "managed",
128 "AP",
129 "AP/VLAN",
130 "WDS",
131 "monitor",
132 "mesh point",
133 "P2P-client",
134 "P2P-GO",
135 "P2P-device",
136 "outside context of a BSS",
137 "NAN",
138 };
139
140 static char modebuf[100];
141
142 const char *iftype_name(enum nl80211_iftype iftype)
143 {
144 if (iftype <= NL80211_IFTYPE_MAX && ifmodes[iftype])
145 return ifmodes[iftype];
146 sprintf(modebuf, "Unknown mode (%d)", iftype);
147 return modebuf;
148 }
149
150 static const char *commands[NL80211_CMD_MAX + 1] = {
151 /*
152 * sed 's%^\tNL80211_CMD_%%;t n;d;:n s%^\([^=]*\),.*%\t[NL80211_CMD_\1] = \"\L\1\",%;t;d' nl80211.h | grep -v "reserved"
153 */
154 [NL80211_CMD_UNSPEC] = "unspec",
155 [NL80211_CMD_GET_WIPHY] = "get_wiphy",
156 [NL80211_CMD_SET_WIPHY] = "set_wiphy",
157 [NL80211_CMD_NEW_WIPHY] = "new_wiphy",
158 [NL80211_CMD_DEL_WIPHY] = "del_wiphy",
159 [NL80211_CMD_GET_INTERFACE] = "get_interface",
160 [NL80211_CMD_SET_INTERFACE] = "set_interface",
161 [NL80211_CMD_NEW_INTERFACE] = "new_interface",
162 [NL80211_CMD_DEL_INTERFACE] = "del_interface",
163 [NL80211_CMD_GET_KEY] = "get_key",
164 [NL80211_CMD_SET_KEY] = "set_key",
165 [NL80211_CMD_NEW_KEY] = "new_key",
166 [NL80211_CMD_DEL_KEY] = "del_key",
167 [NL80211_CMD_GET_BEACON] = "get_beacon",
168 [NL80211_CMD_SET_BEACON] = "set_beacon",
169 [NL80211_CMD_START_AP] = "start_ap",
170 [NL80211_CMD_STOP_AP] = "stop_ap",
171 [NL80211_CMD_GET_STATION] = "get_station",
172 [NL80211_CMD_SET_STATION] = "set_station",
173 [NL80211_CMD_NEW_STATION] = "new_station",
174 [NL80211_CMD_DEL_STATION] = "del_station",
175 [NL80211_CMD_GET_MPATH] = "get_mpath",
176 [NL80211_CMD_SET_MPATH] = "set_mpath",
177 [NL80211_CMD_NEW_MPATH] = "new_mpath",
178 [NL80211_CMD_DEL_MPATH] = "del_mpath",
179 [NL80211_CMD_SET_BSS] = "set_bss",
180 [NL80211_CMD_SET_REG] = "set_reg",
181 [NL80211_CMD_REQ_SET_REG] = "req_set_reg",
182 [NL80211_CMD_GET_MESH_CONFIG] = "get_mesh_config",
183 [NL80211_CMD_SET_MESH_CONFIG] = "set_mesh_config",
184 [NL80211_CMD_GET_REG] = "get_reg",
185 [NL80211_CMD_GET_SCAN] = "get_scan",
186 [NL80211_CMD_TRIGGER_SCAN] = "trigger_scan",
187 [NL80211_CMD_NEW_SCAN_RESULTS] = "new_scan_results",
188 [NL80211_CMD_SCAN_ABORTED] = "scan_aborted",
189 [NL80211_CMD_REG_CHANGE] = "reg_change",
190 [NL80211_CMD_AUTHENTICATE] = "authenticate",
191 [NL80211_CMD_ASSOCIATE] = "associate",
192 [NL80211_CMD_DEAUTHENTICATE] = "deauthenticate",
193 [NL80211_CMD_DISASSOCIATE] = "disassociate",
194 [NL80211_CMD_MICHAEL_MIC_FAILURE] = "michael_mic_failure",
195 [NL80211_CMD_REG_BEACON_HINT] = "reg_beacon_hint",
196 [NL80211_CMD_JOIN_IBSS] = "join_ibss",
197 [NL80211_CMD_LEAVE_IBSS] = "leave_ibss",
198 [NL80211_CMD_TESTMODE] = "testmode",
199 [NL80211_CMD_CONNECT] = "connect",
200 [NL80211_CMD_ROAM] = "roam",
201 [NL80211_CMD_DISCONNECT] = "disconnect",
202 [NL80211_CMD_SET_WIPHY_NETNS] = "set_wiphy_netns",
203 [NL80211_CMD_GET_SURVEY] = "get_survey",
204 [NL80211_CMD_NEW_SURVEY_RESULTS] = "new_survey_results",
205 [NL80211_CMD_SET_PMKSA] = "set_pmksa",
206 [NL80211_CMD_DEL_PMKSA] = "del_pmksa",
207 [NL80211_CMD_FLUSH_PMKSA] = "flush_pmksa",
208 [NL80211_CMD_REMAIN_ON_CHANNEL] = "remain_on_channel",
209 [NL80211_CMD_CANCEL_REMAIN_ON_CHANNEL] = "cancel_remain_on_channel",
210 [NL80211_CMD_SET_TX_BITRATE_MASK] = "set_tx_bitrate_mask",
211 [NL80211_CMD_REGISTER_FRAME] = "register_frame",
212 [NL80211_CMD_FRAME] = "frame",
213 [NL80211_CMD_FRAME_TX_STATUS] = "frame_tx_status",
214 [NL80211_CMD_SET_POWER_SAVE] = "set_power_save",
215 [NL80211_CMD_GET_POWER_SAVE] = "get_power_save",
216 [NL80211_CMD_SET_CQM] = "set_cqm",
217 [NL80211_CMD_NOTIFY_CQM] = "notify_cqm",
218 [NL80211_CMD_SET_CHANNEL] = "set_channel",
219 [NL80211_CMD_SET_WDS_PEER] = "set_wds_peer",
220 [NL80211_CMD_FRAME_WAIT_CANCEL] = "frame_wait_cancel",
221 [NL80211_CMD_JOIN_MESH] = "join_mesh",
222 [NL80211_CMD_LEAVE_MESH] = "leave_mesh",
223 [NL80211_CMD_UNPROT_DEAUTHENTICATE] = "unprot_deauthenticate",
224 [NL80211_CMD_UNPROT_DISASSOCIATE] = "unprot_disassociate",
225 [NL80211_CMD_NEW_PEER_CANDIDATE] = "new_peer_candidate",
226 [NL80211_CMD_GET_WOWLAN] = "get_wowlan",
227 [NL80211_CMD_SET_WOWLAN] = "set_wowlan",
228 [NL80211_CMD_START_SCHED_SCAN] = "start_sched_scan",
229 [NL80211_CMD_STOP_SCHED_SCAN] = "stop_sched_scan",
230 [NL80211_CMD_SCHED_SCAN_RESULTS] = "sched_scan_results",
231 [NL80211_CMD_SCHED_SCAN_STOPPED] = "sched_scan_stopped",
232 [NL80211_CMD_SET_REKEY_OFFLOAD] = "set_rekey_offload",
233 [NL80211_CMD_PMKSA_CANDIDATE] = "pmksa_candidate",
234 [NL80211_CMD_TDLS_OPER] = "tdls_oper",
235 [NL80211_CMD_TDLS_MGMT] = "tdls_mgmt",
236 [NL80211_CMD_UNEXPECTED_FRAME] = "unexpected_frame",
237 [NL80211_CMD_PROBE_CLIENT] = "probe_client",
238 [NL80211_CMD_REGISTER_BEACONS] = "register_beacons",
239 [NL80211_CMD_UNEXPECTED_4ADDR_FRAME] = "unexpected_4addr_frame",
240 [NL80211_CMD_SET_NOACK_MAP] = "set_noack_map",
241 [NL80211_CMD_CH_SWITCH_NOTIFY] = "ch_switch_notify",
242 [NL80211_CMD_START_P2P_DEVICE] = "start_p2p_device",
243 [NL80211_CMD_STOP_P2P_DEVICE] = "stop_p2p_device",
244 [NL80211_CMD_CONN_FAILED] = "conn_failed",
245 [NL80211_CMD_SET_MCAST_RATE] = "set_mcast_rate",
246 [NL80211_CMD_SET_MAC_ACL] = "set_mac_acl",
247 [NL80211_CMD_RADAR_DETECT] = "radar_detect",
248 [NL80211_CMD_GET_PROTOCOL_FEATURES] = "get_protocol_features",
249 [NL80211_CMD_UPDATE_FT_IES] = "update_ft_ies",
250 [NL80211_CMD_FT_EVENT] = "ft_event",
251 [NL80211_CMD_CRIT_PROTOCOL_START] = "crit_protocol_start",
252 [NL80211_CMD_CRIT_PROTOCOL_STOP] = "crit_protocol_stop",
253 [NL80211_CMD_GET_COALESCE] = "get_coalesce",
254 [NL80211_CMD_SET_COALESCE] = "set_coalesce",
255 [NL80211_CMD_CHANNEL_SWITCH] = "channel_switch",
256 [NL80211_CMD_VENDOR] = "vendor",
257 [NL80211_CMD_SET_QOS_MAP] = "set_qos_map",
258 [NL80211_CMD_ADD_TX_TS] = "add_tx_ts",
259 [NL80211_CMD_DEL_TX_TS] = "del_tx_ts",
260 [NL80211_CMD_GET_MPP] = "get_mpp",
261 [NL80211_CMD_JOIN_OCB] = "join_ocb",
262 [NL80211_CMD_LEAVE_OCB] = "leave_ocb",
263 [NL80211_CMD_CH_SWITCH_STARTED_NOTIFY] = "ch_switch_started_notify",
264 [NL80211_CMD_TDLS_CHANNEL_SWITCH] = "tdls_channel_switch",
265 [NL80211_CMD_TDLS_CANCEL_CHANNEL_SWITCH] = "tdls_cancel_channel_switch",
266 [NL80211_CMD_WIPHY_REG_CHANGE] = "wiphy_reg_change",
267 [NL80211_CMD_ABORT_SCAN] = "abort_scan",
268 [NL80211_CMD_START_NAN] = "start_nan",
269 [NL80211_CMD_STOP_NAN] = "stop_nan",
270 [NL80211_CMD_ADD_NAN_FUNCTION] = "add_nan_function",
271 [NL80211_CMD_DEL_NAN_FUNCTION] = "del_nan_function",
272 [NL80211_CMD_CHANGE_NAN_CONFIG] = "change_nan_config",
273 [NL80211_CMD_NAN_MATCH] = "nan_match",
274 [NL80211_CMD_SET_MULTICAST_TO_UNICAST] = "set_multicast_to_unicast",
275 [NL80211_CMD_UPDATE_CONNECT_PARAMS] = "update_connect_params",
276 [NL80211_CMD_SET_PMK] = "set_pmk",
277 [NL80211_CMD_DEL_PMK] = "del_pmk",
278 [NL80211_CMD_PORT_AUTHORIZED] = "port_authorized",
279 [NL80211_CMD_RELOAD_REGDB] = "reload_regdb",
280 [NL80211_CMD_EXTERNAL_AUTH] = "external_auth",
281 [NL80211_CMD_STA_OPMODE_CHANGED] = "sta_opmode_changed",
282 [NL80211_CMD_CONTROL_PORT_FRAME] = "control_port_frame",
283 [NL80211_CMD_GET_FTM_RESPONDER_STATS] = "get_ftm_responder_stats",
284 [NL80211_CMD_PEER_MEASUREMENT_START] = "peer_measurement_start",
285 [NL80211_CMD_PEER_MEASUREMENT_RESULT] = "peer_measurement_result",
286 [NL80211_CMD_PEER_MEASUREMENT_COMPLETE] = "peer_measurement_complete",
287 [NL80211_CMD_NOTIFY_RADAR] = "notify_radar",
288 };
289
290 static char cmdbuf[100];
291
292 const char *command_name(enum nl80211_commands cmd)
293 {
294 if (cmd <= NL80211_CMD_MAX && commands[cmd])
295 return commands[cmd];
296 sprintf(cmdbuf, "Unknown command (%d)", cmd);
297 return cmdbuf;
298 }
299
300 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
301 {
302 /* see 802.11 17.3.8.3.2 and Annex J
303 * there are overlapping channel numbers in 5GHz and 2GHz bands */
304 if (chan <= 0)
305 return 0; /* not supported */
306 switch (band) {
307 case NL80211_BAND_2GHZ:
308 if (chan == 14)
309 return 2484;
310 else if (chan < 14)
311 return 2407 + chan * 5;
312 break;
313 case NL80211_BAND_5GHZ:
314 if (chan >= 182 && chan <= 196)
315 return 4000 + chan * 5;
316 else
317 return 5000 + chan * 5;
318 break;
319 case NL80211_BAND_60GHZ:
320 if (chan < 5)
321 return 56160 + chan * 2160;
322 break;
323 default:
324 ;
325 }
326 return 0; /* not supported */
327 }
328
329 int ieee80211_frequency_to_channel(int freq)
330 {
331 /* see 802.11-2007 17.3.8.3.2 and Annex J */
332 if (freq == 2484)
333 return 14;
334 else if (freq < 2484)
335 return (freq - 2407) / 5;
336 else if (freq >= 4910 && freq <= 4980)
337 return (freq - 4000) / 5;
338 else if (freq <= 45000) /* DMG band lower limit */
339 return (freq - 5000) / 5;
340 else if (freq >= 58320 && freq <= 64800)
341 return (freq - 56160) / 2160;
342 else
343 return 0;
344 }
345
346 void print_ssid_escaped(const uint8_t len, const uint8_t *data)
347 {
348 int i;
349
350 for (i = 0; i < len; i++) {
351 if (isprint(data[i]) && data[i] != ' ' && data[i] != '\\')
352 printf("%c", data[i]);
353 else if (data[i] == ' ' &&
354 (i != 0 && i != len -1))
355 printf(" ");
356 else
357 printf("\\x%.2x", data[i]);
358 }
359 }
360
361 static int hex2num(char digit)
362 {
363 if (!isxdigit(digit))
364 return -1;
365 if (isdigit(digit))
366 return digit - '0';
367 return tolower(digit) - 'a' + 10;
368 }
369
370 static int hex2byte(const char *hex)
371 {
372 int d1, d2;
373
374 d1 = hex2num(hex[0]);
375 if (d1 < 0)
376 return -1;
377 d2 = hex2num(hex[1]);
378 if (d2 < 0)
379 return -1;
380 return (d1 << 4) | d2;
381 }
382
383 char *hex2bin(const char *hex, char *buf)
384 {
385 char *result = buf;
386 int d;
387
388 while (hex[0]) {
389 d = hex2byte(hex);
390 if (d < 0)
391 return NULL;
392 buf[0] = d;
393 buf++;
394 hex += 2;
395 }
396
397 return result;
398 }
399
400 static int parse_akm_suite(const char *cipher_str)
401 {
402
403 if (!strcmp(cipher_str, "PSK"))
404 return 0x000FAC02;
405 if (!strcmp(cipher_str, "FT/PSK"))
406 return 0x000FAC03;
407 if (!strcmp(cipher_str, "PSK/SHA-256"))
408 return 0x000FAC06;
409 return -EINVAL;
410 }
411
412 static int parse_cipher_suite(const char *cipher_str)
413 {
414
415 if (!strcmp(cipher_str, "TKIP"))
416 return 0x000FAC02;
417 if (!strcmp(cipher_str, "CCMP") || !strcmp(cipher_str, "CCMP-128"))
418 return 0x000FAC04;
419 if (!strcmp(cipher_str, "GCMP") || !strcmp(cipher_str, "GCMP-128"))
420 return 0x000FAC08;
421 if (!strcmp(cipher_str, "GCMP-256"))
422 return 0x000FAC09;
423 if (!strcmp(cipher_str, "CCMP-256"))
424 return 0x000FAC0A;
425 return -EINVAL;
426 }
427
428 int parse_keys(struct nl_msg *msg, char **argv[], int *argc)
429 {
430 struct nlattr *keys;
431 int i = 0;
432 bool have_default = false;
433 char *arg = **argv;
434 char keybuf[13];
435 int pos = 0;
436
437 if (!*argc)
438 return 1;
439
440 if (!memcmp(&arg[pos], "psk", 3)) {
441 char psk_keybuf[32];
442 int cipher_suite, akm_suite;
443
444 if (*argc < 4)
445 goto explain;
446
447 pos+=3;
448 if (arg[pos] != ':')
449 goto explain;
450 pos++;
451
452 NLA_PUT_U32(msg, NL80211_ATTR_WPA_VERSIONS, NL80211_WPA_VERSION_2);
453
454 if (strlen(&arg[pos]) != (sizeof(psk_keybuf) * 2) || !hex2bin(&arg[pos], psk_keybuf)) {
455 printf("Bad PSK\n");
456 return -EINVAL;
457 }
458
459 NLA_PUT(msg, NL80211_ATTR_PMK, 32, psk_keybuf);
460 NLA_PUT_U32(msg, NL80211_ATTR_AUTH_TYPE, NL80211_AUTHTYPE_OPEN_SYSTEM);
461
462 *argv += 1;
463 *argc -= 1;
464 arg = **argv;
465
466 akm_suite = parse_akm_suite(arg);
467 if (akm_suite < 0)
468 goto explain;
469
470 NLA_PUT_U32(msg, NL80211_ATTR_AKM_SUITES, akm_suite);
471
472 *argv += 1;
473 *argc -= 1;
474 arg = **argv;
475
476 cipher_suite = parse_cipher_suite(arg);
477 if (cipher_suite < 0)
478 goto explain;
479
480 NLA_PUT_U32(msg, NL80211_ATTR_CIPHER_SUITES_PAIRWISE, cipher_suite);
481
482 *argv += 1;
483 *argc -= 1;
484 arg = **argv;
485
486 cipher_suite = parse_cipher_suite(arg);
487 if (cipher_suite < 0)
488 goto explain;
489
490 NLA_PUT_U32(msg, NL80211_ATTR_CIPHER_SUITE_GROUP, cipher_suite);
491
492 *argv += 1;
493 *argc -= 1;
494 return 0;
495 }
496
497 NLA_PUT_FLAG(msg, NL80211_ATTR_PRIVACY);
498
499 keys = nla_nest_start(msg, NL80211_ATTR_KEYS);
500 if (!keys)
501 return -ENOBUFS;
502
503 do {
504 int keylen;
505 struct nlattr *key = nla_nest_start(msg, ++i);
506 char *keydata;
507
508 arg = **argv;
509 pos = 0;
510
511 if (!key)
512 return -ENOBUFS;
513
514 if (arg[pos] == 'd') {
515 NLA_PUT_FLAG(msg, NL80211_KEY_DEFAULT);
516 pos++;
517 if (arg[pos] == ':')
518 pos++;
519 have_default = true;
520 }
521
522 if (!isdigit(arg[pos]))
523 goto explain;
524 NLA_PUT_U8(msg, NL80211_KEY_IDX, arg[pos++] - '0');
525 if (arg[pos++] != ':')
526 goto explain;
527 keydata = arg + pos;
528 switch (strlen(keydata)) {
529 case 10:
530 keydata = hex2bin(keydata, keybuf);
531 /* fall through */
532 case 5:
533 NLA_PUT_U32(msg, NL80211_KEY_CIPHER, 0x000FAC01);
534 keylen = 5;
535 break;
536 case 26:
537 keydata = hex2bin(keydata, keybuf);
538 /* fall through */
539 case 13:
540 NLA_PUT_U32(msg, NL80211_KEY_CIPHER, 0x000FAC05);
541 keylen = 13;
542 break;
543 default:
544 goto explain;
545 }
546
547 if (!keydata)
548 goto explain;
549
550 NLA_PUT(msg, NL80211_KEY_DATA, keylen, keydata);
551
552 *argv += 1;
553 *argc -= 1;
554
555 /* one key should be TX key */
556 if (!have_default && !*argc)
557 NLA_PUT_FLAG(msg, NL80211_KEY_DEFAULT);
558
559 nla_nest_end(msg, key);
560 } while (*argc);
561
562 nla_nest_end(msg, keys);
563
564 return 0;
565 nla_put_failure:
566 return -ENOBUFS;
567 explain:
568 fprintf(stderr, "key must be [d:]index:data where\n"
569 " 'd:' means default (transmit) key\n"
570 " 'index:' is a single digit (0-3)\n"
571 " 'data' must be 5 or 13 ascii chars\n"
572 " or 10 or 26 hex digits\n"
573 "for example: d:2:6162636465 is the same as d:2:abcde\n"
574 "or psk:data <AKM Suite> <pairwise CIPHER> <groupwise CIPHER> where\n"
575 " 'data' is the PSK (output of wpa_passphrase and the CIPHER can be CCMP or GCMP\n"
576 "for example: psk:0123456789abcdef PSK CCMP CCMP\n"
577 "The allowed AKM suites are PSK, FT/PSK, PSK/SHA-256\n"
578 "The allowed Cipher suites are TKIP, CCMP, GCMP, GCMP-256, CCMP-256\n");
579 return 2;
580 }
581
582 enum nl80211_chan_width str_to_bw(const char *str)
583 {
584 static const struct {
585 const char *name;
586 unsigned int val;
587 } bwmap[] = {
588 { .name = "5", .val = NL80211_CHAN_WIDTH_5, },
589 { .name = "10", .val = NL80211_CHAN_WIDTH_10, },
590 { .name = "20", .val = NL80211_CHAN_WIDTH_20, },
591 { .name = "40", .val = NL80211_CHAN_WIDTH_40, },
592 { .name = "80", .val = NL80211_CHAN_WIDTH_80, },
593 { .name = "80+80", .val = NL80211_CHAN_WIDTH_80P80, },
594 { .name = "160", .val = NL80211_CHAN_WIDTH_160, },
595 };
596 unsigned int i;
597
598 for (i = 0; i < ARRAY_SIZE(bwmap); i++) {
599 if (strcasecmp(bwmap[i].name, str) == 0)
600 return bwmap[i].val;
601 }
602
603 return NL80211_CHAN_WIDTH_20_NOHT;
604 }
605
606 static int parse_freqs(struct chandef *chandef, int argc, char **argv,
607 int *parsed)
608 {
609 uint32_t freq;
610 char *end;
611 bool need_cf1 = false, need_cf2 = false;
612
613 if (argc < 1)
614 return 0;
615
616 chandef->width = str_to_bw(argv[0]);
617
618 switch (chandef->width) {
619 case NL80211_CHAN_WIDTH_20_NOHT:
620 /* First argument was not understood, give up gracefully. */
621 return 0;
622 case NL80211_CHAN_WIDTH_20:
623 case NL80211_CHAN_WIDTH_5:
624 case NL80211_CHAN_WIDTH_10:
625 break;
626 case NL80211_CHAN_WIDTH_80P80:
627 need_cf2 = true;
628 /* fall through */
629 case NL80211_CHAN_WIDTH_40:
630 case NL80211_CHAN_WIDTH_80:
631 case NL80211_CHAN_WIDTH_160:
632 need_cf1 = true;
633 break;
634 }
635
636 *parsed += 1;
637
638 if (!need_cf1)
639 return 0;
640
641 if (argc < 2)
642 return 1;
643
644 /* center freq 1 */
645 if (!*argv[1])
646 return 1;
647 freq = strtoul(argv[1], &end, 10);
648 if (*end)
649 return 1;
650 *parsed += 1;
651
652 chandef->center_freq1 = freq;
653
654 if (!need_cf2)
655 return 0;
656
657 if (argc < 3)
658 return 1;
659
660 /* center freq 2 */
661 if (!*argv[2])
662 return 1;
663 freq = strtoul(argv[2], &end, 10);
664 if (*end)
665 return 1;
666 chandef->center_freq2 = freq;
667
668 *parsed += 1;
669
670 return 0;
671 }
672
673
674 /**
675 * parse_freqchan - Parse frequency or channel definition
676 *
677 * @chandef: chandef structure to be filled in
678 * @chan: Boolean whether to parse a channel or frequency based specifier
679 * @argc: Number of arguments
680 * @argv: Array of string arguments
681 * @parsed: Pointer to return the number of used arguments, or NULL to error
682 * out if any argument is left unused.
683 *
684 * The given chandef structure will be filled in from the command line
685 * arguments. argc/argv will be updated so that further arguments from the
686 * command line can be parsed.
687 *
688 * Note that despite the fact that the function knows how many center freqs
689 * are needed, there's an ambiguity if the next argument after this is an
690 * integer argument, since the valid channel width values are interpreted
691 * as such, rather than a following argument. This can be avoided by the
692 * user by giving "NOHT" instead.
693 *
694 * The working specifier if chan is set are:
695 * <channel> [NOHT|HT20|HT40+|HT40-|5MHz|10MHz|80MHz]
696 *
697 * And if frequency is set:
698 * <freq> [NOHT|HT20|HT40+|HT40-|5MHz|10MHz|80MHz]
699 * <control freq> [5|10|20|40|80|80+80|160] [<center1_freq> [<center2_freq>]]
700 *
701 * If the mode/channel width is not given the NOHT is assumed.
702 *
703 * Return: Number of used arguments, zero or negative error number otherwise
704 */
705 int parse_freqchan(struct chandef *chandef, bool chan, int argc, char **argv,
706 int *parsed)
707 {
708 char *end;
709 static const struct chanmode chanmode[] = {
710 { .name = "HT20",
711 .width = NL80211_CHAN_WIDTH_20,
712 .freq1_diff = 0,
713 .chantype = NL80211_CHAN_HT20 },
714 { .name = "HT40+",
715 .width = NL80211_CHAN_WIDTH_40,
716 .freq1_diff = 10,
717 .chantype = NL80211_CHAN_HT40PLUS },
718 { .name = "HT40-",
719 .width = NL80211_CHAN_WIDTH_40,
720 .freq1_diff = -10,
721 .chantype = NL80211_CHAN_HT40MINUS },
722 { .name = "NOHT",
723 .width = NL80211_CHAN_WIDTH_20_NOHT,
724 .freq1_diff = 0,
725 .chantype = NL80211_CHAN_NO_HT },
726 { .name = "5MHz",
727 .width = NL80211_CHAN_WIDTH_5,
728 .freq1_diff = 0,
729 .chantype = -1 },
730 { .name = "10MHz",
731 .width = NL80211_CHAN_WIDTH_10,
732 .freq1_diff = 0,
733 .chantype = -1 },
734 { .name = "80MHz",
735 .width = NL80211_CHAN_WIDTH_80,
736 .freq1_diff = 0,
737 .chantype = -1 },
738 };
739 const struct chanmode *chanmode_selected = NULL;
740 unsigned int freq;
741 unsigned int i;
742 int _parsed = 0;
743 int res = 0;
744
745 if (argc < 1)
746 return 1;
747
748 if (!argv[0])
749 goto out;
750 freq = strtoul(argv[0], &end, 10);
751 if (*end) {
752 res = 1;
753 goto out;
754 }
755
756 _parsed += 1;
757
758 memset(chandef, 0, sizeof(struct chandef));
759
760 if (chan) {
761 enum nl80211_band band;
762
763 band = freq <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
764 freq = ieee80211_channel_to_frequency(freq, band);
765 }
766 chandef->control_freq = freq;
767 /* Assume 20MHz NOHT channel for now. */
768 chandef->center_freq1 = freq;
769
770 /* Try to parse HT mode definitions */
771 if (argc > 1) {
772 for (i = 0; i < ARRAY_SIZE(chanmode); i++) {
773 if (strcasecmp(chanmode[i].name, argv[1]) == 0) {
774 chanmode_selected = &chanmode[i];
775 _parsed += 1;
776 break;
777 }
778 }
779 }
780
781 /* channel mode given, use it and return. */
782 if (chanmode_selected) {
783 chandef->center_freq1 = get_cf1(chanmode_selected, freq);
784 chandef->width = chanmode_selected->width;
785 goto out;
786 }
787
788 /* This was a only a channel definition, nothing further may follow. */
789 if (chan)
790 goto out;
791
792 res = parse_freqs(chandef, argc - 1, argv + 1, &_parsed);
793
794 out:
795 /* Error out if parsed is NULL. */
796 if (!parsed && _parsed != argc)
797 return 1;
798
799 if (parsed)
800 *parsed = _parsed;
801
802 return res;
803 }
804
805 int put_chandef(struct nl_msg *msg, struct chandef *chandef)
806 {
807 NLA_PUT_U32(msg, NL80211_ATTR_WIPHY_FREQ, chandef->control_freq);
808 NLA_PUT_U32(msg, NL80211_ATTR_CHANNEL_WIDTH, chandef->width);
809
810 switch (chandef->width) {
811 case NL80211_CHAN_WIDTH_20_NOHT:
812 NLA_PUT_U32(msg,
813 NL80211_ATTR_WIPHY_CHANNEL_TYPE,
814 NL80211_CHAN_NO_HT);
815 break;
816 case NL80211_CHAN_WIDTH_20:
817 NLA_PUT_U32(msg,
818 NL80211_ATTR_WIPHY_CHANNEL_TYPE,
819 NL80211_CHAN_HT20);
820 break;
821 case NL80211_CHAN_WIDTH_40:
822 if (chandef->control_freq > chandef->center_freq1)
823 NLA_PUT_U32(msg,
824 NL80211_ATTR_WIPHY_CHANNEL_TYPE,
825 NL80211_CHAN_HT40MINUS);
826 else
827 NLA_PUT_U32(msg,
828 NL80211_ATTR_WIPHY_CHANNEL_TYPE,
829 NL80211_CHAN_HT40PLUS);
830 break;
831 default:
832 break;
833 }
834
835 if (chandef->center_freq1)
836 NLA_PUT_U32(msg,
837 NL80211_ATTR_CENTER_FREQ1,
838 chandef->center_freq1);
839
840 if (chandef->center_freq2)
841 NLA_PUT_U32(msg,
842 NL80211_ATTR_CENTER_FREQ2,
843 chandef->center_freq2);
844
845 return 0;
846
847 nla_put_failure:
848 return -ENOBUFS;
849 }
850
851 static void print_mcs_index(const __u8 *mcs)
852 {
853 int mcs_bit, prev_bit = -2, prev_cont = 0;
854
855 for (mcs_bit = 0; mcs_bit <= 76; mcs_bit++) {
856 unsigned int mcs_octet = mcs_bit/8;
857 unsigned int MCS_RATE_BIT = 1 << mcs_bit % 8;
858 bool mcs_rate_idx_set;
859
860 mcs_rate_idx_set = !!(mcs[mcs_octet] & MCS_RATE_BIT);
861
862 if (!mcs_rate_idx_set)
863 continue;
864
865 if (prev_bit != mcs_bit - 1) {
866 if (prev_bit != -2)
867 printf("%d, ", prev_bit);
868 else
869 printf(" ");
870 printf("%d", mcs_bit);
871 prev_cont = 0;
872 } else if (!prev_cont) {
873 printf("-");
874 prev_cont = 1;
875 }
876
877 prev_bit = mcs_bit;
878 }
879
880 if (prev_cont)
881 printf("%d", prev_bit);
882 printf("\n");
883 }
884
885 /*
886 * There are only 4 possible values, we just use a case instead of computing it,
887 * but technically this can also be computed through the formula:
888 *
889 * Max AMPDU length = (2 ^ (13 + exponent)) - 1 bytes
890 */
891 static __u32 compute_ampdu_length(__u8 exponent)
892 {
893 switch (exponent) {
894 case 0: return 8191; /* (2 ^(13 + 0)) -1 */
895 case 1: return 16383; /* (2 ^(13 + 1)) -1 */
896 case 2: return 32767; /* (2 ^(13 + 2)) -1 */
897 case 3: return 65535; /* (2 ^(13 + 3)) -1 */
898 default: return 0;
899 }
900 }
901
902 static const char *print_ampdu_space(__u8 space)
903 {
904 switch (space) {
905 case 0: return "No restriction";
906 case 1: return "1/4 usec";
907 case 2: return "1/2 usec";
908 case 3: return "1 usec";
909 case 4: return "2 usec";
910 case 5: return "4 usec";
911 case 6: return "8 usec";
912 case 7: return "16 usec";
913 default:
914 return "BUG (spacing more than 3 bits!)";
915 }
916 }
917
918 void print_ampdu_length(__u8 exponent)
919 {
920 __u32 max_ampdu_length;
921
922 max_ampdu_length = compute_ampdu_length(exponent);
923
924 if (max_ampdu_length) {
925 printf("\t\tMaximum RX AMPDU length %d bytes (exponent: 0x0%02x)\n",
926 max_ampdu_length, exponent);
927 } else {
928 printf("\t\tMaximum RX AMPDU length: unrecognized bytes "
929 "(exponent: %d)\n", exponent);
930 }
931 }
932
933 void print_ampdu_spacing(__u8 spacing)
934 {
935 printf("\t\tMinimum RX AMPDU time spacing: %s (0x%02x)\n",
936 print_ampdu_space(spacing), spacing);
937 }
938
939 void print_ht_capability(__u16 cap)
940 {
941 #define PRINT_HT_CAP(_cond, _str) \
942 do { \
943 if (_cond) \
944 printf("\t\t\t" _str "\n"); \
945 } while (0)
946
947 printf("\t\tCapabilities: 0x%02x\n", cap);
948
949 PRINT_HT_CAP((cap & BIT(0)), "RX LDPC");
950 PRINT_HT_CAP((cap & BIT(1)), "HT20/HT40");
951 PRINT_HT_CAP(!(cap & BIT(1)), "HT20");
952
953 PRINT_HT_CAP(((cap >> 2) & 0x3) == 0, "Static SM Power Save");
954 PRINT_HT_CAP(((cap >> 2) & 0x3) == 1, "Dynamic SM Power Save");
955 PRINT_HT_CAP(((cap >> 2) & 0x3) == 3, "SM Power Save disabled");
956
957 PRINT_HT_CAP((cap & BIT(4)), "RX Greenfield");
958 PRINT_HT_CAP((cap & BIT(5)), "RX HT20 SGI");
959 PRINT_HT_CAP((cap & BIT(6)), "RX HT40 SGI");
960 PRINT_HT_CAP((cap & BIT(7)), "TX STBC");
961
962 PRINT_HT_CAP(((cap >> 8) & 0x3) == 0, "No RX STBC");
963 PRINT_HT_CAP(((cap >> 8) & 0x3) == 1, "RX STBC 1-stream");
964 PRINT_HT_CAP(((cap >> 8) & 0x3) == 2, "RX STBC 2-streams");
965 PRINT_HT_CAP(((cap >> 8) & 0x3) == 3, "RX STBC 3-streams");
966
967 PRINT_HT_CAP((cap & BIT(10)), "HT Delayed Block Ack");
968
969 PRINT_HT_CAP(!(cap & BIT(11)), "Max AMSDU length: 3839 bytes");
970 PRINT_HT_CAP((cap & BIT(11)), "Max AMSDU length: 7935 bytes");
971
972 /*
973 * For beacons and probe response this would mean the BSS
974 * does or does not allow the usage of DSSS/CCK HT40.
975 * Otherwise it means the STA does or does not use
976 * DSSS/CCK HT40.
977 */
978 PRINT_HT_CAP((cap & BIT(12)), "DSSS/CCK HT40");
979 PRINT_HT_CAP(!(cap & BIT(12)), "No DSSS/CCK HT40");
980
981 /* BIT(13) is reserved */
982
983 PRINT_HT_CAP((cap & BIT(14)), "40 MHz Intolerant");
984
985 PRINT_HT_CAP((cap & BIT(15)), "L-SIG TXOP protection");
986 #undef PRINT_HT_CAP
987 }
988
989 void print_ht_mcs(const __u8 *mcs)
990 {
991 /* As defined in 7.3.2.57.4 Supported MCS Set field */
992 unsigned int tx_max_num_spatial_streams, max_rx_supp_data_rate;
993 bool tx_mcs_set_defined, tx_mcs_set_equal, tx_unequal_modulation;
994
995 max_rx_supp_data_rate = (mcs[10] | ((mcs[11] & 0x3) << 8));
996 tx_mcs_set_defined = !!(mcs[12] & (1 << 0));
997 tx_mcs_set_equal = !(mcs[12] & (1 << 1));
998 tx_max_num_spatial_streams = ((mcs[12] >> 2) & 3) + 1;
999 tx_unequal_modulation = !!(mcs[12] & (1 << 4));
1000
1001 if (max_rx_supp_data_rate)
1002 printf("\t\tHT Max RX data rate: %d Mbps\n", max_rx_supp_data_rate);
1003 /* XXX: else see 9.6.0e.5.3 how to get this I think */
1004
1005 if (tx_mcs_set_defined) {
1006 if (tx_mcs_set_equal) {
1007 printf("\t\tHT TX/RX MCS rate indexes supported:");
1008 print_mcs_index(mcs);
1009 } else {
1010 printf("\t\tHT RX MCS rate indexes supported:");
1011 print_mcs_index(mcs);
1012
1013 if (tx_unequal_modulation)
1014 printf("\t\tTX unequal modulation supported\n");
1015 else
1016 printf("\t\tTX unequal modulation not supported\n");
1017
1018 printf("\t\tHT TX Max spatial streams: %d\n",
1019 tx_max_num_spatial_streams);
1020
1021 printf("\t\tHT TX MCS rate indexes supported may differ\n");
1022 }
1023 } else {
1024 printf("\t\tHT RX MCS rate indexes supported:");
1025 print_mcs_index(mcs);
1026 printf("\t\tHT TX MCS rate indexes are undefined\n");
1027 }
1028 }
1029
1030 void print_vht_info(__u32 capa, const __u8 *mcs)
1031 {
1032 __u16 tmp;
1033 int i;
1034
1035 printf("\t\tVHT Capabilities (0x%.8x):\n", capa);
1036
1037 #define PRINT_VHT_CAPA(_bit, _str) \
1038 do { \
1039 if (capa & BIT(_bit)) \
1040 printf("\t\t\t" _str "\n"); \
1041 } while (0)
1042
1043 printf("\t\t\tMax MPDU length: ");
1044 switch (capa & 3) {
1045 case 0: printf("3895\n"); break;
1046 case 1: printf("7991\n"); break;
1047 case 2: printf("11454\n"); break;
1048 case 3: printf("(reserved)\n");
1049 }
1050 printf("\t\t\tSupported Channel Width: ");
1051 switch ((capa >> 2) & 3) {
1052 case 0: printf("neither 160 nor 80+80\n"); break;
1053 case 1: printf("160 MHz\n"); break;
1054 case 2: printf("160 MHz, 80+80 MHz\n"); break;
1055 case 3: printf("(reserved)\n");
1056 }
1057 PRINT_VHT_CAPA(4, "RX LDPC");
1058 PRINT_VHT_CAPA(5, "short GI (80 MHz)");
1059 PRINT_VHT_CAPA(6, "short GI (160/80+80 MHz)");
1060 PRINT_VHT_CAPA(7, "TX STBC");
1061 /* RX STBC */
1062 PRINT_VHT_CAPA(11, "SU Beamformer");
1063 PRINT_VHT_CAPA(12, "SU Beamformee");
1064 /* compressed steering */
1065 /* # of sounding dimensions */
1066 PRINT_VHT_CAPA(19, "MU Beamformer");
1067 PRINT_VHT_CAPA(20, "MU Beamformee");
1068 PRINT_VHT_CAPA(21, "VHT TXOP PS");
1069 PRINT_VHT_CAPA(22, "+HTC-VHT");
1070 /* max A-MPDU */
1071 /* VHT link adaptation */
1072 PRINT_VHT_CAPA(28, "RX antenna pattern consistency");
1073 PRINT_VHT_CAPA(29, "TX antenna pattern consistency");
1074
1075 printf("\t\tVHT RX MCS set:\n");
1076 tmp = mcs[0] | (mcs[1] << 8);
1077 for (i = 1; i <= 8; i++) {
1078 printf("\t\t\t%d streams: ", i);
1079 switch ((tmp >> ((i-1)*2) ) & 3) {
1080 case 0: printf("MCS 0-7\n"); break;
1081 case 1: printf("MCS 0-8\n"); break;
1082 case 2: printf("MCS 0-9\n"); break;
1083 case 3: printf("not supported\n"); break;
1084 }
1085 }
1086 tmp = mcs[2] | (mcs[3] << 8);
1087 printf("\t\tVHT RX highest supported: %d Mbps\n", tmp & 0x1fff);
1088
1089 printf("\t\tVHT TX MCS set:\n");
1090 tmp = mcs[4] | (mcs[5] << 8);
1091 for (i = 1; i <= 8; i++) {
1092 printf("\t\t\t%d streams: ", i);
1093 switch ((tmp >> ((i-1)*2) ) & 3) {
1094 case 0: printf("MCS 0-7\n"); break;
1095 case 1: printf("MCS 0-8\n"); break;
1096 case 2: printf("MCS 0-9\n"); break;
1097 case 3: printf("not supported\n"); break;
1098 }
1099 }
1100 tmp = mcs[6] | (mcs[7] << 8);
1101 printf("\t\tVHT TX highest supported: %d Mbps\n", tmp & 0x1fff);
1102 }
1103
1104 void print_he_info(struct nlattr *nl_iftype)
1105 {
1106 struct nlattr *tb[NL80211_BAND_IFTYPE_ATTR_MAX + 1];
1107 struct nlattr *tb_flags[NL80211_IFTYPE_MAX + 1];
1108 char *iftypes[NUM_NL80211_IFTYPES] = {
1109 "Unspec", "Adhoc", "Station", "AP", "AP/VLAN", "WDS", "Monitor",
1110 "Mesh", "P2P/Client", "P2P/Go", "P2P/Device", "OCB", "NAN",
1111 };
1112 __u16 mac_cap[3] = { 0 };
1113 __u16 phy_cap[6] = { 0 };
1114 __u16 mcs_set[6] = { 0 };
1115 __u8 ppet[25] = { 0 };
1116 size_t len;
1117 int i;
1118
1119 #define PRINT_HE_CAP(_var, _idx, _bit, _str) \
1120 do { \
1121 if (_var[_idx] & BIT(_bit)) \
1122 printf("\t\t\t\t" _str "\n"); \
1123 } while (0)
1124
1125 #define PRINT_HE_CAP_MASK(_var, _idx, _shift, _mask, _str) \
1126 do { \
1127 if ((_var[_idx] >> _shift) & _mask) \
1128 printf("\t\t\t\t" _str ": %d\n", (_var[_idx] >> _shift) & _mask); \
1129 } while (0)
1130
1131 #define PRINT_HE_MAC_CAP(...) PRINT_HE_CAP(mac_cap, __VA_ARGS__)
1132 #define PRINT_HE_MAC_CAP_MASK(...) PRINT_HE_CAP_MASK(mac_cap, __VA_ARGS__)
1133 #define PRINT_HE_PHY_CAP(...) PRINT_HE_CAP(phy_cap, __VA_ARGS__)
1134 #define PRINT_HE_PHY_CAP0(_idx, _bit, ...) PRINT_HE_CAP(phy_cap, _idx, _bit + 8, __VA_ARGS__)
1135 #define PRINT_HE_PHY_CAP_MASK(...) PRINT_HE_CAP_MASK(phy_cap, __VA_ARGS__)
1136
1137 nla_parse(tb, NL80211_BAND_IFTYPE_ATTR_MAX,
1138 nla_data(nl_iftype), nla_len(nl_iftype), NULL);
1139
1140 if (!tb[NL80211_BAND_IFTYPE_ATTR_IFTYPES])
1141 return;
1142
1143 if (nla_parse_nested(tb_flags, NL80211_IFTYPE_MAX,
1144 tb[NL80211_BAND_IFTYPE_ATTR_IFTYPES], NULL))
1145 return;
1146
1147 printf("\t\tHE Iftypes:");
1148 for (i = 0; i < NUM_NL80211_IFTYPES; i++)
1149 if (nla_get_flag(tb_flags[i]) && iftypes[i])
1150 printf(" %s", iftypes[i]);
1151 printf("\n");
1152
1153 if (tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_MAC]) {
1154 len = nla_len(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_MAC]);
1155 if (len > sizeof(mac_cap))
1156 len = sizeof(mac_cap);
1157 memcpy(mac_cap,
1158 nla_data(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_MAC]),
1159 len);
1160 }
1161 printf("\t\t\tHE MAC Capabilities (0x");
1162 for (i = 0; i < 3; i++)
1163 printf("%04x", mac_cap[i]);
1164 printf("):\n");
1165
1166 PRINT_HE_MAC_CAP(0, 0, "+HTC HE Supported");
1167 PRINT_HE_MAC_CAP(0, 1, "TWT Requester");
1168 PRINT_HE_MAC_CAP(0, 2, "TWT Responder");
1169 PRINT_HE_MAC_CAP_MASK(0, 3, 0x3, "Dynamic BA Fragementation Level");
1170 PRINT_HE_MAC_CAP_MASK(0, 5, 0x7, "Maximum number of MSDUS Fragments");
1171 PRINT_HE_MAC_CAP_MASK(0, 8, 0x3, "Minimum Payload size of 128 bytes");
1172 PRINT_HE_MAC_CAP_MASK(0, 10, 0x3, "Trigger Frame MAC Padding Duration");
1173 PRINT_HE_MAC_CAP_MASK(0, 12, 0x7, "Multi-TID Aggregation Support");
1174
1175 PRINT_HE_MAC_CAP(1, 1, "All Ack");
1176 PRINT_HE_MAC_CAP(1, 2, "TRS");
1177 PRINT_HE_MAC_CAP(1, 3, "BSR");
1178 PRINT_HE_MAC_CAP(1, 4, "Broadcast TWT");
1179 PRINT_HE_MAC_CAP(1, 5, "32-bit BA Bitmap");
1180 PRINT_HE_MAC_CAP(1, 6, "MU Cascading");
1181 PRINT_HE_MAC_CAP(1, 7, "Ack-Enabled Aggregation");
1182 PRINT_HE_MAC_CAP(1, 9, "OM Control");
1183 PRINT_HE_MAC_CAP(1, 10, "OFDMA RA");
1184 PRINT_HE_MAC_CAP_MASK(1, 11, 0x3, "Maximum A-MPDU Length Exponent");
1185 PRINT_HE_MAC_CAP(1, 13, "A-MSDU Fragmentation");
1186 PRINT_HE_MAC_CAP(1, 14, "Flexible TWT Scheduling");
1187 PRINT_HE_MAC_CAP(1, 15, "RX Control Frame to MultiBSS");
1188
1189 PRINT_HE_MAC_CAP(2, 0, "BSRP BQRP A-MPDU Aggregation");
1190 PRINT_HE_MAC_CAP(2, 1, "QTP");
1191 PRINT_HE_MAC_CAP(2, 2, "BQR");
1192 PRINT_HE_MAC_CAP(2, 3, "SRP Responder Role");
1193 PRINT_HE_MAC_CAP(2, 4, "NDP Feedback Report");
1194 PRINT_HE_MAC_CAP(2, 5, "OPS");
1195 PRINT_HE_MAC_CAP(2, 6, "A-MSDU in A-MPDU");
1196 PRINT_HE_MAC_CAP_MASK(2, 7, 7, "Multi-TID Aggregation TX");
1197 PRINT_HE_MAC_CAP(2, 10, "HE Subchannel Selective Transmission");
1198 PRINT_HE_MAC_CAP(2, 11, "UL 2x996-Tone RU");
1199 PRINT_HE_MAC_CAP(2, 12, "OM Control UL MU Data Disable RX");
1200
1201 if (tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PHY]) {
1202 len = nla_len(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PHY]);
1203
1204 if (len > sizeof(phy_cap) - 1)
1205 len = sizeof(phy_cap) - 1;
1206 memcpy(&((__u8 *)phy_cap)[1],
1207 nla_data(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PHY]),
1208 len);
1209 }
1210 printf("\t\t\tHE PHY Capabilities: (0x");
1211 for (i = 0; i < 11; i++)
1212 printf("%02x", ((__u8 *)phy_cap)[i + 1]);
1213 printf("):\n");
1214
1215 PRINT_HE_PHY_CAP0(0, 1, "HE40/2.4GHz");
1216 PRINT_HE_PHY_CAP0(0, 2, "HE40/HE80/5GHz");
1217 PRINT_HE_PHY_CAP0(0, 3, "HE160/5GHz");
1218 PRINT_HE_PHY_CAP0(0, 4, "HE160/HE80+80/5GHz");
1219 PRINT_HE_PHY_CAP0(0, 5, "242 tone RUs/2.4GHz");
1220 PRINT_HE_PHY_CAP0(0, 6, "242 tone RUs/5GHz");
1221
1222 PRINT_HE_PHY_CAP_MASK(1, 0, 0xf, "Punctured Preamble RX");
1223 PRINT_HE_PHY_CAP_MASK(1, 4, 0x1, "Device Class");
1224 PRINT_HE_PHY_CAP(1, 5, "LDPC Coding in Payload");
1225 PRINT_HE_PHY_CAP(1, 6, "HE SU PPDU with 1x HE-LTF and 0.8us GI");
1226 PRINT_HE_PHY_CAP_MASK(1, 7, 0x3, "Midamble Rx Max NSTS");
1227 PRINT_HE_PHY_CAP(1, 9, "NDP with 4x HE-LTF and 3.2us GI");
1228 PRINT_HE_PHY_CAP(1, 10, "STBC Tx <= 80MHz");
1229 PRINT_HE_PHY_CAP(1, 11, "STBC Rx <= 80MHz");
1230 PRINT_HE_PHY_CAP(1, 12, "Doppler Tx");
1231 PRINT_HE_PHY_CAP(1, 13, "Doppler Rx");
1232 PRINT_HE_PHY_CAP(1, 14, "Full Bandwidth UL MU-MIMO");
1233 PRINT_HE_PHY_CAP(1, 15, "Partial Bandwidth UL MU-MIMO");
1234
1235 PRINT_HE_PHY_CAP_MASK(2, 0, 0x3, "DCM Max Constellation");
1236 PRINT_HE_PHY_CAP_MASK(2, 2, 0x1, "DCM Max NSS Tx");
1237 PRINT_HE_PHY_CAP_MASK(2, 3, 0x3, "DCM Max Constellation Rx");
1238 PRINT_HE_PHY_CAP_MASK(2, 5, 0x1, "DCM Max NSS Rx");
1239 PRINT_HE_PHY_CAP(2, 6, "Rx HE MU PPDU from Non-AP STA");
1240 PRINT_HE_PHY_CAP(2, 7, "SU Beamformer");
1241 PRINT_HE_PHY_CAP(2, 8, "SU Beamformee");
1242 PRINT_HE_PHY_CAP(2, 9, "MU Beamformer");
1243 PRINT_HE_PHY_CAP_MASK(2, 10, 0x7, "Beamformee STS <= 80Mhz");
1244 PRINT_HE_PHY_CAP_MASK(2, 13, 0x7, "Beamformee STS > 80Mhz");
1245
1246 PRINT_HE_PHY_CAP_MASK(3, 0, 0x7, "Sounding Dimensions <= 80Mhz");
1247 PRINT_HE_PHY_CAP_MASK(3, 3, 0x7, "Sounding Dimensions > 80Mhz");
1248 PRINT_HE_PHY_CAP(3, 6, "Ng = 16 SU Feedback");
1249 PRINT_HE_PHY_CAP(3, 7, "Ng = 16 MU Feedback");
1250 PRINT_HE_PHY_CAP(3, 8, "Codebook Size SU Feedback");
1251 PRINT_HE_PHY_CAP(3, 9, "Codebook Size MU Feedback");
1252 PRINT_HE_PHY_CAP(3, 10, "Triggered SU Beamforming Feedback");
1253 PRINT_HE_PHY_CAP(3, 11, "Triggered MU Beamforming Feedback");
1254 PRINT_HE_PHY_CAP(3, 12, "Triggered CQI Feedback");
1255 PRINT_HE_PHY_CAP(3, 13, "Partial Bandwidth Extended Range");
1256 PRINT_HE_PHY_CAP(3, 14, "Partial Bandwidth DL MU-MIMO");
1257 PRINT_HE_PHY_CAP(3, 15, "PPE Threshold Present");
1258
1259 PRINT_HE_PHY_CAP(4, 0, "SRP-based SR");
1260 PRINT_HE_PHY_CAP(4, 1, "Power Boost Factor ar");
1261 PRINT_HE_PHY_CAP(4, 2, "HE SU PPDU & HE PPDU 4x HE-LTF 0.8us GI");
1262 PRINT_HE_PHY_CAP_MASK(4, 3, 0x7, "Max NC");
1263 PRINT_HE_PHY_CAP(4, 6, "STBC Tx > 80MHz");
1264 PRINT_HE_PHY_CAP(4, 7, "STBC Rx > 80MHz");
1265 PRINT_HE_PHY_CAP(4, 8, "HE ER SU PPDU 4x HE-LTF 0.8us GI");
1266 PRINT_HE_PHY_CAP(4, 9, "20MHz in 40MHz HE PPDU 2.4GHz");
1267 PRINT_HE_PHY_CAP(4, 10, "20MHz in 160/80+80MHz HE PPDU");
1268 PRINT_HE_PHY_CAP(4, 11, "80MHz in 160/80+80MHz HE PPDU");
1269 PRINT_HE_PHY_CAP(4, 12, "HE ER SU PPDU 1x HE-LTF 0.8us GI");
1270 PRINT_HE_PHY_CAP(4, 13, "Midamble Rx 2x & 1x HE-LTF");
1271 PRINT_HE_PHY_CAP_MASK(4, 14, 0x3, "DCM Max BW");
1272
1273 PRINT_HE_PHY_CAP(5, 0, "Longer Than 16HE SIG-B OFDM Symbols");
1274 PRINT_HE_PHY_CAP(5, 1, "Non-Triggered CQI Feedback");
1275 PRINT_HE_PHY_CAP(5, 2, "TX 1024-QAM");
1276 PRINT_HE_PHY_CAP(5, 3, "RX 1024-QAM");
1277 PRINT_HE_PHY_CAP(5, 4, "RX Full BW SU Using HE MU PPDU with Compression SIGB");
1278 PRINT_HE_PHY_CAP(5, 5, "RX Full BW SU Using HE MU PPDU with Non-Compression SIGB");
1279
1280 if (tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_MCS_SET]) {
1281 len = nla_len(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_MCS_SET]);
1282 if (len > sizeof(mcs_set))
1283 len = sizeof(mcs_set);
1284 memcpy(mcs_set,
1285 nla_data(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_MCS_SET]),
1286 len);
1287 }
1288
1289 for (i = 0; i < 3; i++) {
1290 __u8 phy_cap_support[] = { BIT(1) | BIT(2), BIT(3), BIT(4) };
1291 char *bw[] = { "<= 80", "160", "80+80" };
1292 int j;
1293
1294 if ((phy_cap[0] & (phy_cap_support[i] << 8)) == 0)
1295 continue;
1296
1297 for (j = 0; j < 2; j++) {
1298 int k;
1299 printf("\t\t\tHE %s MCS and NSS set %s MHz\n", j ? "TX" : "RX", bw[i]);
1300 for (k = 0; k < 8; k++) {
1301 __u16 mcs = mcs_set[(i * 2) + j];
1302 mcs >>= k * 2;
1303 mcs &= 0x3;
1304 printf("\t\t\t\t\t %d streams: ", k + 1);
1305 if (mcs == 3)
1306 printf("not supported\n");
1307 else
1308 printf("MCS 0-%d\n", 7 + (mcs * 2));
1309 }
1310
1311 }
1312 }
1313
1314 len = 0;
1315 if (tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PPE]) {
1316 len = nla_len(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PPE]);
1317 if (len > sizeof(ppet))
1318 len = sizeof(ppet);
1319 memcpy(ppet,
1320 nla_data(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PPE]),
1321 len);
1322 }
1323
1324 if (len && (phy_cap[3] & BIT(15))) {
1325 size_t i;
1326
1327 printf("\t\t\tPPE Threshold ");
1328 for (i = 0; i < len; i++)
1329 if (ppet[i])
1330 printf("0x%02x ", ppet[i]);
1331 printf("\n");
1332 }
1333 }
1334
1335 void iw_hexdump(const char *prefix, const __u8 *buf, size_t size)
1336 {
1337 size_t i;
1338
1339 printf("%s: ", prefix);
1340 for (i = 0; i < size; i++) {
1341 if (i && i % 16 == 0)
1342 printf("\n%s: ", prefix);
1343 printf("%02x ", buf[i]);
1344 }
1345 printf("\n\n");
1346 }
1347
1348 int get_cf1(const struct chanmode *chanmode, unsigned long freq)
1349 {
1350 unsigned int cf1 = freq, j;
1351 unsigned int vht80[] = { 5180, 5260, 5500, 5580, 5660, 5745 };
1352
1353 switch (chanmode->width) {
1354 case NL80211_CHAN_WIDTH_80:
1355 /* setup center_freq1 */
1356 for (j = 0; j < ARRAY_SIZE(vht80); j++) {
1357 if (freq >= vht80[j] && freq < vht80[j] + 80)
1358 break;
1359 }
1360
1361 if (j == ARRAY_SIZE(vht80))
1362 break;
1363
1364 cf1 = vht80[j] + 30;
1365 break;
1366 default:
1367 cf1 = freq + chanmode->freq1_diff;
1368 break;
1369 }
1370
1371 return cf1;
1372 }
1373
1374 int parse_random_mac_addr(struct nl_msg *msg, char *addrs)
1375 {
1376 char *a_addr, *a_mask, *sep;
1377 unsigned char addr[ETH_ALEN], mask[ETH_ALEN];
1378
1379 if (!*addrs) {
1380 /* randomise all but the multicast bit */
1381 NLA_PUT(msg, NL80211_ATTR_MAC, ETH_ALEN,
1382 "\x00\x00\x00\x00\x00\x00");
1383 NLA_PUT(msg, NL80211_ATTR_MAC_MASK, ETH_ALEN,
1384 "\x01\x00\x00\x00\x00\x00");
1385 return 0;
1386 }
1387
1388 if (*addrs != '=')
1389 return 1;
1390
1391 addrs++;
1392 sep = strchr(addrs, '/');
1393 a_addr = addrs;
1394
1395 if (!sep)
1396 return 1;
1397
1398 *sep = 0;
1399 a_mask = sep + 1;
1400 if (mac_addr_a2n(addr, a_addr) || mac_addr_a2n(mask, a_mask))
1401 return 1;
1402
1403 NLA_PUT(msg, NL80211_ATTR_MAC, ETH_ALEN, addr);
1404 NLA_PUT(msg, NL80211_ATTR_MAC_MASK, ETH_ALEN, mask);
1405
1406 return 0;
1407 nla_put_failure:
1408 return -ENOBUFS;
1409 }