]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - block/bio.c
blkcg: introduce common blkg association logic
[thirdparty/kernel/linux.git] / block / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
08e18eab 31#include <linux/blk-cgroup.h>
1da177e4 32
55782138 33#include <trace/events/block.h>
9e234eea 34#include "blk.h"
67b42d0b 35#include "blk-rq-qos.h"
0bfc2455 36
392ddc32
JA
37/*
38 * Test patch to inline a certain number of bi_io_vec's inside the bio
39 * itself, to shrink a bio data allocation from two mempool calls to one
40 */
41#define BIO_INLINE_VECS 4
42
1da177e4
LT
43/*
44 * if you change this list, also change bvec_alloc or things will
45 * break badly! cannot be bigger than what you can fit into an
46 * unsigned short
47 */
bd5c4fac 48#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
ed996a52 49static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
bd5c4fac 50 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
1da177e4
LT
51};
52#undef BV
53
1da177e4
LT
54/*
55 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56 * IO code that does not need private memory pools.
57 */
f4f8154a 58struct bio_set fs_bio_set;
3f86a82a 59EXPORT_SYMBOL(fs_bio_set);
1da177e4 60
bb799ca0
JA
61/*
62 * Our slab pool management
63 */
64struct bio_slab {
65 struct kmem_cache *slab;
66 unsigned int slab_ref;
67 unsigned int slab_size;
68 char name[8];
69};
70static DEFINE_MUTEX(bio_slab_lock);
71static struct bio_slab *bio_slabs;
72static unsigned int bio_slab_nr, bio_slab_max;
73
74static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
75{
76 unsigned int sz = sizeof(struct bio) + extra_size;
77 struct kmem_cache *slab = NULL;
389d7b26 78 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 79 unsigned int new_bio_slab_max;
bb799ca0
JA
80 unsigned int i, entry = -1;
81
82 mutex_lock(&bio_slab_lock);
83
84 i = 0;
85 while (i < bio_slab_nr) {
f06f135d 86 bslab = &bio_slabs[i];
bb799ca0
JA
87
88 if (!bslab->slab && entry == -1)
89 entry = i;
90 else if (bslab->slab_size == sz) {
91 slab = bslab->slab;
92 bslab->slab_ref++;
93 break;
94 }
95 i++;
96 }
97
98 if (slab)
99 goto out_unlock;
100
101 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 102 new_bio_slab_max = bio_slab_max << 1;
389d7b26 103 new_bio_slabs = krealloc(bio_slabs,
386bc35a 104 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
105 GFP_KERNEL);
106 if (!new_bio_slabs)
bb799ca0 107 goto out_unlock;
386bc35a 108 bio_slab_max = new_bio_slab_max;
389d7b26 109 bio_slabs = new_bio_slabs;
bb799ca0
JA
110 }
111 if (entry == -1)
112 entry = bio_slab_nr++;
113
114 bslab = &bio_slabs[entry];
115
116 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
117 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
118 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
119 if (!slab)
120 goto out_unlock;
121
bb799ca0
JA
122 bslab->slab = slab;
123 bslab->slab_ref = 1;
124 bslab->slab_size = sz;
125out_unlock:
126 mutex_unlock(&bio_slab_lock);
127 return slab;
128}
129
130static void bio_put_slab(struct bio_set *bs)
131{
132 struct bio_slab *bslab = NULL;
133 unsigned int i;
134
135 mutex_lock(&bio_slab_lock);
136
137 for (i = 0; i < bio_slab_nr; i++) {
138 if (bs->bio_slab == bio_slabs[i].slab) {
139 bslab = &bio_slabs[i];
140 break;
141 }
142 }
143
144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 goto out;
146
147 WARN_ON(!bslab->slab_ref);
148
149 if (--bslab->slab_ref)
150 goto out;
151
152 kmem_cache_destroy(bslab->slab);
153 bslab->slab = NULL;
154
155out:
156 mutex_unlock(&bio_slab_lock);
157}
158
7ba1ba12
MP
159unsigned int bvec_nr_vecs(unsigned short idx)
160{
d6c02a9b 161 return bvec_slabs[--idx].nr_vecs;
7ba1ba12
MP
162}
163
9f060e22 164void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 165{
ed996a52
CH
166 if (!idx)
167 return;
168 idx--;
169
170 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 171
ed996a52 172 if (idx == BVEC_POOL_MAX) {
9f060e22 173 mempool_free(bv, pool);
ed996a52 174 } else {
bb799ca0
JA
175 struct biovec_slab *bvs = bvec_slabs + idx;
176
177 kmem_cache_free(bvs->slab, bv);
178 }
179}
180
9f060e22
KO
181struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
182 mempool_t *pool)
1da177e4
LT
183{
184 struct bio_vec *bvl;
1da177e4 185
7ff9345f
JA
186 /*
187 * see comment near bvec_array define!
188 */
189 switch (nr) {
190 case 1:
191 *idx = 0;
192 break;
193 case 2 ... 4:
194 *idx = 1;
195 break;
196 case 5 ... 16:
197 *idx = 2;
198 break;
199 case 17 ... 64:
200 *idx = 3;
201 break;
202 case 65 ... 128:
203 *idx = 4;
204 break;
205 case 129 ... BIO_MAX_PAGES:
206 *idx = 5;
207 break;
208 default:
209 return NULL;
210 }
211
212 /*
213 * idx now points to the pool we want to allocate from. only the
214 * 1-vec entry pool is mempool backed.
215 */
ed996a52 216 if (*idx == BVEC_POOL_MAX) {
7ff9345f 217fallback:
9f060e22 218 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
219 } else {
220 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 221 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 222
0a0d96b0 223 /*
7ff9345f
JA
224 * Make this allocation restricted and don't dump info on
225 * allocation failures, since we'll fallback to the mempool
226 * in case of failure.
0a0d96b0 227 */
7ff9345f 228 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 229
0a0d96b0 230 /*
d0164adc 231 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 232 * is set, retry with the 1-entry mempool
0a0d96b0 233 */
7ff9345f 234 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 235 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 236 *idx = BVEC_POOL_MAX;
7ff9345f
JA
237 goto fallback;
238 }
239 }
240
ed996a52 241 (*idx)++;
1da177e4
LT
242 return bvl;
243}
244
9ae3b3f5 245void bio_uninit(struct bio *bio)
1da177e4 246{
4254bba1 247 bio_disassociate_task(bio);
4254bba1 248}
9ae3b3f5 249EXPORT_SYMBOL(bio_uninit);
7ba1ba12 250
4254bba1
KO
251static void bio_free(struct bio *bio)
252{
253 struct bio_set *bs = bio->bi_pool;
254 void *p;
255
9ae3b3f5 256 bio_uninit(bio);
4254bba1
KO
257
258 if (bs) {
8aa6ba2f 259 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
260
261 /*
262 * If we have front padding, adjust the bio pointer before freeing
263 */
264 p = bio;
bb799ca0
JA
265 p -= bs->front_pad;
266
8aa6ba2f 267 mempool_free(p, &bs->bio_pool);
4254bba1
KO
268 } else {
269 /* Bio was allocated by bio_kmalloc() */
270 kfree(bio);
271 }
3676347a
PO
272}
273
9ae3b3f5
JA
274/*
275 * Users of this function have their own bio allocation. Subsequently,
276 * they must remember to pair any call to bio_init() with bio_uninit()
277 * when IO has completed, or when the bio is released.
278 */
3a83f467
ML
279void bio_init(struct bio *bio, struct bio_vec *table,
280 unsigned short max_vecs)
1da177e4 281{
2b94de55 282 memset(bio, 0, sizeof(*bio));
c4cf5261 283 atomic_set(&bio->__bi_remaining, 1);
dac56212 284 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
285
286 bio->bi_io_vec = table;
287 bio->bi_max_vecs = max_vecs;
1da177e4 288}
a112a71d 289EXPORT_SYMBOL(bio_init);
1da177e4 290
f44b48c7
KO
291/**
292 * bio_reset - reinitialize a bio
293 * @bio: bio to reset
294 *
295 * Description:
296 * After calling bio_reset(), @bio will be in the same state as a freshly
297 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
298 * preserved are the ones that are initialized by bio_alloc_bioset(). See
299 * comment in struct bio.
300 */
301void bio_reset(struct bio *bio)
302{
303 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
304
9ae3b3f5 305 bio_uninit(bio);
f44b48c7
KO
306
307 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 308 bio->bi_flags = flags;
c4cf5261 309 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
310}
311EXPORT_SYMBOL(bio_reset);
312
38f8baae 313static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 314{
4246a0b6
CH
315 struct bio *parent = bio->bi_private;
316
4e4cbee9
CH
317 if (!parent->bi_status)
318 parent->bi_status = bio->bi_status;
196d38bc 319 bio_put(bio);
38f8baae
CH
320 return parent;
321}
322
323static void bio_chain_endio(struct bio *bio)
324{
325 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
326}
327
328/**
329 * bio_chain - chain bio completions
1051a902
RD
330 * @bio: the target bio
331 * @parent: the @bio's parent bio
196d38bc
KO
332 *
333 * The caller won't have a bi_end_io called when @bio completes - instead,
334 * @parent's bi_end_io won't be called until both @parent and @bio have
335 * completed; the chained bio will also be freed when it completes.
336 *
337 * The caller must not set bi_private or bi_end_io in @bio.
338 */
339void bio_chain(struct bio *bio, struct bio *parent)
340{
341 BUG_ON(bio->bi_private || bio->bi_end_io);
342
343 bio->bi_private = parent;
344 bio->bi_end_io = bio_chain_endio;
c4cf5261 345 bio_inc_remaining(parent);
196d38bc
KO
346}
347EXPORT_SYMBOL(bio_chain);
348
df2cb6da
KO
349static void bio_alloc_rescue(struct work_struct *work)
350{
351 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
352 struct bio *bio;
353
354 while (1) {
355 spin_lock(&bs->rescue_lock);
356 bio = bio_list_pop(&bs->rescue_list);
357 spin_unlock(&bs->rescue_lock);
358
359 if (!bio)
360 break;
361
362 generic_make_request(bio);
363 }
364}
365
366static void punt_bios_to_rescuer(struct bio_set *bs)
367{
368 struct bio_list punt, nopunt;
369 struct bio *bio;
370
47e0fb46
N
371 if (WARN_ON_ONCE(!bs->rescue_workqueue))
372 return;
df2cb6da
KO
373 /*
374 * In order to guarantee forward progress we must punt only bios that
375 * were allocated from this bio_set; otherwise, if there was a bio on
376 * there for a stacking driver higher up in the stack, processing it
377 * could require allocating bios from this bio_set, and doing that from
378 * our own rescuer would be bad.
379 *
380 * Since bio lists are singly linked, pop them all instead of trying to
381 * remove from the middle of the list:
382 */
383
384 bio_list_init(&punt);
385 bio_list_init(&nopunt);
386
f5fe1b51 387 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 388 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 389 current->bio_list[0] = nopunt;
df2cb6da 390
f5fe1b51
N
391 bio_list_init(&nopunt);
392 while ((bio = bio_list_pop(&current->bio_list[1])))
393 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
394 current->bio_list[1] = nopunt;
df2cb6da
KO
395
396 spin_lock(&bs->rescue_lock);
397 bio_list_merge(&bs->rescue_list, &punt);
398 spin_unlock(&bs->rescue_lock);
399
400 queue_work(bs->rescue_workqueue, &bs->rescue_work);
401}
402
1da177e4
LT
403/**
404 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 405 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 406 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 407 * @bs: the bio_set to allocate from.
1da177e4
LT
408 *
409 * Description:
3f86a82a
KO
410 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
411 * backed by the @bs's mempool.
412 *
d0164adc
MG
413 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
414 * always be able to allocate a bio. This is due to the mempool guarantees.
415 * To make this work, callers must never allocate more than 1 bio at a time
416 * from this pool. Callers that need to allocate more than 1 bio must always
417 * submit the previously allocated bio for IO before attempting to allocate
418 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 419 *
df2cb6da
KO
420 * Note that when running under generic_make_request() (i.e. any block
421 * driver), bios are not submitted until after you return - see the code in
422 * generic_make_request() that converts recursion into iteration, to prevent
423 * stack overflows.
424 *
425 * This would normally mean allocating multiple bios under
426 * generic_make_request() would be susceptible to deadlocks, but we have
427 * deadlock avoidance code that resubmits any blocked bios from a rescuer
428 * thread.
429 *
430 * However, we do not guarantee forward progress for allocations from other
431 * mempools. Doing multiple allocations from the same mempool under
432 * generic_make_request() should be avoided - instead, use bio_set's front_pad
433 * for per bio allocations.
434 *
3f86a82a
KO
435 * RETURNS:
436 * Pointer to new bio on success, NULL on failure.
437 */
7a88fa19
DC
438struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
439 struct bio_set *bs)
1da177e4 440{
df2cb6da 441 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
442 unsigned front_pad;
443 unsigned inline_vecs;
34053979 444 struct bio_vec *bvl = NULL;
451a9ebf
TH
445 struct bio *bio;
446 void *p;
447
3f86a82a
KO
448 if (!bs) {
449 if (nr_iovecs > UIO_MAXIOV)
450 return NULL;
451
452 p = kmalloc(sizeof(struct bio) +
453 nr_iovecs * sizeof(struct bio_vec),
454 gfp_mask);
455 front_pad = 0;
456 inline_vecs = nr_iovecs;
457 } else {
d8f429e1 458 /* should not use nobvec bioset for nr_iovecs > 0 */
8aa6ba2f
KO
459 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
460 nr_iovecs > 0))
d8f429e1 461 return NULL;
df2cb6da
KO
462 /*
463 * generic_make_request() converts recursion to iteration; this
464 * means if we're running beneath it, any bios we allocate and
465 * submit will not be submitted (and thus freed) until after we
466 * return.
467 *
468 * This exposes us to a potential deadlock if we allocate
469 * multiple bios from the same bio_set() while running
470 * underneath generic_make_request(). If we were to allocate
471 * multiple bios (say a stacking block driver that was splitting
472 * bios), we would deadlock if we exhausted the mempool's
473 * reserve.
474 *
475 * We solve this, and guarantee forward progress, with a rescuer
476 * workqueue per bio_set. If we go to allocate and there are
477 * bios on current->bio_list, we first try the allocation
d0164adc
MG
478 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
479 * bios we would be blocking to the rescuer workqueue before
480 * we retry with the original gfp_flags.
df2cb6da
KO
481 */
482
f5fe1b51
N
483 if (current->bio_list &&
484 (!bio_list_empty(&current->bio_list[0]) ||
47e0fb46
N
485 !bio_list_empty(&current->bio_list[1])) &&
486 bs->rescue_workqueue)
d0164adc 487 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 488
8aa6ba2f 489 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
490 if (!p && gfp_mask != saved_gfp) {
491 punt_bios_to_rescuer(bs);
492 gfp_mask = saved_gfp;
8aa6ba2f 493 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
494 }
495
3f86a82a
KO
496 front_pad = bs->front_pad;
497 inline_vecs = BIO_INLINE_VECS;
498 }
499
451a9ebf
TH
500 if (unlikely(!p))
501 return NULL;
1da177e4 502
3f86a82a 503 bio = p + front_pad;
3a83f467 504 bio_init(bio, NULL, 0);
34053979 505
3f86a82a 506 if (nr_iovecs > inline_vecs) {
ed996a52
CH
507 unsigned long idx = 0;
508
8aa6ba2f 509 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
510 if (!bvl && gfp_mask != saved_gfp) {
511 punt_bios_to_rescuer(bs);
512 gfp_mask = saved_gfp;
8aa6ba2f 513 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
514 }
515
34053979
IM
516 if (unlikely(!bvl))
517 goto err_free;
a38352e0 518
ed996a52 519 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
520 } else if (nr_iovecs) {
521 bvl = bio->bi_inline_vecs;
1da177e4 522 }
3f86a82a
KO
523
524 bio->bi_pool = bs;
34053979 525 bio->bi_max_vecs = nr_iovecs;
34053979 526 bio->bi_io_vec = bvl;
1da177e4 527 return bio;
34053979
IM
528
529err_free:
8aa6ba2f 530 mempool_free(p, &bs->bio_pool);
34053979 531 return NULL;
1da177e4 532}
a112a71d 533EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 534
38a72dac 535void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
1da177e4
LT
536{
537 unsigned long flags;
7988613b
KO
538 struct bio_vec bv;
539 struct bvec_iter iter;
1da177e4 540
38a72dac 541 __bio_for_each_segment(bv, bio, iter, start) {
7988613b
KO
542 char *data = bvec_kmap_irq(&bv, &flags);
543 memset(data, 0, bv.bv_len);
544 flush_dcache_page(bv.bv_page);
1da177e4
LT
545 bvec_kunmap_irq(data, &flags);
546 }
547}
38a72dac 548EXPORT_SYMBOL(zero_fill_bio_iter);
1da177e4
LT
549
550/**
551 * bio_put - release a reference to a bio
552 * @bio: bio to release reference to
553 *
554 * Description:
555 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 556 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
557 **/
558void bio_put(struct bio *bio)
559{
dac56212 560 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 561 bio_free(bio);
dac56212
JA
562 else {
563 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
564
565 /*
566 * last put frees it
567 */
568 if (atomic_dec_and_test(&bio->__bi_cnt))
569 bio_free(bio);
570 }
1da177e4 571}
a112a71d 572EXPORT_SYMBOL(bio_put);
1da177e4 573
165125e1 574inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
575{
576 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
577 blk_recount_segments(q, bio);
578
579 return bio->bi_phys_segments;
580}
a112a71d 581EXPORT_SYMBOL(bio_phys_segments);
1da177e4 582
59d276fe
KO
583/**
584 * __bio_clone_fast - clone a bio that shares the original bio's biovec
585 * @bio: destination bio
586 * @bio_src: bio to clone
587 *
588 * Clone a &bio. Caller will own the returned bio, but not
589 * the actual data it points to. Reference count of returned
590 * bio will be one.
591 *
592 * Caller must ensure that @bio_src is not freed before @bio.
593 */
594void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
595{
ed996a52 596 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
597
598 /*
74d46992 599 * most users will be overriding ->bi_disk with a new target,
59d276fe
KO
600 * so we don't set nor calculate new physical/hw segment counts here
601 */
74d46992 602 bio->bi_disk = bio_src->bi_disk;
62530ed8 603 bio->bi_partno = bio_src->bi_partno;
b7c44ed9 604 bio_set_flag(bio, BIO_CLONED);
111be883
SL
605 if (bio_flagged(bio_src, BIO_THROTTLED))
606 bio_set_flag(bio, BIO_THROTTLED);
1eff9d32 607 bio->bi_opf = bio_src->bi_opf;
ca474b73 608 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 609 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
610 bio->bi_iter = bio_src->bi_iter;
611 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 612
b5f2954d 613 bio_clone_blkcg_association(bio, bio_src);
59d276fe
KO
614}
615EXPORT_SYMBOL(__bio_clone_fast);
616
617/**
618 * bio_clone_fast - clone a bio that shares the original bio's biovec
619 * @bio: bio to clone
620 * @gfp_mask: allocation priority
621 * @bs: bio_set to allocate from
622 *
623 * Like __bio_clone_fast, only also allocates the returned bio
624 */
625struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
626{
627 struct bio *b;
628
629 b = bio_alloc_bioset(gfp_mask, 0, bs);
630 if (!b)
631 return NULL;
632
633 __bio_clone_fast(b, bio);
634
635 if (bio_integrity(bio)) {
636 int ret;
637
638 ret = bio_integrity_clone(b, bio, gfp_mask);
639
640 if (ret < 0) {
641 bio_put(b);
642 return NULL;
643 }
644 }
645
646 return b;
647}
648EXPORT_SYMBOL(bio_clone_fast);
649
1da177e4 650/**
c66a14d0
KO
651 * bio_add_pc_page - attempt to add page to bio
652 * @q: the target queue
653 * @bio: destination bio
654 * @page: page to add
655 * @len: vec entry length
656 * @offset: vec entry offset
1da177e4 657 *
c66a14d0
KO
658 * Attempt to add a page to the bio_vec maplist. This can fail for a
659 * number of reasons, such as the bio being full or target block device
660 * limitations. The target block device must allow bio's up to PAGE_SIZE,
661 * so it is always possible to add a single page to an empty bio.
662 *
663 * This should only be used by REQ_PC bios.
1da177e4 664 */
c66a14d0
KO
665int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
666 *page, unsigned int len, unsigned int offset)
1da177e4
LT
667{
668 int retried_segments = 0;
669 struct bio_vec *bvec;
670
671 /*
672 * cloned bio must not modify vec list
673 */
674 if (unlikely(bio_flagged(bio, BIO_CLONED)))
675 return 0;
676
c66a14d0 677 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
678 return 0;
679
80cfd548
JA
680 /*
681 * For filesystems with a blocksize smaller than the pagesize
682 * we will often be called with the same page as last time and
683 * a consecutive offset. Optimize this special case.
684 */
685 if (bio->bi_vcnt > 0) {
686 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
687
688 if (page == prev->bv_page &&
689 offset == prev->bv_offset + prev->bv_len) {
690 prev->bv_len += len;
fcbf6a08 691 bio->bi_iter.bi_size += len;
80cfd548
JA
692 goto done;
693 }
66cb45aa
JA
694
695 /*
696 * If the queue doesn't support SG gaps and adding this
697 * offset would create a gap, disallow it.
698 */
03100aad 699 if (bvec_gap_to_prev(q, prev, offset))
66cb45aa 700 return 0;
80cfd548
JA
701 }
702
0aa69fd3 703 if (bio_full(bio))
1da177e4
LT
704 return 0;
705
706 /*
fcbf6a08
ML
707 * setup the new entry, we might clear it again later if we
708 * cannot add the page
709 */
710 bvec = &bio->bi_io_vec[bio->bi_vcnt];
711 bvec->bv_page = page;
712 bvec->bv_len = len;
713 bvec->bv_offset = offset;
714 bio->bi_vcnt++;
715 bio->bi_phys_segments++;
716 bio->bi_iter.bi_size += len;
717
718 /*
719 * Perform a recount if the number of segments is greater
720 * than queue_max_segments(q).
1da177e4
LT
721 */
722
fcbf6a08 723 while (bio->bi_phys_segments > queue_max_segments(q)) {
1da177e4
LT
724
725 if (retried_segments)
fcbf6a08 726 goto failed;
1da177e4
LT
727
728 retried_segments = 1;
729 blk_recount_segments(q, bio);
730 }
731
1da177e4 732 /* If we may be able to merge these biovecs, force a recount */
3dccdae5 733 if (bio->bi_vcnt > 1 && biovec_phys_mergeable(q, bvec - 1, bvec))
b7c44ed9 734 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4 735
80cfd548 736 done:
1da177e4 737 return len;
fcbf6a08
ML
738
739 failed:
740 bvec->bv_page = NULL;
741 bvec->bv_len = 0;
742 bvec->bv_offset = 0;
743 bio->bi_vcnt--;
744 bio->bi_iter.bi_size -= len;
745 blk_recount_segments(q, bio);
746 return 0;
1da177e4 747}
a112a71d 748EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 749
1da177e4 750/**
0aa69fd3
CH
751 * __bio_try_merge_page - try appending data to an existing bvec.
752 * @bio: destination bio
753 * @page: page to add
754 * @len: length of the data to add
755 * @off: offset of the data in @page
1da177e4 756 *
0aa69fd3
CH
757 * Try to add the data at @page + @off to the last bvec of @bio. This is a
758 * a useful optimisation for file systems with a block size smaller than the
759 * page size.
760 *
761 * Return %true on success or %false on failure.
1da177e4 762 */
0aa69fd3
CH
763bool __bio_try_merge_page(struct bio *bio, struct page *page,
764 unsigned int len, unsigned int off)
1da177e4 765{
c66a14d0 766 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0aa69fd3 767 return false;
762380ad 768
c66a14d0 769 if (bio->bi_vcnt > 0) {
0aa69fd3 770 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
58a4915a 771
0aa69fd3 772 if (page == bv->bv_page && off == bv->bv_offset + bv->bv_len) {
c66a14d0 773 bv->bv_len += len;
0aa69fd3
CH
774 bio->bi_iter.bi_size += len;
775 return true;
c66a14d0
KO
776 }
777 }
0aa69fd3
CH
778 return false;
779}
780EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 781
0aa69fd3
CH
782/**
783 * __bio_add_page - add page to a bio in a new segment
784 * @bio: destination bio
785 * @page: page to add
786 * @len: length of the data to add
787 * @off: offset of the data in @page
788 *
789 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
790 * that @bio has space for another bvec.
791 */
792void __bio_add_page(struct bio *bio, struct page *page,
793 unsigned int len, unsigned int off)
794{
795 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 796
0aa69fd3
CH
797 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
798 WARN_ON_ONCE(bio_full(bio));
799
800 bv->bv_page = page;
801 bv->bv_offset = off;
802 bv->bv_len = len;
c66a14d0 803
c66a14d0 804 bio->bi_iter.bi_size += len;
0aa69fd3
CH
805 bio->bi_vcnt++;
806}
807EXPORT_SYMBOL_GPL(__bio_add_page);
808
809/**
810 * bio_add_page - attempt to add page to bio
811 * @bio: destination bio
812 * @page: page to add
813 * @len: vec entry length
814 * @offset: vec entry offset
815 *
816 * Attempt to add a page to the bio_vec maplist. This will only fail
817 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
818 */
819int bio_add_page(struct bio *bio, struct page *page,
820 unsigned int len, unsigned int offset)
821{
822 if (!__bio_try_merge_page(bio, page, len, offset)) {
823 if (bio_full(bio))
824 return 0;
825 __bio_add_page(bio, page, len, offset);
826 }
c66a14d0 827 return len;
1da177e4 828}
a112a71d 829EXPORT_SYMBOL(bio_add_page);
1da177e4 830
576ed913
CH
831#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
832
2cefe4db 833/**
17d51b10 834 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
835 * @bio: bio to add pages to
836 * @iter: iov iterator describing the region to be mapped
837 *
17d51b10 838 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 839 * pages will have to be released using put_page() when done.
17d51b10
MW
840 * For multi-segment *iter, this function only adds pages from the
841 * the next non-empty segment of the iov iterator.
2cefe4db 842 */
17d51b10 843static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 844{
576ed913
CH
845 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
846 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
847 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
848 struct page **pages = (struct page **)bv;
576ed913
CH
849 ssize_t size, left;
850 unsigned len, i;
b403ea24 851 size_t offset;
576ed913
CH
852
853 /*
854 * Move page array up in the allocated memory for the bio vecs as far as
855 * possible so that we can start filling biovecs from the beginning
856 * without overwriting the temporary page array.
857 */
858 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
859 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db
KO
860
861 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
862 if (unlikely(size <= 0))
863 return size ? size : -EFAULT;
2cefe4db 864
576ed913
CH
865 for (left = size, i = 0; left > 0; left -= len, i++) {
866 struct page *page = pages[i];
2cefe4db 867
576ed913
CH
868 len = min_t(size_t, PAGE_SIZE - offset, left);
869 if (WARN_ON_ONCE(bio_add_page(bio, page, len, offset) != len))
870 return -EINVAL;
871 offset = 0;
2cefe4db
KO
872 }
873
2cefe4db
KO
874 iov_iter_advance(iter, size);
875 return 0;
876}
17d51b10
MW
877
878/**
879 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
880 * @bio: bio to add pages to
881 * @iter: iov iterator describing the region to be mapped
882 *
883 * Pins pages from *iter and appends them to @bio's bvec array. The
884 * pages will have to be released using put_page() when done.
885 * The function tries, but does not guarantee, to pin as many pages as
886 * fit into the bio, or are requested in *iter, whatever is smaller.
887 * If MM encounters an error pinning the requested pages, it stops.
888 * Error is returned only if 0 pages could be pinned.
889 */
890int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
891{
892 unsigned short orig_vcnt = bio->bi_vcnt;
893
894 do {
895 int ret = __bio_iov_iter_get_pages(bio, iter);
896
897 if (unlikely(ret))
898 return bio->bi_vcnt > orig_vcnt ? 0 : ret;
899
900 } while (iov_iter_count(iter) && !bio_full(bio));
901
902 return 0;
903}
2cefe4db
KO
904EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
905
4246a0b6 906static void submit_bio_wait_endio(struct bio *bio)
9e882242 907{
65e53aab 908 complete(bio->bi_private);
9e882242
KO
909}
910
911/**
912 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
913 * @bio: The &struct bio which describes the I/O
914 *
915 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
916 * bio_endio() on failure.
3d289d68
JK
917 *
918 * WARNING: Unlike to how submit_bio() is usually used, this function does not
919 * result in bio reference to be consumed. The caller must drop the reference
920 * on his own.
9e882242 921 */
4e49ea4a 922int submit_bio_wait(struct bio *bio)
9e882242 923{
e319e1fb 924 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
9e882242 925
65e53aab 926 bio->bi_private = &done;
9e882242 927 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 928 bio->bi_opf |= REQ_SYNC;
4e49ea4a 929 submit_bio(bio);
65e53aab 930 wait_for_completion_io(&done);
9e882242 931
65e53aab 932 return blk_status_to_errno(bio->bi_status);
9e882242
KO
933}
934EXPORT_SYMBOL(submit_bio_wait);
935
054bdf64
KO
936/**
937 * bio_advance - increment/complete a bio by some number of bytes
938 * @bio: bio to advance
939 * @bytes: number of bytes to complete
940 *
941 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
942 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
943 * be updated on the last bvec as well.
944 *
945 * @bio will then represent the remaining, uncompleted portion of the io.
946 */
947void bio_advance(struct bio *bio, unsigned bytes)
948{
949 if (bio_integrity(bio))
950 bio_integrity_advance(bio, bytes);
951
4550dd6c 952 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
953}
954EXPORT_SYMBOL(bio_advance);
955
45db54d5
KO
956void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
957 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 958{
1cb9dda4 959 struct bio_vec src_bv, dst_bv;
16ac3d63 960 void *src_p, *dst_p;
1cb9dda4 961 unsigned bytes;
16ac3d63 962
45db54d5
KO
963 while (src_iter->bi_size && dst_iter->bi_size) {
964 src_bv = bio_iter_iovec(src, *src_iter);
965 dst_bv = bio_iter_iovec(dst, *dst_iter);
1cb9dda4
KO
966
967 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 968
1cb9dda4
KO
969 src_p = kmap_atomic(src_bv.bv_page);
970 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 971
1cb9dda4
KO
972 memcpy(dst_p + dst_bv.bv_offset,
973 src_p + src_bv.bv_offset,
16ac3d63
KO
974 bytes);
975
976 kunmap_atomic(dst_p);
977 kunmap_atomic(src_p);
978
6e6e811d
KO
979 flush_dcache_page(dst_bv.bv_page);
980
45db54d5
KO
981 bio_advance_iter(src, src_iter, bytes);
982 bio_advance_iter(dst, dst_iter, bytes);
16ac3d63
KO
983 }
984}
38a72dac
KO
985EXPORT_SYMBOL(bio_copy_data_iter);
986
987/**
45db54d5
KO
988 * bio_copy_data - copy contents of data buffers from one bio to another
989 * @src: source bio
990 * @dst: destination bio
38a72dac
KO
991 *
992 * Stops when it reaches the end of either @src or @dst - that is, copies
993 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
994 */
995void bio_copy_data(struct bio *dst, struct bio *src)
996{
45db54d5
KO
997 struct bvec_iter src_iter = src->bi_iter;
998 struct bvec_iter dst_iter = dst->bi_iter;
999
1000 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1001}
16ac3d63
KO
1002EXPORT_SYMBOL(bio_copy_data);
1003
45db54d5
KO
1004/**
1005 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1006 * another
1007 * @src: source bio list
1008 * @dst: destination bio list
1009 *
1010 * Stops when it reaches the end of either the @src list or @dst list - that is,
1011 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1012 * bios).
1013 */
1014void bio_list_copy_data(struct bio *dst, struct bio *src)
1015{
1016 struct bvec_iter src_iter = src->bi_iter;
1017 struct bvec_iter dst_iter = dst->bi_iter;
1018
1019 while (1) {
1020 if (!src_iter.bi_size) {
1021 src = src->bi_next;
1022 if (!src)
1023 break;
1024
1025 src_iter = src->bi_iter;
1026 }
1027
1028 if (!dst_iter.bi_size) {
1029 dst = dst->bi_next;
1030 if (!dst)
1031 break;
1032
1033 dst_iter = dst->bi_iter;
1034 }
1035
1036 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1037 }
1038}
1039EXPORT_SYMBOL(bio_list_copy_data);
1040
1da177e4 1041struct bio_map_data {
152e283f 1042 int is_our_pages;
26e49cfc
KO
1043 struct iov_iter iter;
1044 struct iovec iov[];
1da177e4
LT
1045};
1046
0e5b935d 1047static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
76029ff3 1048 gfp_t gfp_mask)
1da177e4 1049{
0e5b935d
AV
1050 struct bio_map_data *bmd;
1051 if (data->nr_segs > UIO_MAXIOV)
f3f63c1c 1052 return NULL;
1da177e4 1053
0e5b935d
AV
1054 bmd = kmalloc(sizeof(struct bio_map_data) +
1055 sizeof(struct iovec) * data->nr_segs, gfp_mask);
1056 if (!bmd)
1057 return NULL;
1058 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1059 bmd->iter = *data;
1060 bmd->iter.iov = bmd->iov;
1061 return bmd;
1da177e4
LT
1062}
1063
9124d3fe
DP
1064/**
1065 * bio_copy_from_iter - copy all pages from iov_iter to bio
1066 * @bio: The &struct bio which describes the I/O as destination
1067 * @iter: iov_iter as source
1068 *
1069 * Copy all pages from iov_iter to bio.
1070 * Returns 0 on success, or error on failure.
1071 */
98a09d61 1072static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
c5dec1c3 1073{
9124d3fe 1074 int i;
c5dec1c3 1075 struct bio_vec *bvec;
c5dec1c3 1076
d74c6d51 1077 bio_for_each_segment_all(bvec, bio, i) {
9124d3fe 1078 ssize_t ret;
c5dec1c3 1079
9124d3fe
DP
1080 ret = copy_page_from_iter(bvec->bv_page,
1081 bvec->bv_offset,
1082 bvec->bv_len,
98a09d61 1083 iter);
9124d3fe 1084
98a09d61 1085 if (!iov_iter_count(iter))
9124d3fe
DP
1086 break;
1087
1088 if (ret < bvec->bv_len)
1089 return -EFAULT;
c5dec1c3
FT
1090 }
1091
9124d3fe
DP
1092 return 0;
1093}
1094
1095/**
1096 * bio_copy_to_iter - copy all pages from bio to iov_iter
1097 * @bio: The &struct bio which describes the I/O as source
1098 * @iter: iov_iter as destination
1099 *
1100 * Copy all pages from bio to iov_iter.
1101 * Returns 0 on success, or error on failure.
1102 */
1103static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1104{
1105 int i;
1106 struct bio_vec *bvec;
1107
1108 bio_for_each_segment_all(bvec, bio, i) {
1109 ssize_t ret;
1110
1111 ret = copy_page_to_iter(bvec->bv_page,
1112 bvec->bv_offset,
1113 bvec->bv_len,
1114 &iter);
1115
1116 if (!iov_iter_count(&iter))
1117 break;
1118
1119 if (ret < bvec->bv_len)
1120 return -EFAULT;
1121 }
1122
1123 return 0;
c5dec1c3
FT
1124}
1125
491221f8 1126void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1127{
1128 struct bio_vec *bvec;
1129 int i;
1130
1131 bio_for_each_segment_all(bvec, bio, i)
1132 __free_page(bvec->bv_page);
1133}
491221f8 1134EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1135
1da177e4
LT
1136/**
1137 * bio_uncopy_user - finish previously mapped bio
1138 * @bio: bio being terminated
1139 *
ddad8dd0 1140 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1141 * to user space in case of a read.
1142 */
1143int bio_uncopy_user(struct bio *bio)
1144{
1145 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1146 int ret = 0;
1da177e4 1147
35dc2483
RD
1148 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1149 /*
1150 * if we're in a workqueue, the request is orphaned, so
2d99b55d
HR
1151 * don't copy into a random user address space, just free
1152 * and return -EINTR so user space doesn't expect any data.
35dc2483 1153 */
2d99b55d
HR
1154 if (!current->mm)
1155 ret = -EINTR;
1156 else if (bio_data_dir(bio) == READ)
9124d3fe 1157 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1158 if (bmd->is_our_pages)
1159 bio_free_pages(bio);
35dc2483 1160 }
c8db4448 1161 kfree(bmd);
1da177e4
LT
1162 bio_put(bio);
1163 return ret;
1164}
1165
1166/**
c5dec1c3 1167 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1168 * @q: destination block queue
1169 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1170 * @iter: iovec iterator
1171 * @gfp_mask: memory allocation flags
1da177e4
LT
1172 *
1173 * Prepares and returns a bio for indirect user io, bouncing data
1174 * to/from kernel pages as necessary. Must be paired with
1175 * call bio_uncopy_user() on io completion.
1176 */
152e283f
FT
1177struct bio *bio_copy_user_iov(struct request_queue *q,
1178 struct rq_map_data *map_data,
e81cef5d 1179 struct iov_iter *iter,
26e49cfc 1180 gfp_t gfp_mask)
1da177e4 1181{
1da177e4 1182 struct bio_map_data *bmd;
1da177e4
LT
1183 struct page *page;
1184 struct bio *bio;
d16d44eb
AV
1185 int i = 0, ret;
1186 int nr_pages;
26e49cfc 1187 unsigned int len = iter->count;
bd5cecea 1188 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1da177e4 1189
0e5b935d 1190 bmd = bio_alloc_map_data(iter, gfp_mask);
1da177e4
LT
1191 if (!bmd)
1192 return ERR_PTR(-ENOMEM);
1193
26e49cfc
KO
1194 /*
1195 * We need to do a deep copy of the iov_iter including the iovecs.
1196 * The caller provided iov might point to an on-stack or otherwise
1197 * shortlived one.
1198 */
1199 bmd->is_our_pages = map_data ? 0 : 1;
26e49cfc 1200
d16d44eb
AV
1201 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1202 if (nr_pages > BIO_MAX_PAGES)
1203 nr_pages = BIO_MAX_PAGES;
26e49cfc 1204
1da177e4 1205 ret = -ENOMEM;
a9e9dc24 1206 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1207 if (!bio)
1208 goto out_bmd;
1209
1da177e4 1210 ret = 0;
56c451f4
FT
1211
1212 if (map_data) {
e623ddb4 1213 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1214 i = map_data->offset / PAGE_SIZE;
1215 }
1da177e4 1216 while (len) {
e623ddb4 1217 unsigned int bytes = PAGE_SIZE;
1da177e4 1218
56c451f4
FT
1219 bytes -= offset;
1220
1da177e4
LT
1221 if (bytes > len)
1222 bytes = len;
1223
152e283f 1224 if (map_data) {
e623ddb4 1225 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1226 ret = -ENOMEM;
1227 break;
1228 }
e623ddb4
FT
1229
1230 page = map_data->pages[i / nr_pages];
1231 page += (i % nr_pages);
1232
1233 i++;
1234 } else {
152e283f 1235 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1236 if (!page) {
1237 ret = -ENOMEM;
1238 break;
1239 }
1da177e4
LT
1240 }
1241
56c451f4 1242 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1243 break;
1da177e4
LT
1244
1245 len -= bytes;
56c451f4 1246 offset = 0;
1da177e4
LT
1247 }
1248
1249 if (ret)
1250 goto cleanup;
1251
2884d0be
AV
1252 if (map_data)
1253 map_data->offset += bio->bi_iter.bi_size;
1254
1da177e4
LT
1255 /*
1256 * success
1257 */
00e23707 1258 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1259 (map_data && map_data->from_user)) {
98a09d61 1260 ret = bio_copy_from_iter(bio, iter);
c5dec1c3
FT
1261 if (ret)
1262 goto cleanup;
98a09d61 1263 } else {
f3587d76 1264 zero_fill_bio(bio);
98a09d61 1265 iov_iter_advance(iter, bio->bi_iter.bi_size);
1da177e4
LT
1266 }
1267
26e49cfc 1268 bio->bi_private = bmd;
2884d0be
AV
1269 if (map_data && map_data->null_mapped)
1270 bio_set_flag(bio, BIO_NULL_MAPPED);
1da177e4
LT
1271 return bio;
1272cleanup:
152e283f 1273 if (!map_data)
1dfa0f68 1274 bio_free_pages(bio);
1da177e4
LT
1275 bio_put(bio);
1276out_bmd:
c8db4448 1277 kfree(bmd);
1da177e4
LT
1278 return ERR_PTR(ret);
1279}
1280
37f19e57
CH
1281/**
1282 * bio_map_user_iov - map user iovec into bio
1283 * @q: the struct request_queue for the bio
1284 * @iter: iovec iterator
1285 * @gfp_mask: memory allocation flags
1286 *
1287 * Map the user space address into a bio suitable for io to a block
1288 * device. Returns an error pointer in case of error.
1289 */
1290struct bio *bio_map_user_iov(struct request_queue *q,
e81cef5d 1291 struct iov_iter *iter,
37f19e57 1292 gfp_t gfp_mask)
1da177e4 1293{
26e49cfc 1294 int j;
1da177e4 1295 struct bio *bio;
076098e5 1296 int ret;
2b04e8f6 1297 struct bio_vec *bvec;
1da177e4 1298
b282cc76 1299 if (!iov_iter_count(iter))
1da177e4
LT
1300 return ERR_PTR(-EINVAL);
1301
b282cc76 1302 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1da177e4
LT
1303 if (!bio)
1304 return ERR_PTR(-ENOMEM);
1305
0a0f1513 1306 while (iov_iter_count(iter)) {
629e42bc 1307 struct page **pages;
076098e5
AV
1308 ssize_t bytes;
1309 size_t offs, added = 0;
1310 int npages;
1da177e4 1311
0a0f1513 1312 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
076098e5
AV
1313 if (unlikely(bytes <= 0)) {
1314 ret = bytes ? bytes : -EFAULT;
f1970baf 1315 goto out_unmap;
99172157 1316 }
f1970baf 1317
076098e5 1318 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
f1970baf 1319
98f0bc99
AV
1320 if (unlikely(offs & queue_dma_alignment(q))) {
1321 ret = -EINVAL;
1322 j = 0;
1323 } else {
1324 for (j = 0; j < npages; j++) {
1325 struct page *page = pages[j];
1326 unsigned int n = PAGE_SIZE - offs;
1327 unsigned short prev_bi_vcnt = bio->bi_vcnt;
f1970baf 1328
98f0bc99
AV
1329 if (n > bytes)
1330 n = bytes;
95d78c28 1331
98f0bc99
AV
1332 if (!bio_add_pc_page(q, bio, page, n, offs))
1333 break;
1da177e4 1334
98f0bc99
AV
1335 /*
1336 * check if vector was merged with previous
1337 * drop page reference if needed
1338 */
1339 if (bio->bi_vcnt == prev_bi_vcnt)
1340 put_page(page);
1341
1342 added += n;
1343 bytes -= n;
1344 offs = 0;
1345 }
0a0f1513 1346 iov_iter_advance(iter, added);
f1970baf 1347 }
1da177e4 1348 /*
f1970baf 1349 * release the pages we didn't map into the bio, if any
1da177e4 1350 */
629e42bc 1351 while (j < npages)
09cbfeaf 1352 put_page(pages[j++]);
629e42bc 1353 kvfree(pages);
e2e115d1
AV
1354 /* couldn't stuff something into bio? */
1355 if (bytes)
1356 break;
1da177e4
LT
1357 }
1358
b7c44ed9 1359 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1360
1361 /*
5fad1b64 1362 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
37f19e57
CH
1363 * it would normally disappear when its bi_end_io is run.
1364 * however, we need it for the unmap, so grab an extra
1365 * reference to it
1366 */
1367 bio_get(bio);
1da177e4 1368 return bio;
f1970baf
JB
1369
1370 out_unmap:
2b04e8f6
AV
1371 bio_for_each_segment_all(bvec, bio, j) {
1372 put_page(bvec->bv_page);
f1970baf 1373 }
1da177e4
LT
1374 bio_put(bio);
1375 return ERR_PTR(ret);
1376}
1377
1da177e4
LT
1378static void __bio_unmap_user(struct bio *bio)
1379{
1380 struct bio_vec *bvec;
1381 int i;
1382
1383 /*
1384 * make sure we dirty pages we wrote to
1385 */
d74c6d51 1386 bio_for_each_segment_all(bvec, bio, i) {
1da177e4
LT
1387 if (bio_data_dir(bio) == READ)
1388 set_page_dirty_lock(bvec->bv_page);
1389
09cbfeaf 1390 put_page(bvec->bv_page);
1da177e4
LT
1391 }
1392
1393 bio_put(bio);
1394}
1395
1396/**
1397 * bio_unmap_user - unmap a bio
1398 * @bio: the bio being unmapped
1399 *
5fad1b64
BVA
1400 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1401 * process context.
1da177e4
LT
1402 *
1403 * bio_unmap_user() may sleep.
1404 */
1405void bio_unmap_user(struct bio *bio)
1406{
1407 __bio_unmap_user(bio);
1408 bio_put(bio);
1409}
1410
4246a0b6 1411static void bio_map_kern_endio(struct bio *bio)
b823825e 1412{
b823825e 1413 bio_put(bio);
b823825e
JA
1414}
1415
75c72b83
CH
1416/**
1417 * bio_map_kern - map kernel address into bio
1418 * @q: the struct request_queue for the bio
1419 * @data: pointer to buffer to map
1420 * @len: length in bytes
1421 * @gfp_mask: allocation flags for bio allocation
1422 *
1423 * Map the kernel address into a bio suitable for io to a block
1424 * device. Returns an error pointer in case of error.
1425 */
1426struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1427 gfp_t gfp_mask)
df46b9a4
MC
1428{
1429 unsigned long kaddr = (unsigned long)data;
1430 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1431 unsigned long start = kaddr >> PAGE_SHIFT;
1432 const int nr_pages = end - start;
1433 int offset, i;
1434 struct bio *bio;
1435
a9e9dc24 1436 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1437 if (!bio)
1438 return ERR_PTR(-ENOMEM);
1439
1440 offset = offset_in_page(kaddr);
1441 for (i = 0; i < nr_pages; i++) {
1442 unsigned int bytes = PAGE_SIZE - offset;
1443
1444 if (len <= 0)
1445 break;
1446
1447 if (bytes > len)
1448 bytes = len;
1449
defd94b7 1450 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
75c72b83
CH
1451 offset) < bytes) {
1452 /* we don't support partial mappings */
1453 bio_put(bio);
1454 return ERR_PTR(-EINVAL);
1455 }
df46b9a4
MC
1456
1457 data += bytes;
1458 len -= bytes;
1459 offset = 0;
1460 }
1461
b823825e 1462 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1463 return bio;
1464}
a112a71d 1465EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1466
4246a0b6 1467static void bio_copy_kern_endio(struct bio *bio)
68154e90 1468{
1dfa0f68
CH
1469 bio_free_pages(bio);
1470 bio_put(bio);
1471}
1472
4246a0b6 1473static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1474{
42d2683a 1475 char *p = bio->bi_private;
1dfa0f68 1476 struct bio_vec *bvec;
68154e90
FT
1477 int i;
1478
d74c6d51 1479 bio_for_each_segment_all(bvec, bio, i) {
1dfa0f68 1480 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1481 p += bvec->bv_len;
68154e90
FT
1482 }
1483
4246a0b6 1484 bio_copy_kern_endio(bio);
68154e90
FT
1485}
1486
1487/**
1488 * bio_copy_kern - copy kernel address into bio
1489 * @q: the struct request_queue for the bio
1490 * @data: pointer to buffer to copy
1491 * @len: length in bytes
1492 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1493 * @reading: data direction is READ
68154e90
FT
1494 *
1495 * copy the kernel address into a bio suitable for io to a block
1496 * device. Returns an error pointer in case of error.
1497 */
1498struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1499 gfp_t gfp_mask, int reading)
1500{
42d2683a
CH
1501 unsigned long kaddr = (unsigned long)data;
1502 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1503 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1504 struct bio *bio;
1505 void *p = data;
1dfa0f68 1506 int nr_pages = 0;
68154e90 1507
42d2683a
CH
1508 /*
1509 * Overflow, abort
1510 */
1511 if (end < start)
1512 return ERR_PTR(-EINVAL);
68154e90 1513
42d2683a
CH
1514 nr_pages = end - start;
1515 bio = bio_kmalloc(gfp_mask, nr_pages);
1516 if (!bio)
1517 return ERR_PTR(-ENOMEM);
68154e90 1518
42d2683a
CH
1519 while (len) {
1520 struct page *page;
1521 unsigned int bytes = PAGE_SIZE;
68154e90 1522
42d2683a
CH
1523 if (bytes > len)
1524 bytes = len;
1525
1526 page = alloc_page(q->bounce_gfp | gfp_mask);
1527 if (!page)
1528 goto cleanup;
1529
1530 if (!reading)
1531 memcpy(page_address(page), p, bytes);
1532
1533 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1534 break;
1535
1536 len -= bytes;
1537 p += bytes;
68154e90
FT
1538 }
1539
1dfa0f68
CH
1540 if (reading) {
1541 bio->bi_end_io = bio_copy_kern_endio_read;
1542 bio->bi_private = data;
1543 } else {
1544 bio->bi_end_io = bio_copy_kern_endio;
1dfa0f68 1545 }
76029ff3 1546
68154e90 1547 return bio;
42d2683a
CH
1548
1549cleanup:
1dfa0f68 1550 bio_free_pages(bio);
42d2683a
CH
1551 bio_put(bio);
1552 return ERR_PTR(-ENOMEM);
68154e90
FT
1553}
1554
1da177e4
LT
1555/*
1556 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1557 * for performing direct-IO in BIOs.
1558 *
1559 * The problem is that we cannot run set_page_dirty() from interrupt context
1560 * because the required locks are not interrupt-safe. So what we can do is to
1561 * mark the pages dirty _before_ performing IO. And in interrupt context,
1562 * check that the pages are still dirty. If so, fine. If not, redirty them
1563 * in process context.
1564 *
1565 * We special-case compound pages here: normally this means reads into hugetlb
1566 * pages. The logic in here doesn't really work right for compound pages
1567 * because the VM does not uniformly chase down the head page in all cases.
1568 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1569 * handle them at all. So we skip compound pages here at an early stage.
1570 *
1571 * Note that this code is very hard to test under normal circumstances because
1572 * direct-io pins the pages with get_user_pages(). This makes
1573 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1574 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1575 * pagecache.
1576 *
1577 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1578 * deferred bio dirtying paths.
1579 */
1580
1581/*
1582 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1583 */
1584void bio_set_pages_dirty(struct bio *bio)
1585{
cb34e057 1586 struct bio_vec *bvec;
1da177e4
LT
1587 int i;
1588
cb34e057 1589 bio_for_each_segment_all(bvec, bio, i) {
3bb50983
CH
1590 if (!PageCompound(bvec->bv_page))
1591 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1592 }
1593}
1900fcc4 1594EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1da177e4 1595
86b6c7a7 1596static void bio_release_pages(struct bio *bio)
1da177e4 1597{
cb34e057 1598 struct bio_vec *bvec;
1da177e4
LT
1599 int i;
1600
24d5493f
CH
1601 bio_for_each_segment_all(bvec, bio, i)
1602 put_page(bvec->bv_page);
1da177e4
LT
1603}
1604
1605/*
1606 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1607 * If they are, then fine. If, however, some pages are clean then they must
1608 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1609 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1610 *
1611 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1612 * here on. It will run one put_page() against each page and will run one
1613 * bio_put() against the BIO.
1da177e4
LT
1614 */
1615
65f27f38 1616static void bio_dirty_fn(struct work_struct *work);
1da177e4 1617
65f27f38 1618static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1619static DEFINE_SPINLOCK(bio_dirty_lock);
1620static struct bio *bio_dirty_list;
1621
1622/*
1623 * This runs in process context
1624 */
65f27f38 1625static void bio_dirty_fn(struct work_struct *work)
1da177e4 1626{
24d5493f 1627 struct bio *bio, *next;
1da177e4 1628
24d5493f
CH
1629 spin_lock_irq(&bio_dirty_lock);
1630 next = bio_dirty_list;
1da177e4 1631 bio_dirty_list = NULL;
24d5493f 1632 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1633
24d5493f
CH
1634 while ((bio = next) != NULL) {
1635 next = bio->bi_private;
1da177e4
LT
1636
1637 bio_set_pages_dirty(bio);
1638 bio_release_pages(bio);
1639 bio_put(bio);
1da177e4
LT
1640 }
1641}
1642
1643void bio_check_pages_dirty(struct bio *bio)
1644{
cb34e057 1645 struct bio_vec *bvec;
24d5493f 1646 unsigned long flags;
1da177e4
LT
1647 int i;
1648
cb34e057 1649 bio_for_each_segment_all(bvec, bio, i) {
24d5493f
CH
1650 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1651 goto defer;
1da177e4
LT
1652 }
1653
24d5493f
CH
1654 bio_release_pages(bio);
1655 bio_put(bio);
1656 return;
1657defer:
1658 spin_lock_irqsave(&bio_dirty_lock, flags);
1659 bio->bi_private = bio_dirty_list;
1660 bio_dirty_list = bio;
1661 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1662 schedule_work(&bio_dirty_work);
1da177e4 1663}
1900fcc4 1664EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1da177e4 1665
ddcf35d3 1666void generic_start_io_acct(struct request_queue *q, int op,
d62e26b3 1667 unsigned long sectors, struct hd_struct *part)
394ffa50 1668{
ddcf35d3 1669 const int sgrp = op_stat_group(op);
394ffa50
GZ
1670 int cpu = part_stat_lock();
1671
d62e26b3 1672 part_round_stats(q, cpu, part);
ddcf35d3
MC
1673 part_stat_inc(cpu, part, ios[sgrp]);
1674 part_stat_add(cpu, part, sectors[sgrp], sectors);
1675 part_inc_in_flight(q, part, op_is_write(op));
394ffa50
GZ
1676
1677 part_stat_unlock();
1678}
1679EXPORT_SYMBOL(generic_start_io_acct);
1680
ddcf35d3 1681void generic_end_io_acct(struct request_queue *q, int req_op,
d62e26b3 1682 struct hd_struct *part, unsigned long start_time)
394ffa50
GZ
1683{
1684 unsigned long duration = jiffies - start_time;
ddcf35d3 1685 const int sgrp = op_stat_group(req_op);
394ffa50
GZ
1686 int cpu = part_stat_lock();
1687
b57e99b4 1688 part_stat_add(cpu, part, nsecs[sgrp], jiffies_to_nsecs(duration));
d62e26b3 1689 part_round_stats(q, cpu, part);
ddcf35d3 1690 part_dec_in_flight(q, part, op_is_write(req_op));
394ffa50
GZ
1691
1692 part_stat_unlock();
1693}
1694EXPORT_SYMBOL(generic_end_io_acct);
1695
2d4dc890
IL
1696#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1697void bio_flush_dcache_pages(struct bio *bi)
1698{
7988613b
KO
1699 struct bio_vec bvec;
1700 struct bvec_iter iter;
2d4dc890 1701
7988613b
KO
1702 bio_for_each_segment(bvec, bi, iter)
1703 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1704}
1705EXPORT_SYMBOL(bio_flush_dcache_pages);
1706#endif
1707
c4cf5261
JA
1708static inline bool bio_remaining_done(struct bio *bio)
1709{
1710 /*
1711 * If we're not chaining, then ->__bi_remaining is always 1 and
1712 * we always end io on the first invocation.
1713 */
1714 if (!bio_flagged(bio, BIO_CHAIN))
1715 return true;
1716
1717 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1718
326e1dbb 1719 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1720 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1721 return true;
326e1dbb 1722 }
c4cf5261
JA
1723
1724 return false;
1725}
1726
1da177e4
LT
1727/**
1728 * bio_endio - end I/O on a bio
1729 * @bio: bio
1da177e4
LT
1730 *
1731 * Description:
4246a0b6
CH
1732 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1733 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1734 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1735 *
1736 * bio_endio() can be called several times on a bio that has been chained
1737 * using bio_chain(). The ->bi_end_io() function will only be called the
1738 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1739 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1740 **/
4246a0b6 1741void bio_endio(struct bio *bio)
1da177e4 1742{
ba8c6967 1743again:
2b885517 1744 if (!bio_remaining_done(bio))
ba8c6967 1745 return;
7c20f116
CH
1746 if (!bio_integrity_endio(bio))
1747 return;
1da177e4 1748
67b42d0b
JB
1749 if (bio->bi_disk)
1750 rq_qos_done_bio(bio->bi_disk->queue, bio);
1751
ba8c6967
CH
1752 /*
1753 * Need to have a real endio function for chained bios, otherwise
1754 * various corner cases will break (like stacking block devices that
1755 * save/restore bi_end_io) - however, we want to avoid unbounded
1756 * recursion and blowing the stack. Tail call optimization would
1757 * handle this, but compiling with frame pointers also disables
1758 * gcc's sibling call optimization.
1759 */
1760 if (bio->bi_end_io == bio_chain_endio) {
1761 bio = __bio_chain_endio(bio);
1762 goto again;
196d38bc 1763 }
ba8c6967 1764
74d46992
CH
1765 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1766 trace_block_bio_complete(bio->bi_disk->queue, bio,
a462b950 1767 blk_status_to_errno(bio->bi_status));
fbbaf700
N
1768 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1769 }
1770
9e234eea 1771 blk_throtl_bio_endio(bio);
b222dd2f
SL
1772 /* release cgroup info */
1773 bio_uninit(bio);
ba8c6967
CH
1774 if (bio->bi_end_io)
1775 bio->bi_end_io(bio);
1da177e4 1776}
a112a71d 1777EXPORT_SYMBOL(bio_endio);
1da177e4 1778
20d0189b
KO
1779/**
1780 * bio_split - split a bio
1781 * @bio: bio to split
1782 * @sectors: number of sectors to split from the front of @bio
1783 * @gfp: gfp mask
1784 * @bs: bio set to allocate from
1785 *
1786 * Allocates and returns a new bio which represents @sectors from the start of
1787 * @bio, and updates @bio to represent the remaining sectors.
1788 *
f3f5da62
MP
1789 * Unless this is a discard request the newly allocated bio will point
1790 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1791 * @bio is not freed before the split.
20d0189b
KO
1792 */
1793struct bio *bio_split(struct bio *bio, int sectors,
1794 gfp_t gfp, struct bio_set *bs)
1795{
f341a4d3 1796 struct bio *split;
20d0189b
KO
1797
1798 BUG_ON(sectors <= 0);
1799 BUG_ON(sectors >= bio_sectors(bio));
1800
f9d03f96 1801 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1802 if (!split)
1803 return NULL;
1804
1805 split->bi_iter.bi_size = sectors << 9;
1806
1807 if (bio_integrity(split))
fbd08e76 1808 bio_integrity_trim(split);
20d0189b
KO
1809
1810 bio_advance(bio, split->bi_iter.bi_size);
1811
fbbaf700 1812 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1813 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1814
20d0189b
KO
1815 return split;
1816}
1817EXPORT_SYMBOL(bio_split);
1818
6678d83f
KO
1819/**
1820 * bio_trim - trim a bio
1821 * @bio: bio to trim
1822 * @offset: number of sectors to trim from the front of @bio
1823 * @size: size we want to trim @bio to, in sectors
1824 */
1825void bio_trim(struct bio *bio, int offset, int size)
1826{
1827 /* 'bio' is a cloned bio which we need to trim to match
1828 * the given offset and size.
6678d83f 1829 */
6678d83f
KO
1830
1831 size <<= 9;
4f024f37 1832 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1833 return;
1834
b7c44ed9 1835 bio_clear_flag(bio, BIO_SEG_VALID);
6678d83f
KO
1836
1837 bio_advance(bio, offset << 9);
1838
4f024f37 1839 bio->bi_iter.bi_size = size;
376a78ab
DM
1840
1841 if (bio_integrity(bio))
fbd08e76 1842 bio_integrity_trim(bio);
376a78ab 1843
6678d83f
KO
1844}
1845EXPORT_SYMBOL_GPL(bio_trim);
1846
1da177e4
LT
1847/*
1848 * create memory pools for biovec's in a bio_set.
1849 * use the global biovec slabs created for general use.
1850 */
8aa6ba2f 1851int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1852{
ed996a52 1853 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1854
8aa6ba2f 1855 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1856}
1857
917a38c7
KO
1858/*
1859 * bioset_exit - exit a bioset initialized with bioset_init()
1860 *
1861 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1862 * kzalloc()).
1863 */
1864void bioset_exit(struct bio_set *bs)
1da177e4 1865{
df2cb6da
KO
1866 if (bs->rescue_workqueue)
1867 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1868 bs->rescue_workqueue = NULL;
df2cb6da 1869
8aa6ba2f
KO
1870 mempool_exit(&bs->bio_pool);
1871 mempool_exit(&bs->bvec_pool);
9f060e22 1872
7878cba9 1873 bioset_integrity_free(bs);
917a38c7
KO
1874 if (bs->bio_slab)
1875 bio_put_slab(bs);
1876 bs->bio_slab = NULL;
1877}
1878EXPORT_SYMBOL(bioset_exit);
1da177e4 1879
917a38c7
KO
1880/**
1881 * bioset_init - Initialize a bio_set
dad08527 1882 * @bs: pool to initialize
917a38c7
KO
1883 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1884 * @front_pad: Number of bytes to allocate in front of the returned bio
1885 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1886 * and %BIOSET_NEED_RESCUER
1887 *
dad08527
KO
1888 * Description:
1889 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1890 * to ask for a number of bytes to be allocated in front of the bio.
1891 * Front pad allocation is useful for embedding the bio inside
1892 * another structure, to avoid allocating extra data to go with the bio.
1893 * Note that the bio must be embedded at the END of that structure always,
1894 * or things will break badly.
1895 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1896 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1897 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1898 * dispatch queued requests when the mempool runs out of space.
1899 *
917a38c7
KO
1900 */
1901int bioset_init(struct bio_set *bs,
1902 unsigned int pool_size,
1903 unsigned int front_pad,
1904 int flags)
1905{
1906 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1907
1908 bs->front_pad = front_pad;
1909
1910 spin_lock_init(&bs->rescue_lock);
1911 bio_list_init(&bs->rescue_list);
1912 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1913
1914 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1915 if (!bs->bio_slab)
1916 return -ENOMEM;
1917
1918 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1919 goto bad;
1920
1921 if ((flags & BIOSET_NEED_BVECS) &&
1922 biovec_init_pool(&bs->bvec_pool, pool_size))
1923 goto bad;
1924
1925 if (!(flags & BIOSET_NEED_RESCUER))
1926 return 0;
1927
1928 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1929 if (!bs->rescue_workqueue)
1930 goto bad;
1931
1932 return 0;
1933bad:
1934 bioset_exit(bs);
1935 return -ENOMEM;
1936}
1937EXPORT_SYMBOL(bioset_init);
1938
28e89fd9
JA
1939/*
1940 * Initialize and setup a new bio_set, based on the settings from
1941 * another bio_set.
1942 */
1943int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1944{
1945 int flags;
1946
1947 flags = 0;
1948 if (src->bvec_pool.min_nr)
1949 flags |= BIOSET_NEED_BVECS;
1950 if (src->rescue_workqueue)
1951 flags |= BIOSET_NEED_RESCUER;
1952
1953 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1954}
1955EXPORT_SYMBOL(bioset_init_from_src);
1956
852c788f 1957#ifdef CONFIG_BLK_CGROUP
1d933cf0 1958
74b7c02a
DZF
1959#ifdef CONFIG_MEMCG
1960/**
b5f2954d 1961 * bio_associate_blkcg_from_page - associate a bio with the page's blkcg
74b7c02a
DZF
1962 * @bio: target bio
1963 * @page: the page to lookup the blkcg from
1964 *
b5f2954d
DZ
1965 * Associate @bio with the blkcg from @page's owning memcg. This works like
1966 * every other associate function wrt references.
74b7c02a 1967 */
b5f2954d 1968int bio_associate_blkcg_from_page(struct bio *bio, struct page *page)
74b7c02a 1969{
b5f2954d 1970 struct cgroup_subsys_state *blkcg_css;
74b7c02a 1971
b5f2954d 1972 if (unlikely(bio->bi_css))
74b7c02a
DZF
1973 return -EBUSY;
1974 if (!page->mem_cgroup)
1975 return 0;
b5f2954d
DZ
1976 blkcg_css = cgroup_get_e_css(page->mem_cgroup->css.cgroup,
1977 &io_cgrp_subsys);
1978 bio->bi_css = blkcg_css;
1979 return 0;
74b7c02a
DZF
1980}
1981#endif /* CONFIG_MEMCG */
1982
a7b39b4e 1983/**
b5f2954d 1984 * bio_associate_blkcg - associate a bio with the specified blkcg
a7b39b4e 1985 * @bio: target bio
b5f2954d
DZ
1986 * @blkcg_css: css of the blkcg to associate
1987 *
1988 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
1989 * treat @bio as if it were issued by a task which belongs to the blkcg.
a7b39b4e 1990 *
b5f2954d
DZ
1991 * This function takes an extra reference of @blkcg_css which will be put
1992 * when @bio is released. The caller must own @bio and is responsible for
0fe061b9
DZ
1993 * synchronizing calls to this function. If @blkcg_css is %NULL, a call to
1994 * blkcg_get_css() finds the current css from the kthread or task.
a7b39b4e 1995 */
b5f2954d 1996int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
a7b39b4e 1997{
b5f2954d
DZ
1998 if (unlikely(bio->bi_css))
1999 return -EBUSY;
0fe061b9
DZ
2000
2001 if (blkcg_css)
2002 css_get(blkcg_css);
2003 else
2004 blkcg_css = blkcg_get_css();
2005
b5f2954d
DZ
2006 bio->bi_css = blkcg_css;
2007 return 0;
a7b39b4e 2008}
b5f2954d 2009EXPORT_SYMBOL_GPL(bio_associate_blkcg);
a7b39b4e 2010
d459d853 2011/**
2268c0fe
DZ
2012 * bio_disassociate_blkg - puts back the blkg reference if associated
2013 * @bio: target bio
2014 *
2015 * Helper to disassociate the blkg from @bio if a blkg is associated.
2016 */
2017void bio_disassociate_blkg(struct bio *bio)
2018{
2019 if (bio->bi_blkg) {
2020 blkg_put(bio->bi_blkg);
2021 bio->bi_blkg = NULL;
2022 }
2023}
2024
2025/**
2026 * __bio_associate_blkg - associate a bio with the a blkg
d459d853 2027 * @bio: target bio
b5f2954d 2028 * @blkg: the blkg to associate
d459d853 2029 *
beea9da0
DZ
2030 * This tries to associate @bio with the specified @blkg. Association failure
2031 * is handled by walking up the blkg tree. Therefore, the blkg associated can
2032 * be anything between @blkg and the root_blkg. This situation only happens
2033 * when a cgroup is dying and then the remaining bios will spill to the closest
2034 * alive blkg.
2035 *
2036 * A reference will be taken on the @blkg and will be released when @bio is
2037 * freed.
d459d853 2038 */
2268c0fe 2039static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
d459d853 2040{
2268c0fe
DZ
2041 bio_disassociate_blkg(bio);
2042
beea9da0 2043 bio->bi_blkg = blkg_try_get_closest(blkg);
2268c0fe
DZ
2044}
2045
2046/**
2047 * bio_associate_blkg - associate a bio with a blkg
2048 * @bio: target bio
2049 *
2050 * Associate @bio with the blkg found from the bio's css and request_queue.
2051 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2052 * already associated, the css is reused and association redone as the
2053 * request_queue may have changed.
2054 */
2055void bio_associate_blkg(struct bio *bio)
2056{
2057 struct request_queue *q = bio->bi_disk->queue;
2058 struct blkcg *blkcg;
2059 struct blkcg_gq *blkg;
2060
2061 rcu_read_lock();
2062
2063 bio_associate_blkcg(bio, NULL);
2064 blkcg = bio_blkcg(bio);
2065
2066 if (!blkcg->css.parent) {
2067 __bio_associate_blkg(bio, q->root_blkg);
2068 } else {
2069 blkg = blkg_lookup_create(blkcg, q);
2070
2071 __bio_associate_blkg(bio, blkg);
2072 }
2073
2074 rcu_read_unlock();
d459d853
DZ
2075}
2076
852c788f
TH
2077/**
2078 * bio_disassociate_task - undo bio_associate_current()
2079 * @bio: target bio
2080 */
2081void bio_disassociate_task(struct bio *bio)
2082{
b5f2954d
DZ
2083 if (bio->bi_css) {
2084 css_put(bio->bi_css);
2085 bio->bi_css = NULL;
2086 }
2268c0fe 2087 bio_disassociate_blkg(bio);
852c788f
TH
2088}
2089
20bd723e 2090/**
b5f2954d 2091 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
20bd723e
PV
2092 * @dst: destination bio
2093 * @src: source bio
2094 */
b5f2954d 2095void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
20bd723e 2096{
b5f2954d
DZ
2097 if (src->bi_css)
2098 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2268c0fe
DZ
2099
2100 if (src->bi_blkg)
2101 __bio_associate_blkg(dst, src->bi_blkg);
20bd723e 2102}
b5f2954d 2103EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
852c788f
TH
2104#endif /* CONFIG_BLK_CGROUP */
2105
1da177e4
LT
2106static void __init biovec_init_slabs(void)
2107{
2108 int i;
2109
ed996a52 2110 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
2111 int size;
2112 struct biovec_slab *bvs = bvec_slabs + i;
2113
a7fcd37c
JA
2114 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2115 bvs->slab = NULL;
2116 continue;
2117 }
a7fcd37c 2118
1da177e4
LT
2119 size = bvs->nr_vecs * sizeof(struct bio_vec);
2120 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2121 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2122 }
2123}
2124
2125static int __init init_bio(void)
2126{
bb799ca0
JA
2127 bio_slab_max = 2;
2128 bio_slab_nr = 0;
6396bb22
KC
2129 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2130 GFP_KERNEL);
bb799ca0
JA
2131 if (!bio_slabs)
2132 panic("bio: can't allocate bios\n");
1da177e4 2133
7878cba9 2134 bio_integrity_init();
1da177e4
LT
2135 biovec_init_slabs();
2136
f4f8154a 2137 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
2138 panic("bio: can't allocate bios\n");
2139
f4f8154a 2140 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
2141 panic("bio: can't create integrity pool\n");
2142
1da177e4
LT
2143 return 0;
2144}
1da177e4 2145subsys_initcall(init_bio);