]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - fs/fs-writeback.c
Merge tag '6.10-rc-smb-fix' of git://git.samba.org/sfrench/cifs-2.6
[thirdparty/kernel/linux.git] / fs / fs-writeback.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
e1f8e874 12 * 10Apr2002 Andrew Morton
1da177e4
LT
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17#include <linux/kernel.h>
630d9c47 18#include <linux/export.h>
1da177e4 19#include <linux/spinlock.h>
5a0e3ad6 20#include <linux/slab.h>
1da177e4
LT
21#include <linux/sched.h>
22#include <linux/fs.h>
23#include <linux/mm.h>
bc31b86a 24#include <linux/pagemap.h>
03ba3782 25#include <linux/kthread.h>
1da177e4
LT
26#include <linux/writeback.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
455b2864 29#include <linux/tracepoint.h>
719ea2fb 30#include <linux/device.h>
21c6321f 31#include <linux/memcontrol.h>
07f3f05c 32#include "internal.h"
1da177e4 33
bc31b86a
WF
34/*
35 * 4MB minimal write chunk size
36 */
09cbfeaf 37#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
bc31b86a 38
c4a77a6c
JA
39/*
40 * Passed into wb_writeback(), essentially a subset of writeback_control
41 */
83ba7b07 42struct wb_writeback_work {
c4a77a6c
JA
43 long nr_pages;
44 struct super_block *sb;
45 enum writeback_sync_modes sync_mode;
6e6938b6 46 unsigned int tagged_writepages:1;
52957fe1
HS
47 unsigned int for_kupdate:1;
48 unsigned int range_cyclic:1;
49 unsigned int for_background:1;
7747bd4b 50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
ac7b19a3 51 unsigned int auto_free:1; /* free on completion */
0e175a18 52 enum wb_reason reason; /* why was writeback initiated? */
c4a77a6c 53
8010c3b6 54 struct list_head list; /* pending work list */
cc395d7f 55 struct wb_completion *done; /* set if the caller waits */
03ba3782
JA
56};
57
a2f48706
TT
58/*
59 * If an inode is constantly having its pages dirtied, but then the
60 * updates stop dirtytime_expire_interval seconds in the past, it's
61 * possible for the worst case time between when an inode has its
62 * timestamps updated and when they finally get written out to be two
63 * dirtytime_expire_intervals. We set the default to 12 hours (in
64 * seconds), which means most of the time inodes will have their
65 * timestamps written to disk after 12 hours, but in the worst case a
66 * few inodes might not their timestamps updated for 24 hours.
67 */
68unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
7ccf19a8
NP
70static inline struct inode *wb_inode(struct list_head *head)
71{
c7f54084 72 return list_entry(head, struct inode, i_io_list);
7ccf19a8
NP
73}
74
15eb77a0
WF
75/*
76 * Include the creation of the trace points after defining the
77 * wb_writeback_work structure and inline functions so that the definition
78 * remains local to this file.
79 */
80#define CREATE_TRACE_POINTS
81#include <trace/events/writeback.h>
82
774016b2
SW
83EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
d6c10f1f
TH
85static bool wb_io_lists_populated(struct bdi_writeback *wb)
86{
87 if (wb_has_dirty_io(wb)) {
88 return false;
89 } else {
90 set_bit(WB_has_dirty_io, &wb->state);
95a46c65 91 WARN_ON_ONCE(!wb->avg_write_bandwidth);
766a9d6e
TH
92 atomic_long_add(wb->avg_write_bandwidth,
93 &wb->bdi->tot_write_bandwidth);
d6c10f1f
TH
94 return true;
95 }
96}
97
98static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99{
100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
766a9d6e 101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
d6c10f1f 102 clear_bit(WB_has_dirty_io, &wb->state);
95a46c65
TH
103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 &wb->bdi->tot_write_bandwidth) < 0);
766a9d6e 105 }
d6c10f1f
TH
106}
107
108/**
c7f54084 109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
d6c10f1f
TH
110 * @inode: inode to be moved
111 * @wb: target bdi_writeback
bbbc3c1c 112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
d6c10f1f 113 *
c7f54084 114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
d6c10f1f
TH
115 * Returns %true if @inode is the first occupant of the !dirty_time IO
116 * lists; otherwise, %false.
117 */
c7f54084 118static bool inode_io_list_move_locked(struct inode *inode,
d6c10f1f
TH
119 struct bdi_writeback *wb,
120 struct list_head *head)
121{
122 assert_spin_locked(&wb->list_lock);
10e14073 123 assert_spin_locked(&inode->i_lock);
a9438b44 124 WARN_ON_ONCE(inode->i_state & I_FREEING);
d6c10f1f 125
c7f54084 126 list_move(&inode->i_io_list, head);
d6c10f1f
TH
127
128 /* dirty_time doesn't count as dirty_io until expiration */
129 if (head != &wb->b_dirty_time)
130 return wb_io_lists_populated(wb);
131
132 wb_io_lists_depopulated(wb);
133 return false;
134}
135
f0054bb1 136static void wb_wakeup(struct bdi_writeback *wb)
5acda9d1 137{
f87904c0 138 spin_lock_irq(&wb->work_lock);
f0054bb1
TH
139 if (test_bit(WB_registered, &wb->state))
140 mod_delayed_work(bdi_wq, &wb->dwork, 0);
f87904c0 141 spin_unlock_irq(&wb->work_lock);
5acda9d1
JK
142}
143
12f7900c
KS
144/*
145 * This function is used when the first inode for this wb is marked dirty. It
146 * wakes-up the corresponding bdi thread which should then take care of the
147 * periodic background write-out of dirty inodes. Since the write-out would
148 * starts only 'dirty_writeback_interval' centisecs from now anyway, we just
149 * set up a timer which wakes the bdi thread up later.
150 *
151 * Note, we wouldn't bother setting up the timer, but this function is on the
152 * fast-path (used by '__mark_inode_dirty()'), so we save few context switches
153 * by delaying the wake-up.
154 *
155 * We have to be careful not to postpone flush work if it is scheduled for
156 * earlier. Thus we use queue_delayed_work().
157 */
158static void wb_wakeup_delayed(struct bdi_writeback *wb)
159{
160 unsigned long timeout;
161
162 timeout = msecs_to_jiffies(dirty_writeback_interval * 10);
163 spin_lock_irq(&wb->work_lock);
164 if (test_bit(WB_registered, &wb->state))
165 queue_delayed_work(bdi_wq, &wb->dwork, timeout);
166 spin_unlock_irq(&wb->work_lock);
167}
168
2ddc9346 169static void finish_writeback_work(struct wb_writeback_work *work)
4a3a485b
TE
170{
171 struct wb_completion *done = work->done;
172
173 if (work->auto_free)
174 kfree(work);
8e00c4e9
TH
175 if (done) {
176 wait_queue_head_t *waitq = done->waitq;
177
178 /* @done can't be accessed after the following dec */
179 if (atomic_dec_and_test(&done->cnt))
180 wake_up_all(waitq);
181 }
4a3a485b
TE
182}
183
f0054bb1
TH
184static void wb_queue_work(struct bdi_writeback *wb,
185 struct wb_writeback_work *work)
6585027a 186{
5634cc2a 187 trace_writeback_queue(wb, work);
6585027a 188
cc395d7f
TH
189 if (work->done)
190 atomic_inc(&work->done->cnt);
4a3a485b 191
f87904c0 192 spin_lock_irq(&wb->work_lock);
4a3a485b
TE
193
194 if (test_bit(WB_registered, &wb->state)) {
195 list_add_tail(&work->list, &wb->work_list);
196 mod_delayed_work(bdi_wq, &wb->dwork, 0);
197 } else
2ddc9346 198 finish_writeback_work(work);
4a3a485b 199
f87904c0 200 spin_unlock_irq(&wb->work_lock);
1da177e4
LT
201}
202
cc395d7f
TH
203/**
204 * wb_wait_for_completion - wait for completion of bdi_writeback_works
cc395d7f
TH
205 * @done: target wb_completion
206 *
207 * Wait for one or more work items issued to @bdi with their ->done field
5b9cce4c
TH
208 * set to @done, which should have been initialized with
209 * DEFINE_WB_COMPLETION(). This function returns after all such work items
210 * are completed. Work items which are waited upon aren't freed
cc395d7f
TH
211 * automatically on completion.
212 */
5b9cce4c 213void wb_wait_for_completion(struct wb_completion *done)
cc395d7f
TH
214{
215 atomic_dec(&done->cnt); /* put down the initial count */
5b9cce4c 216 wait_event(*done->waitq, !atomic_read(&done->cnt));
cc395d7f
TH
217}
218
703c2708
TH
219#ifdef CONFIG_CGROUP_WRITEBACK
220
55a694df
TH
221/*
222 * Parameters for foreign inode detection, see wbc_detach_inode() to see
223 * how they're used.
224 *
225 * These paramters are inherently heuristical as the detection target
226 * itself is fuzzy. All we want to do is detaching an inode from the
227 * current owner if it's being written to by some other cgroups too much.
228 *
229 * The current cgroup writeback is built on the assumption that multiple
230 * cgroups writing to the same inode concurrently is very rare and a mode
231 * of operation which isn't well supported. As such, the goal is not
232 * taking too long when a different cgroup takes over an inode while
233 * avoiding too aggressive flip-flops from occasional foreign writes.
234 *
235 * We record, very roughly, 2s worth of IO time history and if more than
236 * half of that is foreign, trigger the switch. The recording is quantized
237 * to 16 slots. To avoid tiny writes from swinging the decision too much,
238 * writes smaller than 1/8 of avg size are ignored.
239 */
2a814908
TH
240#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
241#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
55a694df 242#define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
2a814908
TH
243#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
244
245#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
246#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
247 /* each slot's duration is 2s / 16 */
248#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
249 /* if foreign slots >= 8, switch */
250#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
251 /* one round can affect upto 5 slots */
6444f47e 252#define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
2a814908 253
c22d70a1
RG
254/*
255 * Maximum inodes per isw. A specific value has been chosen to make
256 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
257 */
258#define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \
259 / sizeof(struct inode *))
260
a1a0e23e
TH
261static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
262static struct workqueue_struct *isw_wq;
263
9cfb816b 264void __inode_attach_wb(struct inode *inode, struct folio *folio)
21c6321f
TH
265{
266 struct backing_dev_info *bdi = inode_to_bdi(inode);
267 struct bdi_writeback *wb = NULL;
268
269 if (inode_cgwb_enabled(inode)) {
270 struct cgroup_subsys_state *memcg_css;
271
9cfb816b 272 if (folio) {
75376c6f 273 memcg_css = mem_cgroup_css_from_folio(folio);
21c6321f
TH
274 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
275 } else {
276 /* must pin memcg_css, see wb_get_create() */
277 memcg_css = task_get_css(current, memory_cgrp_id);
278 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
279 css_put(memcg_css);
280 }
281 }
282
283 if (!wb)
284 wb = &bdi->wb;
285
286 /*
287 * There may be multiple instances of this function racing to
288 * update the same inode. Use cmpxchg() to tell the winner.
289 */
290 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
291 wb_put(wb);
292}
9b0eb69b 293EXPORT_SYMBOL_GPL(__inode_attach_wb);
21c6321f 294
f3b6a6df
RG
295/**
296 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
297 * @inode: inode of interest with i_lock held
298 * @wb: target bdi_writeback
299 *
300 * Remove the inode from wb's io lists and if necessarily put onto b_attached
301 * list. Only inodes attached to cgwb's are kept on this list.
302 */
303static void inode_cgwb_move_to_attached(struct inode *inode,
304 struct bdi_writeback *wb)
305{
306 assert_spin_locked(&wb->list_lock);
307 assert_spin_locked(&inode->i_lock);
a9438b44 308 WARN_ON_ONCE(inode->i_state & I_FREEING);
f3b6a6df
RG
309
310 inode->i_state &= ~I_SYNC_QUEUED;
311 if (wb != &wb->bdi->wb)
312 list_move(&inode->i_io_list, &wb->b_attached);
313 else
314 list_del_init(&inode->i_io_list);
315 wb_io_lists_depopulated(wb);
316}
317
87e1d789
TH
318/**
319 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
320 * @inode: inode of interest with i_lock held
321 *
322 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
323 * held on entry and is released on return. The returned wb is guaranteed
324 * to stay @inode's associated wb until its list_lock is released.
325 */
326static struct bdi_writeback *
327locked_inode_to_wb_and_lock_list(struct inode *inode)
328 __releases(&inode->i_lock)
329 __acquires(&wb->list_lock)
330{
331 while (true) {
332 struct bdi_writeback *wb = inode_to_wb(inode);
333
334 /*
335 * inode_to_wb() association is protected by both
336 * @inode->i_lock and @wb->list_lock but list_lock nests
337 * outside i_lock. Drop i_lock and verify that the
338 * association hasn't changed after acquiring list_lock.
339 */
340 wb_get(wb);
341 spin_unlock(&inode->i_lock);
342 spin_lock(&wb->list_lock);
87e1d789 343
aaa2cacf 344 /* i_wb may have changed inbetween, can't use inode_to_wb() */
614a4e37
TH
345 if (likely(wb == inode->i_wb)) {
346 wb_put(wb); /* @inode already has ref */
347 return wb;
348 }
87e1d789
TH
349
350 spin_unlock(&wb->list_lock);
614a4e37 351 wb_put(wb);
87e1d789
TH
352 cpu_relax();
353 spin_lock(&inode->i_lock);
354 }
355}
356
357/**
358 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
359 * @inode: inode of interest
360 *
361 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
362 * on entry.
363 */
364static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
365 __acquires(&wb->list_lock)
366{
367 spin_lock(&inode->i_lock);
368 return locked_inode_to_wb_and_lock_list(inode);
369}
370
682aa8e1 371struct inode_switch_wbs_context {
29264d92 372 struct rcu_work work;
f5fbe6b7
RG
373
374 /*
375 * Multiple inodes can be switched at once. The switching procedure
376 * consists of two parts, separated by a RCU grace period. To make
377 * sure that the second part is executed for each inode gone through
378 * the first part, all inode pointers are placed into a NULL-terminated
379 * array embedded into struct inode_switch_wbs_context. Otherwise
380 * an inode could be left in a non-consistent state.
381 */
382 struct bdi_writeback *new_wb;
383 struct inode *inodes[];
682aa8e1
TH
384};
385
7fc5854f
TH
386static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
387{
388 down_write(&bdi->wb_switch_rwsem);
389}
390
391static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
392{
393 up_write(&bdi->wb_switch_rwsem);
394}
395
f5fbe6b7
RG
396static bool inode_do_switch_wbs(struct inode *inode,
397 struct bdi_writeback *old_wb,
72d4512e 398 struct bdi_writeback *new_wb)
682aa8e1 399{
d10c8095 400 struct address_space *mapping = inode->i_mapping;
04edf02c 401 XA_STATE(xas, &mapping->i_pages, 0);
22b3c8d6 402 struct folio *folio;
d10c8095 403 bool switched = false;
682aa8e1 404
682aa8e1 405 spin_lock(&inode->i_lock);
b93b0163 406 xa_lock_irq(&mapping->i_pages);
d10c8095
TH
407
408 /*
4ade5867
RG
409 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
410 * path owns the inode and we shouldn't modify ->i_io_list.
d10c8095 411 */
4ade5867 412 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
d10c8095
TH
413 goto skip_switch;
414
3a8e9ac8
TH
415 trace_inode_switch_wbs(inode, old_wb, new_wb);
416
d10c8095
TH
417 /*
418 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
22b3c8d6
MWO
419 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
420 * folios actually under writeback.
d10c8095 421 */
22b3c8d6
MWO
422 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
423 if (folio_test_dirty(folio)) {
424 long nr = folio_nr_pages(folio);
425 wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
426 wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
d10c8095
TH
427 }
428 }
429
04edf02c 430 xas_set(&xas, 0);
22b3c8d6
MWO
431 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
432 long nr = folio_nr_pages(folio);
433 WARN_ON_ONCE(!folio_test_writeback(folio));
434 wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
435 wb_stat_mod(new_wb, WB_WRITEBACK, nr);
d10c8095
TH
436 }
437
633a2abb
JK
438 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
439 atomic_dec(&old_wb->writeback_inodes);
440 atomic_inc(&new_wb->writeback_inodes);
441 }
442
d10c8095
TH
443 wb_get(new_wb);
444
445 /*
f3b6a6df
RG
446 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty,
447 * the specific list @inode was on is ignored and the @inode is put on
448 * ->b_dirty which is always correct including from ->b_dirty_time.
449 * The transfer preserves @inode->dirtied_when ordering. If the @inode
450 * was clean, it means it was on the b_attached list, so move it onto
451 * the b_attached list of @new_wb.
d10c8095 452 */
c7f54084 453 if (!list_empty(&inode->i_io_list)) {
d10c8095 454 inode->i_wb = new_wb;
f3b6a6df
RG
455
456 if (inode->i_state & I_DIRTY_ALL) {
457 struct inode *pos;
458
459 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
460 if (time_after_eq(inode->dirtied_when,
461 pos->dirtied_when))
462 break;
463 inode_io_list_move_locked(inode, new_wb,
464 pos->i_io_list.prev);
465 } else {
466 inode_cgwb_move_to_attached(inode, new_wb);
467 }
d10c8095
TH
468 } else {
469 inode->i_wb = new_wb;
470 }
682aa8e1 471
d10c8095 472 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
682aa8e1
TH
473 inode->i_wb_frn_winner = 0;
474 inode->i_wb_frn_avg_time = 0;
475 inode->i_wb_frn_history = 0;
d10c8095
TH
476 switched = true;
477skip_switch:
682aa8e1
TH
478 /*
479 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
480 * ensures that the new wb is visible if they see !I_WB_SWITCH.
481 */
482 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
483
b93b0163 484 xa_unlock_irq(&mapping->i_pages);
682aa8e1 485 spin_unlock(&inode->i_lock);
7fc5854f 486
f5fbe6b7 487 return switched;
72d4512e 488}
d10c8095 489
72d4512e
RG
490static void inode_switch_wbs_work_fn(struct work_struct *work)
491{
492 struct inode_switch_wbs_context *isw =
493 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
f5fbe6b7
RG
494 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
495 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
496 struct bdi_writeback *new_wb = isw->new_wb;
497 unsigned long nr_switched = 0;
498 struct inode **inodep;
499
500 /*
501 * If @inode switches cgwb membership while sync_inodes_sb() is
502 * being issued, sync_inodes_sb() might miss it. Synchronize.
503 */
504 down_read(&bdi->wb_switch_rwsem);
505
506 /*
507 * By the time control reaches here, RCU grace period has passed
508 * since I_WB_SWITCH assertion and all wb stat update transactions
509 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
510 * synchronizing against the i_pages lock.
511 *
512 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
513 * gives us exclusion against all wb related operations on @inode
514 * including IO list manipulations and stat updates.
515 */
516 if (old_wb < new_wb) {
517 spin_lock(&old_wb->list_lock);
518 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
519 } else {
520 spin_lock(&new_wb->list_lock);
521 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
522 }
523
524 for (inodep = isw->inodes; *inodep; inodep++) {
525 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
526 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
527 nr_switched++;
528 }
529
530 spin_unlock(&new_wb->list_lock);
531 spin_unlock(&old_wb->list_lock);
532
533 up_read(&bdi->wb_switch_rwsem);
534
535 if (nr_switched) {
536 wb_wakeup(new_wb);
537 wb_put_many(old_wb, nr_switched);
538 }
a1a0e23e 539
f5fbe6b7
RG
540 for (inodep = isw->inodes; *inodep; inodep++)
541 iput(*inodep);
542 wb_put(new_wb);
72d4512e 543 kfree(isw);
a1a0e23e 544 atomic_dec(&isw_nr_in_flight);
682aa8e1
TH
545}
546
c22d70a1
RG
547static bool inode_prepare_wbs_switch(struct inode *inode,
548 struct bdi_writeback *new_wb)
549{
550 /*
551 * Paired with smp_mb() in cgroup_writeback_umount().
552 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
553 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
554 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
555 */
556 smp_mb();
557
593311e8
RG
558 if (IS_DAX(inode))
559 return false;
560
c22d70a1
RG
561 /* while holding I_WB_SWITCH, no one else can update the association */
562 spin_lock(&inode->i_lock);
563 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
564 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
565 inode_to_wb(inode) == new_wb) {
566 spin_unlock(&inode->i_lock);
567 return false;
568 }
569 inode->i_state |= I_WB_SWITCH;
570 __iget(inode);
571 spin_unlock(&inode->i_lock);
572
573 return true;
574}
575
682aa8e1
TH
576/**
577 * inode_switch_wbs - change the wb association of an inode
578 * @inode: target inode
579 * @new_wb_id: ID of the new wb
580 *
581 * Switch @inode's wb association to the wb identified by @new_wb_id. The
582 * switching is performed asynchronously and may fail silently.
583 */
584static void inode_switch_wbs(struct inode *inode, int new_wb_id)
585{
586 struct backing_dev_info *bdi = inode_to_bdi(inode);
587 struct cgroup_subsys_state *memcg_css;
588 struct inode_switch_wbs_context *isw;
589
590 /* noop if seems to be already in progress */
591 if (inode->i_state & I_WB_SWITCH)
592 return;
593
6444f47e
TH
594 /* avoid queueing a new switch if too many are already in flight */
595 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
7fc5854f
TH
596 return;
597
98b160c8 598 isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
682aa8e1 599 if (!isw)
6444f47e 600 return;
682aa8e1 601
8826ee4f
RG
602 atomic_inc(&isw_nr_in_flight);
603
682aa8e1
TH
604 /* find and pin the new wb */
605 rcu_read_lock();
606 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
8b0ed844
MS
607 if (memcg_css && !css_tryget(memcg_css))
608 memcg_css = NULL;
682aa8e1 609 rcu_read_unlock();
8b0ed844
MS
610 if (!memcg_css)
611 goto out_free;
612
613 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
614 css_put(memcg_css);
682aa8e1
TH
615 if (!isw->new_wb)
616 goto out_free;
617
c22d70a1 618 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
a1a0e23e 619 goto out_free;
682aa8e1 620
f5fbe6b7 621 isw->inodes[0] = inode;
682aa8e1
TH
622
623 /*
624 * In addition to synchronizing among switchers, I_WB_SWITCH tells
b93b0163
MW
625 * the RCU protected stat update paths to grab the i_page
626 * lock so that stat transfer can synchronize against them.
682aa8e1
TH
627 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
628 */
29264d92
RG
629 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
630 queue_rcu_work(isw_wq, &isw->work);
6444f47e 631 return;
682aa8e1
TH
632
633out_free:
8826ee4f 634 atomic_dec(&isw_nr_in_flight);
682aa8e1
TH
635 if (isw->new_wb)
636 wb_put(isw->new_wb);
637 kfree(isw);
638}
639
6654408a
JX
640static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw,
641 struct list_head *list, int *nr)
642{
643 struct inode *inode;
644
645 list_for_each_entry(inode, list, i_io_list) {
646 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
647 continue;
648
649 isw->inodes[*nr] = inode;
650 (*nr)++;
651
652 if (*nr >= WB_MAX_INODES_PER_ISW - 1)
653 return true;
654 }
655 return false;
656}
657
c22d70a1
RG
658/**
659 * cleanup_offline_cgwb - detach associated inodes
660 * @wb: target wb
661 *
662 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
663 * to eventually release the dying @wb. Returns %true if not all inodes were
664 * switched and the function has to be restarted.
665 */
666bool cleanup_offline_cgwb(struct bdi_writeback *wb)
667{
668 struct cgroup_subsys_state *memcg_css;
669 struct inode_switch_wbs_context *isw;
c22d70a1
RG
670 int nr;
671 bool restart = false;
672
98b160c8
LB
673 isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
674 GFP_KERNEL);
c22d70a1
RG
675 if (!isw)
676 return restart;
677
678 atomic_inc(&isw_nr_in_flight);
679
680 for (memcg_css = wb->memcg_css->parent; memcg_css;
681 memcg_css = memcg_css->parent) {
682 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
683 if (isw->new_wb)
684 break;
685 }
686 if (unlikely(!isw->new_wb))
687 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
688
689 nr = 0;
690 spin_lock(&wb->list_lock);
6654408a
JX
691 /*
692 * In addition to the inodes that have completed writeback, also switch
693 * cgwbs for those inodes only with dirty timestamps. Otherwise, those
694 * inodes won't be written back for a long time when lazytime is
695 * enabled, and thus pinning the dying cgwbs. It won't break the
696 * bandwidth restrictions, as writeback of inode metadata is not
697 * accounted for.
698 */
699 restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr);
700 if (!restart)
701 restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr);
c22d70a1
RG
702 spin_unlock(&wb->list_lock);
703
704 /* no attached inodes? bail out */
705 if (nr == 0) {
706 atomic_dec(&isw_nr_in_flight);
707 wb_put(isw->new_wb);
708 kfree(isw);
709 return restart;
710 }
711
712 /*
713 * In addition to synchronizing among switchers, I_WB_SWITCH tells
714 * the RCU protected stat update paths to grab the i_page
715 * lock so that stat transfer can synchronize against them.
716 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
717 */
718 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
719 queue_rcu_work(isw_wq, &isw->work);
720
721 return restart;
722}
723
b16b1deb
TH
724/**
725 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
726 * @wbc: writeback_control of interest
727 * @inode: target inode
728 *
729 * @inode is locked and about to be written back under the control of @wbc.
730 * Record @inode's writeback context into @wbc and unlock the i_lock. On
731 * writeback completion, wbc_detach_inode() should be called. This is used
732 * to track the cgroup writeback context.
733 */
734void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
735 struct inode *inode)
736{
dd73e4b7
TH
737 if (!inode_cgwb_enabled(inode)) {
738 spin_unlock(&inode->i_lock);
739 return;
740 }
741
b16b1deb 742 wbc->wb = inode_to_wb(inode);
2a814908
TH
743 wbc->inode = inode;
744
745 wbc->wb_id = wbc->wb->memcg_css->id;
746 wbc->wb_lcand_id = inode->i_wb_frn_winner;
747 wbc->wb_tcand_id = 0;
748 wbc->wb_bytes = 0;
749 wbc->wb_lcand_bytes = 0;
750 wbc->wb_tcand_bytes = 0;
751
b16b1deb
TH
752 wb_get(wbc->wb);
753 spin_unlock(&inode->i_lock);
e8a7abf5
TH
754
755 /*
65de03e2
TH
756 * A dying wb indicates that either the blkcg associated with the
757 * memcg changed or the associated memcg is dying. In the first
758 * case, a replacement wb should already be available and we should
759 * refresh the wb immediately. In the second case, trying to
760 * refresh will keep failing.
e8a7abf5 761 */
65de03e2 762 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
e8a7abf5 763 inode_switch_wbs(inode, wbc->wb_id);
b16b1deb 764}
9b0eb69b 765EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
b16b1deb
TH
766
767/**
2a814908
TH
768 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
769 * @wbc: writeback_control of the just finished writeback
b16b1deb
TH
770 *
771 * To be called after a writeback attempt of an inode finishes and undoes
772 * wbc_attach_and_unlock_inode(). Can be called under any context.
2a814908
TH
773 *
774 * As concurrent write sharing of an inode is expected to be very rare and
775 * memcg only tracks page ownership on first-use basis severely confining
776 * the usefulness of such sharing, cgroup writeback tracks ownership
777 * per-inode. While the support for concurrent write sharing of an inode
778 * is deemed unnecessary, an inode being written to by different cgroups at
779 * different points in time is a lot more common, and, more importantly,
780 * charging only by first-use can too readily lead to grossly incorrect
781 * behaviors (single foreign page can lead to gigabytes of writeback to be
782 * incorrectly attributed).
783 *
784 * To resolve this issue, cgroup writeback detects the majority dirtier of
2999e1e3 785 * an inode and transfers the ownership to it. To avoid unnecessary
2a814908
TH
786 * oscillation, the detection mechanism keeps track of history and gives
787 * out the switch verdict only if the foreign usage pattern is stable over
788 * a certain amount of time and/or writeback attempts.
789 *
790 * On each writeback attempt, @wbc tries to detect the majority writer
791 * using Boyer-Moore majority vote algorithm. In addition to the byte
792 * count from the majority voting, it also counts the bytes written for the
793 * current wb and the last round's winner wb (max of last round's current
794 * wb, the winner from two rounds ago, and the last round's majority
795 * candidate). Keeping track of the historical winner helps the algorithm
796 * to semi-reliably detect the most active writer even when it's not the
797 * absolute majority.
798 *
799 * Once the winner of the round is determined, whether the winner is
800 * foreign or not and how much IO time the round consumed is recorded in
801 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
802 * over a certain threshold, the switch verdict is given.
b16b1deb
TH
803 */
804void wbc_detach_inode(struct writeback_control *wbc)
805{
2a814908
TH
806 struct bdi_writeback *wb = wbc->wb;
807 struct inode *inode = wbc->inode;
dd73e4b7
TH
808 unsigned long avg_time, max_bytes, max_time;
809 u16 history;
2a814908
TH
810 int max_id;
811
dd73e4b7
TH
812 if (!wb)
813 return;
814
815 history = inode->i_wb_frn_history;
816 avg_time = inode->i_wb_frn_avg_time;
817
2a814908
TH
818 /* pick the winner of this round */
819 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
820 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
821 max_id = wbc->wb_id;
822 max_bytes = wbc->wb_bytes;
823 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
824 max_id = wbc->wb_lcand_id;
825 max_bytes = wbc->wb_lcand_bytes;
826 } else {
827 max_id = wbc->wb_tcand_id;
828 max_bytes = wbc->wb_tcand_bytes;
829 }
830
831 /*
832 * Calculate the amount of IO time the winner consumed and fold it
833 * into the running average kept per inode. If the consumed IO
834 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
835 * deciding whether to switch or not. This is to prevent one-off
836 * small dirtiers from skewing the verdict.
837 */
838 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
839 wb->avg_write_bandwidth);
840 if (avg_time)
841 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
842 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
843 else
844 avg_time = max_time; /* immediate catch up on first run */
845
846 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
847 int slots;
848
849 /*
850 * The switch verdict is reached if foreign wb's consume
851 * more than a certain proportion of IO time in a
852 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
853 * history mask where each bit represents one sixteenth of
854 * the period. Determine the number of slots to shift into
855 * history from @max_time.
856 */
857 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
858 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
859 history <<= slots;
860 if (wbc->wb_id != max_id)
861 history |= (1U << slots) - 1;
862
3a8e9ac8
TH
863 if (history)
864 trace_inode_foreign_history(inode, wbc, history);
865
2a814908
TH
866 /*
867 * Switch if the current wb isn't the consistent winner.
868 * If there are multiple closely competing dirtiers, the
869 * inode may switch across them repeatedly over time, which
870 * is okay. The main goal is avoiding keeping an inode on
871 * the wrong wb for an extended period of time.
872 */
3e46c89c 873 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
682aa8e1 874 inode_switch_wbs(inode, max_id);
2a814908
TH
875 }
876
877 /*
878 * Multiple instances of this function may race to update the
879 * following fields but we don't mind occassional inaccuracies.
880 */
881 inode->i_wb_frn_winner = max_id;
882 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
883 inode->i_wb_frn_history = history;
884
b16b1deb
TH
885 wb_put(wbc->wb);
886 wbc->wb = NULL;
887}
9b0eb69b 888EXPORT_SYMBOL_GPL(wbc_detach_inode);
b16b1deb 889
2a814908 890/**
34e51a5e 891 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
2a814908
TH
892 * @wbc: writeback_control of the writeback in progress
893 * @page: page being written out
894 * @bytes: number of bytes being written out
895 *
896 * @bytes from @page are about to written out during the writeback
897 * controlled by @wbc. Keep the book for foreign inode detection. See
898 * wbc_detach_inode().
899 */
34e51a5e
TH
900void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
901 size_t bytes)
2a814908 902{
75376c6f 903 struct folio *folio;
66311422 904 struct cgroup_subsys_state *css;
2a814908
TH
905 int id;
906
907 /*
908 * pageout() path doesn't attach @wbc to the inode being written
909 * out. This is intentional as we don't want the function to block
910 * behind a slow cgroup. Ultimately, we want pageout() to kick off
911 * regular writeback instead of writing things out itself.
912 */
27b36d8f 913 if (!wbc->wb || wbc->no_cgroup_owner)
2a814908
TH
914 return;
915
75376c6f
MWO
916 folio = page_folio(page);
917 css = mem_cgroup_css_from_folio(folio);
66311422
TH
918 /* dead cgroups shouldn't contribute to inode ownership arbitration */
919 if (!(css->flags & CSS_ONLINE))
920 return;
921
922 id = css->id;
2a814908
TH
923
924 if (id == wbc->wb_id) {
925 wbc->wb_bytes += bytes;
926 return;
927 }
928
929 if (id == wbc->wb_lcand_id)
930 wbc->wb_lcand_bytes += bytes;
931
932 /* Boyer-Moore majority vote algorithm */
933 if (!wbc->wb_tcand_bytes)
934 wbc->wb_tcand_id = id;
935 if (id == wbc->wb_tcand_id)
936 wbc->wb_tcand_bytes += bytes;
937 else
938 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
939}
34e51a5e 940EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
2a814908 941
f2b65121
TH
942/**
943 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
944 * @wb: target bdi_writeback to split @nr_pages to
945 * @nr_pages: number of pages to write for the whole bdi
946 *
947 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
948 * relation to the total write bandwidth of all wb's w/ dirty inodes on
949 * @wb->bdi.
950 */
951static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
952{
953 unsigned long this_bw = wb->avg_write_bandwidth;
954 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
955
956 if (nr_pages == LONG_MAX)
957 return LONG_MAX;
958
959 /*
960 * This may be called on clean wb's and proportional distribution
961 * may not make sense, just use the original @nr_pages in those
962 * cases. In general, we wanna err on the side of writing more.
963 */
964 if (!tot_bw || this_bw >= tot_bw)
965 return nr_pages;
966 else
967 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
968}
969
db125360
TH
970/**
971 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
972 * @bdi: target backing_dev_info
973 * @base_work: wb_writeback_work to issue
974 * @skip_if_busy: skip wb's which already have writeback in progress
975 *
976 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
977 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
978 * distributed to the busy wbs according to each wb's proportion in the
979 * total active write bandwidth of @bdi.
980 */
981static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
982 struct wb_writeback_work *base_work,
983 bool skip_if_busy)
984{
b817525a 985 struct bdi_writeback *last_wb = NULL;
b33e18f6
TH
986 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
987 struct bdi_writeback, bdi_node);
db125360
TH
988
989 might_sleep();
db125360
TH
990restart:
991 rcu_read_lock();
b817525a 992 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
5b9cce4c 993 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
8a1270cd
TH
994 struct wb_writeback_work fallback_work;
995 struct wb_writeback_work *work;
996 long nr_pages;
997
b817525a
TH
998 if (last_wb) {
999 wb_put(last_wb);
1000 last_wb = NULL;
1001 }
1002
006a0973
TH
1003 /* SYNC_ALL writes out I_DIRTY_TIME too */
1004 if (!wb_has_dirty_io(wb) &&
1005 (base_work->sync_mode == WB_SYNC_NONE ||
1006 list_empty(&wb->b_dirty_time)))
1007 continue;
1008 if (skip_if_busy && writeback_in_progress(wb))
db125360
TH
1009 continue;
1010
8a1270cd
TH
1011 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1012
1013 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1014 if (work) {
1015 *work = *base_work;
1016 work->nr_pages = nr_pages;
1017 work->auto_free = 1;
1018 wb_queue_work(wb, work);
1019 continue;
db125360 1020 }
8a1270cd 1021
1ba1199e
BL
1022 /*
1023 * If wb_tryget fails, the wb has been shutdown, skip it.
1024 *
1025 * Pin @wb so that it stays on @bdi->wb_list. This allows
1026 * continuing iteration from @wb after dropping and
1027 * regrabbing rcu read lock.
1028 */
1029 if (!wb_tryget(wb))
1030 continue;
1031
8a1270cd
TH
1032 /* alloc failed, execute synchronously using on-stack fallback */
1033 work = &fallback_work;
1034 *work = *base_work;
1035 work->nr_pages = nr_pages;
1036 work->auto_free = 0;
1037 work->done = &fallback_work_done;
1038
1039 wb_queue_work(wb, work);
b817525a
TH
1040 last_wb = wb;
1041
8a1270cd 1042 rcu_read_unlock();
5b9cce4c 1043 wb_wait_for_completion(&fallback_work_done);
8a1270cd 1044 goto restart;
db125360
TH
1045 }
1046 rcu_read_unlock();
b817525a
TH
1047
1048 if (last_wb)
1049 wb_put(last_wb);
db125360
TH
1050}
1051
d62241c7
TH
1052/**
1053 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1054 * @bdi_id: target bdi id
1055 * @memcg_id: target memcg css id
d62241c7
TH
1056 * @reason: reason why some writeback work initiated
1057 * @done: target wb_completion
1058 *
1059 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1060 * with the specified parameters.
1061 */
7490a2d2 1062int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
d62241c7
TH
1063 enum wb_reason reason, struct wb_completion *done)
1064{
1065 struct backing_dev_info *bdi;
1066 struct cgroup_subsys_state *memcg_css;
1067 struct bdi_writeback *wb;
1068 struct wb_writeback_work *work;
7490a2d2 1069 unsigned long dirty;
d62241c7
TH
1070 int ret;
1071
1072 /* lookup bdi and memcg */
1073 bdi = bdi_get_by_id(bdi_id);
1074 if (!bdi)
1075 return -ENOENT;
1076
1077 rcu_read_lock();
1078 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1079 if (memcg_css && !css_tryget(memcg_css))
1080 memcg_css = NULL;
1081 rcu_read_unlock();
1082 if (!memcg_css) {
1083 ret = -ENOENT;
1084 goto out_bdi_put;
1085 }
1086
1087 /*
1088 * And find the associated wb. If the wb isn't there already
1089 * there's nothing to flush, don't create one.
1090 */
1091 wb = wb_get_lookup(bdi, memcg_css);
1092 if (!wb) {
1093 ret = -ENOENT;
1094 goto out_css_put;
1095 }
1096
1097 /*
7490a2d2 1098 * The caller is attempting to write out most of
d62241c7
TH
1099 * the currently dirty pages. Let's take the current dirty page
1100 * count and inflate it by 25% which should be large enough to
1101 * flush out most dirty pages while avoiding getting livelocked by
1102 * concurrent dirtiers.
7490a2d2
SB
1103 *
1104 * BTW the memcg stats are flushed periodically and this is best-effort
1105 * estimation, so some potential error is ok.
d62241c7 1106 */
7490a2d2
SB
1107 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1108 dirty = dirty * 10 / 8;
d62241c7
TH
1109
1110 /* issue the writeback work */
1111 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1112 if (work) {
7490a2d2 1113 work->nr_pages = dirty;
d62241c7
TH
1114 work->sync_mode = WB_SYNC_NONE;
1115 work->range_cyclic = 1;
1116 work->reason = reason;
1117 work->done = done;
1118 work->auto_free = 1;
1119 wb_queue_work(wb, work);
1120 ret = 0;
1121 } else {
1122 ret = -ENOMEM;
1123 }
1124
1125 wb_put(wb);
1126out_css_put:
1127 css_put(memcg_css);
1128out_bdi_put:
1129 bdi_put(bdi);
1130 return ret;
1131}
1132
a1a0e23e
TH
1133/**
1134 * cgroup_writeback_umount - flush inode wb switches for umount
1135 *
1136 * This function is called when a super_block is about to be destroyed and
1137 * flushes in-flight inode wb switches. An inode wb switch goes through
1138 * RCU and then workqueue, so the two need to be flushed in order to ensure
1139 * that all previously scheduled switches are finished. As wb switches are
1140 * rare occurrences and synchronize_rcu() can take a while, perform
1141 * flushing iff wb switches are in flight.
1142 */
1143void cgroup_writeback_umount(void)
1144{
592fa002
RG
1145 /*
1146 * SB_ACTIVE should be reliably cleared before checking
1147 * isw_nr_in_flight, see generic_shutdown_super().
1148 */
1149 smp_mb();
1150
a1a0e23e 1151 if (atomic_read(&isw_nr_in_flight)) {
ec084de9
JX
1152 /*
1153 * Use rcu_barrier() to wait for all pending callbacks to
1154 * ensure that all in-flight wb switches are in the workqueue.
1155 */
1156 rcu_barrier();
a1a0e23e
TH
1157 flush_workqueue(isw_wq);
1158 }
1159}
1160
1161static int __init cgroup_writeback_init(void)
1162{
1163 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1164 if (!isw_wq)
1165 return -ENOMEM;
1166 return 0;
1167}
1168fs_initcall(cgroup_writeback_init);
1169
f2b65121
TH
1170#else /* CONFIG_CGROUP_WRITEBACK */
1171
7fc5854f
TH
1172static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1173static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1174
f3b6a6df
RG
1175static void inode_cgwb_move_to_attached(struct inode *inode,
1176 struct bdi_writeback *wb)
1177{
1178 assert_spin_locked(&wb->list_lock);
1179 assert_spin_locked(&inode->i_lock);
a9438b44 1180 WARN_ON_ONCE(inode->i_state & I_FREEING);
f3b6a6df
RG
1181
1182 inode->i_state &= ~I_SYNC_QUEUED;
1183 list_del_init(&inode->i_io_list);
1184 wb_io_lists_depopulated(wb);
1185}
1186
87e1d789
TH
1187static struct bdi_writeback *
1188locked_inode_to_wb_and_lock_list(struct inode *inode)
1189 __releases(&inode->i_lock)
1190 __acquires(&wb->list_lock)
1191{
1192 struct bdi_writeback *wb = inode_to_wb(inode);
1193
1194 spin_unlock(&inode->i_lock);
1195 spin_lock(&wb->list_lock);
1196 return wb;
1197}
1198
1199static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1200 __acquires(&wb->list_lock)
1201{
1202 struct bdi_writeback *wb = inode_to_wb(inode);
1203
1204 spin_lock(&wb->list_lock);
1205 return wb;
1206}
1207
f2b65121
TH
1208static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1209{
1210 return nr_pages;
1211}
1212
db125360
TH
1213static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1214 struct wb_writeback_work *base_work,
1215 bool skip_if_busy)
1216{
1217 might_sleep();
1218
006a0973 1219 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
db125360 1220 base_work->auto_free = 0;
db125360
TH
1221 wb_queue_work(&bdi->wb, base_work);
1222 }
1223}
1224
703c2708
TH
1225#endif /* CONFIG_CGROUP_WRITEBACK */
1226
e8e8a0c6
JA
1227/*
1228 * Add in the number of potentially dirty inodes, because each inode
1229 * write can dirty pagecache in the underlying blockdev.
1230 */
1231static unsigned long get_nr_dirty_pages(void)
1232{
1233 return global_node_page_state(NR_FILE_DIRTY) +
e8e8a0c6
JA
1234 get_nr_dirty_inodes();
1235}
1236
1237static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
b6e51316 1238{
c00ddad3
TH
1239 if (!wb_has_dirty_io(wb))
1240 return;
1241
aac8d41c
JA
1242 /*
1243 * All callers of this function want to start writeback of all
1244 * dirty pages. Places like vmscan can call this at a very
1245 * high frequency, causing pointless allocations of tons of
1246 * work items and keeping the flusher threads busy retrieving
1247 * that work. Ensure that we only allow one of them pending and
85009b4f 1248 * inflight at the time.
aac8d41c 1249 */
85009b4f
JA
1250 if (test_bit(WB_start_all, &wb->state) ||
1251 test_and_set_bit(WB_start_all, &wb->state))
aac8d41c
JA
1252 return;
1253
85009b4f
JA
1254 wb->start_all_reason = reason;
1255 wb_wakeup(wb);
c5444198 1256}
d3ddec76 1257
c5444198 1258/**
9ecf4866
TH
1259 * wb_start_background_writeback - start background writeback
1260 * @wb: bdi_writback to write from
c5444198
CH
1261 *
1262 * Description:
6585027a 1263 * This makes sure WB_SYNC_NONE background writeback happens. When
9ecf4866 1264 * this function returns, it is only guaranteed that for given wb
6585027a
JK
1265 * some IO is happening if we are over background dirty threshold.
1266 * Caller need not hold sb s_umount semaphore.
c5444198 1267 */
9ecf4866 1268void wb_start_background_writeback(struct bdi_writeback *wb)
c5444198 1269{
6585027a
JK
1270 /*
1271 * We just wake up the flusher thread. It will perform background
1272 * writeback as soon as there is no other work to do.
1273 */
5634cc2a 1274 trace_writeback_wake_background(wb);
9ecf4866 1275 wb_wakeup(wb);
1da177e4
LT
1276}
1277
a66979ab
DC
1278/*
1279 * Remove the inode from the writeback list it is on.
1280 */
c7f54084 1281void inode_io_list_del(struct inode *inode)
a66979ab 1282{
87e1d789 1283 struct bdi_writeback *wb;
f758eeab 1284
87e1d789 1285 wb = inode_to_wb_and_lock_list(inode);
b35250c0 1286 spin_lock(&inode->i_lock);
f3b6a6df
RG
1287
1288 inode->i_state &= ~I_SYNC_QUEUED;
1289 list_del_init(&inode->i_io_list);
1290 wb_io_lists_depopulated(wb);
1291
b35250c0 1292 spin_unlock(&inode->i_lock);
52ebea74 1293 spin_unlock(&wb->list_lock);
a66979ab 1294}
4301efa4 1295EXPORT_SYMBOL(inode_io_list_del);
a66979ab 1296
6c60d2b5
DC
1297/*
1298 * mark an inode as under writeback on the sb
1299 */
1300void sb_mark_inode_writeback(struct inode *inode)
1301{
1302 struct super_block *sb = inode->i_sb;
1303 unsigned long flags;
1304
1305 if (list_empty(&inode->i_wb_list)) {
1306 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f 1307 if (list_empty(&inode->i_wb_list)) {
6c60d2b5 1308 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
9a46b04f
BF
1309 trace_sb_mark_inode_writeback(inode);
1310 }
6c60d2b5
DC
1311 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1312 }
1313}
1314
1315/*
1316 * clear an inode as under writeback on the sb
1317 */
1318void sb_clear_inode_writeback(struct inode *inode)
1319{
1320 struct super_block *sb = inode->i_sb;
1321 unsigned long flags;
1322
1323 if (!list_empty(&inode->i_wb_list)) {
1324 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f
BF
1325 if (!list_empty(&inode->i_wb_list)) {
1326 list_del_init(&inode->i_wb_list);
1327 trace_sb_clear_inode_writeback(inode);
1328 }
6c60d2b5
DC
1329 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1330 }
1331}
1332
6610a0bc
AM
1333/*
1334 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1335 * furthest end of its superblock's dirty-inode list.
1336 *
1337 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 1338 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
1339 * the case then the inode must have been redirtied while it was being written
1340 * out and we don't reset its dirtied_when.
1341 */
b35250c0 1342static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
6610a0bc 1343{
b35250c0
JK
1344 assert_spin_locked(&inode->i_lock);
1345
a9438b44
JK
1346 inode->i_state &= ~I_SYNC_QUEUED;
1347 /*
1348 * When the inode is being freed just don't bother with dirty list
1349 * tracking. Flush worker will ignore this inode anyway and it will
1350 * trigger assertions in inode_io_list_move_locked().
1351 */
1352 if (inode->i_state & I_FREEING) {
1353 list_del_init(&inode->i_io_list);
1354 wb_io_lists_depopulated(wb);
1355 return;
1356 }
03ba3782 1357 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 1358 struct inode *tail;
6610a0bc 1359
7ccf19a8 1360 tail = wb_inode(wb->b_dirty.next);
66f3b8e2 1361 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
1362 inode->dirtied_when = jiffies;
1363 }
c7f54084 1364 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
6610a0bc
AM
1365}
1366
b35250c0
JK
1367static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1368{
1369 spin_lock(&inode->i_lock);
1370 redirty_tail_locked(inode, wb);
1371 spin_unlock(&inode->i_lock);
1372}
1373
c986d1e2 1374/*
66f3b8e2 1375 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 1376 */
f758eeab 1377static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
c986d1e2 1378{
c7f54084 1379 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
c986d1e2
AM
1380}
1381
1c0eeaf5
JE
1382static void inode_sync_complete(struct inode *inode)
1383{
365b94ae 1384 inode->i_state &= ~I_SYNC;
4eff96dd
JK
1385 /* If inode is clean an unused, put it into LRU now... */
1386 inode_add_lru(inode);
365b94ae 1387 /* Waiters must see I_SYNC cleared before being woken up */
1c0eeaf5
JE
1388 smp_mb();
1389 wake_up_bit(&inode->i_state, __I_SYNC);
1390}
1391
d2caa3c5
JL
1392static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1393{
1394 bool ret = time_after(inode->dirtied_when, t);
1395#ifndef CONFIG_64BIT
1396 /*
1397 * For inodes being constantly redirtied, dirtied_when can get stuck.
1398 * It _appears_ to be in the future, but is actually in distant past.
1399 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 1400 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
1401 */
1402 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1403#endif
1404 return ret;
1405}
1406
2c136579 1407/*
f9cae926 1408 * Move expired (dirtied before dirtied_before) dirty inodes from
697e6fed 1409 * @delaying_queue to @dispatch_queue.
2c136579 1410 */
e84d0a4f 1411static int move_expired_inodes(struct list_head *delaying_queue,
2c136579 1412 struct list_head *dispatch_queue,
5fcd5750 1413 unsigned long dirtied_before)
2c136579 1414{
5c03449d
SL
1415 LIST_HEAD(tmp);
1416 struct list_head *pos, *node;
cf137307 1417 struct super_block *sb = NULL;
5c03449d 1418 struct inode *inode;
cf137307 1419 int do_sb_sort = 0;
e84d0a4f 1420 int moved = 0;
5c03449d 1421
2c136579 1422 while (!list_empty(delaying_queue)) {
7ccf19a8 1423 inode = wb_inode(delaying_queue->prev);
f9cae926 1424 if (inode_dirtied_after(inode, dirtied_before))
2c136579 1425 break;
10e14073 1426 spin_lock(&inode->i_lock);
c7f54084 1427 list_move(&inode->i_io_list, &tmp);
a8855990 1428 moved++;
5afced3b
JK
1429 inode->i_state |= I_SYNC_QUEUED;
1430 spin_unlock(&inode->i_lock);
a8855990
JK
1431 if (sb_is_blkdev_sb(inode->i_sb))
1432 continue;
cf137307
JA
1433 if (sb && sb != inode->i_sb)
1434 do_sb_sort = 1;
1435 sb = inode->i_sb;
5c03449d
SL
1436 }
1437
cf137307
JA
1438 /* just one sb in list, splice to dispatch_queue and we're done */
1439 if (!do_sb_sort) {
1440 list_splice(&tmp, dispatch_queue);
e84d0a4f 1441 goto out;
cf137307
JA
1442 }
1443
10e14073
JS
1444 /*
1445 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1446 * we don't take inode->i_lock here because it is just a pointless overhead.
1447 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1448 * fully under our control.
1449 */
5c03449d 1450 while (!list_empty(&tmp)) {
7ccf19a8 1451 sb = wb_inode(tmp.prev)->i_sb;
5c03449d 1452 list_for_each_prev_safe(pos, node, &tmp) {
7ccf19a8 1453 inode = wb_inode(pos);
5c03449d 1454 if (inode->i_sb == sb)
c7f54084 1455 list_move(&inode->i_io_list, dispatch_queue);
5c03449d 1456 }
2c136579 1457 }
e84d0a4f
WF
1458out:
1459 return moved;
2c136579
FW
1460}
1461
1462/*
1463 * Queue all expired dirty inodes for io, eldest first.
4ea879b9
WF
1464 * Before
1465 * newly dirtied b_dirty b_io b_more_io
1466 * =============> gf edc BA
1467 * After
1468 * newly dirtied b_dirty b_io b_more_io
1469 * =============> g fBAedc
1470 * |
1471 * +--> dequeue for IO
2c136579 1472 */
f9cae926
JK
1473static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1474 unsigned long dirtied_before)
66f3b8e2 1475{
e84d0a4f 1476 int moved;
f9cae926 1477 unsigned long time_expire_jif = dirtied_before;
0ae45f63 1478
f758eeab 1479 assert_spin_locked(&wb->list_lock);
4ea879b9 1480 list_splice_init(&wb->b_more_io, &wb->b_io);
5fcd5750 1481 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
f9cae926
JK
1482 if (!work->for_sync)
1483 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
0ae45f63 1484 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
5fcd5750 1485 time_expire_jif);
d6c10f1f
TH
1486 if (moved)
1487 wb_io_lists_populated(wb);
f9cae926 1488 trace_writeback_queue_io(wb, work, dirtied_before, moved);
66f3b8e2
JA
1489}
1490
a9185b41 1491static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 1492{
9fb0a7da
TH
1493 int ret;
1494
1495 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1496 trace_writeback_write_inode_start(inode, wbc);
1497 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1498 trace_writeback_write_inode(inode, wbc);
1499 return ret;
1500 }
03ba3782 1501 return 0;
08d8e974 1502}
08d8e974 1503
1da177e4 1504/*
169ebd90
JK
1505 * Wait for writeback on an inode to complete. Called with i_lock held.
1506 * Caller must make sure inode cannot go away when we drop i_lock.
01c03194 1507 */
169ebd90
JK
1508static void __inode_wait_for_writeback(struct inode *inode)
1509 __releases(inode->i_lock)
1510 __acquires(inode->i_lock)
01c03194
CH
1511{
1512 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1513 wait_queue_head_t *wqh;
1514
1515 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
250df6ed
DC
1516 while (inode->i_state & I_SYNC) {
1517 spin_unlock(&inode->i_lock);
74316201
N
1518 __wait_on_bit(wqh, &wq, bit_wait,
1519 TASK_UNINTERRUPTIBLE);
250df6ed 1520 spin_lock(&inode->i_lock);
58a9d3d8 1521 }
01c03194
CH
1522}
1523
169ebd90
JK
1524/*
1525 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1526 */
1527void inode_wait_for_writeback(struct inode *inode)
1528{
1529 spin_lock(&inode->i_lock);
1530 __inode_wait_for_writeback(inode);
1531 spin_unlock(&inode->i_lock);
1532}
1533
1534/*
1535 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1536 * held and drops it. It is aimed for callers not holding any inode reference
1537 * so once i_lock is dropped, inode can go away.
1538 */
1539static void inode_sleep_on_writeback(struct inode *inode)
1540 __releases(inode->i_lock)
1541{
1542 DEFINE_WAIT(wait);
1543 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1544 int sleep;
1545
1546 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1547 sleep = inode->i_state & I_SYNC;
1548 spin_unlock(&inode->i_lock);
1549 if (sleep)
1550 schedule();
1551 finish_wait(wqh, &wait);
1552}
1553
ccb26b5a
JK
1554/*
1555 * Find proper writeback list for the inode depending on its current state and
1556 * possibly also change of its state while we were doing writeback. Here we
1557 * handle things such as livelock prevention or fairness of writeback among
1558 * inodes. This function can be called only by flusher thread - noone else
1559 * processes all inodes in writeback lists and requeueing inodes behind flusher
1560 * thread's back can have unexpected consequences.
1561 */
1562static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
ac0c18f2
KS
1563 struct writeback_control *wbc,
1564 unsigned long dirtied_before)
ccb26b5a
JK
1565{
1566 if (inode->i_state & I_FREEING)
1567 return;
1568
1569 /*
1570 * Sync livelock prevention. Each inode is tagged and synced in one
1571 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1572 * the dirty time to prevent enqueue and sync it again.
1573 */
1574 if ((inode->i_state & I_DIRTY) &&
1575 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1576 inode->dirtied_when = jiffies;
1577
4f8ad655
JK
1578 if (wbc->pages_skipped) {
1579 /*
be049c3a
CG
1580 * Writeback is not making progress due to locked buffers.
1581 * Skip this inode for now. Although having skipped pages
1582 * is odd for clean inodes, it can happen for some
1583 * filesystems so handle that gracefully.
4f8ad655 1584 */
be049c3a
CG
1585 if (inode->i_state & I_DIRTY_ALL)
1586 redirty_tail_locked(inode, wb);
1587 else
1588 inode_cgwb_move_to_attached(inode, wb);
4f8ad655
JK
1589 return;
1590 }
1591
ccb26b5a
JK
1592 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1593 /*
1594 * We didn't write back all the pages. nfs_writepages()
1595 * sometimes bales out without doing anything.
1596 */
ac0c18f2
KS
1597 if (wbc->nr_to_write <= 0 &&
1598 !inode_dirtied_after(inode, dirtied_before)) {
ccb26b5a
JK
1599 /* Slice used up. Queue for next turn. */
1600 requeue_io(inode, wb);
1601 } else {
1602 /*
1603 * Writeback blocked by something other than
1604 * congestion. Delay the inode for some time to
1605 * avoid spinning on the CPU (100% iowait)
1606 * retrying writeback of the dirty page/inode
1607 * that cannot be performed immediately.
1608 */
b35250c0 1609 redirty_tail_locked(inode, wb);
ccb26b5a
JK
1610 }
1611 } else if (inode->i_state & I_DIRTY) {
1612 /*
1613 * Filesystems can dirty the inode during writeback operations,
1614 * such as delayed allocation during submission or metadata
1615 * updates after data IO completion.
1616 */
b35250c0 1617 redirty_tail_locked(inode, wb);
0ae45f63 1618 } else if (inode->i_state & I_DIRTY_TIME) {
a2f48706 1619 inode->dirtied_when = jiffies;
c7f54084 1620 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
5afced3b 1621 inode->i_state &= ~I_SYNC_QUEUED;
ccb26b5a
JK
1622 } else {
1623 /* The inode is clean. Remove from writeback lists. */
f3b6a6df 1624 inode_cgwb_move_to_attached(inode, wb);
ccb26b5a
JK
1625 }
1626}
1627
01c03194 1628/*
da0c4c60
EB
1629 * Write out an inode and its dirty pages (or some of its dirty pages, depending
1630 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1631 *
1632 * This doesn't remove the inode from the writeback list it is on, except
1633 * potentially to move it from b_dirty_time to b_dirty due to timestamp
1634 * expiration. The caller is otherwise responsible for writeback list handling.
1635 *
1636 * The caller is also responsible for setting the I_SYNC flag beforehand and
1637 * calling inode_sync_complete() to clear it afterwards.
1da177e4
LT
1638 */
1639static int
cd8ed2a4 1640__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 1641{
1da177e4 1642 struct address_space *mapping = inode->i_mapping;
251d6a47 1643 long nr_to_write = wbc->nr_to_write;
01c03194 1644 unsigned dirty;
1da177e4
LT
1645 int ret;
1646
4f8ad655 1647 WARN_ON(!(inode->i_state & I_SYNC));
1da177e4 1648
9fb0a7da
TH
1649 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1650
1da177e4
LT
1651 ret = do_writepages(mapping, wbc);
1652
26821ed4
CH
1653 /*
1654 * Make sure to wait on the data before writing out the metadata.
1655 * This is important for filesystems that modify metadata on data
7747bd4b
DC
1656 * I/O completion. We don't do it for sync(2) writeback because it has a
1657 * separate, external IO completion path and ->sync_fs for guaranteeing
1658 * inode metadata is written back correctly.
26821ed4 1659 */
7747bd4b 1660 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
26821ed4 1661 int err = filemap_fdatawait(mapping);
1da177e4
LT
1662 if (ret == 0)
1663 ret = err;
1664 }
1665
5547e8aa 1666 /*
1e249cb5
EB
1667 * If the inode has dirty timestamps and we need to write them, call
1668 * mark_inode_dirty_sync() to notify the filesystem about it and to
1669 * change I_DIRTY_TIME into I_DIRTY_SYNC.
5547e8aa 1670 */
5fcd5750 1671 if ((inode->i_state & I_DIRTY_TIME) &&
83dc881d 1672 (wbc->sync_mode == WB_SYNC_ALL ||
5fcd5750
JK
1673 time_after(jiffies, inode->dirtied_time_when +
1674 dirtytime_expire_interval * HZ))) {
5fcd5750 1675 trace_writeback_lazytime(inode);
1e249cb5 1676 mark_inode_dirty_sync(inode);
5fcd5750 1677 }
1e249cb5
EB
1678
1679 /*
da0c4c60
EB
1680 * Get and clear the dirty flags from i_state. This needs to be done
1681 * after calling writepages because some filesystems may redirty the
1682 * inode during writepages due to delalloc. It also needs to be done
1683 * after handling timestamp expiration, as that may dirty the inode too.
1e249cb5
EB
1684 */
1685 spin_lock(&inode->i_lock);
1686 dirty = inode->i_state & I_DIRTY;
0ae45f63 1687 inode->i_state &= ~dirty;
9c6ac78e
TH
1688
1689 /*
1690 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1691 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1692 * either they see the I_DIRTY bits cleared or we see the dirtied
1693 * inode.
1694 *
1695 * I_DIRTY_PAGES is always cleared together above even if @mapping
1696 * still has dirty pages. The flag is reinstated after smp_mb() if
1697 * necessary. This guarantees that either __mark_inode_dirty()
1698 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1699 */
1700 smp_mb();
1701
1702 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1703 inode->i_state |= I_DIRTY_PAGES;
c9c4ff12 1704 else if (unlikely(inode->i_state & I_PINNING_NETFS_WB)) {
08276bda 1705 if (!(inode->i_state & I_DIRTY_PAGES)) {
c9c4ff12
DH
1706 inode->i_state &= ~I_PINNING_NETFS_WB;
1707 wbc->unpinned_netfs_wb = true;
1708 dirty |= I_PINNING_NETFS_WB; /* Cause write_inode */
08276bda
DH
1709 }
1710 }
9c6ac78e 1711
250df6ed 1712 spin_unlock(&inode->i_lock);
9c6ac78e 1713
26821ed4 1714 /* Don't write the inode if only I_DIRTY_PAGES was set */
0ae45f63 1715 if (dirty & ~I_DIRTY_PAGES) {
a9185b41 1716 int err = write_inode(inode, wbc);
1da177e4
LT
1717 if (ret == 0)
1718 ret = err;
1719 }
c9c4ff12 1720 wbc->unpinned_netfs_wb = false;
4f8ad655
JK
1721 trace_writeback_single_inode(inode, wbc, nr_to_write);
1722 return ret;
1723}
1724
1725/*
da0c4c60
EB
1726 * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1727 * the regular batched writeback done by the flusher threads in
1728 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as
1729 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
4f8ad655 1730 *
da0c4c60
EB
1731 * To prevent the inode from going away, either the caller must have a reference
1732 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
4f8ad655 1733 */
aaf25593
TH
1734static int writeback_single_inode(struct inode *inode,
1735 struct writeback_control *wbc)
4f8ad655 1736{
aaf25593 1737 struct bdi_writeback *wb;
4f8ad655
JK
1738 int ret = 0;
1739
1740 spin_lock(&inode->i_lock);
1741 if (!atomic_read(&inode->i_count))
1742 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1743 else
1744 WARN_ON(inode->i_state & I_WILL_FREE);
1745
1746 if (inode->i_state & I_SYNC) {
4f8ad655 1747 /*
da0c4c60
EB
1748 * Writeback is already running on the inode. For WB_SYNC_NONE,
1749 * that's enough and we can just return. For WB_SYNC_ALL, we
1750 * must wait for the existing writeback to complete, then do
1751 * writeback again if there's anything left.
4f8ad655 1752 */
da0c4c60
EB
1753 if (wbc->sync_mode != WB_SYNC_ALL)
1754 goto out;
169ebd90 1755 __inode_wait_for_writeback(inode);
4f8ad655
JK
1756 }
1757 WARN_ON(inode->i_state & I_SYNC);
1758 /*
da0c4c60
EB
1759 * If the inode is already fully clean, then there's nothing to do.
1760 *
1761 * For data-integrity syncs we also need to check whether any pages are
1762 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If
1763 * there are any such pages, we'll need to wait for them.
4f8ad655 1764 */
0ae45f63 1765 if (!(inode->i_state & I_DIRTY_ALL) &&
f9b0e058
JK
1766 (wbc->sync_mode != WB_SYNC_ALL ||
1767 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
4f8ad655
JK
1768 goto out;
1769 inode->i_state |= I_SYNC;
b16b1deb 1770 wbc_attach_and_unlock_inode(wbc, inode);
4f8ad655 1771
cd8ed2a4 1772 ret = __writeback_single_inode(inode, wbc);
1da177e4 1773
b16b1deb 1774 wbc_detach_inode(wbc);
aaf25593
TH
1775
1776 wb = inode_to_wb_and_lock_list(inode);
250df6ed 1777 spin_lock(&inode->i_lock);
4f8ad655 1778 /*
4e3c51f4
SF
1779 * If the inode is freeing, its i_io_list shoudn't be updated
1780 * as it can be finally deleted at this moment.
4f8ad655 1781 */
4e3c51f4
SF
1782 if (!(inode->i_state & I_FREEING)) {
1783 /*
1784 * If the inode is now fully clean, then it can be safely
1785 * removed from its writeback list (if any). Otherwise the
1786 * flusher threads are responsible for the writeback lists.
1787 */
1788 if (!(inode->i_state & I_DIRTY_ALL))
1789 inode_cgwb_move_to_attached(inode, wb);
1790 else if (!(inode->i_state & I_SYNC_QUEUED)) {
1791 if ((inode->i_state & I_DIRTY))
1792 redirty_tail_locked(inode, wb);
1793 else if (inode->i_state & I_DIRTY_TIME) {
1794 inode->dirtied_when = jiffies;
1795 inode_io_list_move_locked(inode,
1796 wb,
1797 &wb->b_dirty_time);
1798 }
cbfecb92
LC
1799 }
1800 }
846a3351 1801
4f8ad655 1802 spin_unlock(&wb->list_lock);
1c0eeaf5 1803 inode_sync_complete(inode);
4f8ad655
JK
1804out:
1805 spin_unlock(&inode->i_lock);
1da177e4
LT
1806 return ret;
1807}
1808
a88a341a 1809static long writeback_chunk_size(struct bdi_writeback *wb,
1a12d8bd 1810 struct wb_writeback_work *work)
d46db3d5
WF
1811{
1812 long pages;
1813
1814 /*
1815 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1816 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1817 * here avoids calling into writeback_inodes_wb() more than once.
1818 *
1819 * The intended call sequence for WB_SYNC_ALL writeback is:
1820 *
1821 * wb_writeback()
1822 * writeback_sb_inodes() <== called only once
1823 * write_cache_pages() <== called once for each inode
1824 * (quickly) tag currently dirty pages
1825 * (maybe slowly) sync all tagged pages
1826 */
1827 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1828 pages = LONG_MAX;
1a12d8bd 1829 else {
a88a341a 1830 pages = min(wb->avg_write_bandwidth / 2,
dcc25ae7 1831 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1a12d8bd
WF
1832 pages = min(pages, work->nr_pages);
1833 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1834 MIN_WRITEBACK_PAGES);
1835 }
d46db3d5
WF
1836
1837 return pages;
1838}
1839
f11c9c5c
ES
1840/*
1841 * Write a portion of b_io inodes which belong to @sb.
edadfb10 1842 *
d46db3d5 1843 * Return the number of pages and/or inodes written.
0ba13fd1
LT
1844 *
1845 * NOTE! This is called with wb->list_lock held, and will
1846 * unlock and relock that for each inode it ends up doing
1847 * IO for.
f11c9c5c 1848 */
d46db3d5
WF
1849static long writeback_sb_inodes(struct super_block *sb,
1850 struct bdi_writeback *wb,
1851 struct wb_writeback_work *work)
1da177e4 1852{
d46db3d5
WF
1853 struct writeback_control wbc = {
1854 .sync_mode = work->sync_mode,
1855 .tagged_writepages = work->tagged_writepages,
1856 .for_kupdate = work->for_kupdate,
1857 .for_background = work->for_background,
7747bd4b 1858 .for_sync = work->for_sync,
d46db3d5
WF
1859 .range_cyclic = work->range_cyclic,
1860 .range_start = 0,
1861 .range_end = LLONG_MAX,
1862 };
1863 unsigned long start_time = jiffies;
1864 long write_chunk;
68f4c6eb 1865 long total_wrote = 0; /* count both pages and inodes */
ac0c18f2
KS
1866 unsigned long dirtied_before = jiffies;
1867
1868 if (work->for_kupdate)
1869 dirtied_before = jiffies -
1870 msecs_to_jiffies(dirty_expire_interval * 10);
d46db3d5 1871
03ba3782 1872 while (!list_empty(&wb->b_io)) {
7ccf19a8 1873 struct inode *inode = wb_inode(wb->b_io.prev);
aaf25593 1874 struct bdi_writeback *tmp_wb;
68f4c6eb 1875 long wrote;
edadfb10
CH
1876
1877 if (inode->i_sb != sb) {
d46db3d5 1878 if (work->sb) {
edadfb10
CH
1879 /*
1880 * We only want to write back data for this
1881 * superblock, move all inodes not belonging
1882 * to it back onto the dirty list.
1883 */
f758eeab 1884 redirty_tail(inode, wb);
edadfb10
CH
1885 continue;
1886 }
1887
1888 /*
1889 * The inode belongs to a different superblock.
1890 * Bounce back to the caller to unpin this and
1891 * pin the next superblock.
1892 */
d46db3d5 1893 break;
edadfb10
CH
1894 }
1895
9843b76a 1896 /*
331cbdee
WL
1897 * Don't bother with new inodes or inodes being freed, first
1898 * kind does not need periodic writeout yet, and for the latter
9843b76a
CH
1899 * kind writeout is handled by the freer.
1900 */
250df6ed 1901 spin_lock(&inode->i_lock);
9843b76a 1902 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
b35250c0 1903 redirty_tail_locked(inode, wb);
250df6ed 1904 spin_unlock(&inode->i_lock);
7ef0d737
NP
1905 continue;
1906 }
cc1676d9
JK
1907 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1908 /*
1909 * If this inode is locked for writeback and we are not
1910 * doing writeback-for-data-integrity, move it to
1911 * b_more_io so that writeback can proceed with the
1912 * other inodes on s_io.
1913 *
1914 * We'll have another go at writing back this inode
1915 * when we completed a full scan of b_io.
1916 */
cc1676d9 1917 requeue_io(inode, wb);
10e14073 1918 spin_unlock(&inode->i_lock);
cc1676d9
JK
1919 trace_writeback_sb_inodes_requeue(inode);
1920 continue;
1921 }
f0d07b7f
JK
1922 spin_unlock(&wb->list_lock);
1923
4f8ad655
JK
1924 /*
1925 * We already requeued the inode if it had I_SYNC set and we
1926 * are doing WB_SYNC_NONE writeback. So this catches only the
1927 * WB_SYNC_ALL case.
1928 */
169ebd90
JK
1929 if (inode->i_state & I_SYNC) {
1930 /* Wait for I_SYNC. This function drops i_lock... */
1931 inode_sleep_on_writeback(inode);
1932 /* Inode may be gone, start again */
ead188f9 1933 spin_lock(&wb->list_lock);
169ebd90
JK
1934 continue;
1935 }
4f8ad655 1936 inode->i_state |= I_SYNC;
b16b1deb 1937 wbc_attach_and_unlock_inode(&wbc, inode);
169ebd90 1938
a88a341a 1939 write_chunk = writeback_chunk_size(wb, work);
d46db3d5
WF
1940 wbc.nr_to_write = write_chunk;
1941 wbc.pages_skipped = 0;
250df6ed 1942
169ebd90
JK
1943 /*
1944 * We use I_SYNC to pin the inode in memory. While it is set
1945 * evict_inode() will wait so the inode cannot be freed.
1946 */
cd8ed2a4 1947 __writeback_single_inode(inode, &wbc);
250df6ed 1948
b16b1deb 1949 wbc_detach_inode(&wbc);
d46db3d5 1950 work->nr_pages -= write_chunk - wbc.nr_to_write;
68f4c6eb
ZC
1951 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1952 wrote = wrote < 0 ? 0 : wrote;
1953 total_wrote += wrote;
590dca3a
CM
1954
1955 if (need_resched()) {
1956 /*
1957 * We're trying to balance between building up a nice
1958 * long list of IOs to improve our merge rate, and
1959 * getting those IOs out quickly for anyone throttling
1960 * in balance_dirty_pages(). cond_resched() doesn't
1961 * unplug, so get our IOs out the door before we
1962 * give up the CPU.
1963 */
aa8dccca 1964 blk_flush_plug(current->plug, false);
590dca3a
CM
1965 cond_resched();
1966 }
1967
aaf25593
TH
1968 /*
1969 * Requeue @inode if still dirty. Be careful as @inode may
1970 * have been switched to another wb in the meantime.
1971 */
1972 tmp_wb = inode_to_wb_and_lock_list(inode);
4f8ad655 1973 spin_lock(&inode->i_lock);
0ae45f63 1974 if (!(inode->i_state & I_DIRTY_ALL))
68f4c6eb 1975 total_wrote++;
ac0c18f2 1976 requeue_inode(inode, tmp_wb, &wbc, dirtied_before);
4f8ad655 1977 inode_sync_complete(inode);
0f1b1fd8 1978 spin_unlock(&inode->i_lock);
590dca3a 1979
aaf25593
TH
1980 if (unlikely(tmp_wb != wb)) {
1981 spin_unlock(&tmp_wb->list_lock);
1982 spin_lock(&wb->list_lock);
1983 }
1984
d46db3d5
WF
1985 /*
1986 * bail out to wb_writeback() often enough to check
1987 * background threshold and other termination conditions.
1988 */
68f4c6eb 1989 if (total_wrote) {
d46db3d5
WF
1990 if (time_is_before_jiffies(start_time + HZ / 10UL))
1991 break;
1992 if (work->nr_pages <= 0)
1993 break;
8bc3be27 1994 }
1da177e4 1995 }
68f4c6eb 1996 return total_wrote;
f11c9c5c
ES
1997}
1998
d46db3d5
WF
1999static long __writeback_inodes_wb(struct bdi_writeback *wb,
2000 struct wb_writeback_work *work)
f11c9c5c 2001{
d46db3d5
WF
2002 unsigned long start_time = jiffies;
2003 long wrote = 0;
38f21977 2004
f11c9c5c 2005 while (!list_empty(&wb->b_io)) {
7ccf19a8 2006 struct inode *inode = wb_inode(wb->b_io.prev);
f11c9c5c 2007 struct super_block *sb = inode->i_sb;
9ecc2738 2008
d8ce82ef 2009 if (!super_trylock_shared(sb)) {
0e995816 2010 /*
d8ce82ef 2011 * super_trylock_shared() may fail consistently due to
0e995816
WF
2012 * s_umount being grabbed by someone else. Don't use
2013 * requeue_io() to avoid busy retrying the inode/sb.
2014 */
2015 redirty_tail(inode, wb);
edadfb10 2016 continue;
f11c9c5c 2017 }
d46db3d5 2018 wrote += writeback_sb_inodes(sb, wb, work);
eb6ef3df 2019 up_read(&sb->s_umount);
f11c9c5c 2020
d46db3d5
WF
2021 /* refer to the same tests at the end of writeback_sb_inodes */
2022 if (wrote) {
2023 if (time_is_before_jiffies(start_time + HZ / 10UL))
2024 break;
2025 if (work->nr_pages <= 0)
2026 break;
2027 }
f11c9c5c 2028 }
66f3b8e2 2029 /* Leave any unwritten inodes on b_io */
d46db3d5 2030 return wrote;
66f3b8e2
JA
2031}
2032
7d9f073b 2033static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
0e175a18 2034 enum wb_reason reason)
edadfb10 2035{
d46db3d5
WF
2036 struct wb_writeback_work work = {
2037 .nr_pages = nr_pages,
2038 .sync_mode = WB_SYNC_NONE,
2039 .range_cyclic = 1,
0e175a18 2040 .reason = reason,
d46db3d5 2041 };
505a666e 2042 struct blk_plug plug;
edadfb10 2043
505a666e 2044 blk_start_plug(&plug);
f758eeab 2045 spin_lock(&wb->list_lock);
424b351f 2046 if (list_empty(&wb->b_io))
f9cae926 2047 queue_io(wb, &work, jiffies);
d46db3d5 2048 __writeback_inodes_wb(wb, &work);
f758eeab 2049 spin_unlock(&wb->list_lock);
505a666e 2050 blk_finish_plug(&plug);
edadfb10 2051
d46db3d5
WF
2052 return nr_pages - work.nr_pages;
2053}
03ba3782 2054
03ba3782
JA
2055/*
2056 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 2057 *
03ba3782
JA
2058 * Define "old": the first time one of an inode's pages is dirtied, we mark the
2059 * dirtying-time in the inode's address_space. So this periodic writeback code
2060 * just walks the superblock inode list, writing back any inodes which are
2061 * older than a specific point in time.
66f3b8e2 2062 *
03ba3782
JA
2063 * Try to run once per dirty_writeback_interval. But if a writeback event
2064 * takes longer than a dirty_writeback_interval interval, then leave a
2065 * one-second gap.
66f3b8e2 2066 *
f9cae926 2067 * dirtied_before takes precedence over nr_to_write. So we'll only write back
03ba3782 2068 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 2069 */
c4a77a6c 2070static long wb_writeback(struct bdi_writeback *wb,
83ba7b07 2071 struct wb_writeback_work *work)
66f3b8e2 2072{
d46db3d5 2073 long nr_pages = work->nr_pages;
f9cae926 2074 unsigned long dirtied_before = jiffies;
a5989bdc 2075 struct inode *inode;
d46db3d5 2076 long progress;
505a666e 2077 struct blk_plug plug;
d9210989 2078 bool queued = false;
66f3b8e2 2079
505a666e 2080 blk_start_plug(&plug);
03ba3782
JA
2081 for (;;) {
2082 /*
d3ddec76 2083 * Stop writeback when nr_pages has been consumed
03ba3782 2084 */
83ba7b07 2085 if (work->nr_pages <= 0)
03ba3782 2086 break;
66f3b8e2 2087
aa373cf5
JK
2088 /*
2089 * Background writeout and kupdate-style writeback may
2090 * run forever. Stop them if there is other work to do
2091 * so that e.g. sync can proceed. They'll be restarted
2092 * after the other works are all done.
2093 */
2094 if ((work->for_background || work->for_kupdate) &&
f0054bb1 2095 !list_empty(&wb->work_list))
aa373cf5
JK
2096 break;
2097
38f21977 2098 /*
d3ddec76
WF
2099 * For background writeout, stop when we are below the
2100 * background dirty threshold
38f21977 2101 */
aa661bbe 2102 if (work->for_background && !wb_over_bg_thresh(wb))
03ba3782 2103 break;
38f21977 2104
2816ea2a
YA
2105
2106 spin_lock(&wb->list_lock);
2107
5634cc2a 2108 trace_writeback_start(wb, work);
d9210989 2109 if (list_empty(&wb->b_io)) {
639924ab
KS
2110 /*
2111 * Kupdate and background works are special and we want
2112 * to include all inodes that need writing. Livelock
2113 * avoidance is handled by these works yielding to any
2114 * other work so we are safe.
2115 */
2116 if (work->for_kupdate) {
2117 dirtied_before = jiffies -
2118 msecs_to_jiffies(dirty_expire_interval *
2119 10);
2120 } else if (work->for_background)
2121 dirtied_before = jiffies;
2122
f9cae926 2123 queue_io(wb, work, dirtied_before);
d9210989
KS
2124 queued = true;
2125 }
83ba7b07 2126 if (work->sb)
d46db3d5 2127 progress = writeback_sb_inodes(work->sb, wb, work);
edadfb10 2128 else
d46db3d5 2129 progress = __writeback_inodes_wb(wb, work);
5634cc2a 2130 trace_writeback_written(wb, work);
028c2dd1 2131
03ba3782 2132 /*
e6fb6da2
WF
2133 * Did we write something? Try for more
2134 *
2135 * Dirty inodes are moved to b_io for writeback in batches.
2136 * The completion of the current batch does not necessarily
2137 * mean the overall work is done. So we keep looping as long
2138 * as made some progress on cleaning pages or inodes.
03ba3782 2139 */
d9210989 2140 if (progress || !queued) {
2816ea2a 2141 spin_unlock(&wb->list_lock);
71fd05a8 2142 continue;
2816ea2a
YA
2143 }
2144
71fd05a8 2145 /*
e6fb6da2 2146 * No more inodes for IO, bail
71fd05a8 2147 */
2816ea2a
YA
2148 if (list_empty(&wb->b_more_io)) {
2149 spin_unlock(&wb->list_lock);
03ba3782 2150 break;
2816ea2a
YA
2151 }
2152
71fd05a8
JA
2153 /*
2154 * Nothing written. Wait for some inode to
2155 * become available for writeback. Otherwise
2156 * we'll just busyloop.
2157 */
bace9248
TE
2158 trace_writeback_wait(wb, work);
2159 inode = wb_inode(wb->b_more_io.prev);
2160 spin_lock(&inode->i_lock);
2161 spin_unlock(&wb->list_lock);
2162 /* This function drops i_lock... */
2163 inode_sleep_on_writeback(inode);
03ba3782 2164 }
505a666e 2165 blk_finish_plug(&plug);
03ba3782 2166
d46db3d5 2167 return nr_pages - work->nr_pages;
03ba3782
JA
2168}
2169
2170/*
83ba7b07 2171 * Return the next wb_writeback_work struct that hasn't been processed yet.
03ba3782 2172 */
f0054bb1 2173static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
03ba3782 2174{
83ba7b07 2175 struct wb_writeback_work *work = NULL;
03ba3782 2176
f87904c0 2177 spin_lock_irq(&wb->work_lock);
f0054bb1
TH
2178 if (!list_empty(&wb->work_list)) {
2179 work = list_entry(wb->work_list.next,
83ba7b07
CH
2180 struct wb_writeback_work, list);
2181 list_del_init(&work->list);
03ba3782 2182 }
f87904c0 2183 spin_unlock_irq(&wb->work_lock);
83ba7b07 2184 return work;
03ba3782
JA
2185}
2186
6585027a
JK
2187static long wb_check_background_flush(struct bdi_writeback *wb)
2188{
aa661bbe 2189 if (wb_over_bg_thresh(wb)) {
6585027a
JK
2190
2191 struct wb_writeback_work work = {
2192 .nr_pages = LONG_MAX,
2193 .sync_mode = WB_SYNC_NONE,
2194 .for_background = 1,
2195 .range_cyclic = 1,
0e175a18 2196 .reason = WB_REASON_BACKGROUND,
6585027a
JK
2197 };
2198
2199 return wb_writeback(wb, &work);
2200 }
2201
2202 return 0;
2203}
2204
03ba3782
JA
2205static long wb_check_old_data_flush(struct bdi_writeback *wb)
2206{
2207 unsigned long expired;
2208 long nr_pages;
2209
69b62d01
JA
2210 /*
2211 * When set to zero, disable periodic writeback
2212 */
2213 if (!dirty_writeback_interval)
2214 return 0;
2215
03ba3782
JA
2216 expired = wb->last_old_flush +
2217 msecs_to_jiffies(dirty_writeback_interval * 10);
2218 if (time_before(jiffies, expired))
2219 return 0;
2220
2221 wb->last_old_flush = jiffies;
cdf01dd5 2222 nr_pages = get_nr_dirty_pages();
03ba3782 2223
c4a77a6c 2224 if (nr_pages) {
83ba7b07 2225 struct wb_writeback_work work = {
c4a77a6c
JA
2226 .nr_pages = nr_pages,
2227 .sync_mode = WB_SYNC_NONE,
2228 .for_kupdate = 1,
2229 .range_cyclic = 1,
0e175a18 2230 .reason = WB_REASON_PERIODIC,
c4a77a6c
JA
2231 };
2232
83ba7b07 2233 return wb_writeback(wb, &work);
c4a77a6c 2234 }
03ba3782
JA
2235
2236 return 0;
2237}
2238
85009b4f
JA
2239static long wb_check_start_all(struct bdi_writeback *wb)
2240{
2241 long nr_pages;
2242
2243 if (!test_bit(WB_start_all, &wb->state))
2244 return 0;
2245
2246 nr_pages = get_nr_dirty_pages();
2247 if (nr_pages) {
2248 struct wb_writeback_work work = {
2249 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2250 .sync_mode = WB_SYNC_NONE,
2251 .range_cyclic = 1,
2252 .reason = wb->start_all_reason,
2253 };
2254
2255 nr_pages = wb_writeback(wb, &work);
2256 }
2257
2258 clear_bit(WB_start_all, &wb->state);
2259 return nr_pages;
2260}
2261
2262
03ba3782
JA
2263/*
2264 * Retrieve work items and do the writeback they describe
2265 */
25d130ba 2266static long wb_do_writeback(struct bdi_writeback *wb)
03ba3782 2267{
83ba7b07 2268 struct wb_writeback_work *work;
c4a77a6c 2269 long wrote = 0;
03ba3782 2270
4452226e 2271 set_bit(WB_writeback_running, &wb->state);
f0054bb1 2272 while ((work = get_next_work_item(wb)) != NULL) {
5634cc2a 2273 trace_writeback_exec(wb, work);
83ba7b07 2274 wrote += wb_writeback(wb, work);
2ddc9346 2275 finish_writeback_work(work);
03ba3782
JA
2276 }
2277
85009b4f
JA
2278 /*
2279 * Check for a flush-everything request
2280 */
2281 wrote += wb_check_start_all(wb);
2282
03ba3782
JA
2283 /*
2284 * Check for periodic writeback, kupdated() style
2285 */
2286 wrote += wb_check_old_data_flush(wb);
6585027a 2287 wrote += wb_check_background_flush(wb);
4452226e 2288 clear_bit(WB_writeback_running, &wb->state);
03ba3782
JA
2289
2290 return wrote;
2291}
2292
2293/*
2294 * Handle writeback of dirty data for the device backed by this bdi. Also
839a8e86 2295 * reschedules periodically and does kupdated style flushing.
03ba3782 2296 */
f0054bb1 2297void wb_workfn(struct work_struct *work)
03ba3782 2298{
839a8e86
TH
2299 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2300 struct bdi_writeback, dwork);
03ba3782
JA
2301 long pages_written;
2302
68f23b89 2303 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
455b2864 2304
839a8e86 2305 if (likely(!current_is_workqueue_rescuer() ||
4452226e 2306 !test_bit(WB_registered, &wb->state))) {
6467716a 2307 /*
f0054bb1 2308 * The normal path. Keep writing back @wb until its
839a8e86 2309 * work_list is empty. Note that this path is also taken
f0054bb1 2310 * if @wb is shutting down even when we're running off the
839a8e86 2311 * rescuer as work_list needs to be drained.
6467716a 2312 */
839a8e86 2313 do {
25d130ba 2314 pages_written = wb_do_writeback(wb);
839a8e86 2315 trace_writeback_pages_written(pages_written);
f0054bb1 2316 } while (!list_empty(&wb->work_list));
839a8e86
TH
2317 } else {
2318 /*
2319 * bdi_wq can't get enough workers and we're running off
2320 * the emergency worker. Don't hog it. Hopefully, 1024 is
2321 * enough for efficient IO.
2322 */
f0054bb1 2323 pages_written = writeback_inodes_wb(wb, 1024,
839a8e86 2324 WB_REASON_FORKER_THREAD);
455b2864 2325 trace_writeback_pages_written(pages_written);
03ba3782
JA
2326 }
2327
f0054bb1 2328 if (!list_empty(&wb->work_list))
b8b78495 2329 wb_wakeup(wb);
6ca738d6 2330 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
f0054bb1 2331 wb_wakeup_delayed(wb);
03ba3782
JA
2332}
2333
595043e5 2334/*
ba679de9 2335 * Start writeback of all dirty pages on this bdi.
595043e5
JA
2336 */
2337static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
e8e8a0c6 2338 enum wb_reason reason)
595043e5
JA
2339{
2340 struct bdi_writeback *wb;
2341
2342 if (!bdi_has_dirty_io(bdi))
2343 return;
2344
2345 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
e8e8a0c6 2346 wb_start_writeback(wb, reason);
595043e5
JA
2347}
2348
2349void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2350 enum wb_reason reason)
2351{
595043e5 2352 rcu_read_lock();
e8e8a0c6 2353 __wakeup_flusher_threads_bdi(bdi, reason);
595043e5
JA
2354 rcu_read_unlock();
2355}
2356
03ba3782 2357/*
9ba4b2df 2358 * Wakeup the flusher threads to start writeback of all currently dirty pages
03ba3782 2359 */
9ba4b2df 2360void wakeup_flusher_threads(enum wb_reason reason)
03ba3782 2361{
b8c2f347 2362 struct backing_dev_info *bdi;
03ba3782 2363
51350ea0
KK
2364 /*
2365 * If we are expecting writeback progress we must submit plugged IO.
2366 */
aa8dccca 2367 blk_flush_plug(current->plug, true);
51350ea0 2368
b8c2f347 2369 rcu_read_lock();
595043e5 2370 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
e8e8a0c6 2371 __wakeup_flusher_threads_bdi(bdi, reason);
cfc4ba53 2372 rcu_read_unlock();
1da177e4
LT
2373}
2374
a2f48706
TT
2375/*
2376 * Wake up bdi's periodically to make sure dirtytime inodes gets
2377 * written back periodically. We deliberately do *not* check the
2378 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2379 * kernel to be constantly waking up once there are any dirtytime
2380 * inodes on the system. So instead we define a separate delayed work
2381 * function which gets called much more rarely. (By default, only
2382 * once every 12 hours.)
2383 *
2384 * If there is any other write activity going on in the file system,
2385 * this function won't be necessary. But if the only thing that has
2386 * happened on the file system is a dirtytime inode caused by an atime
2387 * update, we need this infrastructure below to make sure that inode
2388 * eventually gets pushed out to disk.
2389 */
2390static void wakeup_dirtytime_writeback(struct work_struct *w);
2391static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2392
2393static void wakeup_dirtytime_writeback(struct work_struct *w)
2394{
2395 struct backing_dev_info *bdi;
2396
2397 rcu_read_lock();
2398 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
001fe6f6 2399 struct bdi_writeback *wb;
001fe6f6 2400
b817525a 2401 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
6fdf860f
TH
2402 if (!list_empty(&wb->b_dirty_time))
2403 wb_wakeup(wb);
a2f48706
TT
2404 }
2405 rcu_read_unlock();
2406 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2407}
2408
2409static int __init start_dirtytime_writeback(void)
2410{
2411 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2412 return 0;
2413}
2414__initcall(start_dirtytime_writeback);
2415
1efff914 2416int dirtytime_interval_handler(struct ctl_table *table, int write,
9ca48e20 2417 void *buffer, size_t *lenp, loff_t *ppos)
1efff914
TT
2418{
2419 int ret;
2420
2421 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2422 if (ret == 0 && write)
2423 mod_delayed_work(system_wq, &dirtytime_work, 0);
2424 return ret;
2425}
2426
03ba3782 2427/**
35d14f27 2428 * __mark_inode_dirty - internal function to mark an inode dirty
0117d427
MCC
2429 *
2430 * @inode: inode to mark
35d14f27
EB
2431 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of
2432 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2433 * with I_DIRTY_PAGES.
0117d427 2434 *
35d14f27
EB
2435 * Mark an inode as dirty. We notify the filesystem, then update the inode's
2436 * dirty flags. Then, if needed we add the inode to the appropriate dirty list.
1da177e4 2437 *
35d14f27
EB
2438 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2439 * instead of calling this directly.
03ba3782 2440 *
35d14f27
EB
2441 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it
2442 * refers to a blockdev. Unhashed inodes will never be added to the dirty list
2443 * even if they are later hashed, as they will have been marked dirty already.
03ba3782 2444 *
35d14f27 2445 * In short, ensure you hash any inodes _before_ you start marking them dirty.
1da177e4 2446 *
03ba3782
JA
2447 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2448 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2449 * the kernel-internal blockdev inode represents the dirtying time of the
2450 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2451 * page->mapping->host, so the page-dirtying time is recorded in the internal
2452 * blockdev inode.
1da177e4 2453 */
03ba3782 2454void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 2455{
03ba3782 2456 struct super_block *sb = inode->i_sb;
35d14f27 2457 int dirtytime = 0;
10e14073 2458 struct bdi_writeback *wb = NULL;
0ae45f63
TT
2459
2460 trace_writeback_mark_inode_dirty(inode, flags);
1da177e4 2461
e2728c56 2462 if (flags & I_DIRTY_INODE) {
cbfecb92
LC
2463 /*
2464 * Inode timestamp update will piggback on this dirtying.
2465 * We tell ->dirty_inode callback that timestamps need to
2466 * be updated by setting I_DIRTY_TIME in flags.
2467 */
2468 if (inode->i_state & I_DIRTY_TIME) {
2469 spin_lock(&inode->i_lock);
2470 if (inode->i_state & I_DIRTY_TIME) {
2471 inode->i_state &= ~I_DIRTY_TIME;
2472 flags |= I_DIRTY_TIME;
2473 }
2474 spin_unlock(&inode->i_lock);
2475 }
2476
35d14f27
EB
2477 /*
2478 * Notify the filesystem about the inode being dirtied, so that
2479 * (if needed) it can update on-disk fields and journal the
2480 * inode. This is only needed when the inode itself is being
2481 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not
2482 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2483 */
9fb0a7da 2484 trace_writeback_dirty_inode_start(inode, flags);
03ba3782 2485 if (sb->s_op->dirty_inode)
cbfecb92
LC
2486 sb->s_op->dirty_inode(inode,
2487 flags & (I_DIRTY_INODE | I_DIRTY_TIME));
9fb0a7da 2488 trace_writeback_dirty_inode(inode, flags);
e2728c56 2489
35d14f27 2490 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
0ae45f63 2491 flags &= ~I_DIRTY_TIME;
35d14f27
EB
2492 } else {
2493 /*
2494 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2495 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2496 * in one call to __mark_inode_dirty().)
2497 */
2498 dirtytime = flags & I_DIRTY_TIME;
2499 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
e2728c56 2500 }
03ba3782
JA
2501
2502 /*
9c6ac78e
TH
2503 * Paired with smp_mb() in __writeback_single_inode() for the
2504 * following lockless i_state test. See there for details.
03ba3782
JA
2505 */
2506 smp_mb();
2507
cbfecb92 2508 if ((inode->i_state & flags) == flags)
03ba3782
JA
2509 return;
2510
250df6ed 2511 spin_lock(&inode->i_lock);
03ba3782
JA
2512 if ((inode->i_state & flags) != flags) {
2513 const int was_dirty = inode->i_state & I_DIRTY;
2514
52ebea74
TH
2515 inode_attach_wb(inode, NULL);
2516
03ba3782
JA
2517 inode->i_state |= flags;
2518
10e14073
JS
2519 /*
2520 * Grab inode's wb early because it requires dropping i_lock and we
2521 * need to make sure following checks happen atomically with dirty
2522 * list handling so that we don't move inodes under flush worker's
2523 * hands.
2524 */
2525 if (!was_dirty) {
2526 wb = locked_inode_to_wb_and_lock_list(inode);
2527 spin_lock(&inode->i_lock);
2528 }
2529
03ba3782 2530 /*
5afced3b
JK
2531 * If the inode is queued for writeback by flush worker, just
2532 * update its dirty state. Once the flush worker is done with
2533 * the inode it will place it on the appropriate superblock
2534 * list, based upon its state.
03ba3782 2535 */
5afced3b 2536 if (inode->i_state & I_SYNC_QUEUED)
10e14073 2537 goto out_unlock;
03ba3782
JA
2538
2539 /*
2540 * Only add valid (hashed) inodes to the superblock's
2541 * dirty list. Add blockdev inodes as well.
2542 */
2543 if (!S_ISBLK(inode->i_mode)) {
1d3382cb 2544 if (inode_unhashed(inode))
10e14073 2545 goto out_unlock;
03ba3782 2546 }
a4ffdde6 2547 if (inode->i_state & I_FREEING)
10e14073 2548 goto out_unlock;
03ba3782
JA
2549
2550 /*
2551 * If the inode was already on b_dirty/b_io/b_more_io, don't
2552 * reposition it (that would break b_dirty time-ordering).
2553 */
2554 if (!was_dirty) {
d6c10f1f 2555 struct list_head *dirty_list;
a66979ab 2556 bool wakeup_bdi = false;
253c34e9 2557
03ba3782 2558 inode->dirtied_when = jiffies;
a2f48706
TT
2559 if (dirtytime)
2560 inode->dirtied_time_when = jiffies;
d6c10f1f 2561
0e11f644 2562 if (inode->i_state & I_DIRTY)
0747259d 2563 dirty_list = &wb->b_dirty;
a2f48706 2564 else
0747259d 2565 dirty_list = &wb->b_dirty_time;
d6c10f1f 2566
c7f54084 2567 wakeup_bdi = inode_io_list_move_locked(inode, wb,
d6c10f1f
TH
2568 dirty_list);
2569
0747259d 2570 spin_unlock(&wb->list_lock);
10e14073 2571 spin_unlock(&inode->i_lock);
0ae45f63 2572 trace_writeback_dirty_inode_enqueue(inode);
a66979ab 2573
d6c10f1f
TH
2574 /*
2575 * If this is the first dirty inode for this bdi,
2576 * we have to wake-up the corresponding bdi thread
2577 * to make sure background write-back happens
2578 * later.
2579 */
f56753ac
CH
2580 if (wakeup_bdi &&
2581 (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
0747259d 2582 wb_wakeup_delayed(wb);
a66979ab 2583 return;
1da177e4 2584 }
1da177e4 2585 }
10e14073
JS
2586out_unlock:
2587 if (wb)
2588 spin_unlock(&wb->list_lock);
250df6ed 2589 spin_unlock(&inode->i_lock);
03ba3782
JA
2590}
2591EXPORT_SYMBOL(__mark_inode_dirty);
2592
e97fedb9
DC
2593/*
2594 * The @s_sync_lock is used to serialise concurrent sync operations
2595 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2596 * Concurrent callers will block on the s_sync_lock rather than doing contending
2597 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2598 * has been issued up to the time this function is enter is guaranteed to be
2599 * completed by the time we have gained the lock and waited for all IO that is
2600 * in progress regardless of the order callers are granted the lock.
2601 */
b6e51316 2602static void wait_sb_inodes(struct super_block *sb)
03ba3782 2603{
6c60d2b5 2604 LIST_HEAD(sync_list);
03ba3782
JA
2605
2606 /*
2607 * We need to be protected against the filesystem going from
2608 * r/o to r/w or vice versa.
2609 */
b6e51316 2610 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782 2611
e97fedb9 2612 mutex_lock(&sb->s_sync_lock);
03ba3782
JA
2613
2614 /*
6c60d2b5
DC
2615 * Splice the writeback list onto a temporary list to avoid waiting on
2616 * inodes that have started writeback after this point.
2617 *
2618 * Use rcu_read_lock() to keep the inodes around until we have a
2619 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2620 * the local list because inodes can be dropped from either by writeback
2621 * completion.
2622 */
2623 rcu_read_lock();
2624 spin_lock_irq(&sb->s_inode_wblist_lock);
2625 list_splice_init(&sb->s_inodes_wb, &sync_list);
2626
2627 /*
2628 * Data integrity sync. Must wait for all pages under writeback, because
2629 * there may have been pages dirtied before our sync call, but which had
2630 * writeout started before we write it out. In which case, the inode
2631 * may not be on the dirty list, but we still have to wait for that
2632 * writeout.
03ba3782 2633 */
6c60d2b5
DC
2634 while (!list_empty(&sync_list)) {
2635 struct inode *inode = list_first_entry(&sync_list, struct inode,
2636 i_wb_list);
250df6ed 2637 struct address_space *mapping = inode->i_mapping;
03ba3782 2638
6c60d2b5
DC
2639 /*
2640 * Move each inode back to the wb list before we drop the lock
2641 * to preserve consistency between i_wb_list and the mapping
2642 * writeback tag. Writeback completion is responsible to remove
2643 * the inode from either list once the writeback tag is cleared.
2644 */
2645 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2646
2647 /*
2648 * The mapping can appear untagged while still on-list since we
2649 * do not have the mapping lock. Skip it here, wb completion
2650 * will remove it.
2651 */
2652 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2653 continue;
2654
2655 spin_unlock_irq(&sb->s_inode_wblist_lock);
2656
250df6ed 2657 spin_lock(&inode->i_lock);
6c60d2b5 2658 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
250df6ed 2659 spin_unlock(&inode->i_lock);
6c60d2b5
DC
2660
2661 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2662 continue;
250df6ed 2663 }
03ba3782 2664 __iget(inode);
250df6ed 2665 spin_unlock(&inode->i_lock);
6c60d2b5 2666 rcu_read_unlock();
03ba3782 2667
aa750fd7
JN
2668 /*
2669 * We keep the error status of individual mapping so that
2670 * applications can catch the writeback error using fsync(2).
2671 * See filemap_fdatawait_keep_errors() for details.
2672 */
2673 filemap_fdatawait_keep_errors(mapping);
03ba3782
JA
2674
2675 cond_resched();
2676
6c60d2b5
DC
2677 iput(inode);
2678
2679 rcu_read_lock();
2680 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2681 }
6c60d2b5
DC
2682 spin_unlock_irq(&sb->s_inode_wblist_lock);
2683 rcu_read_unlock();
e97fedb9 2684 mutex_unlock(&sb->s_sync_lock);
1da177e4
LT
2685}
2686
f30a7d0c
TH
2687static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2688 enum wb_reason reason, bool skip_if_busy)
1da177e4 2689{
5b9cce4c
TH
2690 struct backing_dev_info *bdi = sb->s_bdi;
2691 DEFINE_WB_COMPLETION(done, bdi);
83ba7b07 2692 struct wb_writeback_work work = {
6e6938b6
WF
2693 .sb = sb,
2694 .sync_mode = WB_SYNC_NONE,
2695 .tagged_writepages = 1,
2696 .done = &done,
2697 .nr_pages = nr,
0e175a18 2698 .reason = reason,
3c4d7165 2699 };
d8a8559c 2700
e7972912 2701 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2702 return;
cf37e972 2703 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f30a7d0c 2704
db125360 2705 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
5b9cce4c 2706 wb_wait_for_completion(&done);
e913fc82 2707}
f30a7d0c
TH
2708
2709/**
2710 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2711 * @sb: the superblock
2712 * @nr: the number of pages to write
2713 * @reason: reason why some writeback work initiated
2714 *
2715 * Start writeback on some inodes on this super_block. No guarantees are made
2716 * on how many (if any) will be written, and this function does not wait
2717 * for IO completion of submitted IO.
2718 */
2719void writeback_inodes_sb_nr(struct super_block *sb,
2720 unsigned long nr,
2721 enum wb_reason reason)
2722{
2723 __writeback_inodes_sb_nr(sb, nr, reason, false);
2724}
3259f8be
CM
2725EXPORT_SYMBOL(writeback_inodes_sb_nr);
2726
2727/**
2728 * writeback_inodes_sb - writeback dirty inodes from given super_block
2729 * @sb: the superblock
786228ab 2730 * @reason: reason why some writeback work was initiated
3259f8be
CM
2731 *
2732 * Start writeback on some inodes on this super_block. No guarantees are made
2733 * on how many (if any) will be written, and this function does not wait
2734 * for IO completion of submitted IO.
2735 */
0e175a18 2736void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2737{
6a1ee871 2738 writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2739}
0e3c9a22 2740EXPORT_SYMBOL(writeback_inodes_sb);
e913fc82 2741
17bd55d0 2742/**
8264c321 2743 * try_to_writeback_inodes_sb - try to start writeback if none underway
17bd55d0 2744 * @sb: the superblock
8264c321 2745 * @reason: reason why some writeback work was initiated
17bd55d0 2746 *
8264c321 2747 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
17bd55d0 2748 */
8264c321 2749void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
17bd55d0 2750{
10ee27a0 2751 if (!down_read_trylock(&sb->s_umount))
8264c321 2752 return;
10ee27a0 2753
8264c321 2754 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
10ee27a0 2755 up_read(&sb->s_umount);
3259f8be 2756}
10ee27a0 2757EXPORT_SYMBOL(try_to_writeback_inodes_sb);
3259f8be 2758
d8a8559c
JA
2759/**
2760 * sync_inodes_sb - sync sb inode pages
0dc83bd3 2761 * @sb: the superblock
d8a8559c
JA
2762 *
2763 * This function writes and waits on any dirty inode belonging to this
0dc83bd3 2764 * super_block.
d8a8559c 2765 */
0dc83bd3 2766void sync_inodes_sb(struct super_block *sb)
d8a8559c 2767{
5b9cce4c
TH
2768 struct backing_dev_info *bdi = sb->s_bdi;
2769 DEFINE_WB_COMPLETION(done, bdi);
83ba7b07 2770 struct wb_writeback_work work = {
3c4d7165
CH
2771 .sb = sb,
2772 .sync_mode = WB_SYNC_ALL,
2773 .nr_pages = LONG_MAX,
2774 .range_cyclic = 0,
83ba7b07 2775 .done = &done,
0e175a18 2776 .reason = WB_REASON_SYNC,
7747bd4b 2777 .for_sync = 1,
3c4d7165
CH
2778 };
2779
006a0973
TH
2780 /*
2781 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2782 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2783 * bdi_has_dirty() need to be written out too.
2784 */
2785 if (bdi == &noop_backing_dev_info)
6eedc701 2786 return;
cf37e972
CH
2787 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2788
7fc5854f
TH
2789 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2790 bdi_down_write_wb_switch_rwsem(bdi);
db125360 2791 bdi_split_work_to_wbs(bdi, &work, false);
5b9cce4c 2792 wb_wait_for_completion(&done);
7fc5854f 2793 bdi_up_write_wb_switch_rwsem(bdi);
83ba7b07 2794
b6e51316 2795 wait_sb_inodes(sb);
1da177e4 2796}
d8a8559c 2797EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 2798
1da177e4 2799/**
7f04c26d
AA
2800 * write_inode_now - write an inode to disk
2801 * @inode: inode to write to disk
2802 * @sync: whether the write should be synchronous or not
2803 *
2804 * This function commits an inode to disk immediately if it is dirty. This is
2805 * primarily needed by knfsd.
1da177e4 2806 *
7f04c26d 2807 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 2808 */
1da177e4
LT
2809int write_inode_now(struct inode *inode, int sync)
2810{
1da177e4
LT
2811 struct writeback_control wbc = {
2812 .nr_to_write = LONG_MAX,
18914b18 2813 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
2814 .range_start = 0,
2815 .range_end = LLONG_MAX,
1da177e4
LT
2816 };
2817
f56753ac 2818 if (!mapping_can_writeback(inode->i_mapping))
49364ce2 2819 wbc.nr_to_write = 0;
1da177e4
LT
2820
2821 might_sleep();
aaf25593 2822 return writeback_single_inode(inode, &wbc);
1da177e4
LT
2823}
2824EXPORT_SYMBOL(write_inode_now);
2825
c3765016 2826/**
c691b9d9 2827 * sync_inode_metadata - write an inode to disk
c3765016
CH
2828 * @inode: the inode to sync
2829 * @wait: wait for I/O to complete.
2830 *
c691b9d9 2831 * Write an inode to disk and adjust its dirty state after completion.
c3765016
CH
2832 *
2833 * Note: only writes the actual inode, no associated data or other metadata.
2834 */
2835int sync_inode_metadata(struct inode *inode, int wait)
2836{
2837 struct writeback_control wbc = {
2838 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2839 .nr_to_write = 0, /* metadata-only */
2840 };
2841
5662c967 2842 return writeback_single_inode(inode, &wbc);
c3765016
CH
2843}
2844EXPORT_SYMBOL(sync_inode_metadata);