]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - fs/namespace.c
scsi: aic7xxx: fix EISA support
[thirdparty/kernel/linux.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
5b825c3a 18#include <linux/cred.h>
73cd49ec 19#include <linux/idr.h>
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
0bb80f24 24#include <linux/proc_ns.h>
20b4fb48 25#include <linux/magic.h>
57c8a661 26#include <linux/memblock.h>
9ea459e1 27#include <linux/task_work.h>
9164bb4a 28#include <linux/sched/task.h>
e262e32d 29#include <uapi/linux/mount.h>
9bc61ab1 30#include <linux/fs_context.h>
9164bb4a 31
07b20889 32#include "pnode.h"
948730b0 33#include "internal.h"
1da177e4 34
d2921684
EB
35/* Maximum number of mounts in a mount namespace */
36unsigned int sysctl_mount_max __read_mostly = 100000;
37
0818bf27
AV
38static unsigned int m_hash_mask __read_mostly;
39static unsigned int m_hash_shift __read_mostly;
40static unsigned int mp_hash_mask __read_mostly;
41static unsigned int mp_hash_shift __read_mostly;
42
43static __initdata unsigned long mhash_entries;
44static int __init set_mhash_entries(char *str)
45{
46 if (!str)
47 return 0;
48 mhash_entries = simple_strtoul(str, &str, 0);
49 return 1;
50}
51__setup("mhash_entries=", set_mhash_entries);
52
53static __initdata unsigned long mphash_entries;
54static int __init set_mphash_entries(char *str)
55{
56 if (!str)
57 return 0;
58 mphash_entries = simple_strtoul(str, &str, 0);
59 return 1;
60}
61__setup("mphash_entries=", set_mphash_entries);
13f14b4d 62
c7999c36 63static u64 event;
73cd49ec 64static DEFINE_IDA(mnt_id_ida);
719f5d7f 65static DEFINE_IDA(mnt_group_ida);
1da177e4 66
38129a13 67static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 68static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 69static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 70static DECLARE_RWSEM(namespace_sem);
1da177e4 71
f87fd4c2 72/* /sys/fs */
00d26666
GKH
73struct kobject *fs_kobj;
74EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 75
99b7db7b
NP
76/*
77 * vfsmount lock may be taken for read to prevent changes to the
78 * vfsmount hash, ie. during mountpoint lookups or walking back
79 * up the tree.
80 *
81 * It should be taken for write in all cases where the vfsmount
82 * tree or hash is modified or when a vfsmount structure is modified.
83 */
48a066e7 84__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 85
38129a13 86static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 87{
b58fed8b
RP
88 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
89 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
90 tmp = tmp + (tmp >> m_hash_shift);
91 return &mount_hashtable[tmp & m_hash_mask];
92}
93
94static inline struct hlist_head *mp_hash(struct dentry *dentry)
95{
96 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
97 tmp = tmp + (tmp >> mp_hash_shift);
98 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
99}
100
b105e270 101static int mnt_alloc_id(struct mount *mnt)
73cd49ec 102{
169b480e
MW
103 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
104
105 if (res < 0)
106 return res;
107 mnt->mnt_id = res;
108 return 0;
73cd49ec
MS
109}
110
b105e270 111static void mnt_free_id(struct mount *mnt)
73cd49ec 112{
169b480e 113 ida_free(&mnt_id_ida, mnt->mnt_id);
73cd49ec
MS
114}
115
719f5d7f
MS
116/*
117 * Allocate a new peer group ID
719f5d7f 118 */
4b8b21f4 119static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 120{
169b480e 121 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
f21f6220 122
169b480e
MW
123 if (res < 0)
124 return res;
125 mnt->mnt_group_id = res;
126 return 0;
719f5d7f
MS
127}
128
129/*
130 * Release a peer group ID
131 */
4b8b21f4 132void mnt_release_group_id(struct mount *mnt)
719f5d7f 133{
169b480e 134 ida_free(&mnt_group_ida, mnt->mnt_group_id);
15169fe7 135 mnt->mnt_group_id = 0;
719f5d7f
MS
136}
137
b3e19d92
NP
138/*
139 * vfsmount lock must be held for read
140 */
83adc753 141static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
142{
143#ifdef CONFIG_SMP
68e8a9fe 144 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
145#else
146 preempt_disable();
68e8a9fe 147 mnt->mnt_count += n;
b3e19d92
NP
148 preempt_enable();
149#endif
150}
151
b3e19d92
NP
152/*
153 * vfsmount lock must be held for write
154 */
83adc753 155unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
156{
157#ifdef CONFIG_SMP
f03c6599 158 unsigned int count = 0;
b3e19d92
NP
159 int cpu;
160
161 for_each_possible_cpu(cpu) {
68e8a9fe 162 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
163 }
164
165 return count;
166#else
68e8a9fe 167 return mnt->mnt_count;
b3e19d92
NP
168#endif
169}
170
87b95ce0
AV
171static void drop_mountpoint(struct fs_pin *p)
172{
173 struct mount *m = container_of(p, struct mount, mnt_umount);
174 dput(m->mnt_ex_mountpoint);
175 pin_remove(p);
176 mntput(&m->mnt);
177}
178
b105e270 179static struct mount *alloc_vfsmnt(const char *name)
1da177e4 180{
c63181e6
AV
181 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
182 if (mnt) {
73cd49ec
MS
183 int err;
184
c63181e6 185 err = mnt_alloc_id(mnt);
88b38782
LZ
186 if (err)
187 goto out_free_cache;
188
189 if (name) {
fcc139ae 190 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 191 if (!mnt->mnt_devname)
88b38782 192 goto out_free_id;
73cd49ec
MS
193 }
194
b3e19d92 195#ifdef CONFIG_SMP
c63181e6
AV
196 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
197 if (!mnt->mnt_pcp)
b3e19d92
NP
198 goto out_free_devname;
199
c63181e6 200 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 201#else
c63181e6
AV
202 mnt->mnt_count = 1;
203 mnt->mnt_writers = 0;
b3e19d92
NP
204#endif
205
38129a13 206 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
207 INIT_LIST_HEAD(&mnt->mnt_child);
208 INIT_LIST_HEAD(&mnt->mnt_mounts);
209 INIT_LIST_HEAD(&mnt->mnt_list);
210 INIT_LIST_HEAD(&mnt->mnt_expire);
211 INIT_LIST_HEAD(&mnt->mnt_share);
212 INIT_LIST_HEAD(&mnt->mnt_slave_list);
213 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 214 INIT_HLIST_NODE(&mnt->mnt_mp_list);
99b19d16 215 INIT_LIST_HEAD(&mnt->mnt_umounting);
87b95ce0 216 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
1da177e4 217 }
c63181e6 218 return mnt;
88b38782 219
d3ef3d73
NP
220#ifdef CONFIG_SMP
221out_free_devname:
fcc139ae 222 kfree_const(mnt->mnt_devname);
d3ef3d73 223#endif
88b38782 224out_free_id:
c63181e6 225 mnt_free_id(mnt);
88b38782 226out_free_cache:
c63181e6 227 kmem_cache_free(mnt_cache, mnt);
88b38782 228 return NULL;
1da177e4
LT
229}
230
3d733633
DH
231/*
232 * Most r/o checks on a fs are for operations that take
233 * discrete amounts of time, like a write() or unlink().
234 * We must keep track of when those operations start
235 * (for permission checks) and when they end, so that
236 * we can determine when writes are able to occur to
237 * a filesystem.
238 */
239/*
240 * __mnt_is_readonly: check whether a mount is read-only
241 * @mnt: the mount to check for its write status
242 *
243 * This shouldn't be used directly ouside of the VFS.
244 * It does not guarantee that the filesystem will stay
245 * r/w, just that it is right *now*. This can not and
246 * should not be used in place of IS_RDONLY(inode).
247 * mnt_want/drop_write() will _keep_ the filesystem
248 * r/w.
249 */
43f5e655 250bool __mnt_is_readonly(struct vfsmount *mnt)
3d733633 251{
43f5e655 252 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
3d733633
DH
253}
254EXPORT_SYMBOL_GPL(__mnt_is_readonly);
255
83adc753 256static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73
NP
257{
258#ifdef CONFIG_SMP
68e8a9fe 259 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 260#else
68e8a9fe 261 mnt->mnt_writers++;
d3ef3d73
NP
262#endif
263}
3d733633 264
83adc753 265static inline void mnt_dec_writers(struct mount *mnt)
3d733633 266{
d3ef3d73 267#ifdef CONFIG_SMP
68e8a9fe 268 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 269#else
68e8a9fe 270 mnt->mnt_writers--;
d3ef3d73 271#endif
3d733633 272}
3d733633 273
83adc753 274static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 275{
d3ef3d73
NP
276#ifdef CONFIG_SMP
277 unsigned int count = 0;
3d733633 278 int cpu;
3d733633
DH
279
280 for_each_possible_cpu(cpu) {
68e8a9fe 281 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 282 }
3d733633 283
d3ef3d73
NP
284 return count;
285#else
286 return mnt->mnt_writers;
287#endif
3d733633
DH
288}
289
4ed5e82f
MS
290static int mnt_is_readonly(struct vfsmount *mnt)
291{
292 if (mnt->mnt_sb->s_readonly_remount)
293 return 1;
294 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
295 smp_rmb();
296 return __mnt_is_readonly(mnt);
297}
298
8366025e 299/*
eb04c282
JK
300 * Most r/o & frozen checks on a fs are for operations that take discrete
301 * amounts of time, like a write() or unlink(). We must keep track of when
302 * those operations start (for permission checks) and when they end, so that we
303 * can determine when writes are able to occur to a filesystem.
8366025e
DH
304 */
305/**
eb04c282 306 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 307 * @m: the mount on which to take a write
8366025e 308 *
eb04c282
JK
309 * This tells the low-level filesystem that a write is about to be performed to
310 * it, and makes sure that writes are allowed (mnt it read-write) before
311 * returning success. This operation does not protect against filesystem being
312 * frozen. When the write operation is finished, __mnt_drop_write() must be
313 * called. This is effectively a refcount.
8366025e 314 */
eb04c282 315int __mnt_want_write(struct vfsmount *m)
8366025e 316{
83adc753 317 struct mount *mnt = real_mount(m);
3d733633 318 int ret = 0;
3d733633 319
d3ef3d73 320 preempt_disable();
c6653a83 321 mnt_inc_writers(mnt);
d3ef3d73 322 /*
c6653a83 323 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73
NP
324 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
325 * incremented count after it has set MNT_WRITE_HOLD.
326 */
327 smp_mb();
6aa7de05 328 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73
NP
329 cpu_relax();
330 /*
331 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
332 * be set to match its requirements. So we must not load that until
333 * MNT_WRITE_HOLD is cleared.
334 */
335 smp_rmb();
4ed5e82f 336 if (mnt_is_readonly(m)) {
c6653a83 337 mnt_dec_writers(mnt);
3d733633 338 ret = -EROFS;
3d733633 339 }
d3ef3d73 340 preempt_enable();
eb04c282
JK
341
342 return ret;
343}
344
345/**
346 * mnt_want_write - get write access to a mount
347 * @m: the mount on which to take a write
348 *
349 * This tells the low-level filesystem that a write is about to be performed to
350 * it, and makes sure that writes are allowed (mount is read-write, filesystem
351 * is not frozen) before returning success. When the write operation is
352 * finished, mnt_drop_write() must be called. This is effectively a refcount.
353 */
354int mnt_want_write(struct vfsmount *m)
355{
356 int ret;
357
358 sb_start_write(m->mnt_sb);
359 ret = __mnt_want_write(m);
360 if (ret)
361 sb_end_write(m->mnt_sb);
3d733633 362 return ret;
8366025e
DH
363}
364EXPORT_SYMBOL_GPL(mnt_want_write);
365
96029c4e
NP
366/**
367 * mnt_clone_write - get write access to a mount
368 * @mnt: the mount on which to take a write
369 *
370 * This is effectively like mnt_want_write, except
371 * it must only be used to take an extra write reference
372 * on a mountpoint that we already know has a write reference
373 * on it. This allows some optimisation.
374 *
375 * After finished, mnt_drop_write must be called as usual to
376 * drop the reference.
377 */
378int mnt_clone_write(struct vfsmount *mnt)
379{
380 /* superblock may be r/o */
381 if (__mnt_is_readonly(mnt))
382 return -EROFS;
383 preempt_disable();
83adc753 384 mnt_inc_writers(real_mount(mnt));
96029c4e
NP
385 preempt_enable();
386 return 0;
387}
388EXPORT_SYMBOL_GPL(mnt_clone_write);
389
390/**
eb04c282 391 * __mnt_want_write_file - get write access to a file's mount
96029c4e
NP
392 * @file: the file who's mount on which to take a write
393 *
eb04c282 394 * This is like __mnt_want_write, but it takes a file and can
96029c4e
NP
395 * do some optimisations if the file is open for write already
396 */
eb04c282 397int __mnt_want_write_file(struct file *file)
96029c4e 398{
83f936c7 399 if (!(file->f_mode & FMODE_WRITER))
eb04c282 400 return __mnt_want_write(file->f_path.mnt);
96029c4e
NP
401 else
402 return mnt_clone_write(file->f_path.mnt);
403}
eb04c282 404
7c6893e3
MS
405/**
406 * mnt_want_write_file - get write access to a file's mount
407 * @file: the file who's mount on which to take a write
408 *
409 * This is like mnt_want_write, but it takes a file and can
410 * do some optimisations if the file is open for write already
7c6893e3
MS
411 */
412int mnt_want_write_file(struct file *file)
413{
414 int ret;
415
a6795a58 416 sb_start_write(file_inode(file)->i_sb);
eb04c282
JK
417 ret = __mnt_want_write_file(file);
418 if (ret)
a6795a58 419 sb_end_write(file_inode(file)->i_sb);
7c6893e3
MS
420 return ret;
421}
96029c4e
NP
422EXPORT_SYMBOL_GPL(mnt_want_write_file);
423
8366025e 424/**
eb04c282 425 * __mnt_drop_write - give up write access to a mount
8366025e
DH
426 * @mnt: the mount on which to give up write access
427 *
428 * Tells the low-level filesystem that we are done
429 * performing writes to it. Must be matched with
eb04c282 430 * __mnt_want_write() call above.
8366025e 431 */
eb04c282 432void __mnt_drop_write(struct vfsmount *mnt)
8366025e 433{
d3ef3d73 434 preempt_disable();
83adc753 435 mnt_dec_writers(real_mount(mnt));
d3ef3d73 436 preempt_enable();
8366025e 437}
eb04c282
JK
438
439/**
440 * mnt_drop_write - give up write access to a mount
441 * @mnt: the mount on which to give up write access
442 *
443 * Tells the low-level filesystem that we are done performing writes to it and
444 * also allows filesystem to be frozen again. Must be matched with
445 * mnt_want_write() call above.
446 */
447void mnt_drop_write(struct vfsmount *mnt)
448{
449 __mnt_drop_write(mnt);
450 sb_end_write(mnt->mnt_sb);
451}
8366025e
DH
452EXPORT_SYMBOL_GPL(mnt_drop_write);
453
eb04c282
JK
454void __mnt_drop_write_file(struct file *file)
455{
456 __mnt_drop_write(file->f_path.mnt);
457}
458
7c6893e3
MS
459void mnt_drop_write_file(struct file *file)
460{
a6795a58 461 __mnt_drop_write_file(file);
7c6893e3
MS
462 sb_end_write(file_inode(file)->i_sb);
463}
2a79f17e
AV
464EXPORT_SYMBOL(mnt_drop_write_file);
465
83adc753 466static int mnt_make_readonly(struct mount *mnt)
8366025e 467{
3d733633
DH
468 int ret = 0;
469
719ea2fb 470 lock_mount_hash();
83adc753 471 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 472 /*
d3ef3d73
NP
473 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
474 * should be visible before we do.
3d733633 475 */
d3ef3d73
NP
476 smp_mb();
477
3d733633 478 /*
d3ef3d73
NP
479 * With writers on hold, if this value is zero, then there are
480 * definitely no active writers (although held writers may subsequently
481 * increment the count, they'll have to wait, and decrement it after
482 * seeing MNT_READONLY).
483 *
484 * It is OK to have counter incremented on one CPU and decremented on
485 * another: the sum will add up correctly. The danger would be when we
486 * sum up each counter, if we read a counter before it is incremented,
487 * but then read another CPU's count which it has been subsequently
488 * decremented from -- we would see more decrements than we should.
489 * MNT_WRITE_HOLD protects against this scenario, because
490 * mnt_want_write first increments count, then smp_mb, then spins on
491 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
492 * we're counting up here.
3d733633 493 */
c6653a83 494 if (mnt_get_writers(mnt) > 0)
d3ef3d73
NP
495 ret = -EBUSY;
496 else
83adc753 497 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73
NP
498 /*
499 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
500 * that become unheld will see MNT_READONLY.
501 */
502 smp_wmb();
83adc753 503 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 504 unlock_mount_hash();
3d733633 505 return ret;
8366025e 506}
8366025e 507
43f5e655 508static int __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 509{
719ea2fb 510 lock_mount_hash();
83adc753 511 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 512 unlock_mount_hash();
43f5e655 513 return 0;
2e4b7fcd
DH
514}
515
4ed5e82f
MS
516int sb_prepare_remount_readonly(struct super_block *sb)
517{
518 struct mount *mnt;
519 int err = 0;
520
8e8b8796
MS
521 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
522 if (atomic_long_read(&sb->s_remove_count))
523 return -EBUSY;
524
719ea2fb 525 lock_mount_hash();
4ed5e82f
MS
526 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
527 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
528 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
529 smp_mb();
530 if (mnt_get_writers(mnt) > 0) {
531 err = -EBUSY;
532 break;
533 }
534 }
535 }
8e8b8796
MS
536 if (!err && atomic_long_read(&sb->s_remove_count))
537 err = -EBUSY;
538
4ed5e82f
MS
539 if (!err) {
540 sb->s_readonly_remount = 1;
541 smp_wmb();
542 }
543 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
544 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
545 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
546 }
719ea2fb 547 unlock_mount_hash();
4ed5e82f
MS
548
549 return err;
550}
551
b105e270 552static void free_vfsmnt(struct mount *mnt)
1da177e4 553{
fcc139ae 554 kfree_const(mnt->mnt_devname);
d3ef3d73 555#ifdef CONFIG_SMP
68e8a9fe 556 free_percpu(mnt->mnt_pcp);
d3ef3d73 557#endif
b105e270 558 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
559}
560
8ffcb32e
DH
561static void delayed_free_vfsmnt(struct rcu_head *head)
562{
563 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
564}
565
48a066e7 566/* call under rcu_read_lock */
294d71ff 567int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
568{
569 struct mount *mnt;
570 if (read_seqretry(&mount_lock, seq))
294d71ff 571 return 1;
48a066e7 572 if (bastard == NULL)
294d71ff 573 return 0;
48a066e7
AV
574 mnt = real_mount(bastard);
575 mnt_add_count(mnt, 1);
119e1ef8 576 smp_mb(); // see mntput_no_expire()
48a066e7 577 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 578 return 0;
48a066e7
AV
579 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
580 mnt_add_count(mnt, -1);
294d71ff
AV
581 return 1;
582 }
119e1ef8
AV
583 lock_mount_hash();
584 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
585 mnt_add_count(mnt, -1);
586 unlock_mount_hash();
587 return 1;
588 }
589 unlock_mount_hash();
590 /* caller will mntput() */
294d71ff
AV
591 return -1;
592}
593
594/* call under rcu_read_lock */
595bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
596{
597 int res = __legitimize_mnt(bastard, seq);
598 if (likely(!res))
599 return true;
600 if (unlikely(res < 0)) {
601 rcu_read_unlock();
602 mntput(bastard);
603 rcu_read_lock();
48a066e7 604 }
48a066e7
AV
605 return false;
606}
607
1da177e4 608/*
474279dc 609 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 610 * call under rcu_read_lock()
1da177e4 611 */
474279dc 612struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 613{
38129a13 614 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
615 struct mount *p;
616
38129a13 617 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
618 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
619 return p;
620 return NULL;
621}
622
a05964f3 623/*
f015f126
DH
624 * lookup_mnt - Return the first child mount mounted at path
625 *
626 * "First" means first mounted chronologically. If you create the
627 * following mounts:
628 *
629 * mount /dev/sda1 /mnt
630 * mount /dev/sda2 /mnt
631 * mount /dev/sda3 /mnt
632 *
633 * Then lookup_mnt() on the base /mnt dentry in the root mount will
634 * return successively the root dentry and vfsmount of /dev/sda1, then
635 * /dev/sda2, then /dev/sda3, then NULL.
636 *
637 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 638 */
ca71cf71 639struct vfsmount *lookup_mnt(const struct path *path)
a05964f3 640{
c7105365 641 struct mount *child_mnt;
48a066e7
AV
642 struct vfsmount *m;
643 unsigned seq;
99b7db7b 644
48a066e7
AV
645 rcu_read_lock();
646 do {
647 seq = read_seqbegin(&mount_lock);
648 child_mnt = __lookup_mnt(path->mnt, path->dentry);
649 m = child_mnt ? &child_mnt->mnt : NULL;
650 } while (!legitimize_mnt(m, seq));
651 rcu_read_unlock();
652 return m;
a05964f3
RP
653}
654
7af1364f
EB
655/*
656 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
657 * current mount namespace.
658 *
659 * The common case is dentries are not mountpoints at all and that
660 * test is handled inline. For the slow case when we are actually
661 * dealing with a mountpoint of some kind, walk through all of the
662 * mounts in the current mount namespace and test to see if the dentry
663 * is a mountpoint.
664 *
665 * The mount_hashtable is not usable in the context because we
666 * need to identify all mounts that may be in the current mount
667 * namespace not just a mount that happens to have some specified
668 * parent mount.
669 */
670bool __is_local_mountpoint(struct dentry *dentry)
671{
672 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
673 struct mount *mnt;
674 bool is_covered = false;
675
676 if (!d_mountpoint(dentry))
677 goto out;
678
679 down_read(&namespace_sem);
680 list_for_each_entry(mnt, &ns->list, mnt_list) {
681 is_covered = (mnt->mnt_mountpoint == dentry);
682 if (is_covered)
683 break;
684 }
685 up_read(&namespace_sem);
686out:
687 return is_covered;
688}
689
e2dfa935 690static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 691{
0818bf27 692 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
693 struct mountpoint *mp;
694
0818bf27 695 hlist_for_each_entry(mp, chain, m_hash) {
84d17192 696 if (mp->m_dentry == dentry) {
84d17192
AV
697 mp->m_count++;
698 return mp;
699 }
700 }
e2dfa935
EB
701 return NULL;
702}
703
3895dbf8 704static struct mountpoint *get_mountpoint(struct dentry *dentry)
e2dfa935 705{
3895dbf8 706 struct mountpoint *mp, *new = NULL;
e2dfa935 707 int ret;
84d17192 708
3895dbf8 709 if (d_mountpoint(dentry)) {
1e9c75fb
BC
710 /* might be worth a WARN_ON() */
711 if (d_unlinked(dentry))
712 return ERR_PTR(-ENOENT);
3895dbf8
EB
713mountpoint:
714 read_seqlock_excl(&mount_lock);
715 mp = lookup_mountpoint(dentry);
716 read_sequnlock_excl(&mount_lock);
717 if (mp)
718 goto done;
719 }
720
721 if (!new)
722 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
723 if (!new)
84d17192
AV
724 return ERR_PTR(-ENOMEM);
725
3895dbf8
EB
726
727 /* Exactly one processes may set d_mounted */
eed81007 728 ret = d_set_mounted(dentry);
eed81007 729
3895dbf8
EB
730 /* Someone else set d_mounted? */
731 if (ret == -EBUSY)
732 goto mountpoint;
733
734 /* The dentry is not available as a mountpoint? */
735 mp = ERR_PTR(ret);
736 if (ret)
737 goto done;
738
739 /* Add the new mountpoint to the hash table */
740 read_seqlock_excl(&mount_lock);
741 new->m_dentry = dentry;
742 new->m_count = 1;
743 hlist_add_head(&new->m_hash, mp_hash(dentry));
744 INIT_HLIST_HEAD(&new->m_list);
745 read_sequnlock_excl(&mount_lock);
746
747 mp = new;
748 new = NULL;
749done:
750 kfree(new);
84d17192
AV
751 return mp;
752}
753
754static void put_mountpoint(struct mountpoint *mp)
755{
756 if (!--mp->m_count) {
757 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 758 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
759 spin_lock(&dentry->d_lock);
760 dentry->d_flags &= ~DCACHE_MOUNTED;
761 spin_unlock(&dentry->d_lock);
0818bf27 762 hlist_del(&mp->m_hash);
84d17192
AV
763 kfree(mp);
764 }
765}
766
143c8c91 767static inline int check_mnt(struct mount *mnt)
1da177e4 768{
6b3286ed 769 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
770}
771
99b7db7b
NP
772/*
773 * vfsmount lock must be held for write
774 */
6b3286ed 775static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
776{
777 if (ns) {
778 ns->event = ++event;
779 wake_up_interruptible(&ns->poll);
780 }
781}
782
99b7db7b
NP
783/*
784 * vfsmount lock must be held for write
785 */
6b3286ed 786static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
787{
788 if (ns && ns->event != event) {
789 ns->event = event;
790 wake_up_interruptible(&ns->poll);
791 }
792}
793
99b7db7b
NP
794/*
795 * vfsmount lock must be held for write
796 */
7bdb11de 797static void unhash_mnt(struct mount *mnt)
419148da 798{
0714a533 799 mnt->mnt_parent = mnt;
a73324da 800 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 801 list_del_init(&mnt->mnt_child);
38129a13 802 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 803 hlist_del_init(&mnt->mnt_mp_list);
84d17192
AV
804 put_mountpoint(mnt->mnt_mp);
805 mnt->mnt_mp = NULL;
1da177e4
LT
806}
807
7bdb11de
EB
808/*
809 * vfsmount lock must be held for write
810 */
811static void detach_mnt(struct mount *mnt, struct path *old_path)
812{
813 old_path->dentry = mnt->mnt_mountpoint;
814 old_path->mnt = &mnt->mnt_parent->mnt;
815 unhash_mnt(mnt);
816}
817
6a46c573
EB
818/*
819 * vfsmount lock must be held for write
820 */
821static void umount_mnt(struct mount *mnt)
822{
823 /* old mountpoint will be dropped when we can do that */
824 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
825 unhash_mnt(mnt);
826}
827
99b7db7b
NP
828/*
829 * vfsmount lock must be held for write
830 */
84d17192
AV
831void mnt_set_mountpoint(struct mount *mnt,
832 struct mountpoint *mp,
44d964d6 833 struct mount *child_mnt)
b90fa9ae 834{
84d17192 835 mp->m_count++;
3a2393d7 836 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 837 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 838 child_mnt->mnt_parent = mnt;
84d17192 839 child_mnt->mnt_mp = mp;
0a5eb7c8 840 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
841}
842
1064f874
EB
843static void __attach_mnt(struct mount *mnt, struct mount *parent)
844{
845 hlist_add_head_rcu(&mnt->mnt_hash,
846 m_hash(&parent->mnt, mnt->mnt_mountpoint));
847 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
848}
849
99b7db7b
NP
850/*
851 * vfsmount lock must be held for write
852 */
84d17192
AV
853static void attach_mnt(struct mount *mnt,
854 struct mount *parent,
855 struct mountpoint *mp)
1da177e4 856{
84d17192 857 mnt_set_mountpoint(parent, mp, mnt);
1064f874 858 __attach_mnt(mnt, parent);
b90fa9ae
RP
859}
860
1064f874 861void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
12a5b529 862{
1064f874
EB
863 struct mountpoint *old_mp = mnt->mnt_mp;
864 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
865 struct mount *old_parent = mnt->mnt_parent;
866
867 list_del_init(&mnt->mnt_child);
868 hlist_del_init(&mnt->mnt_mp_list);
869 hlist_del_init_rcu(&mnt->mnt_hash);
870
871 attach_mnt(mnt, parent, mp);
872
873 put_mountpoint(old_mp);
874
875 /*
876 * Safely avoid even the suggestion this code might sleep or
877 * lock the mount hash by taking advantage of the knowledge that
878 * mnt_change_mountpoint will not release the final reference
879 * to a mountpoint.
880 *
881 * During mounting, the mount passed in as the parent mount will
882 * continue to use the old mountpoint and during unmounting, the
883 * old mountpoint will continue to exist until namespace_unlock,
884 * which happens well after mnt_change_mountpoint.
885 */
886 spin_lock(&old_mountpoint->d_lock);
887 old_mountpoint->d_lockref.count--;
888 spin_unlock(&old_mountpoint->d_lock);
889
890 mnt_add_count(old_parent, -1);
12a5b529
AV
891}
892
b90fa9ae 893/*
99b7db7b 894 * vfsmount lock must be held for write
b90fa9ae 895 */
1064f874 896static void commit_tree(struct mount *mnt)
b90fa9ae 897{
0714a533 898 struct mount *parent = mnt->mnt_parent;
83adc753 899 struct mount *m;
b90fa9ae 900 LIST_HEAD(head);
143c8c91 901 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 902
0714a533 903 BUG_ON(parent == mnt);
b90fa9ae 904
1a4eeaf2 905 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 906 list_for_each_entry(m, &head, mnt_list)
143c8c91 907 m->mnt_ns = n;
f03c6599 908
b90fa9ae
RP
909 list_splice(&head, n->list.prev);
910
d2921684
EB
911 n->mounts += n->pending_mounts;
912 n->pending_mounts = 0;
913
1064f874 914 __attach_mnt(mnt, parent);
6b3286ed 915 touch_mnt_namespace(n);
1da177e4
LT
916}
917
909b0a88 918static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 919{
6b41d536
AV
920 struct list_head *next = p->mnt_mounts.next;
921 if (next == &p->mnt_mounts) {
1da177e4 922 while (1) {
909b0a88 923 if (p == root)
1da177e4 924 return NULL;
6b41d536
AV
925 next = p->mnt_child.next;
926 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 927 break;
0714a533 928 p = p->mnt_parent;
1da177e4
LT
929 }
930 }
6b41d536 931 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
932}
933
315fc83e 934static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 935{
6b41d536
AV
936 struct list_head *prev = p->mnt_mounts.prev;
937 while (prev != &p->mnt_mounts) {
938 p = list_entry(prev, struct mount, mnt_child);
939 prev = p->mnt_mounts.prev;
9676f0c6
RP
940 }
941 return p;
942}
943
8f291889
AV
944/**
945 * vfs_create_mount - Create a mount for a configured superblock
946 * @fc: The configuration context with the superblock attached
947 *
948 * Create a mount to an already configured superblock. If necessary, the
949 * caller should invoke vfs_get_tree() before calling this.
950 *
951 * Note that this does not attach the mount to anything.
952 */
953struct vfsmount *vfs_create_mount(struct fs_context *fc)
9d412a43 954{
b105e270 955 struct mount *mnt;
9d412a43 956
8f291889
AV
957 if (!fc->root)
958 return ERR_PTR(-EINVAL);
9d412a43 959
8f291889 960 mnt = alloc_vfsmnt(fc->source ?: "none");
9d412a43
AV
961 if (!mnt)
962 return ERR_PTR(-ENOMEM);
963
8f291889 964 if (fc->sb_flags & SB_KERNMOUNT)
b105e270 965 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43 966
8f291889
AV
967 atomic_inc(&fc->root->d_sb->s_active);
968 mnt->mnt.mnt_sb = fc->root->d_sb;
969 mnt->mnt.mnt_root = dget(fc->root);
970 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
971 mnt->mnt_parent = mnt;
9d412a43 972
719ea2fb 973 lock_mount_hash();
8f291889 974 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
719ea2fb 975 unlock_mount_hash();
b105e270 976 return &mnt->mnt;
9d412a43 977}
8f291889
AV
978EXPORT_SYMBOL(vfs_create_mount);
979
980struct vfsmount *fc_mount(struct fs_context *fc)
981{
982 int err = vfs_get_tree(fc);
983 if (!err) {
984 up_write(&fc->root->d_sb->s_umount);
985 return vfs_create_mount(fc);
986 }
987 return ERR_PTR(err);
988}
989EXPORT_SYMBOL(fc_mount);
990
9bc61ab1
DH
991struct vfsmount *vfs_kern_mount(struct file_system_type *type,
992 int flags, const char *name,
993 void *data)
9d412a43 994{
9bc61ab1 995 struct fs_context *fc;
8f291889 996 struct vfsmount *mnt;
9bc61ab1 997 int ret = 0;
9d412a43
AV
998
999 if (!type)
3e1aeb00 1000 return ERR_PTR(-EINVAL);
9d412a43 1001
9bc61ab1
DH
1002 fc = fs_context_for_mount(type, flags);
1003 if (IS_ERR(fc))
1004 return ERR_CAST(fc);
1005
3e1aeb00
DH
1006 if (name)
1007 ret = vfs_parse_fs_string(fc, "source",
1008 name, strlen(name));
9bc61ab1
DH
1009 if (!ret)
1010 ret = parse_monolithic_mount_data(fc, data);
1011 if (!ret)
8f291889
AV
1012 mnt = fc_mount(fc);
1013 else
1014 mnt = ERR_PTR(ret);
9d412a43 1015
9bc61ab1 1016 put_fs_context(fc);
8f291889 1017 return mnt;
9d412a43
AV
1018}
1019EXPORT_SYMBOL_GPL(vfs_kern_mount);
1020
93faccbb
EB
1021struct vfsmount *
1022vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1023 const char *name, void *data)
1024{
1025 /* Until it is worked out how to pass the user namespace
1026 * through from the parent mount to the submount don't support
1027 * unprivileged mounts with submounts.
1028 */
1029 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1030 return ERR_PTR(-EPERM);
1031
e462ec50 1032 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
93faccbb
EB
1033}
1034EXPORT_SYMBOL_GPL(vfs_submount);
1035
87129cc0 1036static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 1037 int flag)
1da177e4 1038{
87129cc0 1039 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
1040 struct mount *mnt;
1041 int err;
1da177e4 1042
be34d1a3
DH
1043 mnt = alloc_vfsmnt(old->mnt_devname);
1044 if (!mnt)
1045 return ERR_PTR(-ENOMEM);
719f5d7f 1046
7a472ef4 1047 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
1048 mnt->mnt_group_id = 0; /* not a peer of original */
1049 else
1050 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 1051
be34d1a3
DH
1052 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1053 err = mnt_alloc_group_id(mnt);
1054 if (err)
1055 goto out_free;
1da177e4 1056 }
be34d1a3 1057
16a34adb
AV
1058 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1059 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
5ff9d8a6 1060
be34d1a3
DH
1061 atomic_inc(&sb->s_active);
1062 mnt->mnt.mnt_sb = sb;
1063 mnt->mnt.mnt_root = dget(root);
1064 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1065 mnt->mnt_parent = mnt;
719ea2fb 1066 lock_mount_hash();
be34d1a3 1067 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1068 unlock_mount_hash();
be34d1a3 1069
7a472ef4
EB
1070 if ((flag & CL_SLAVE) ||
1071 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1072 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1073 mnt->mnt_master = old;
1074 CLEAR_MNT_SHARED(mnt);
1075 } else if (!(flag & CL_PRIVATE)) {
1076 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1077 list_add(&mnt->mnt_share, &old->mnt_share);
1078 if (IS_MNT_SLAVE(old))
1079 list_add(&mnt->mnt_slave, &old->mnt_slave);
1080 mnt->mnt_master = old->mnt_master;
5235d448
AV
1081 } else {
1082 CLEAR_MNT_SHARED(mnt);
be34d1a3
DH
1083 }
1084 if (flag & CL_MAKE_SHARED)
1085 set_mnt_shared(mnt);
1086
1087 /* stick the duplicate mount on the same expiry list
1088 * as the original if that was on one */
1089 if (flag & CL_EXPIRE) {
1090 if (!list_empty(&old->mnt_expire))
1091 list_add(&mnt->mnt_expire, &old->mnt_expire);
1092 }
1093
cb338d06 1094 return mnt;
719f5d7f
MS
1095
1096 out_free:
8ffcb32e 1097 mnt_free_id(mnt);
719f5d7f 1098 free_vfsmnt(mnt);
be34d1a3 1099 return ERR_PTR(err);
1da177e4
LT
1100}
1101
9ea459e1
AV
1102static void cleanup_mnt(struct mount *mnt)
1103{
1104 /*
1105 * This probably indicates that somebody messed
1106 * up a mnt_want/drop_write() pair. If this
1107 * happens, the filesystem was probably unable
1108 * to make r/w->r/o transitions.
1109 */
1110 /*
1111 * The locking used to deal with mnt_count decrement provides barriers,
1112 * so mnt_get_writers() below is safe.
1113 */
1114 WARN_ON(mnt_get_writers(mnt));
1115 if (unlikely(mnt->mnt_pins.first))
1116 mnt_pin_kill(mnt);
1117 fsnotify_vfsmount_delete(&mnt->mnt);
1118 dput(mnt->mnt.mnt_root);
1119 deactivate_super(mnt->mnt.mnt_sb);
1120 mnt_free_id(mnt);
1121 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1122}
1123
1124static void __cleanup_mnt(struct rcu_head *head)
1125{
1126 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1127}
1128
1129static LLIST_HEAD(delayed_mntput_list);
1130static void delayed_mntput(struct work_struct *unused)
1131{
1132 struct llist_node *node = llist_del_all(&delayed_mntput_list);
29785735 1133 struct mount *m, *t;
9ea459e1 1134
29785735
BP
1135 llist_for_each_entry_safe(m, t, node, mnt_llist)
1136 cleanup_mnt(m);
9ea459e1
AV
1137}
1138static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1139
900148dc 1140static void mntput_no_expire(struct mount *mnt)
b3e19d92 1141{
48a066e7 1142 rcu_read_lock();
9ea0a46c
AV
1143 if (likely(READ_ONCE(mnt->mnt_ns))) {
1144 /*
1145 * Since we don't do lock_mount_hash() here,
1146 * ->mnt_ns can change under us. However, if it's
1147 * non-NULL, then there's a reference that won't
1148 * be dropped until after an RCU delay done after
1149 * turning ->mnt_ns NULL. So if we observe it
1150 * non-NULL under rcu_read_lock(), the reference
1151 * we are dropping is not the final one.
1152 */
1153 mnt_add_count(mnt, -1);
48a066e7 1154 rcu_read_unlock();
f03c6599 1155 return;
b3e19d92 1156 }
719ea2fb 1157 lock_mount_hash();
119e1ef8
AV
1158 /*
1159 * make sure that if __legitimize_mnt() has not seen us grab
1160 * mount_lock, we'll see their refcount increment here.
1161 */
1162 smp_mb();
9ea0a46c 1163 mnt_add_count(mnt, -1);
b3e19d92 1164 if (mnt_get_count(mnt)) {
48a066e7 1165 rcu_read_unlock();
719ea2fb 1166 unlock_mount_hash();
99b7db7b
NP
1167 return;
1168 }
48a066e7
AV
1169 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1170 rcu_read_unlock();
1171 unlock_mount_hash();
1172 return;
1173 }
1174 mnt->mnt.mnt_flags |= MNT_DOOMED;
1175 rcu_read_unlock();
962830df 1176
39f7c4db 1177 list_del(&mnt->mnt_instance);
ce07d891
EB
1178
1179 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1180 struct mount *p, *tmp;
1181 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1182 umount_mnt(p);
1183 }
1184 }
719ea2fb 1185 unlock_mount_hash();
649a795a 1186
9ea459e1
AV
1187 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1188 struct task_struct *task = current;
1189 if (likely(!(task->flags & PF_KTHREAD))) {
1190 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1191 if (!task_work_add(task, &mnt->mnt_rcu, true))
1192 return;
1193 }
1194 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1195 schedule_delayed_work(&delayed_mntput_work, 1);
1196 return;
1197 }
1198 cleanup_mnt(mnt);
b3e19d92 1199}
b3e19d92
NP
1200
1201void mntput(struct vfsmount *mnt)
1202{
1203 if (mnt) {
863d684f 1204 struct mount *m = real_mount(mnt);
b3e19d92 1205 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1206 if (unlikely(m->mnt_expiry_mark))
1207 m->mnt_expiry_mark = 0;
1208 mntput_no_expire(m);
b3e19d92
NP
1209 }
1210}
1211EXPORT_SYMBOL(mntput);
1212
1213struct vfsmount *mntget(struct vfsmount *mnt)
1214{
1215 if (mnt)
83adc753 1216 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1217 return mnt;
1218}
1219EXPORT_SYMBOL(mntget);
1220
c6609c0a
IK
1221/* path_is_mountpoint() - Check if path is a mount in the current
1222 * namespace.
1223 *
1224 * d_mountpoint() can only be used reliably to establish if a dentry is
1225 * not mounted in any namespace and that common case is handled inline.
1226 * d_mountpoint() isn't aware of the possibility there may be multiple
1227 * mounts using a given dentry in a different namespace. This function
1228 * checks if the passed in path is a mountpoint rather than the dentry
1229 * alone.
1230 */
1231bool path_is_mountpoint(const struct path *path)
1232{
1233 unsigned seq;
1234 bool res;
1235
1236 if (!d_mountpoint(path->dentry))
1237 return false;
1238
1239 rcu_read_lock();
1240 do {
1241 seq = read_seqbegin(&mount_lock);
1242 res = __path_is_mountpoint(path);
1243 } while (read_seqretry(&mount_lock, seq));
1244 rcu_read_unlock();
1245
1246 return res;
1247}
1248EXPORT_SYMBOL(path_is_mountpoint);
1249
ca71cf71 1250struct vfsmount *mnt_clone_internal(const struct path *path)
7b7b1ace 1251{
3064c356
AV
1252 struct mount *p;
1253 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1254 if (IS_ERR(p))
1255 return ERR_CAST(p);
1256 p->mnt.mnt_flags |= MNT_INTERNAL;
1257 return &p->mnt;
7b7b1ace 1258}
1da177e4 1259
a1a2c409 1260#ifdef CONFIG_PROC_FS
0226f492 1261/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1262static void *m_start(struct seq_file *m, loff_t *pos)
1263{
ede1bf0d 1264 struct proc_mounts *p = m->private;
1da177e4 1265
390c6843 1266 down_read(&namespace_sem);
c7999c36
AV
1267 if (p->cached_event == p->ns->event) {
1268 void *v = p->cached_mount;
1269 if (*pos == p->cached_index)
1270 return v;
1271 if (*pos == p->cached_index + 1) {
1272 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1273 return p->cached_mount = v;
1274 }
1275 }
1276
1277 p->cached_event = p->ns->event;
1278 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1279 p->cached_index = *pos;
1280 return p->cached_mount;
1da177e4
LT
1281}
1282
1283static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1284{
ede1bf0d 1285 struct proc_mounts *p = m->private;
b0765fb8 1286
c7999c36
AV
1287 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1288 p->cached_index = *pos;
1289 return p->cached_mount;
1da177e4
LT
1290}
1291
1292static void m_stop(struct seq_file *m, void *v)
1293{
390c6843 1294 up_read(&namespace_sem);
1da177e4
LT
1295}
1296
0226f492 1297static int m_show(struct seq_file *m, void *v)
2d4d4864 1298{
ede1bf0d 1299 struct proc_mounts *p = m->private;
1a4eeaf2 1300 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1301 return p->show(m, &r->mnt);
1da177e4
LT
1302}
1303
a1a2c409 1304const struct seq_operations mounts_op = {
1da177e4
LT
1305 .start = m_start,
1306 .next = m_next,
1307 .stop = m_stop,
0226f492 1308 .show = m_show,
b4629fe2 1309};
a1a2c409 1310#endif /* CONFIG_PROC_FS */
b4629fe2 1311
1da177e4
LT
1312/**
1313 * may_umount_tree - check if a mount tree is busy
1314 * @mnt: root of mount tree
1315 *
1316 * This is called to check if a tree of mounts has any
1317 * open files, pwds, chroots or sub mounts that are
1318 * busy.
1319 */
909b0a88 1320int may_umount_tree(struct vfsmount *m)
1da177e4 1321{
909b0a88 1322 struct mount *mnt = real_mount(m);
36341f64
RP
1323 int actual_refs = 0;
1324 int minimum_refs = 0;
315fc83e 1325 struct mount *p;
909b0a88 1326 BUG_ON(!m);
1da177e4 1327
b3e19d92 1328 /* write lock needed for mnt_get_count */
719ea2fb 1329 lock_mount_hash();
909b0a88 1330 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1331 actual_refs += mnt_get_count(p);
1da177e4 1332 minimum_refs += 2;
1da177e4 1333 }
719ea2fb 1334 unlock_mount_hash();
1da177e4
LT
1335
1336 if (actual_refs > minimum_refs)
e3474a8e 1337 return 0;
1da177e4 1338
e3474a8e 1339 return 1;
1da177e4
LT
1340}
1341
1342EXPORT_SYMBOL(may_umount_tree);
1343
1344/**
1345 * may_umount - check if a mount point is busy
1346 * @mnt: root of mount
1347 *
1348 * This is called to check if a mount point has any
1349 * open files, pwds, chroots or sub mounts. If the
1350 * mount has sub mounts this will return busy
1351 * regardless of whether the sub mounts are busy.
1352 *
1353 * Doesn't take quota and stuff into account. IOW, in some cases it will
1354 * give false negatives. The main reason why it's here is that we need
1355 * a non-destructive way to look for easily umountable filesystems.
1356 */
1357int may_umount(struct vfsmount *mnt)
1358{
e3474a8e 1359 int ret = 1;
8ad08d8a 1360 down_read(&namespace_sem);
719ea2fb 1361 lock_mount_hash();
1ab59738 1362 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1363 ret = 0;
719ea2fb 1364 unlock_mount_hash();
8ad08d8a 1365 up_read(&namespace_sem);
a05964f3 1366 return ret;
1da177e4
LT
1367}
1368
1369EXPORT_SYMBOL(may_umount);
1370
38129a13 1371static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1372
97216be0 1373static void namespace_unlock(void)
70fbcdf4 1374{
a3b3c562 1375 struct hlist_head head;
97216be0 1376
a3b3c562 1377 hlist_move_list(&unmounted, &head);
97216be0 1378
97216be0
AV
1379 up_write(&namespace_sem);
1380
a3b3c562
EB
1381 if (likely(hlist_empty(&head)))
1382 return;
1383
22cb7405 1384 synchronize_rcu_expedited();
48a066e7 1385
87b95ce0 1386 group_pin_kill(&head);
70fbcdf4
RP
1387}
1388
97216be0 1389static inline void namespace_lock(void)
e3197d83 1390{
97216be0 1391 down_write(&namespace_sem);
e3197d83
AV
1392}
1393
e819f152
EB
1394enum umount_tree_flags {
1395 UMOUNT_SYNC = 1,
1396 UMOUNT_PROPAGATE = 2,
e0c9c0af 1397 UMOUNT_CONNECTED = 4,
e819f152 1398};
f2d0a123
EB
1399
1400static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1401{
1402 /* Leaving mounts connected is only valid for lazy umounts */
1403 if (how & UMOUNT_SYNC)
1404 return true;
1405
1406 /* A mount without a parent has nothing to be connected to */
1407 if (!mnt_has_parent(mnt))
1408 return true;
1409
1410 /* Because the reference counting rules change when mounts are
1411 * unmounted and connected, umounted mounts may not be
1412 * connected to mounted mounts.
1413 */
1414 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1415 return true;
1416
1417 /* Has it been requested that the mount remain connected? */
1418 if (how & UMOUNT_CONNECTED)
1419 return false;
1420
1421 /* Is the mount locked such that it needs to remain connected? */
1422 if (IS_MNT_LOCKED(mnt))
1423 return false;
1424
1425 /* By default disconnect the mount */
1426 return true;
1427}
1428
99b7db7b 1429/*
48a066e7 1430 * mount_lock must be held
99b7db7b
NP
1431 * namespace_sem must be held for write
1432 */
e819f152 1433static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1434{
c003b26f 1435 LIST_HEAD(tmp_list);
315fc83e 1436 struct mount *p;
1da177e4 1437
5d88457e
EB
1438 if (how & UMOUNT_PROPAGATE)
1439 propagate_mount_unlock(mnt);
1440
c003b26f 1441 /* Gather the mounts to umount */
590ce4bc
EB
1442 for (p = mnt; p; p = next_mnt(p, mnt)) {
1443 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1444 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1445 }
1da177e4 1446
411a938b 1447 /* Hide the mounts from mnt_mounts */
c003b26f 1448 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1449 list_del_init(&p->mnt_child);
c003b26f 1450 }
88b368f2 1451
c003b26f 1452 /* Add propogated mounts to the tmp_list */
e819f152 1453 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1454 propagate_umount(&tmp_list);
a05964f3 1455
c003b26f 1456 while (!list_empty(&tmp_list)) {
d2921684 1457 struct mnt_namespace *ns;
ce07d891 1458 bool disconnect;
c003b26f 1459 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1460 list_del_init(&p->mnt_expire);
1a4eeaf2 1461 list_del_init(&p->mnt_list);
d2921684
EB
1462 ns = p->mnt_ns;
1463 if (ns) {
1464 ns->mounts--;
1465 __touch_mnt_namespace(ns);
1466 }
143c8c91 1467 p->mnt_ns = NULL;
e819f152 1468 if (how & UMOUNT_SYNC)
48a066e7 1469 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1470
f2d0a123 1471 disconnect = disconnect_mount(p, how);
ce07d891
EB
1472
1473 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1474 disconnect ? &unmounted : NULL);
676da58d 1475 if (mnt_has_parent(p)) {
81b6b061 1476 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1477 if (!disconnect) {
1478 /* Don't forget about p */
1479 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1480 } else {
1481 umount_mnt(p);
1482 }
7c4b93d8 1483 }
0f0afb1d 1484 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1485 }
1486}
1487
b54b9be7 1488static void shrink_submounts(struct mount *mnt);
c35038be 1489
8d0347f6
DH
1490static int do_umount_root(struct super_block *sb)
1491{
1492 int ret = 0;
1493
1494 down_write(&sb->s_umount);
1495 if (!sb_rdonly(sb)) {
1496 struct fs_context *fc;
1497
1498 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1499 SB_RDONLY);
1500 if (IS_ERR(fc)) {
1501 ret = PTR_ERR(fc);
1502 } else {
1503 ret = parse_monolithic_mount_data(fc, NULL);
1504 if (!ret)
1505 ret = reconfigure_super(fc);
1506 put_fs_context(fc);
1507 }
1508 }
1509 up_write(&sb->s_umount);
1510 return ret;
1511}
1512
1ab59738 1513static int do_umount(struct mount *mnt, int flags)
1da177e4 1514{
1ab59738 1515 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1516 int retval;
1517
1ab59738 1518 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1519 if (retval)
1520 return retval;
1521
1522 /*
1523 * Allow userspace to request a mountpoint be expired rather than
1524 * unmounting unconditionally. Unmount only happens if:
1525 * (1) the mark is already set (the mark is cleared by mntput())
1526 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1527 */
1528 if (flags & MNT_EXPIRE) {
1ab59738 1529 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1530 flags & (MNT_FORCE | MNT_DETACH))
1531 return -EINVAL;
1532
b3e19d92
NP
1533 /*
1534 * probably don't strictly need the lock here if we examined
1535 * all race cases, but it's a slowpath.
1536 */
719ea2fb 1537 lock_mount_hash();
83adc753 1538 if (mnt_get_count(mnt) != 2) {
719ea2fb 1539 unlock_mount_hash();
1da177e4 1540 return -EBUSY;
b3e19d92 1541 }
719ea2fb 1542 unlock_mount_hash();
1da177e4 1543
863d684f 1544 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1545 return -EAGAIN;
1546 }
1547
1548 /*
1549 * If we may have to abort operations to get out of this
1550 * mount, and they will themselves hold resources we must
1551 * allow the fs to do things. In the Unix tradition of
1552 * 'Gee thats tricky lets do it in userspace' the umount_begin
1553 * might fail to complete on the first run through as other tasks
1554 * must return, and the like. Thats for the mount program to worry
1555 * about for the moment.
1556 */
1557
42faad99 1558 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1559 sb->s_op->umount_begin(sb);
42faad99 1560 }
1da177e4
LT
1561
1562 /*
1563 * No sense to grab the lock for this test, but test itself looks
1564 * somewhat bogus. Suggestions for better replacement?
1565 * Ho-hum... In principle, we might treat that as umount + switch
1566 * to rootfs. GC would eventually take care of the old vfsmount.
1567 * Actually it makes sense, especially if rootfs would contain a
1568 * /reboot - static binary that would close all descriptors and
1569 * call reboot(9). Then init(8) could umount root and exec /reboot.
1570 */
1ab59738 1571 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1572 /*
1573 * Special case for "unmounting" root ...
1574 * we just try to remount it readonly.
1575 */
bc6155d1 1576 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
a1480dcc 1577 return -EPERM;
8d0347f6 1578 return do_umount_root(sb);
1da177e4
LT
1579 }
1580
97216be0 1581 namespace_lock();
719ea2fb 1582 lock_mount_hash();
1da177e4 1583
25d202ed
EB
1584 /* Recheck MNT_LOCKED with the locks held */
1585 retval = -EINVAL;
1586 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1587 goto out;
1588
1589 event++;
48a066e7 1590 if (flags & MNT_DETACH) {
1a4eeaf2 1591 if (!list_empty(&mnt->mnt_list))
e819f152 1592 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1593 retval = 0;
48a066e7
AV
1594 } else {
1595 shrink_submounts(mnt);
1596 retval = -EBUSY;
1597 if (!propagate_mount_busy(mnt, 2)) {
1598 if (!list_empty(&mnt->mnt_list))
e819f152 1599 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1600 retval = 0;
1601 }
1da177e4 1602 }
25d202ed 1603out:
719ea2fb 1604 unlock_mount_hash();
e3197d83 1605 namespace_unlock();
1da177e4
LT
1606 return retval;
1607}
1608
80b5dce8
EB
1609/*
1610 * __detach_mounts - lazily unmount all mounts on the specified dentry
1611 *
1612 * During unlink, rmdir, and d_drop it is possible to loose the path
1613 * to an existing mountpoint, and wind up leaking the mount.
1614 * detach_mounts allows lazily unmounting those mounts instead of
1615 * leaking them.
1616 *
1617 * The caller may hold dentry->d_inode->i_mutex.
1618 */
1619void __detach_mounts(struct dentry *dentry)
1620{
1621 struct mountpoint *mp;
1622 struct mount *mnt;
1623
1624 namespace_lock();
3895dbf8 1625 lock_mount_hash();
80b5dce8 1626 mp = lookup_mountpoint(dentry);
f53e5797 1627 if (IS_ERR_OR_NULL(mp))
80b5dce8
EB
1628 goto out_unlock;
1629
e06b933e 1630 event++;
80b5dce8
EB
1631 while (!hlist_empty(&mp->m_list)) {
1632 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1633 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8
EB
1634 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1635 umount_mnt(mnt);
ce07d891 1636 }
e0c9c0af 1637 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8 1638 }
80b5dce8
EB
1639 put_mountpoint(mp);
1640out_unlock:
3895dbf8 1641 unlock_mount_hash();
80b5dce8
EB
1642 namespace_unlock();
1643}
1644
dd111b31 1645/*
9b40bc90
AV
1646 * Is the caller allowed to modify his namespace?
1647 */
1648static inline bool may_mount(void)
1649{
1650 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1651}
1652
9e8925b6
JL
1653static inline bool may_mandlock(void)
1654{
1655#ifndef CONFIG_MANDATORY_FILE_LOCKING
1656 return false;
1657#endif
95ace754 1658 return capable(CAP_SYS_ADMIN);
9e8925b6
JL
1659}
1660
1da177e4
LT
1661/*
1662 * Now umount can handle mount points as well as block devices.
1663 * This is important for filesystems which use unnamed block devices.
1664 *
1665 * We now support a flag for forced unmount like the other 'big iron'
1666 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1667 */
1668
3a18ef5c 1669int ksys_umount(char __user *name, int flags)
1da177e4 1670{
2d8f3038 1671 struct path path;
900148dc 1672 struct mount *mnt;
1da177e4 1673 int retval;
db1f05bb 1674 int lookup_flags = 0;
1da177e4 1675
db1f05bb
MS
1676 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1677 return -EINVAL;
1678
9b40bc90
AV
1679 if (!may_mount())
1680 return -EPERM;
1681
db1f05bb
MS
1682 if (!(flags & UMOUNT_NOFOLLOW))
1683 lookup_flags |= LOOKUP_FOLLOW;
1684
57d46577
RGB
1685 lookup_flags |= LOOKUP_NO_EVAL;
1686
197df04c 1687 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1688 if (retval)
1689 goto out;
900148dc 1690 mnt = real_mount(path.mnt);
1da177e4 1691 retval = -EINVAL;
2d8f3038 1692 if (path.dentry != path.mnt->mnt_root)
1da177e4 1693 goto dput_and_out;
143c8c91 1694 if (!check_mnt(mnt))
1da177e4 1695 goto dput_and_out;
25d202ed 1696 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
5ff9d8a6 1697 goto dput_and_out;
b2f5d4dc
EB
1698 retval = -EPERM;
1699 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1700 goto dput_and_out;
1da177e4 1701
900148dc 1702 retval = do_umount(mnt, flags);
1da177e4 1703dput_and_out:
429731b1 1704 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1705 dput(path.dentry);
900148dc 1706 mntput_no_expire(mnt);
1da177e4
LT
1707out:
1708 return retval;
1709}
1710
3a18ef5c
DB
1711SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1712{
1713 return ksys_umount(name, flags);
1714}
1715
1da177e4
LT
1716#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1717
1718/*
b58fed8b 1719 * The 2.0 compatible umount. No flags.
1da177e4 1720 */
bdc480e3 1721SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1722{
3a18ef5c 1723 return ksys_umount(name, 0);
1da177e4
LT
1724}
1725
1726#endif
1727
4ce5d2b1 1728static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1729{
4ce5d2b1 1730 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1731 return dentry->d_op == &ns_dentry_operations &&
1732 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1733}
1734
58be2825
AV
1735struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1736{
1737 return container_of(ns, struct mnt_namespace, ns);
1738}
1739
4ce5d2b1
EB
1740static bool mnt_ns_loop(struct dentry *dentry)
1741{
1742 /* Could bind mounting the mount namespace inode cause a
1743 * mount namespace loop?
1744 */
1745 struct mnt_namespace *mnt_ns;
1746 if (!is_mnt_ns_file(dentry))
1747 return false;
1748
f77c8014 1749 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1750 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1751}
1752
87129cc0 1753struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1754 int flag)
1da177e4 1755{
84d17192 1756 struct mount *res, *p, *q, *r, *parent;
1da177e4 1757
4ce5d2b1
EB
1758 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1759 return ERR_PTR(-EINVAL);
1760
1761 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1762 return ERR_PTR(-EINVAL);
9676f0c6 1763
36341f64 1764 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1765 if (IS_ERR(q))
1766 return q;
1767
a73324da 1768 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1769
1770 p = mnt;
6b41d536 1771 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1772 struct mount *s;
7ec02ef1 1773 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1774 continue;
1775
909b0a88 1776 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1777 if (!(flag & CL_COPY_UNBINDABLE) &&
1778 IS_MNT_UNBINDABLE(s)) {
df7342b2
EB
1779 if (s->mnt.mnt_flags & MNT_LOCKED) {
1780 /* Both unbindable and locked. */
1781 q = ERR_PTR(-EPERM);
1782 goto out;
1783 } else {
1784 s = skip_mnt_tree(s);
1785 continue;
1786 }
4ce5d2b1
EB
1787 }
1788 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1789 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1790 s = skip_mnt_tree(s);
1791 continue;
1792 }
0714a533
AV
1793 while (p != s->mnt_parent) {
1794 p = p->mnt_parent;
1795 q = q->mnt_parent;
1da177e4 1796 }
87129cc0 1797 p = s;
84d17192 1798 parent = q;
87129cc0 1799 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1800 if (IS_ERR(q))
1801 goto out;
719ea2fb 1802 lock_mount_hash();
1a4eeaf2 1803 list_add_tail(&q->mnt_list, &res->mnt_list);
1064f874 1804 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1805 unlock_mount_hash();
1da177e4
LT
1806 }
1807 }
1808 return res;
be34d1a3 1809out:
1da177e4 1810 if (res) {
719ea2fb 1811 lock_mount_hash();
e819f152 1812 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1813 unlock_mount_hash();
1da177e4 1814 }
be34d1a3 1815 return q;
1da177e4
LT
1816}
1817
be34d1a3
DH
1818/* Caller should check returned pointer for errors */
1819
ca71cf71 1820struct vfsmount *collect_mounts(const struct path *path)
8aec0809 1821{
cb338d06 1822 struct mount *tree;
97216be0 1823 namespace_lock();
cd4a4017
EB
1824 if (!check_mnt(real_mount(path->mnt)))
1825 tree = ERR_PTR(-EINVAL);
1826 else
1827 tree = copy_tree(real_mount(path->mnt), path->dentry,
1828 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1829 namespace_unlock();
be34d1a3 1830 if (IS_ERR(tree))
52e220d3 1831 return ERR_CAST(tree);
be34d1a3 1832 return &tree->mnt;
8aec0809
AV
1833}
1834
1835void drop_collected_mounts(struct vfsmount *mnt)
1836{
97216be0 1837 namespace_lock();
719ea2fb 1838 lock_mount_hash();
9c8e0a1b 1839 umount_tree(real_mount(mnt), 0);
719ea2fb 1840 unlock_mount_hash();
3ab6abee 1841 namespace_unlock();
8aec0809
AV
1842}
1843
c771d683
MS
1844/**
1845 * clone_private_mount - create a private clone of a path
1846 *
1847 * This creates a new vfsmount, which will be the clone of @path. The new will
1848 * not be attached anywhere in the namespace and will be private (i.e. changes
1849 * to the originating mount won't be propagated into this).
1850 *
1851 * Release with mntput().
1852 */
ca71cf71 1853struct vfsmount *clone_private_mount(const struct path *path)
c771d683
MS
1854{
1855 struct mount *old_mnt = real_mount(path->mnt);
1856 struct mount *new_mnt;
1857
1858 if (IS_MNT_UNBINDABLE(old_mnt))
1859 return ERR_PTR(-EINVAL);
1860
c771d683 1861 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
c771d683
MS
1862 if (IS_ERR(new_mnt))
1863 return ERR_CAST(new_mnt);
1864
1865 return &new_mnt->mnt;
1866}
1867EXPORT_SYMBOL_GPL(clone_private_mount);
1868
1f707137
AV
1869int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1870 struct vfsmount *root)
1871{
1a4eeaf2 1872 struct mount *mnt;
1f707137
AV
1873 int res = f(root, arg);
1874 if (res)
1875 return res;
1a4eeaf2
AV
1876 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1877 res = f(&mnt->mnt, arg);
1f707137
AV
1878 if (res)
1879 return res;
1880 }
1881 return 0;
1882}
1883
3bd045cc
AV
1884static void lock_mnt_tree(struct mount *mnt)
1885{
1886 struct mount *p;
1887
1888 for (p = mnt; p; p = next_mnt(p, mnt)) {
1889 int flags = p->mnt.mnt_flags;
1890 /* Don't allow unprivileged users to change mount flags */
1891 flags |= MNT_LOCK_ATIME;
1892
1893 if (flags & MNT_READONLY)
1894 flags |= MNT_LOCK_READONLY;
1895
1896 if (flags & MNT_NODEV)
1897 flags |= MNT_LOCK_NODEV;
1898
1899 if (flags & MNT_NOSUID)
1900 flags |= MNT_LOCK_NOSUID;
1901
1902 if (flags & MNT_NOEXEC)
1903 flags |= MNT_LOCK_NOEXEC;
1904 /* Don't allow unprivileged users to reveal what is under a mount */
1905 if (list_empty(&p->mnt_expire))
1906 flags |= MNT_LOCKED;
1907 p->mnt.mnt_flags = flags;
1908 }
1909}
1910
4b8b21f4 1911static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1912{
315fc83e 1913 struct mount *p;
719f5d7f 1914
909b0a88 1915 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1916 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1917 mnt_release_group_id(p);
719f5d7f
MS
1918 }
1919}
1920
4b8b21f4 1921static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1922{
315fc83e 1923 struct mount *p;
719f5d7f 1924
909b0a88 1925 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1926 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1927 int err = mnt_alloc_group_id(p);
719f5d7f 1928 if (err) {
4b8b21f4 1929 cleanup_group_ids(mnt, p);
719f5d7f
MS
1930 return err;
1931 }
1932 }
1933 }
1934
1935 return 0;
1936}
1937
d2921684
EB
1938int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1939{
1940 unsigned int max = READ_ONCE(sysctl_mount_max);
1941 unsigned int mounts = 0, old, pending, sum;
1942 struct mount *p;
1943
1944 for (p = mnt; p; p = next_mnt(p, mnt))
1945 mounts++;
1946
1947 old = ns->mounts;
1948 pending = ns->pending_mounts;
1949 sum = old + pending;
1950 if ((old > sum) ||
1951 (pending > sum) ||
1952 (max < sum) ||
1953 (mounts > (max - sum)))
1954 return -ENOSPC;
1955
1956 ns->pending_mounts = pending + mounts;
1957 return 0;
1958}
1959
b90fa9ae
RP
1960/*
1961 * @source_mnt : mount tree to be attached
21444403
RP
1962 * @nd : place the mount tree @source_mnt is attached
1963 * @parent_nd : if non-null, detach the source_mnt from its parent and
1964 * store the parent mount and mountpoint dentry.
1965 * (done when source_mnt is moved)
b90fa9ae
RP
1966 *
1967 * NOTE: in the table below explains the semantics when a source mount
1968 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1969 * ---------------------------------------------------------------------------
1970 * | BIND MOUNT OPERATION |
1971 * |**************************************************************************
1972 * | source-->| shared | private | slave | unbindable |
1973 * | dest | | | | |
1974 * | | | | | | |
1975 * | v | | | | |
1976 * |**************************************************************************
1977 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1978 * | | | | | |
1979 * |non-shared| shared (+) | private | slave (*) | invalid |
1980 * ***************************************************************************
b90fa9ae
RP
1981 * A bind operation clones the source mount and mounts the clone on the
1982 * destination mount.
1983 *
1984 * (++) the cloned mount is propagated to all the mounts in the propagation
1985 * tree of the destination mount and the cloned mount is added to
1986 * the peer group of the source mount.
1987 * (+) the cloned mount is created under the destination mount and is marked
1988 * as shared. The cloned mount is added to the peer group of the source
1989 * mount.
5afe0022
RP
1990 * (+++) the mount is propagated to all the mounts in the propagation tree
1991 * of the destination mount and the cloned mount is made slave
1992 * of the same master as that of the source mount. The cloned mount
1993 * is marked as 'shared and slave'.
1994 * (*) the cloned mount is made a slave of the same master as that of the
1995 * source mount.
1996 *
9676f0c6
RP
1997 * ---------------------------------------------------------------------------
1998 * | MOVE MOUNT OPERATION |
1999 * |**************************************************************************
2000 * | source-->| shared | private | slave | unbindable |
2001 * | dest | | | | |
2002 * | | | | | | |
2003 * | v | | | | |
2004 * |**************************************************************************
2005 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2006 * | | | | | |
2007 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2008 * ***************************************************************************
5afe0022
RP
2009 *
2010 * (+) the mount is moved to the destination. And is then propagated to
2011 * all the mounts in the propagation tree of the destination mount.
21444403 2012 * (+*) the mount is moved to the destination.
5afe0022
RP
2013 * (+++) the mount is moved to the destination and is then propagated to
2014 * all the mounts belonging to the destination mount's propagation tree.
2015 * the mount is marked as 'shared and slave'.
2016 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
2017 *
2018 * if the source mount is a tree, the operations explained above is
2019 * applied to each mount in the tree.
2020 * Must be called without spinlocks held, since this function can sleep
2021 * in allocations.
2022 */
0fb54e50 2023static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
2024 struct mount *dest_mnt,
2025 struct mountpoint *dest_mp,
2026 struct path *parent_path)
b90fa9ae 2027{
3bd045cc 2028 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
38129a13 2029 HLIST_HEAD(tree_list);
d2921684 2030 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1064f874 2031 struct mountpoint *smp;
315fc83e 2032 struct mount *child, *p;
38129a13 2033 struct hlist_node *n;
719f5d7f 2034 int err;
b90fa9ae 2035
1064f874
EB
2036 /* Preallocate a mountpoint in case the new mounts need
2037 * to be tucked under other mounts.
2038 */
2039 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2040 if (IS_ERR(smp))
2041 return PTR_ERR(smp);
2042
d2921684
EB
2043 /* Is there space to add these mounts to the mount namespace? */
2044 if (!parent_path) {
2045 err = count_mounts(ns, source_mnt);
2046 if (err)
2047 goto out;
2048 }
2049
fc7be130 2050 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 2051 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
2052 if (err)
2053 goto out;
0b1b901b 2054 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 2055 lock_mount_hash();
0b1b901b
AV
2056 if (err)
2057 goto out_cleanup_ids;
909b0a88 2058 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 2059 set_mnt_shared(p);
0b1b901b
AV
2060 } else {
2061 lock_mount_hash();
b90fa9ae 2062 }
1a390689 2063 if (parent_path) {
0fb54e50 2064 detach_mnt(source_mnt, parent_path);
84d17192 2065 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 2066 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 2067 } else {
84d17192 2068 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1064f874 2069 commit_tree(source_mnt);
21444403 2070 }
b90fa9ae 2071
38129a13 2072 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 2073 struct mount *q;
38129a13 2074 hlist_del_init(&child->mnt_hash);
1064f874
EB
2075 q = __lookup_mnt(&child->mnt_parent->mnt,
2076 child->mnt_mountpoint);
2077 if (q)
2078 mnt_change_mountpoint(child, smp, q);
3bd045cc
AV
2079 /* Notice when we are propagating across user namespaces */
2080 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2081 lock_mnt_tree(child);
1064f874 2082 commit_tree(child);
b90fa9ae 2083 }
1064f874 2084 put_mountpoint(smp);
719ea2fb 2085 unlock_mount_hash();
99b7db7b 2086
b90fa9ae 2087 return 0;
719f5d7f
MS
2088
2089 out_cleanup_ids:
f2ebb3a9
AV
2090 while (!hlist_empty(&tree_list)) {
2091 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
d2921684 2092 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 2093 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
2094 }
2095 unlock_mount_hash();
0b1b901b 2096 cleanup_group_ids(source_mnt, NULL);
719f5d7f 2097 out:
d2921684 2098 ns->pending_mounts = 0;
1064f874
EB
2099
2100 read_seqlock_excl(&mount_lock);
2101 put_mountpoint(smp);
2102 read_sequnlock_excl(&mount_lock);
2103
719f5d7f 2104 return err;
b90fa9ae
RP
2105}
2106
84d17192 2107static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
2108{
2109 struct vfsmount *mnt;
84d17192 2110 struct dentry *dentry = path->dentry;
b12cea91 2111retry:
5955102c 2112 inode_lock(dentry->d_inode);
84d17192 2113 if (unlikely(cant_mount(dentry))) {
5955102c 2114 inode_unlock(dentry->d_inode);
84d17192 2115 return ERR_PTR(-ENOENT);
b12cea91 2116 }
97216be0 2117 namespace_lock();
b12cea91 2118 mnt = lookup_mnt(path);
84d17192 2119 if (likely(!mnt)) {
3895dbf8 2120 struct mountpoint *mp = get_mountpoint(dentry);
84d17192 2121 if (IS_ERR(mp)) {
97216be0 2122 namespace_unlock();
5955102c 2123 inode_unlock(dentry->d_inode);
84d17192
AV
2124 return mp;
2125 }
2126 return mp;
2127 }
97216be0 2128 namespace_unlock();
5955102c 2129 inode_unlock(path->dentry->d_inode);
b12cea91
AV
2130 path_put(path);
2131 path->mnt = mnt;
84d17192 2132 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2133 goto retry;
2134}
2135
84d17192 2136static void unlock_mount(struct mountpoint *where)
b12cea91 2137{
84d17192 2138 struct dentry *dentry = where->m_dentry;
3895dbf8
EB
2139
2140 read_seqlock_excl(&mount_lock);
84d17192 2141 put_mountpoint(where);
3895dbf8
EB
2142 read_sequnlock_excl(&mount_lock);
2143
328e6d90 2144 namespace_unlock();
5955102c 2145 inode_unlock(dentry->d_inode);
b12cea91
AV
2146}
2147
84d17192 2148static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2149{
e462ec50 2150 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
1da177e4
LT
2151 return -EINVAL;
2152
e36cb0b8
DH
2153 if (d_is_dir(mp->m_dentry) !=
2154 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2155 return -ENOTDIR;
2156
84d17192 2157 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
2158}
2159
7a2e8a8f
VA
2160/*
2161 * Sanity check the flags to change_mnt_propagation.
2162 */
2163
e462ec50 2164static int flags_to_propagation_type(int ms_flags)
7a2e8a8f 2165{
e462ec50 2166 int type = ms_flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2167
2168 /* Fail if any non-propagation flags are set */
2169 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2170 return 0;
2171 /* Only one propagation flag should be set */
2172 if (!is_power_of_2(type))
2173 return 0;
2174 return type;
2175}
2176
07b20889
RP
2177/*
2178 * recursively change the type of the mountpoint.
2179 */
e462ec50 2180static int do_change_type(struct path *path, int ms_flags)
07b20889 2181{
315fc83e 2182 struct mount *m;
4b8b21f4 2183 struct mount *mnt = real_mount(path->mnt);
e462ec50 2184 int recurse = ms_flags & MS_REC;
7a2e8a8f 2185 int type;
719f5d7f 2186 int err = 0;
07b20889 2187
2d92ab3c 2188 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2189 return -EINVAL;
2190
e462ec50 2191 type = flags_to_propagation_type(ms_flags);
7a2e8a8f
VA
2192 if (!type)
2193 return -EINVAL;
2194
97216be0 2195 namespace_lock();
719f5d7f
MS
2196 if (type == MS_SHARED) {
2197 err = invent_group_ids(mnt, recurse);
2198 if (err)
2199 goto out_unlock;
2200 }
2201
719ea2fb 2202 lock_mount_hash();
909b0a88 2203 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2204 change_mnt_propagation(m, type);
719ea2fb 2205 unlock_mount_hash();
719f5d7f
MS
2206
2207 out_unlock:
97216be0 2208 namespace_unlock();
719f5d7f 2209 return err;
07b20889
RP
2210}
2211
5ff9d8a6
EB
2212static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2213{
2214 struct mount *child;
2215 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2216 if (!is_subdir(child->mnt_mountpoint, dentry))
2217 continue;
2218
2219 if (child->mnt.mnt_flags & MNT_LOCKED)
2220 return true;
2221 }
2222 return false;
2223}
2224
1da177e4
LT
2225/*
2226 * do loopback mount.
2227 */
808d4e3c 2228static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2229 int recurse)
1da177e4 2230{
2d92ab3c 2231 struct path old_path;
84d17192
AV
2232 struct mount *mnt = NULL, *old, *parent;
2233 struct mountpoint *mp;
57eccb83 2234 int err;
1da177e4
LT
2235 if (!old_name || !*old_name)
2236 return -EINVAL;
815d405c 2237 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2238 if (err)
2239 return err;
2240
8823c079 2241 err = -EINVAL;
4ce5d2b1 2242 if (mnt_ns_loop(old_path.dentry))
dd111b31 2243 goto out;
8823c079 2244
84d17192
AV
2245 mp = lock_mount(path);
2246 err = PTR_ERR(mp);
2247 if (IS_ERR(mp))
b12cea91
AV
2248 goto out;
2249
87129cc0 2250 old = real_mount(old_path.mnt);
84d17192 2251 parent = real_mount(path->mnt);
87129cc0 2252
1da177e4 2253 err = -EINVAL;
fc7be130 2254 if (IS_MNT_UNBINDABLE(old))
b12cea91 2255 goto out2;
9676f0c6 2256
e149ed2b
AV
2257 if (!check_mnt(parent))
2258 goto out2;
2259
2260 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
b12cea91 2261 goto out2;
1da177e4 2262
5ff9d8a6
EB
2263 if (!recurse && has_locked_children(old, old_path.dentry))
2264 goto out2;
2265
ccd48bc7 2266 if (recurse)
4ce5d2b1 2267 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 2268 else
87129cc0 2269 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 2270
be34d1a3
DH
2271 if (IS_ERR(mnt)) {
2272 err = PTR_ERR(mnt);
e9c5d8a5 2273 goto out2;
be34d1a3 2274 }
ccd48bc7 2275
5ff9d8a6
EB
2276 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2277
84d17192 2278 err = graft_tree(mnt, parent, mp);
ccd48bc7 2279 if (err) {
719ea2fb 2280 lock_mount_hash();
e819f152 2281 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2282 unlock_mount_hash();
5b83d2c5 2283 }
b12cea91 2284out2:
84d17192 2285 unlock_mount(mp);
ccd48bc7 2286out:
2d92ab3c 2287 path_put(&old_path);
1da177e4
LT
2288 return err;
2289}
2290
43f5e655
DH
2291/*
2292 * Don't allow locked mount flags to be cleared.
2293 *
2294 * No locks need to be held here while testing the various MNT_LOCK
2295 * flags because those flags can never be cleared once they are set.
2296 */
2297static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2298{
43f5e655
DH
2299 unsigned int fl = mnt->mnt.mnt_flags;
2300
2301 if ((fl & MNT_LOCK_READONLY) &&
2302 !(mnt_flags & MNT_READONLY))
2303 return false;
2304
2305 if ((fl & MNT_LOCK_NODEV) &&
2306 !(mnt_flags & MNT_NODEV))
2307 return false;
2308
2309 if ((fl & MNT_LOCK_NOSUID) &&
2310 !(mnt_flags & MNT_NOSUID))
2311 return false;
2312
2313 if ((fl & MNT_LOCK_NOEXEC) &&
2314 !(mnt_flags & MNT_NOEXEC))
2315 return false;
2316
2317 if ((fl & MNT_LOCK_ATIME) &&
2318 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2319 return false;
2e4b7fcd 2320
43f5e655
DH
2321 return true;
2322}
2323
2324static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2325{
43f5e655 2326 bool readonly_request = (mnt_flags & MNT_READONLY);
2e4b7fcd 2327
43f5e655 2328 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2e4b7fcd
DH
2329 return 0;
2330
2331 if (readonly_request)
43f5e655
DH
2332 return mnt_make_readonly(mnt);
2333
2334 return __mnt_unmake_readonly(mnt);
2335}
2336
2337/*
2338 * Update the user-settable attributes on a mount. The caller must hold
2339 * sb->s_umount for writing.
2340 */
2341static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2342{
2343 lock_mount_hash();
2344 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2345 mnt->mnt.mnt_flags = mnt_flags;
2346 touch_mnt_namespace(mnt->mnt_ns);
2347 unlock_mount_hash();
2348}
2349
2350/*
2351 * Handle reconfiguration of the mountpoint only without alteration of the
2352 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2353 * to mount(2).
2354 */
2355static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2356{
2357 struct super_block *sb = path->mnt->mnt_sb;
2358 struct mount *mnt = real_mount(path->mnt);
2359 int ret;
2360
2361 if (!check_mnt(mnt))
2362 return -EINVAL;
2363
2364 if (path->dentry != mnt->mnt.mnt_root)
2365 return -EINVAL;
2366
2367 if (!can_change_locked_flags(mnt, mnt_flags))
2368 return -EPERM;
2369
2370 down_write(&sb->s_umount);
2371 ret = change_mount_ro_state(mnt, mnt_flags);
2372 if (ret == 0)
2373 set_mount_attributes(mnt, mnt_flags);
2374 up_write(&sb->s_umount);
2375 return ret;
2e4b7fcd
DH
2376}
2377
1da177e4
LT
2378/*
2379 * change filesystem flags. dir should be a physical root of filesystem.
2380 * If you've mounted a non-root directory somewhere and want to do remount
2381 * on it - tough luck.
2382 */
e462ec50
DH
2383static int do_remount(struct path *path, int ms_flags, int sb_flags,
2384 int mnt_flags, void *data)
1da177e4
LT
2385{
2386 int err;
2d92ab3c 2387 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2388 struct mount *mnt = real_mount(path->mnt);
8d0347f6 2389 struct fs_context *fc;
1da177e4 2390
143c8c91 2391 if (!check_mnt(mnt))
1da177e4
LT
2392 return -EINVAL;
2393
2d92ab3c 2394 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2395 return -EINVAL;
2396
43f5e655 2397 if (!can_change_locked_flags(mnt, mnt_flags))
9566d674 2398 return -EPERM;
9566d674 2399
8d0347f6
DH
2400 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2401 if (IS_ERR(fc))
2402 return PTR_ERR(fc);
ff36fe2c 2403
8d0347f6
DH
2404 err = parse_monolithic_mount_data(fc, data);
2405 if (!err) {
2406 down_write(&sb->s_umount);
2407 err = -EPERM;
2408 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2409 err = reconfigure_super(fc);
2410 if (!err)
2411 set_mount_attributes(mnt, mnt_flags);
2412 }
2413 up_write(&sb->s_umount);
0e55a7cc 2414 }
8d0347f6 2415 put_fs_context(fc);
1da177e4
LT
2416 return err;
2417}
2418
cbbe362c 2419static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2420{
315fc83e 2421 struct mount *p;
909b0a88 2422 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2423 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2424 return 1;
2425 }
2426 return 0;
2427}
2428
808d4e3c 2429static int do_move_mount(struct path *path, const char *old_name)
1da177e4 2430{
2d92ab3c 2431 struct path old_path, parent_path;
676da58d 2432 struct mount *p;
0fb54e50 2433 struct mount *old;
84d17192 2434 struct mountpoint *mp;
57eccb83 2435 int err;
1da177e4
LT
2436 if (!old_name || !*old_name)
2437 return -EINVAL;
2d92ab3c 2438 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2439 if (err)
2440 return err;
2441
84d17192
AV
2442 mp = lock_mount(path);
2443 err = PTR_ERR(mp);
2444 if (IS_ERR(mp))
cc53ce53
DH
2445 goto out;
2446
143c8c91 2447 old = real_mount(old_path.mnt);
fc7be130 2448 p = real_mount(path->mnt);
143c8c91 2449
1da177e4 2450 err = -EINVAL;
fc7be130 2451 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2452 goto out1;
2453
5ff9d8a6
EB
2454 if (old->mnt.mnt_flags & MNT_LOCKED)
2455 goto out1;
2456
1da177e4 2457 err = -EINVAL;
2d92ab3c 2458 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2459 goto out1;
1da177e4 2460
676da58d 2461 if (!mnt_has_parent(old))
21444403 2462 goto out1;
1da177e4 2463
e36cb0b8
DH
2464 if (d_is_dir(path->dentry) !=
2465 d_is_dir(old_path.dentry))
21444403
RP
2466 goto out1;
2467 /*
2468 * Don't move a mount residing in a shared parent.
2469 */
fc7be130 2470 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2471 goto out1;
9676f0c6
RP
2472 /*
2473 * Don't move a mount tree containing unbindable mounts to a destination
2474 * mount which is shared.
2475 */
fc7be130 2476 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2477 goto out1;
1da177e4 2478 err = -ELOOP;
fc7be130 2479 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2480 if (p == old)
21444403 2481 goto out1;
1da177e4 2482
84d17192 2483 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2484 if (err)
21444403 2485 goto out1;
1da177e4
LT
2486
2487 /* if the mount is moved, it should no longer be expire
2488 * automatically */
6776db3d 2489 list_del_init(&old->mnt_expire);
1da177e4 2490out1:
84d17192 2491 unlock_mount(mp);
1da177e4 2492out:
1da177e4 2493 if (!err)
1a390689 2494 path_put(&parent_path);
2d92ab3c 2495 path_put(&old_path);
1da177e4
LT
2496 return err;
2497}
2498
9d412a43
AV
2499/*
2500 * add a mount into a namespace's mount tree
2501 */
95bc5f25 2502static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2503{
84d17192
AV
2504 struct mountpoint *mp;
2505 struct mount *parent;
9d412a43
AV
2506 int err;
2507
f2ebb3a9 2508 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2509
84d17192
AV
2510 mp = lock_mount(path);
2511 if (IS_ERR(mp))
2512 return PTR_ERR(mp);
9d412a43 2513
84d17192 2514 parent = real_mount(path->mnt);
9d412a43 2515 err = -EINVAL;
84d17192 2516 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2517 /* that's acceptable only for automounts done in private ns */
2518 if (!(mnt_flags & MNT_SHRINKABLE))
2519 goto unlock;
2520 /* ... and for those we'd better have mountpoint still alive */
84d17192 2521 if (!parent->mnt_ns)
156cacb1
AV
2522 goto unlock;
2523 }
9d412a43
AV
2524
2525 /* Refuse the same filesystem on the same mount point */
2526 err = -EBUSY;
95bc5f25 2527 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2528 path->mnt->mnt_root == path->dentry)
2529 goto unlock;
2530
2531 err = -EINVAL;
e36cb0b8 2532 if (d_is_symlink(newmnt->mnt.mnt_root))
9d412a43
AV
2533 goto unlock;
2534
95bc5f25 2535 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2536 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2537
2538unlock:
84d17192 2539 unlock_mount(mp);
9d412a43
AV
2540 return err;
2541}
b1e75df4 2542
132e4608
DH
2543static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2544
2545/*
2546 * Create a new mount using a superblock configuration and request it
2547 * be added to the namespace tree.
2548 */
2549static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2550 unsigned int mnt_flags)
2551{
2552 struct vfsmount *mnt;
2553 struct super_block *sb = fc->root->d_sb;
2554 int error;
2555
c9ce29ed
AV
2556 error = security_sb_kern_mount(sb);
2557 if (!error && mount_too_revealing(sb, &mnt_flags))
2558 error = -EPERM;
2559
2560 if (unlikely(error)) {
2561 fc_drop_locked(fc);
2562 return error;
132e4608
DH
2563 }
2564
2565 up_write(&sb->s_umount);
2566
2567 mnt = vfs_create_mount(fc);
2568 if (IS_ERR(mnt))
2569 return PTR_ERR(mnt);
2570
2571 error = do_add_mount(real_mount(mnt), mountpoint, mnt_flags);
2572 if (error < 0)
2573 mntput(mnt);
2574 return error;
2575}
1b852bce 2576
1da177e4
LT
2577/*
2578 * create a new mount for userspace and request it to be added into the
2579 * namespace's tree
2580 */
e462ec50 2581static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
808d4e3c 2582 int mnt_flags, const char *name, void *data)
1da177e4 2583{
0c55cfc4 2584 struct file_system_type *type;
a0c9a8b8
AV
2585 struct fs_context *fc;
2586 const char *subtype = NULL;
2587 int err = 0;
1da177e4 2588
0c55cfc4 2589 if (!fstype)
1da177e4
LT
2590 return -EINVAL;
2591
0c55cfc4
EB
2592 type = get_fs_type(fstype);
2593 if (!type)
2594 return -ENODEV;
2595
a0c9a8b8
AV
2596 if (type->fs_flags & FS_HAS_SUBTYPE) {
2597 subtype = strchr(fstype, '.');
2598 if (subtype) {
2599 subtype++;
2600 if (!*subtype) {
2601 put_filesystem(type);
2602 return -EINVAL;
2603 }
2604 } else {
2605 subtype = "";
2606 }
2607 }
0c55cfc4 2608
a0c9a8b8 2609 fc = fs_context_for_mount(type, sb_flags);
0c55cfc4 2610 put_filesystem(type);
a0c9a8b8
AV
2611 if (IS_ERR(fc))
2612 return PTR_ERR(fc);
2613
3e1aeb00
DH
2614 if (subtype)
2615 err = vfs_parse_fs_string(fc, "subtype",
2616 subtype, strlen(subtype));
2617 if (!err && name)
2618 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
a0c9a8b8
AV
2619 if (!err)
2620 err = parse_monolithic_mount_data(fc, data);
2621 if (!err)
2622 err = vfs_get_tree(fc);
132e4608
DH
2623 if (!err)
2624 err = do_new_mount_fc(fc, path, mnt_flags);
8654df4e 2625
a0c9a8b8 2626 put_fs_context(fc);
15f9a3f3 2627 return err;
1da177e4
LT
2628}
2629
19a167af
AV
2630int finish_automount(struct vfsmount *m, struct path *path)
2631{
6776db3d 2632 struct mount *mnt = real_mount(m);
19a167af
AV
2633 int err;
2634 /* The new mount record should have at least 2 refs to prevent it being
2635 * expired before we get a chance to add it
2636 */
6776db3d 2637 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2638
2639 if (m->mnt_sb == path->mnt->mnt_sb &&
2640 m->mnt_root == path->dentry) {
b1e75df4
AV
2641 err = -ELOOP;
2642 goto fail;
19a167af
AV
2643 }
2644
95bc5f25 2645 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2646 if (!err)
2647 return 0;
2648fail:
2649 /* remove m from any expiration list it may be on */
6776db3d 2650 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2651 namespace_lock();
6776db3d 2652 list_del_init(&mnt->mnt_expire);
97216be0 2653 namespace_unlock();
19a167af 2654 }
b1e75df4
AV
2655 mntput(m);
2656 mntput(m);
19a167af
AV
2657 return err;
2658}
2659
ea5b778a
DH
2660/**
2661 * mnt_set_expiry - Put a mount on an expiration list
2662 * @mnt: The mount to list.
2663 * @expiry_list: The list to add the mount to.
2664 */
2665void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2666{
97216be0 2667 namespace_lock();
ea5b778a 2668
6776db3d 2669 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2670
97216be0 2671 namespace_unlock();
ea5b778a
DH
2672}
2673EXPORT_SYMBOL(mnt_set_expiry);
2674
1da177e4
LT
2675/*
2676 * process a list of expirable mountpoints with the intent of discarding any
2677 * mountpoints that aren't in use and haven't been touched since last we came
2678 * here
2679 */
2680void mark_mounts_for_expiry(struct list_head *mounts)
2681{
761d5c38 2682 struct mount *mnt, *next;
1da177e4
LT
2683 LIST_HEAD(graveyard);
2684
2685 if (list_empty(mounts))
2686 return;
2687
97216be0 2688 namespace_lock();
719ea2fb 2689 lock_mount_hash();
1da177e4
LT
2690
2691 /* extract from the expiration list every vfsmount that matches the
2692 * following criteria:
2693 * - only referenced by its parent vfsmount
2694 * - still marked for expiry (marked on the last call here; marks are
2695 * cleared by mntput())
2696 */
6776db3d 2697 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2698 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2699 propagate_mount_busy(mnt, 1))
1da177e4 2700 continue;
6776db3d 2701 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2702 }
bcc5c7d2 2703 while (!list_empty(&graveyard)) {
6776db3d 2704 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2705 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2706 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2707 }
719ea2fb 2708 unlock_mount_hash();
3ab6abee 2709 namespace_unlock();
5528f911
TM
2710}
2711
2712EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2713
2714/*
2715 * Ripoff of 'select_parent()'
2716 *
2717 * search the list of submounts for a given mountpoint, and move any
2718 * shrinkable submounts to the 'graveyard' list.
2719 */
692afc31 2720static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2721{
692afc31 2722 struct mount *this_parent = parent;
5528f911
TM
2723 struct list_head *next;
2724 int found = 0;
2725
2726repeat:
6b41d536 2727 next = this_parent->mnt_mounts.next;
5528f911 2728resume:
6b41d536 2729 while (next != &this_parent->mnt_mounts) {
5528f911 2730 struct list_head *tmp = next;
6b41d536 2731 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2732
2733 next = tmp->next;
692afc31 2734 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2735 continue;
5528f911
TM
2736 /*
2737 * Descend a level if the d_mounts list is non-empty.
2738 */
6b41d536 2739 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2740 this_parent = mnt;
2741 goto repeat;
2742 }
1da177e4 2743
1ab59738 2744 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2745 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2746 found++;
2747 }
1da177e4 2748 }
5528f911
TM
2749 /*
2750 * All done at this level ... ascend and resume the search
2751 */
2752 if (this_parent != parent) {
6b41d536 2753 next = this_parent->mnt_child.next;
0714a533 2754 this_parent = this_parent->mnt_parent;
5528f911
TM
2755 goto resume;
2756 }
2757 return found;
2758}
2759
2760/*
2761 * process a list of expirable mountpoints with the intent of discarding any
2762 * submounts of a specific parent mountpoint
99b7db7b 2763 *
48a066e7 2764 * mount_lock must be held for write
5528f911 2765 */
b54b9be7 2766static void shrink_submounts(struct mount *mnt)
5528f911
TM
2767{
2768 LIST_HEAD(graveyard);
761d5c38 2769 struct mount *m;
5528f911 2770
5528f911 2771 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2772 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2773 while (!list_empty(&graveyard)) {
761d5c38 2774 m = list_first_entry(&graveyard, struct mount,
6776db3d 2775 mnt_expire);
143c8c91 2776 touch_mnt_namespace(m->mnt_ns);
e819f152 2777 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
2778 }
2779 }
1da177e4
LT
2780}
2781
1da177e4
LT
2782/*
2783 * Some copy_from_user() implementations do not return the exact number of
2784 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2785 * Note that this function differs from copy_from_user() in that it will oops
2786 * on bad values of `to', rather than returning a short copy.
2787 */
b58fed8b
RP
2788static long exact_copy_from_user(void *to, const void __user * from,
2789 unsigned long n)
1da177e4
LT
2790{
2791 char *t = to;
2792 const char __user *f = from;
2793 char c;
2794
96d4f267 2795 if (!access_ok(from, n))
1da177e4
LT
2796 return n;
2797
2798 while (n) {
2799 if (__get_user(c, f)) {
2800 memset(t, 0, n);
2801 break;
2802 }
2803 *t++ = c;
2804 f++;
2805 n--;
2806 }
2807 return n;
2808}
2809
b40ef869 2810void *copy_mount_options(const void __user * data)
1da177e4
LT
2811{
2812 int i;
1da177e4 2813 unsigned long size;
b40ef869 2814 char *copy;
b58fed8b 2815
1da177e4 2816 if (!data)
b40ef869 2817 return NULL;
1da177e4 2818
b40ef869
AV
2819 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2820 if (!copy)
2821 return ERR_PTR(-ENOMEM);
1da177e4
LT
2822
2823 /* We only care that *some* data at the address the user
2824 * gave us is valid. Just in case, we'll zero
2825 * the remainder of the page.
2826 */
2827 /* copy_from_user cannot cross TASK_SIZE ! */
2828 size = TASK_SIZE - (unsigned long)data;
2829 if (size > PAGE_SIZE)
2830 size = PAGE_SIZE;
2831
b40ef869 2832 i = size - exact_copy_from_user(copy, data, size);
1da177e4 2833 if (!i) {
b40ef869
AV
2834 kfree(copy);
2835 return ERR_PTR(-EFAULT);
1da177e4
LT
2836 }
2837 if (i != PAGE_SIZE)
b40ef869
AV
2838 memset(copy + i, 0, PAGE_SIZE - i);
2839 return copy;
1da177e4
LT
2840}
2841
b8850d1f 2842char *copy_mount_string(const void __user *data)
eca6f534 2843{
fbdb4401 2844 return data ? strndup_user(data, PATH_MAX) : NULL;
eca6f534
VN
2845}
2846
1da177e4
LT
2847/*
2848 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2849 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2850 *
2851 * data is a (void *) that can point to any structure up to
2852 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2853 * information (or be NULL).
2854 *
2855 * Pre-0.97 versions of mount() didn't have a flags word.
2856 * When the flags word was introduced its top half was required
2857 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2858 * Therefore, if this magic number is present, it carries no information
2859 * and must be discarded.
2860 */
5e6123f3 2861long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 2862 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2863{
2d92ab3c 2864 struct path path;
e462ec50 2865 unsigned int mnt_flags = 0, sb_flags;
1da177e4 2866 int retval = 0;
1da177e4
LT
2867
2868 /* Discard magic */
2869 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2870 flags &= ~MS_MGC_MSK;
2871
2872 /* Basic sanity checks */
1da177e4
LT
2873 if (data_page)
2874 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2875
e462ec50
DH
2876 if (flags & MS_NOUSER)
2877 return -EINVAL;
2878
a27ab9f2 2879 /* ... and get the mountpoint */
5e6123f3 2880 retval = user_path(dir_name, &path);
a27ab9f2
TH
2881 if (retval)
2882 return retval;
2883
2884 retval = security_sb_mount(dev_name, &path,
2885 type_page, flags, data_page);
0d5cadb8
AV
2886 if (!retval && !may_mount())
2887 retval = -EPERM;
e462ec50 2888 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
9e8925b6 2889 retval = -EPERM;
a27ab9f2
TH
2890 if (retval)
2891 goto dput_out;
2892
613cbe3d
AK
2893 /* Default to relatime unless overriden */
2894 if (!(flags & MS_NOATIME))
2895 mnt_flags |= MNT_RELATIME;
0a1c01c9 2896
1da177e4
LT
2897 /* Separate the per-mountpoint flags */
2898 if (flags & MS_NOSUID)
2899 mnt_flags |= MNT_NOSUID;
2900 if (flags & MS_NODEV)
2901 mnt_flags |= MNT_NODEV;
2902 if (flags & MS_NOEXEC)
2903 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2904 if (flags & MS_NOATIME)
2905 mnt_flags |= MNT_NOATIME;
2906 if (flags & MS_NODIRATIME)
2907 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2908 if (flags & MS_STRICTATIME)
2909 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
a9e5b732 2910 if (flags & MS_RDONLY)
2e4b7fcd 2911 mnt_flags |= MNT_READONLY;
fc33a7bb 2912
ffbc6f0e
EB
2913 /* The default atime for remount is preservation */
2914 if ((flags & MS_REMOUNT) &&
2915 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2916 MS_STRICTATIME)) == 0)) {
2917 mnt_flags &= ~MNT_ATIME_MASK;
2918 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2919 }
2920
e462ec50
DH
2921 sb_flags = flags & (SB_RDONLY |
2922 SB_SYNCHRONOUS |
2923 SB_MANDLOCK |
2924 SB_DIRSYNC |
2925 SB_SILENT |
917086ff 2926 SB_POSIXACL |
d7ee9469 2927 SB_LAZYTIME |
917086ff 2928 SB_I_VERSION);
1da177e4 2929
43f5e655
DH
2930 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
2931 retval = do_reconfigure_mnt(&path, mnt_flags);
2932 else if (flags & MS_REMOUNT)
e462ec50 2933 retval = do_remount(&path, flags, sb_flags, mnt_flags,
1da177e4
LT
2934 data_page);
2935 else if (flags & MS_BIND)
2d92ab3c 2936 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2937 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2938 retval = do_change_type(&path, flags);
1da177e4 2939 else if (flags & MS_MOVE)
2d92ab3c 2940 retval = do_move_mount(&path, dev_name);
1da177e4 2941 else
e462ec50 2942 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
1da177e4
LT
2943 dev_name, data_page);
2944dput_out:
2d92ab3c 2945 path_put(&path);
1da177e4
LT
2946 return retval;
2947}
2948
537f7ccb
EB
2949static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2950{
2951 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2952}
2953
2954static void dec_mnt_namespaces(struct ucounts *ucounts)
2955{
2956 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2957}
2958
771b1371
EB
2959static void free_mnt_ns(struct mnt_namespace *ns)
2960{
74e83122
AV
2961 if (!is_anon_ns(ns))
2962 ns_free_inum(&ns->ns);
537f7ccb 2963 dec_mnt_namespaces(ns->ucounts);
771b1371
EB
2964 put_user_ns(ns->user_ns);
2965 kfree(ns);
2966}
2967
8823c079
EB
2968/*
2969 * Assign a sequence number so we can detect when we attempt to bind
2970 * mount a reference to an older mount namespace into the current
2971 * mount namespace, preventing reference counting loops. A 64bit
2972 * number incrementing at 10Ghz will take 12,427 years to wrap which
2973 * is effectively never, so we can ignore the possibility.
2974 */
2975static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2976
74e83122 2977static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
cf8d2c11
TM
2978{
2979 struct mnt_namespace *new_ns;
537f7ccb 2980 struct ucounts *ucounts;
98f842e6 2981 int ret;
cf8d2c11 2982
537f7ccb
EB
2983 ucounts = inc_mnt_namespaces(user_ns);
2984 if (!ucounts)
df75e774 2985 return ERR_PTR(-ENOSPC);
537f7ccb 2986
74e83122 2987 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
537f7ccb
EB
2988 if (!new_ns) {
2989 dec_mnt_namespaces(ucounts);
cf8d2c11 2990 return ERR_PTR(-ENOMEM);
537f7ccb 2991 }
74e83122
AV
2992 if (!anon) {
2993 ret = ns_alloc_inum(&new_ns->ns);
2994 if (ret) {
2995 kfree(new_ns);
2996 dec_mnt_namespaces(ucounts);
2997 return ERR_PTR(ret);
2998 }
98f842e6 2999 }
33c42940 3000 new_ns->ns.ops = &mntns_operations;
74e83122
AV
3001 if (!anon)
3002 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11 3003 atomic_set(&new_ns->count, 1);
cf8d2c11
TM
3004 INIT_LIST_HEAD(&new_ns->list);
3005 init_waitqueue_head(&new_ns->poll);
771b1371 3006 new_ns->user_ns = get_user_ns(user_ns);
537f7ccb 3007 new_ns->ucounts = ucounts;
cf8d2c11
TM
3008 return new_ns;
3009}
3010
0766f788 3011__latent_entropy
9559f689
AV
3012struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3013 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 3014{
6b3286ed 3015 struct mnt_namespace *new_ns;
7f2da1e7 3016 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 3017 struct mount *p, *q;
9559f689 3018 struct mount *old;
cb338d06 3019 struct mount *new;
7a472ef4 3020 int copy_flags;
1da177e4 3021
9559f689
AV
3022 BUG_ON(!ns);
3023
3024 if (likely(!(flags & CLONE_NEWNS))) {
3025 get_mnt_ns(ns);
3026 return ns;
3027 }
3028
3029 old = ns->root;
3030
74e83122 3031 new_ns = alloc_mnt_ns(user_ns, false);
cf8d2c11
TM
3032 if (IS_ERR(new_ns))
3033 return new_ns;
1da177e4 3034
97216be0 3035 namespace_lock();
1da177e4 3036 /* First pass: copy the tree topology */
4ce5d2b1 3037 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 3038 if (user_ns != ns->user_ns)
3bd045cc 3039 copy_flags |= CL_SHARED_TO_SLAVE;
7a472ef4 3040 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 3041 if (IS_ERR(new)) {
328e6d90 3042 namespace_unlock();
771b1371 3043 free_mnt_ns(new_ns);
be34d1a3 3044 return ERR_CAST(new);
1da177e4 3045 }
3bd045cc
AV
3046 if (user_ns != ns->user_ns) {
3047 lock_mount_hash();
3048 lock_mnt_tree(new);
3049 unlock_mount_hash();
3050 }
be08d6d2 3051 new_ns->root = new;
1a4eeaf2 3052 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
3053
3054 /*
3055 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3056 * as belonging to new namespace. We have already acquired a private
3057 * fs_struct, so tsk->fs->lock is not needed.
3058 */
909b0a88 3059 p = old;
cb338d06 3060 q = new;
1da177e4 3061 while (p) {
143c8c91 3062 q->mnt_ns = new_ns;
d2921684 3063 new_ns->mounts++;
9559f689
AV
3064 if (new_fs) {
3065 if (&p->mnt == new_fs->root.mnt) {
3066 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 3067 rootmnt = &p->mnt;
1da177e4 3068 }
9559f689
AV
3069 if (&p->mnt == new_fs->pwd.mnt) {
3070 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 3071 pwdmnt = &p->mnt;
1da177e4 3072 }
1da177e4 3073 }
909b0a88
AV
3074 p = next_mnt(p, old);
3075 q = next_mnt(q, new);
4ce5d2b1
EB
3076 if (!q)
3077 break;
3078 while (p->mnt.mnt_root != q->mnt.mnt_root)
3079 p = next_mnt(p, old);
1da177e4 3080 }
328e6d90 3081 namespace_unlock();
1da177e4 3082
1da177e4 3083 if (rootmnt)
f03c6599 3084 mntput(rootmnt);
1da177e4 3085 if (pwdmnt)
f03c6599 3086 mntput(pwdmnt);
1da177e4 3087
741a2951 3088 return new_ns;
1da177e4
LT
3089}
3090
74e83122 3091struct dentry *mount_subtree(struct vfsmount *m, const char *name)
ea441d11 3092{
74e83122 3093 struct mount *mnt = real_mount(m);
ea441d11 3094 struct mnt_namespace *ns;
d31da0f0 3095 struct super_block *s;
ea441d11
AV
3096 struct path path;
3097 int err;
3098
74e83122
AV
3099 ns = alloc_mnt_ns(&init_user_ns, true);
3100 if (IS_ERR(ns)) {
3101 mntput(m);
ea441d11 3102 return ERR_CAST(ns);
74e83122
AV
3103 }
3104 mnt->mnt_ns = ns;
3105 ns->root = mnt;
3106 ns->mounts++;
3107 list_add(&mnt->mnt_list, &ns->list);
ea441d11 3108
74e83122 3109 err = vfs_path_lookup(m->mnt_root, m,
ea441d11
AV
3110 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3111
3112 put_mnt_ns(ns);
3113
3114 if (err)
3115 return ERR_PTR(err);
3116
3117 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
3118 s = path.mnt->mnt_sb;
3119 atomic_inc(&s->s_active);
ea441d11
AV
3120 mntput(path.mnt);
3121 /* lock the sucker */
d31da0f0 3122 down_write(&s->s_umount);
ea441d11
AV
3123 /* ... and return the root of (sub)tree on it */
3124 return path.dentry;
3125}
3126EXPORT_SYMBOL(mount_subtree);
3127
312db1aa
DB
3128int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
3129 unsigned long flags, void __user *data)
1da177e4 3130{
eca6f534
VN
3131 int ret;
3132 char *kernel_type;
eca6f534 3133 char *kernel_dev;
b40ef869 3134 void *options;
1da177e4 3135
b8850d1f
TG
3136 kernel_type = copy_mount_string(type);
3137 ret = PTR_ERR(kernel_type);
3138 if (IS_ERR(kernel_type))
eca6f534 3139 goto out_type;
1da177e4 3140
b8850d1f
TG
3141 kernel_dev = copy_mount_string(dev_name);
3142 ret = PTR_ERR(kernel_dev);
3143 if (IS_ERR(kernel_dev))
eca6f534 3144 goto out_dev;
1da177e4 3145
b40ef869
AV
3146 options = copy_mount_options(data);
3147 ret = PTR_ERR(options);
3148 if (IS_ERR(options))
eca6f534 3149 goto out_data;
1da177e4 3150
b40ef869 3151 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 3152
b40ef869 3153 kfree(options);
eca6f534
VN
3154out_data:
3155 kfree(kernel_dev);
3156out_dev:
eca6f534
VN
3157 kfree(kernel_type);
3158out_type:
3159 return ret;
1da177e4
LT
3160}
3161
312db1aa
DB
3162SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3163 char __user *, type, unsigned long, flags, void __user *, data)
3164{
3165 return ksys_mount(dev_name, dir_name, type, flags, data);
3166}
3167
afac7cba
AV
3168/*
3169 * Return true if path is reachable from root
3170 *
48a066e7 3171 * namespace_sem or mount_lock is held
afac7cba 3172 */
643822b4 3173bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
3174 const struct path *root)
3175{
643822b4 3176 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 3177 dentry = mnt->mnt_mountpoint;
0714a533 3178 mnt = mnt->mnt_parent;
afac7cba 3179 }
643822b4 3180 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
3181}
3182
640eb7e7 3183bool path_is_under(const struct path *path1, const struct path *path2)
afac7cba 3184{
25ab4c9b 3185 bool res;
48a066e7 3186 read_seqlock_excl(&mount_lock);
643822b4 3187 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 3188 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3189 return res;
3190}
3191EXPORT_SYMBOL(path_is_under);
3192
1da177e4
LT
3193/*
3194 * pivot_root Semantics:
3195 * Moves the root file system of the current process to the directory put_old,
3196 * makes new_root as the new root file system of the current process, and sets
3197 * root/cwd of all processes which had them on the current root to new_root.
3198 *
3199 * Restrictions:
3200 * The new_root and put_old must be directories, and must not be on the
3201 * same file system as the current process root. The put_old must be
3202 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3203 * pointed to by put_old must yield the same directory as new_root. No other
3204 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3205 *
4a0d11fa
NB
3206 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3207 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3208 * in this situation.
3209 *
1da177e4
LT
3210 * Notes:
3211 * - we don't move root/cwd if they are not at the root (reason: if something
3212 * cared enough to change them, it's probably wrong to force them elsewhere)
3213 * - it's okay to pick a root that isn't the root of a file system, e.g.
3214 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3215 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3216 * first.
3217 */
3480b257
HC
3218SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3219 const char __user *, put_old)
1da177e4 3220{
2d8f3038 3221 struct path new, old, parent_path, root_parent, root;
84d17192
AV
3222 struct mount *new_mnt, *root_mnt, *old_mnt;
3223 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3224 int error;
3225
9b40bc90 3226 if (!may_mount())
1da177e4
LT
3227 return -EPERM;
3228
2d8f3038 3229 error = user_path_dir(new_root, &new);
1da177e4
LT
3230 if (error)
3231 goto out0;
1da177e4 3232
2d8f3038 3233 error = user_path_dir(put_old, &old);
1da177e4
LT
3234 if (error)
3235 goto out1;
3236
2d8f3038 3237 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3238 if (error)
3239 goto out2;
1da177e4 3240
f7ad3c6b 3241 get_fs_root(current->fs, &root);
84d17192
AV
3242 old_mp = lock_mount(&old);
3243 error = PTR_ERR(old_mp);
3244 if (IS_ERR(old_mp))
b12cea91
AV
3245 goto out3;
3246
1da177e4 3247 error = -EINVAL;
419148da
AV
3248 new_mnt = real_mount(new.mnt);
3249 root_mnt = real_mount(root.mnt);
84d17192
AV
3250 old_mnt = real_mount(old.mnt);
3251 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
3252 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3253 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 3254 goto out4;
143c8c91 3255 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3256 goto out4;
5ff9d8a6
EB
3257 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3258 goto out4;
1da177e4 3259 error = -ENOENT;
f3da392e 3260 if (d_unlinked(new.dentry))
b12cea91 3261 goto out4;
1da177e4 3262 error = -EBUSY;
84d17192 3263 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3264 goto out4; /* loop, on the same file system */
1da177e4 3265 error = -EINVAL;
8c3ee42e 3266 if (root.mnt->mnt_root != root.dentry)
b12cea91 3267 goto out4; /* not a mountpoint */
676da58d 3268 if (!mnt_has_parent(root_mnt))
b12cea91 3269 goto out4; /* not attached */
84d17192 3270 root_mp = root_mnt->mnt_mp;
2d8f3038 3271 if (new.mnt->mnt_root != new.dentry)
b12cea91 3272 goto out4; /* not a mountpoint */
676da58d 3273 if (!mnt_has_parent(new_mnt))
b12cea91 3274 goto out4; /* not attached */
4ac91378 3275 /* make sure we can reach put_old from new_root */
84d17192 3276 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3277 goto out4;
0d082601
EB
3278 /* make certain new is below the root */
3279 if (!is_path_reachable(new_mnt, new.dentry, &root))
3280 goto out4;
84d17192 3281 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 3282 lock_mount_hash();
419148da
AV
3283 detach_mnt(new_mnt, &parent_path);
3284 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
3285 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3286 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3287 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3288 }
4ac91378 3289 /* mount old root on put_old */
84d17192 3290 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3291 /* mount new_root on / */
84d17192 3292 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 3293 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3294 /* A moved mount should not expire automatically */
3295 list_del_init(&new_mnt->mnt_expire);
3895dbf8 3296 put_mountpoint(root_mp);
719ea2fb 3297 unlock_mount_hash();
2d8f3038 3298 chroot_fs_refs(&root, &new);
1da177e4 3299 error = 0;
b12cea91 3300out4:
84d17192 3301 unlock_mount(old_mp);
b12cea91
AV
3302 if (!error) {
3303 path_put(&root_parent);
3304 path_put(&parent_path);
3305 }
3306out3:
8c3ee42e 3307 path_put(&root);
b12cea91 3308out2:
2d8f3038 3309 path_put(&old);
1da177e4 3310out1:
2d8f3038 3311 path_put(&new);
1da177e4 3312out0:
1da177e4 3313 return error;
1da177e4
LT
3314}
3315
3316static void __init init_mount_tree(void)
3317{
3318 struct vfsmount *mnt;
74e83122 3319 struct mount *m;
6b3286ed 3320 struct mnt_namespace *ns;
ac748a09 3321 struct path root;
0c55cfc4 3322 struct file_system_type *type;
1da177e4 3323
0c55cfc4
EB
3324 type = get_fs_type("rootfs");
3325 if (!type)
3326 panic("Can't find rootfs type");
3327 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3328 put_filesystem(type);
1da177e4
LT
3329 if (IS_ERR(mnt))
3330 panic("Can't create rootfs");
b3e19d92 3331
74e83122 3332 ns = alloc_mnt_ns(&init_user_ns, false);
3b22edc5 3333 if (IS_ERR(ns))
1da177e4 3334 panic("Can't allocate initial namespace");
74e83122
AV
3335 m = real_mount(mnt);
3336 m->mnt_ns = ns;
3337 ns->root = m;
3338 ns->mounts = 1;
3339 list_add(&m->mnt_list, &ns->list);
6b3286ed
KK
3340 init_task.nsproxy->mnt_ns = ns;
3341 get_mnt_ns(ns);
3342
be08d6d2
AV
3343 root.mnt = mnt;
3344 root.dentry = mnt->mnt_root;
da362b09 3345 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3346
3347 set_fs_pwd(current->fs, &root);
3348 set_fs_root(current->fs, &root);
1da177e4
LT
3349}
3350
74bf17cf 3351void __init mnt_init(void)
1da177e4 3352{
15a67dd8 3353 int err;
1da177e4 3354
7d6fec45 3355 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3356 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3357
0818bf27 3358 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3359 sizeof(struct hlist_head),
0818bf27 3360 mhash_entries, 19,
3d375d78 3361 HASH_ZERO,
0818bf27
AV
3362 &m_hash_shift, &m_hash_mask, 0, 0);
3363 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3364 sizeof(struct hlist_head),
3365 mphash_entries, 19,
3d375d78 3366 HASH_ZERO,
0818bf27 3367 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3368
84d17192 3369 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3370 panic("Failed to allocate mount hash table\n");
3371
4b93dc9b
TH
3372 kernfs_init();
3373
15a67dd8
RD
3374 err = sysfs_init();
3375 if (err)
3376 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3377 __func__, err);
00d26666
GKH
3378 fs_kobj = kobject_create_and_add("fs", NULL);
3379 if (!fs_kobj)
8e24eea7 3380 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3381 init_rootfs();
3382 init_mount_tree();
3383}
3384
616511d0 3385void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3386{
d498b25a 3387 if (!atomic_dec_and_test(&ns->count))
616511d0 3388 return;
7b00ed6f 3389 drop_collected_mounts(&ns->root->mnt);
771b1371 3390 free_mnt_ns(ns);
1da177e4 3391}
9d412a43 3392
d911b458 3393struct vfsmount *kern_mount(struct file_system_type *type)
9d412a43 3394{
423e0ab0 3395 struct vfsmount *mnt;
d911b458 3396 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
423e0ab0
TC
3397 if (!IS_ERR(mnt)) {
3398 /*
3399 * it is a longterm mount, don't release mnt until
3400 * we unmount before file sys is unregistered
3401 */
f7a99c5b 3402 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3403 }
3404 return mnt;
9d412a43 3405}
d911b458 3406EXPORT_SYMBOL_GPL(kern_mount);
423e0ab0
TC
3407
3408void kern_unmount(struct vfsmount *mnt)
3409{
3410 /* release long term mount so mount point can be released */
3411 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3412 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3413 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3414 mntput(mnt);
3415 }
3416}
3417EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3418
3419bool our_mnt(struct vfsmount *mnt)
3420{
143c8c91 3421 return check_mnt(real_mount(mnt));
02125a82 3422}
8823c079 3423
3151527e
EB
3424bool current_chrooted(void)
3425{
3426 /* Does the current process have a non-standard root */
3427 struct path ns_root;
3428 struct path fs_root;
3429 bool chrooted;
3430
3431 /* Find the namespace root */
3432 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3433 ns_root.dentry = ns_root.mnt->mnt_root;
3434 path_get(&ns_root);
3435 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3436 ;
3437
3438 get_fs_root(current->fs, &fs_root);
3439
3440 chrooted = !path_equal(&fs_root, &ns_root);
3441
3442 path_put(&fs_root);
3443 path_put(&ns_root);
3444
3445 return chrooted;
3446}
3447
132e4608
DH
3448static bool mnt_already_visible(struct mnt_namespace *ns,
3449 const struct super_block *sb,
8654df4e 3450 int *new_mnt_flags)
87a8ebd6 3451{
8c6cf9cc 3452 int new_flags = *new_mnt_flags;
87a8ebd6 3453 struct mount *mnt;
e51db735 3454 bool visible = false;
87a8ebd6 3455
44bb4385 3456 down_read(&namespace_sem);
87a8ebd6 3457 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 3458 struct mount *child;
77b1a97d
EB
3459 int mnt_flags;
3460
132e4608 3461 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
e51db735
EB
3462 continue;
3463
7e96c1b0
EB
3464 /* This mount is not fully visible if it's root directory
3465 * is not the root directory of the filesystem.
3466 */
3467 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3468 continue;
3469
a1935c17 3470 /* A local view of the mount flags */
77b1a97d 3471 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 3472
695e9df0 3473 /* Don't miss readonly hidden in the superblock flags */
bc98a42c 3474 if (sb_rdonly(mnt->mnt.mnt_sb))
695e9df0
EB
3475 mnt_flags |= MNT_LOCK_READONLY;
3476
8c6cf9cc
EB
3477 /* Verify the mount flags are equal to or more permissive
3478 * than the proposed new mount.
3479 */
77b1a97d 3480 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
3481 !(new_flags & MNT_READONLY))
3482 continue;
77b1a97d
EB
3483 if ((mnt_flags & MNT_LOCK_ATIME) &&
3484 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
3485 continue;
3486
ceeb0e5d
EB
3487 /* This mount is not fully visible if there are any
3488 * locked child mounts that cover anything except for
3489 * empty directories.
e51db735
EB
3490 */
3491 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3492 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 3493 /* Only worry about locked mounts */
d71ed6c9 3494 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 3495 continue;
7236c85e
EB
3496 /* Is the directory permanetly empty? */
3497 if (!is_empty_dir_inode(inode))
e51db735 3498 goto next;
87a8ebd6 3499 }
8c6cf9cc 3500 /* Preserve the locked attributes */
77b1a97d 3501 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 3502 MNT_LOCK_ATIME);
e51db735
EB
3503 visible = true;
3504 goto found;
3505 next: ;
87a8ebd6 3506 }
e51db735 3507found:
44bb4385 3508 up_read(&namespace_sem);
e51db735 3509 return visible;
87a8ebd6
EB
3510}
3511
132e4608 3512static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
8654df4e 3513{
a1935c17 3514 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
3515 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3516 unsigned long s_iflags;
3517
3518 if (ns->user_ns == &init_user_ns)
3519 return false;
3520
3521 /* Can this filesystem be too revealing? */
132e4608 3522 s_iflags = sb->s_iflags;
8654df4e
EB
3523 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3524 return false;
3525
a1935c17
EB
3526 if ((s_iflags & required_iflags) != required_iflags) {
3527 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3528 required_iflags);
3529 return true;
3530 }
3531
132e4608 3532 return !mnt_already_visible(ns, sb, new_mnt_flags);
8654df4e
EB
3533}
3534
380cf5ba
AL
3535bool mnt_may_suid(struct vfsmount *mnt)
3536{
3537 /*
3538 * Foreign mounts (accessed via fchdir or through /proc
3539 * symlinks) are always treated as if they are nosuid. This
3540 * prevents namespaces from trusting potentially unsafe
3541 * suid/sgid bits, file caps, or security labels that originate
3542 * in other namespaces.
3543 */
3544 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3545 current_in_userns(mnt->mnt_sb->s_user_ns);
3546}
3547
64964528 3548static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3549{
58be2825 3550 struct ns_common *ns = NULL;
8823c079
EB
3551 struct nsproxy *nsproxy;
3552
728dba3a
EB
3553 task_lock(task);
3554 nsproxy = task->nsproxy;
8823c079 3555 if (nsproxy) {
58be2825
AV
3556 ns = &nsproxy->mnt_ns->ns;
3557 get_mnt_ns(to_mnt_ns(ns));
8823c079 3558 }
728dba3a 3559 task_unlock(task);
8823c079
EB
3560
3561 return ns;
3562}
3563
64964528 3564static void mntns_put(struct ns_common *ns)
8823c079 3565{
58be2825 3566 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3567}
3568
64964528 3569static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3570{
3571 struct fs_struct *fs = current->fs;
4f757f3c 3572 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
8823c079 3573 struct path root;
4f757f3c 3574 int err;
8823c079 3575
0c55cfc4 3576 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3577 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3578 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3579 return -EPERM;
8823c079 3580
74e83122
AV
3581 if (is_anon_ns(mnt_ns))
3582 return -EINVAL;
3583
8823c079
EB
3584 if (fs->users != 1)
3585 return -EINVAL;
3586
3587 get_mnt_ns(mnt_ns);
4f757f3c 3588 old_mnt_ns = nsproxy->mnt_ns;
8823c079
EB
3589 nsproxy->mnt_ns = mnt_ns;
3590
3591 /* Find the root */
4f757f3c
AV
3592 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3593 "/", LOOKUP_DOWN, &root);
3594 if (err) {
3595 /* revert to old namespace */
3596 nsproxy->mnt_ns = old_mnt_ns;
3597 put_mnt_ns(mnt_ns);
3598 return err;
3599 }
8823c079 3600
4068367c
AV
3601 put_mnt_ns(old_mnt_ns);
3602
8823c079
EB
3603 /* Update the pwd and root */
3604 set_fs_pwd(fs, &root);
3605 set_fs_root(fs, &root);
3606
3607 path_put(&root);
3608 return 0;
3609}
3610
bcac25a5
AV
3611static struct user_namespace *mntns_owner(struct ns_common *ns)
3612{
3613 return to_mnt_ns(ns)->user_ns;
3614}
3615
8823c079
EB
3616const struct proc_ns_operations mntns_operations = {
3617 .name = "mnt",
3618 .type = CLONE_NEWNS,
3619 .get = mntns_get,
3620 .put = mntns_put,
3621 .install = mntns_install,
bcac25a5 3622 .owner = mntns_owner,
8823c079 3623};