]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - fs/namespace.c
vfs: syscall: Add fsmount() to create a mount for a superblock
[thirdparty/kernel/linux.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
5b825c3a 18#include <linux/cred.h>
73cd49ec 19#include <linux/idr.h>
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
a07b2000 23#include <linux/file.h>
d10577a8 24#include <linux/uaccess.h>
0bb80f24 25#include <linux/proc_ns.h>
20b4fb48 26#include <linux/magic.h>
57c8a661 27#include <linux/memblock.h>
9ea459e1 28#include <linux/task_work.h>
9164bb4a 29#include <linux/sched/task.h>
e262e32d 30#include <uapi/linux/mount.h>
9bc61ab1 31#include <linux/fs_context.h>
9164bb4a 32
07b20889 33#include "pnode.h"
948730b0 34#include "internal.h"
1da177e4 35
d2921684
EB
36/* Maximum number of mounts in a mount namespace */
37unsigned int sysctl_mount_max __read_mostly = 100000;
38
0818bf27
AV
39static unsigned int m_hash_mask __read_mostly;
40static unsigned int m_hash_shift __read_mostly;
41static unsigned int mp_hash_mask __read_mostly;
42static unsigned int mp_hash_shift __read_mostly;
43
44static __initdata unsigned long mhash_entries;
45static int __init set_mhash_entries(char *str)
46{
47 if (!str)
48 return 0;
49 mhash_entries = simple_strtoul(str, &str, 0);
50 return 1;
51}
52__setup("mhash_entries=", set_mhash_entries);
53
54static __initdata unsigned long mphash_entries;
55static int __init set_mphash_entries(char *str)
56{
57 if (!str)
58 return 0;
59 mphash_entries = simple_strtoul(str, &str, 0);
60 return 1;
61}
62__setup("mphash_entries=", set_mphash_entries);
13f14b4d 63
c7999c36 64static u64 event;
73cd49ec 65static DEFINE_IDA(mnt_id_ida);
719f5d7f 66static DEFINE_IDA(mnt_group_ida);
1da177e4 67
38129a13 68static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 69static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 70static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 71static DECLARE_RWSEM(namespace_sem);
1da177e4 72
f87fd4c2 73/* /sys/fs */
00d26666
GKH
74struct kobject *fs_kobj;
75EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 76
99b7db7b
NP
77/*
78 * vfsmount lock may be taken for read to prevent changes to the
79 * vfsmount hash, ie. during mountpoint lookups or walking back
80 * up the tree.
81 *
82 * It should be taken for write in all cases where the vfsmount
83 * tree or hash is modified or when a vfsmount structure is modified.
84 */
48a066e7 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 86
38129a13 87static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 88{
b58fed8b
RP
89 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
90 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
91 tmp = tmp + (tmp >> m_hash_shift);
92 return &mount_hashtable[tmp & m_hash_mask];
93}
94
95static inline struct hlist_head *mp_hash(struct dentry *dentry)
96{
97 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
98 tmp = tmp + (tmp >> mp_hash_shift);
99 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
100}
101
b105e270 102static int mnt_alloc_id(struct mount *mnt)
73cd49ec 103{
169b480e
MW
104 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
105
106 if (res < 0)
107 return res;
108 mnt->mnt_id = res;
109 return 0;
73cd49ec
MS
110}
111
b105e270 112static void mnt_free_id(struct mount *mnt)
73cd49ec 113{
169b480e 114 ida_free(&mnt_id_ida, mnt->mnt_id);
73cd49ec
MS
115}
116
719f5d7f
MS
117/*
118 * Allocate a new peer group ID
719f5d7f 119 */
4b8b21f4 120static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 121{
169b480e 122 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
f21f6220 123
169b480e
MW
124 if (res < 0)
125 return res;
126 mnt->mnt_group_id = res;
127 return 0;
719f5d7f
MS
128}
129
130/*
131 * Release a peer group ID
132 */
4b8b21f4 133void mnt_release_group_id(struct mount *mnt)
719f5d7f 134{
169b480e 135 ida_free(&mnt_group_ida, mnt->mnt_group_id);
15169fe7 136 mnt->mnt_group_id = 0;
719f5d7f
MS
137}
138
b3e19d92
NP
139/*
140 * vfsmount lock must be held for read
141 */
83adc753 142static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
143{
144#ifdef CONFIG_SMP
68e8a9fe 145 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
146#else
147 preempt_disable();
68e8a9fe 148 mnt->mnt_count += n;
b3e19d92
NP
149 preempt_enable();
150#endif
151}
152
b3e19d92
NP
153/*
154 * vfsmount lock must be held for write
155 */
83adc753 156unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
157{
158#ifdef CONFIG_SMP
f03c6599 159 unsigned int count = 0;
b3e19d92
NP
160 int cpu;
161
162 for_each_possible_cpu(cpu) {
68e8a9fe 163 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
164 }
165
166 return count;
167#else
68e8a9fe 168 return mnt->mnt_count;
b3e19d92
NP
169#endif
170}
171
87b95ce0
AV
172static void drop_mountpoint(struct fs_pin *p)
173{
174 struct mount *m = container_of(p, struct mount, mnt_umount);
175 dput(m->mnt_ex_mountpoint);
176 pin_remove(p);
177 mntput(&m->mnt);
178}
179
b105e270 180static struct mount *alloc_vfsmnt(const char *name)
1da177e4 181{
c63181e6
AV
182 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
183 if (mnt) {
73cd49ec
MS
184 int err;
185
c63181e6 186 err = mnt_alloc_id(mnt);
88b38782
LZ
187 if (err)
188 goto out_free_cache;
189
190 if (name) {
fcc139ae 191 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 192 if (!mnt->mnt_devname)
88b38782 193 goto out_free_id;
73cd49ec
MS
194 }
195
b3e19d92 196#ifdef CONFIG_SMP
c63181e6
AV
197 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
198 if (!mnt->mnt_pcp)
b3e19d92
NP
199 goto out_free_devname;
200
c63181e6 201 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 202#else
c63181e6
AV
203 mnt->mnt_count = 1;
204 mnt->mnt_writers = 0;
b3e19d92
NP
205#endif
206
38129a13 207 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
208 INIT_LIST_HEAD(&mnt->mnt_child);
209 INIT_LIST_HEAD(&mnt->mnt_mounts);
210 INIT_LIST_HEAD(&mnt->mnt_list);
211 INIT_LIST_HEAD(&mnt->mnt_expire);
212 INIT_LIST_HEAD(&mnt->mnt_share);
213 INIT_LIST_HEAD(&mnt->mnt_slave_list);
214 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 215 INIT_HLIST_NODE(&mnt->mnt_mp_list);
99b19d16 216 INIT_LIST_HEAD(&mnt->mnt_umounting);
87b95ce0 217 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
1da177e4 218 }
c63181e6 219 return mnt;
88b38782 220
d3ef3d73
NP
221#ifdef CONFIG_SMP
222out_free_devname:
fcc139ae 223 kfree_const(mnt->mnt_devname);
d3ef3d73 224#endif
88b38782 225out_free_id:
c63181e6 226 mnt_free_id(mnt);
88b38782 227out_free_cache:
c63181e6 228 kmem_cache_free(mnt_cache, mnt);
88b38782 229 return NULL;
1da177e4
LT
230}
231
3d733633
DH
232/*
233 * Most r/o checks on a fs are for operations that take
234 * discrete amounts of time, like a write() or unlink().
235 * We must keep track of when those operations start
236 * (for permission checks) and when they end, so that
237 * we can determine when writes are able to occur to
238 * a filesystem.
239 */
240/*
241 * __mnt_is_readonly: check whether a mount is read-only
242 * @mnt: the mount to check for its write status
243 *
244 * This shouldn't be used directly ouside of the VFS.
245 * It does not guarantee that the filesystem will stay
246 * r/w, just that it is right *now*. This can not and
247 * should not be used in place of IS_RDONLY(inode).
248 * mnt_want/drop_write() will _keep_ the filesystem
249 * r/w.
250 */
43f5e655 251bool __mnt_is_readonly(struct vfsmount *mnt)
3d733633 252{
43f5e655 253 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
3d733633
DH
254}
255EXPORT_SYMBOL_GPL(__mnt_is_readonly);
256
83adc753 257static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73
NP
258{
259#ifdef CONFIG_SMP
68e8a9fe 260 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 261#else
68e8a9fe 262 mnt->mnt_writers++;
d3ef3d73
NP
263#endif
264}
3d733633 265
83adc753 266static inline void mnt_dec_writers(struct mount *mnt)
3d733633 267{
d3ef3d73 268#ifdef CONFIG_SMP
68e8a9fe 269 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 270#else
68e8a9fe 271 mnt->mnt_writers--;
d3ef3d73 272#endif
3d733633 273}
3d733633 274
83adc753 275static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 276{
d3ef3d73
NP
277#ifdef CONFIG_SMP
278 unsigned int count = 0;
3d733633 279 int cpu;
3d733633
DH
280
281 for_each_possible_cpu(cpu) {
68e8a9fe 282 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 283 }
3d733633 284
d3ef3d73
NP
285 return count;
286#else
287 return mnt->mnt_writers;
288#endif
3d733633
DH
289}
290
4ed5e82f
MS
291static int mnt_is_readonly(struct vfsmount *mnt)
292{
293 if (mnt->mnt_sb->s_readonly_remount)
294 return 1;
295 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
296 smp_rmb();
297 return __mnt_is_readonly(mnt);
298}
299
8366025e 300/*
eb04c282
JK
301 * Most r/o & frozen checks on a fs are for operations that take discrete
302 * amounts of time, like a write() or unlink(). We must keep track of when
303 * those operations start (for permission checks) and when they end, so that we
304 * can determine when writes are able to occur to a filesystem.
8366025e
DH
305 */
306/**
eb04c282 307 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 308 * @m: the mount on which to take a write
8366025e 309 *
eb04c282
JK
310 * This tells the low-level filesystem that a write is about to be performed to
311 * it, and makes sure that writes are allowed (mnt it read-write) before
312 * returning success. This operation does not protect against filesystem being
313 * frozen. When the write operation is finished, __mnt_drop_write() must be
314 * called. This is effectively a refcount.
8366025e 315 */
eb04c282 316int __mnt_want_write(struct vfsmount *m)
8366025e 317{
83adc753 318 struct mount *mnt = real_mount(m);
3d733633 319 int ret = 0;
3d733633 320
d3ef3d73 321 preempt_disable();
c6653a83 322 mnt_inc_writers(mnt);
d3ef3d73 323 /*
c6653a83 324 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73
NP
325 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
326 * incremented count after it has set MNT_WRITE_HOLD.
327 */
328 smp_mb();
6aa7de05 329 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73
NP
330 cpu_relax();
331 /*
332 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
333 * be set to match its requirements. So we must not load that until
334 * MNT_WRITE_HOLD is cleared.
335 */
336 smp_rmb();
4ed5e82f 337 if (mnt_is_readonly(m)) {
c6653a83 338 mnt_dec_writers(mnt);
3d733633 339 ret = -EROFS;
3d733633 340 }
d3ef3d73 341 preempt_enable();
eb04c282
JK
342
343 return ret;
344}
345
346/**
347 * mnt_want_write - get write access to a mount
348 * @m: the mount on which to take a write
349 *
350 * This tells the low-level filesystem that a write is about to be performed to
351 * it, and makes sure that writes are allowed (mount is read-write, filesystem
352 * is not frozen) before returning success. When the write operation is
353 * finished, mnt_drop_write() must be called. This is effectively a refcount.
354 */
355int mnt_want_write(struct vfsmount *m)
356{
357 int ret;
358
359 sb_start_write(m->mnt_sb);
360 ret = __mnt_want_write(m);
361 if (ret)
362 sb_end_write(m->mnt_sb);
3d733633 363 return ret;
8366025e
DH
364}
365EXPORT_SYMBOL_GPL(mnt_want_write);
366
96029c4e
NP
367/**
368 * mnt_clone_write - get write access to a mount
369 * @mnt: the mount on which to take a write
370 *
371 * This is effectively like mnt_want_write, except
372 * it must only be used to take an extra write reference
373 * on a mountpoint that we already know has a write reference
374 * on it. This allows some optimisation.
375 *
376 * After finished, mnt_drop_write must be called as usual to
377 * drop the reference.
378 */
379int mnt_clone_write(struct vfsmount *mnt)
380{
381 /* superblock may be r/o */
382 if (__mnt_is_readonly(mnt))
383 return -EROFS;
384 preempt_disable();
83adc753 385 mnt_inc_writers(real_mount(mnt));
96029c4e
NP
386 preempt_enable();
387 return 0;
388}
389EXPORT_SYMBOL_GPL(mnt_clone_write);
390
391/**
eb04c282 392 * __mnt_want_write_file - get write access to a file's mount
96029c4e
NP
393 * @file: the file who's mount on which to take a write
394 *
eb04c282 395 * This is like __mnt_want_write, but it takes a file and can
96029c4e
NP
396 * do some optimisations if the file is open for write already
397 */
eb04c282 398int __mnt_want_write_file(struct file *file)
96029c4e 399{
83f936c7 400 if (!(file->f_mode & FMODE_WRITER))
eb04c282 401 return __mnt_want_write(file->f_path.mnt);
96029c4e
NP
402 else
403 return mnt_clone_write(file->f_path.mnt);
404}
eb04c282 405
7c6893e3
MS
406/**
407 * mnt_want_write_file - get write access to a file's mount
408 * @file: the file who's mount on which to take a write
409 *
410 * This is like mnt_want_write, but it takes a file and can
411 * do some optimisations if the file is open for write already
7c6893e3
MS
412 */
413int mnt_want_write_file(struct file *file)
414{
415 int ret;
416
a6795a58 417 sb_start_write(file_inode(file)->i_sb);
eb04c282
JK
418 ret = __mnt_want_write_file(file);
419 if (ret)
a6795a58 420 sb_end_write(file_inode(file)->i_sb);
7c6893e3
MS
421 return ret;
422}
96029c4e
NP
423EXPORT_SYMBOL_GPL(mnt_want_write_file);
424
8366025e 425/**
eb04c282 426 * __mnt_drop_write - give up write access to a mount
8366025e
DH
427 * @mnt: the mount on which to give up write access
428 *
429 * Tells the low-level filesystem that we are done
430 * performing writes to it. Must be matched with
eb04c282 431 * __mnt_want_write() call above.
8366025e 432 */
eb04c282 433void __mnt_drop_write(struct vfsmount *mnt)
8366025e 434{
d3ef3d73 435 preempt_disable();
83adc753 436 mnt_dec_writers(real_mount(mnt));
d3ef3d73 437 preempt_enable();
8366025e 438}
eb04c282
JK
439
440/**
441 * mnt_drop_write - give up write access to a mount
442 * @mnt: the mount on which to give up write access
443 *
444 * Tells the low-level filesystem that we are done performing writes to it and
445 * also allows filesystem to be frozen again. Must be matched with
446 * mnt_want_write() call above.
447 */
448void mnt_drop_write(struct vfsmount *mnt)
449{
450 __mnt_drop_write(mnt);
451 sb_end_write(mnt->mnt_sb);
452}
8366025e
DH
453EXPORT_SYMBOL_GPL(mnt_drop_write);
454
eb04c282
JK
455void __mnt_drop_write_file(struct file *file)
456{
457 __mnt_drop_write(file->f_path.mnt);
458}
459
7c6893e3
MS
460void mnt_drop_write_file(struct file *file)
461{
a6795a58 462 __mnt_drop_write_file(file);
7c6893e3
MS
463 sb_end_write(file_inode(file)->i_sb);
464}
2a79f17e
AV
465EXPORT_SYMBOL(mnt_drop_write_file);
466
83adc753 467static int mnt_make_readonly(struct mount *mnt)
8366025e 468{
3d733633
DH
469 int ret = 0;
470
719ea2fb 471 lock_mount_hash();
83adc753 472 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 473 /*
d3ef3d73
NP
474 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
475 * should be visible before we do.
3d733633 476 */
d3ef3d73
NP
477 smp_mb();
478
3d733633 479 /*
d3ef3d73
NP
480 * With writers on hold, if this value is zero, then there are
481 * definitely no active writers (although held writers may subsequently
482 * increment the count, they'll have to wait, and decrement it after
483 * seeing MNT_READONLY).
484 *
485 * It is OK to have counter incremented on one CPU and decremented on
486 * another: the sum will add up correctly. The danger would be when we
487 * sum up each counter, if we read a counter before it is incremented,
488 * but then read another CPU's count which it has been subsequently
489 * decremented from -- we would see more decrements than we should.
490 * MNT_WRITE_HOLD protects against this scenario, because
491 * mnt_want_write first increments count, then smp_mb, then spins on
492 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
493 * we're counting up here.
3d733633 494 */
c6653a83 495 if (mnt_get_writers(mnt) > 0)
d3ef3d73
NP
496 ret = -EBUSY;
497 else
83adc753 498 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73
NP
499 /*
500 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
501 * that become unheld will see MNT_READONLY.
502 */
503 smp_wmb();
83adc753 504 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 505 unlock_mount_hash();
3d733633 506 return ret;
8366025e 507}
8366025e 508
43f5e655 509static int __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 510{
719ea2fb 511 lock_mount_hash();
83adc753 512 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 513 unlock_mount_hash();
43f5e655 514 return 0;
2e4b7fcd
DH
515}
516
4ed5e82f
MS
517int sb_prepare_remount_readonly(struct super_block *sb)
518{
519 struct mount *mnt;
520 int err = 0;
521
8e8b8796
MS
522 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
523 if (atomic_long_read(&sb->s_remove_count))
524 return -EBUSY;
525
719ea2fb 526 lock_mount_hash();
4ed5e82f
MS
527 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
528 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
529 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
530 smp_mb();
531 if (mnt_get_writers(mnt) > 0) {
532 err = -EBUSY;
533 break;
534 }
535 }
536 }
8e8b8796
MS
537 if (!err && atomic_long_read(&sb->s_remove_count))
538 err = -EBUSY;
539
4ed5e82f
MS
540 if (!err) {
541 sb->s_readonly_remount = 1;
542 smp_wmb();
543 }
544 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
545 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
546 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
547 }
719ea2fb 548 unlock_mount_hash();
4ed5e82f
MS
549
550 return err;
551}
552
b105e270 553static void free_vfsmnt(struct mount *mnt)
1da177e4 554{
fcc139ae 555 kfree_const(mnt->mnt_devname);
d3ef3d73 556#ifdef CONFIG_SMP
68e8a9fe 557 free_percpu(mnt->mnt_pcp);
d3ef3d73 558#endif
b105e270 559 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
560}
561
8ffcb32e
DH
562static void delayed_free_vfsmnt(struct rcu_head *head)
563{
564 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
565}
566
48a066e7 567/* call under rcu_read_lock */
294d71ff 568int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
569{
570 struct mount *mnt;
571 if (read_seqretry(&mount_lock, seq))
294d71ff 572 return 1;
48a066e7 573 if (bastard == NULL)
294d71ff 574 return 0;
48a066e7
AV
575 mnt = real_mount(bastard);
576 mnt_add_count(mnt, 1);
119e1ef8 577 smp_mb(); // see mntput_no_expire()
48a066e7 578 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 579 return 0;
48a066e7
AV
580 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
581 mnt_add_count(mnt, -1);
294d71ff
AV
582 return 1;
583 }
119e1ef8
AV
584 lock_mount_hash();
585 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
586 mnt_add_count(mnt, -1);
587 unlock_mount_hash();
588 return 1;
589 }
590 unlock_mount_hash();
591 /* caller will mntput() */
294d71ff
AV
592 return -1;
593}
594
595/* call under rcu_read_lock */
596bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
597{
598 int res = __legitimize_mnt(bastard, seq);
599 if (likely(!res))
600 return true;
601 if (unlikely(res < 0)) {
602 rcu_read_unlock();
603 mntput(bastard);
604 rcu_read_lock();
48a066e7 605 }
48a066e7
AV
606 return false;
607}
608
1da177e4 609/*
474279dc 610 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 611 * call under rcu_read_lock()
1da177e4 612 */
474279dc 613struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 614{
38129a13 615 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
616 struct mount *p;
617
38129a13 618 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
619 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
620 return p;
621 return NULL;
622}
623
a05964f3 624/*
f015f126
DH
625 * lookup_mnt - Return the first child mount mounted at path
626 *
627 * "First" means first mounted chronologically. If you create the
628 * following mounts:
629 *
630 * mount /dev/sda1 /mnt
631 * mount /dev/sda2 /mnt
632 * mount /dev/sda3 /mnt
633 *
634 * Then lookup_mnt() on the base /mnt dentry in the root mount will
635 * return successively the root dentry and vfsmount of /dev/sda1, then
636 * /dev/sda2, then /dev/sda3, then NULL.
637 *
638 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 639 */
ca71cf71 640struct vfsmount *lookup_mnt(const struct path *path)
a05964f3 641{
c7105365 642 struct mount *child_mnt;
48a066e7
AV
643 struct vfsmount *m;
644 unsigned seq;
99b7db7b 645
48a066e7
AV
646 rcu_read_lock();
647 do {
648 seq = read_seqbegin(&mount_lock);
649 child_mnt = __lookup_mnt(path->mnt, path->dentry);
650 m = child_mnt ? &child_mnt->mnt : NULL;
651 } while (!legitimize_mnt(m, seq));
652 rcu_read_unlock();
653 return m;
a05964f3
RP
654}
655
7af1364f
EB
656/*
657 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
658 * current mount namespace.
659 *
660 * The common case is dentries are not mountpoints at all and that
661 * test is handled inline. For the slow case when we are actually
662 * dealing with a mountpoint of some kind, walk through all of the
663 * mounts in the current mount namespace and test to see if the dentry
664 * is a mountpoint.
665 *
666 * The mount_hashtable is not usable in the context because we
667 * need to identify all mounts that may be in the current mount
668 * namespace not just a mount that happens to have some specified
669 * parent mount.
670 */
671bool __is_local_mountpoint(struct dentry *dentry)
672{
673 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
674 struct mount *mnt;
675 bool is_covered = false;
676
677 if (!d_mountpoint(dentry))
678 goto out;
679
680 down_read(&namespace_sem);
681 list_for_each_entry(mnt, &ns->list, mnt_list) {
682 is_covered = (mnt->mnt_mountpoint == dentry);
683 if (is_covered)
684 break;
685 }
686 up_read(&namespace_sem);
687out:
688 return is_covered;
689}
690
e2dfa935 691static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 692{
0818bf27 693 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
694 struct mountpoint *mp;
695
0818bf27 696 hlist_for_each_entry(mp, chain, m_hash) {
84d17192 697 if (mp->m_dentry == dentry) {
84d17192
AV
698 mp->m_count++;
699 return mp;
700 }
701 }
e2dfa935
EB
702 return NULL;
703}
704
3895dbf8 705static struct mountpoint *get_mountpoint(struct dentry *dentry)
e2dfa935 706{
3895dbf8 707 struct mountpoint *mp, *new = NULL;
e2dfa935 708 int ret;
84d17192 709
3895dbf8 710 if (d_mountpoint(dentry)) {
1e9c75fb
BC
711 /* might be worth a WARN_ON() */
712 if (d_unlinked(dentry))
713 return ERR_PTR(-ENOENT);
3895dbf8
EB
714mountpoint:
715 read_seqlock_excl(&mount_lock);
716 mp = lookup_mountpoint(dentry);
717 read_sequnlock_excl(&mount_lock);
718 if (mp)
719 goto done;
720 }
721
722 if (!new)
723 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
724 if (!new)
84d17192
AV
725 return ERR_PTR(-ENOMEM);
726
3895dbf8
EB
727
728 /* Exactly one processes may set d_mounted */
eed81007 729 ret = d_set_mounted(dentry);
eed81007 730
3895dbf8
EB
731 /* Someone else set d_mounted? */
732 if (ret == -EBUSY)
733 goto mountpoint;
734
735 /* The dentry is not available as a mountpoint? */
736 mp = ERR_PTR(ret);
737 if (ret)
738 goto done;
739
740 /* Add the new mountpoint to the hash table */
741 read_seqlock_excl(&mount_lock);
742 new->m_dentry = dentry;
743 new->m_count = 1;
744 hlist_add_head(&new->m_hash, mp_hash(dentry));
745 INIT_HLIST_HEAD(&new->m_list);
746 read_sequnlock_excl(&mount_lock);
747
748 mp = new;
749 new = NULL;
750done:
751 kfree(new);
84d17192
AV
752 return mp;
753}
754
755static void put_mountpoint(struct mountpoint *mp)
756{
757 if (!--mp->m_count) {
758 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 759 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
760 spin_lock(&dentry->d_lock);
761 dentry->d_flags &= ~DCACHE_MOUNTED;
762 spin_unlock(&dentry->d_lock);
0818bf27 763 hlist_del(&mp->m_hash);
84d17192
AV
764 kfree(mp);
765 }
766}
767
143c8c91 768static inline int check_mnt(struct mount *mnt)
1da177e4 769{
6b3286ed 770 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
771}
772
99b7db7b
NP
773/*
774 * vfsmount lock must be held for write
775 */
6b3286ed 776static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
777{
778 if (ns) {
779 ns->event = ++event;
780 wake_up_interruptible(&ns->poll);
781 }
782}
783
99b7db7b
NP
784/*
785 * vfsmount lock must be held for write
786 */
6b3286ed 787static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
788{
789 if (ns && ns->event != event) {
790 ns->event = event;
791 wake_up_interruptible(&ns->poll);
792 }
793}
794
99b7db7b
NP
795/*
796 * vfsmount lock must be held for write
797 */
7bdb11de 798static void unhash_mnt(struct mount *mnt)
419148da 799{
0714a533 800 mnt->mnt_parent = mnt;
a73324da 801 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 802 list_del_init(&mnt->mnt_child);
38129a13 803 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 804 hlist_del_init(&mnt->mnt_mp_list);
84d17192
AV
805 put_mountpoint(mnt->mnt_mp);
806 mnt->mnt_mp = NULL;
1da177e4
LT
807}
808
7bdb11de
EB
809/*
810 * vfsmount lock must be held for write
811 */
812static void detach_mnt(struct mount *mnt, struct path *old_path)
813{
814 old_path->dentry = mnt->mnt_mountpoint;
815 old_path->mnt = &mnt->mnt_parent->mnt;
816 unhash_mnt(mnt);
817}
818
6a46c573
EB
819/*
820 * vfsmount lock must be held for write
821 */
822static void umount_mnt(struct mount *mnt)
823{
824 /* old mountpoint will be dropped when we can do that */
825 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
826 unhash_mnt(mnt);
827}
828
99b7db7b
NP
829/*
830 * vfsmount lock must be held for write
831 */
84d17192
AV
832void mnt_set_mountpoint(struct mount *mnt,
833 struct mountpoint *mp,
44d964d6 834 struct mount *child_mnt)
b90fa9ae 835{
84d17192 836 mp->m_count++;
3a2393d7 837 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 838 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 839 child_mnt->mnt_parent = mnt;
84d17192 840 child_mnt->mnt_mp = mp;
0a5eb7c8 841 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
842}
843
1064f874
EB
844static void __attach_mnt(struct mount *mnt, struct mount *parent)
845{
846 hlist_add_head_rcu(&mnt->mnt_hash,
847 m_hash(&parent->mnt, mnt->mnt_mountpoint));
848 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
849}
850
99b7db7b
NP
851/*
852 * vfsmount lock must be held for write
853 */
84d17192
AV
854static void attach_mnt(struct mount *mnt,
855 struct mount *parent,
856 struct mountpoint *mp)
1da177e4 857{
84d17192 858 mnt_set_mountpoint(parent, mp, mnt);
1064f874 859 __attach_mnt(mnt, parent);
b90fa9ae
RP
860}
861
1064f874 862void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
12a5b529 863{
1064f874
EB
864 struct mountpoint *old_mp = mnt->mnt_mp;
865 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
866 struct mount *old_parent = mnt->mnt_parent;
867
868 list_del_init(&mnt->mnt_child);
869 hlist_del_init(&mnt->mnt_mp_list);
870 hlist_del_init_rcu(&mnt->mnt_hash);
871
872 attach_mnt(mnt, parent, mp);
873
874 put_mountpoint(old_mp);
875
876 /*
877 * Safely avoid even the suggestion this code might sleep or
878 * lock the mount hash by taking advantage of the knowledge that
879 * mnt_change_mountpoint will not release the final reference
880 * to a mountpoint.
881 *
882 * During mounting, the mount passed in as the parent mount will
883 * continue to use the old mountpoint and during unmounting, the
884 * old mountpoint will continue to exist until namespace_unlock,
885 * which happens well after mnt_change_mountpoint.
886 */
887 spin_lock(&old_mountpoint->d_lock);
888 old_mountpoint->d_lockref.count--;
889 spin_unlock(&old_mountpoint->d_lock);
890
891 mnt_add_count(old_parent, -1);
12a5b529
AV
892}
893
b90fa9ae 894/*
99b7db7b 895 * vfsmount lock must be held for write
b90fa9ae 896 */
1064f874 897static void commit_tree(struct mount *mnt)
b90fa9ae 898{
0714a533 899 struct mount *parent = mnt->mnt_parent;
83adc753 900 struct mount *m;
b90fa9ae 901 LIST_HEAD(head);
143c8c91 902 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 903
0714a533 904 BUG_ON(parent == mnt);
b90fa9ae 905
1a4eeaf2 906 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 907 list_for_each_entry(m, &head, mnt_list)
143c8c91 908 m->mnt_ns = n;
f03c6599 909
b90fa9ae
RP
910 list_splice(&head, n->list.prev);
911
d2921684
EB
912 n->mounts += n->pending_mounts;
913 n->pending_mounts = 0;
914
1064f874 915 __attach_mnt(mnt, parent);
6b3286ed 916 touch_mnt_namespace(n);
1da177e4
LT
917}
918
909b0a88 919static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 920{
6b41d536
AV
921 struct list_head *next = p->mnt_mounts.next;
922 if (next == &p->mnt_mounts) {
1da177e4 923 while (1) {
909b0a88 924 if (p == root)
1da177e4 925 return NULL;
6b41d536
AV
926 next = p->mnt_child.next;
927 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 928 break;
0714a533 929 p = p->mnt_parent;
1da177e4
LT
930 }
931 }
6b41d536 932 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
933}
934
315fc83e 935static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 936{
6b41d536
AV
937 struct list_head *prev = p->mnt_mounts.prev;
938 while (prev != &p->mnt_mounts) {
939 p = list_entry(prev, struct mount, mnt_child);
940 prev = p->mnt_mounts.prev;
9676f0c6
RP
941 }
942 return p;
943}
944
8f291889
AV
945/**
946 * vfs_create_mount - Create a mount for a configured superblock
947 * @fc: The configuration context with the superblock attached
948 *
949 * Create a mount to an already configured superblock. If necessary, the
950 * caller should invoke vfs_get_tree() before calling this.
951 *
952 * Note that this does not attach the mount to anything.
953 */
954struct vfsmount *vfs_create_mount(struct fs_context *fc)
9d412a43 955{
b105e270 956 struct mount *mnt;
9d412a43 957
8f291889
AV
958 if (!fc->root)
959 return ERR_PTR(-EINVAL);
9d412a43 960
8f291889 961 mnt = alloc_vfsmnt(fc->source ?: "none");
9d412a43
AV
962 if (!mnt)
963 return ERR_PTR(-ENOMEM);
964
8f291889 965 if (fc->sb_flags & SB_KERNMOUNT)
b105e270 966 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43 967
8f291889
AV
968 atomic_inc(&fc->root->d_sb->s_active);
969 mnt->mnt.mnt_sb = fc->root->d_sb;
970 mnt->mnt.mnt_root = dget(fc->root);
971 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
972 mnt->mnt_parent = mnt;
9d412a43 973
719ea2fb 974 lock_mount_hash();
8f291889 975 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
719ea2fb 976 unlock_mount_hash();
b105e270 977 return &mnt->mnt;
9d412a43 978}
8f291889
AV
979EXPORT_SYMBOL(vfs_create_mount);
980
981struct vfsmount *fc_mount(struct fs_context *fc)
982{
983 int err = vfs_get_tree(fc);
984 if (!err) {
985 up_write(&fc->root->d_sb->s_umount);
986 return vfs_create_mount(fc);
987 }
988 return ERR_PTR(err);
989}
990EXPORT_SYMBOL(fc_mount);
991
9bc61ab1
DH
992struct vfsmount *vfs_kern_mount(struct file_system_type *type,
993 int flags, const char *name,
994 void *data)
9d412a43 995{
9bc61ab1 996 struct fs_context *fc;
8f291889 997 struct vfsmount *mnt;
9bc61ab1 998 int ret = 0;
9d412a43
AV
999
1000 if (!type)
3e1aeb00 1001 return ERR_PTR(-EINVAL);
9d412a43 1002
9bc61ab1
DH
1003 fc = fs_context_for_mount(type, flags);
1004 if (IS_ERR(fc))
1005 return ERR_CAST(fc);
1006
3e1aeb00
DH
1007 if (name)
1008 ret = vfs_parse_fs_string(fc, "source",
1009 name, strlen(name));
9bc61ab1
DH
1010 if (!ret)
1011 ret = parse_monolithic_mount_data(fc, data);
1012 if (!ret)
8f291889
AV
1013 mnt = fc_mount(fc);
1014 else
1015 mnt = ERR_PTR(ret);
9d412a43 1016
9bc61ab1 1017 put_fs_context(fc);
8f291889 1018 return mnt;
9d412a43
AV
1019}
1020EXPORT_SYMBOL_GPL(vfs_kern_mount);
1021
93faccbb
EB
1022struct vfsmount *
1023vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1024 const char *name, void *data)
1025{
1026 /* Until it is worked out how to pass the user namespace
1027 * through from the parent mount to the submount don't support
1028 * unprivileged mounts with submounts.
1029 */
1030 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1031 return ERR_PTR(-EPERM);
1032
e462ec50 1033 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
93faccbb
EB
1034}
1035EXPORT_SYMBOL_GPL(vfs_submount);
1036
87129cc0 1037static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 1038 int flag)
1da177e4 1039{
87129cc0 1040 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
1041 struct mount *mnt;
1042 int err;
1da177e4 1043
be34d1a3
DH
1044 mnt = alloc_vfsmnt(old->mnt_devname);
1045 if (!mnt)
1046 return ERR_PTR(-ENOMEM);
719f5d7f 1047
7a472ef4 1048 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
1049 mnt->mnt_group_id = 0; /* not a peer of original */
1050 else
1051 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 1052
be34d1a3
DH
1053 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1054 err = mnt_alloc_group_id(mnt);
1055 if (err)
1056 goto out_free;
1da177e4 1057 }
be34d1a3 1058
16a34adb
AV
1059 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1060 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
5ff9d8a6 1061
be34d1a3
DH
1062 atomic_inc(&sb->s_active);
1063 mnt->mnt.mnt_sb = sb;
1064 mnt->mnt.mnt_root = dget(root);
1065 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1066 mnt->mnt_parent = mnt;
719ea2fb 1067 lock_mount_hash();
be34d1a3 1068 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1069 unlock_mount_hash();
be34d1a3 1070
7a472ef4
EB
1071 if ((flag & CL_SLAVE) ||
1072 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1073 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1074 mnt->mnt_master = old;
1075 CLEAR_MNT_SHARED(mnt);
1076 } else if (!(flag & CL_PRIVATE)) {
1077 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1078 list_add(&mnt->mnt_share, &old->mnt_share);
1079 if (IS_MNT_SLAVE(old))
1080 list_add(&mnt->mnt_slave, &old->mnt_slave);
1081 mnt->mnt_master = old->mnt_master;
5235d448
AV
1082 } else {
1083 CLEAR_MNT_SHARED(mnt);
be34d1a3
DH
1084 }
1085 if (flag & CL_MAKE_SHARED)
1086 set_mnt_shared(mnt);
1087
1088 /* stick the duplicate mount on the same expiry list
1089 * as the original if that was on one */
1090 if (flag & CL_EXPIRE) {
1091 if (!list_empty(&old->mnt_expire))
1092 list_add(&mnt->mnt_expire, &old->mnt_expire);
1093 }
1094
cb338d06 1095 return mnt;
719f5d7f
MS
1096
1097 out_free:
8ffcb32e 1098 mnt_free_id(mnt);
719f5d7f 1099 free_vfsmnt(mnt);
be34d1a3 1100 return ERR_PTR(err);
1da177e4
LT
1101}
1102
9ea459e1
AV
1103static void cleanup_mnt(struct mount *mnt)
1104{
1105 /*
1106 * This probably indicates that somebody messed
1107 * up a mnt_want/drop_write() pair. If this
1108 * happens, the filesystem was probably unable
1109 * to make r/w->r/o transitions.
1110 */
1111 /*
1112 * The locking used to deal with mnt_count decrement provides barriers,
1113 * so mnt_get_writers() below is safe.
1114 */
1115 WARN_ON(mnt_get_writers(mnt));
1116 if (unlikely(mnt->mnt_pins.first))
1117 mnt_pin_kill(mnt);
1118 fsnotify_vfsmount_delete(&mnt->mnt);
1119 dput(mnt->mnt.mnt_root);
1120 deactivate_super(mnt->mnt.mnt_sb);
1121 mnt_free_id(mnt);
1122 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1123}
1124
1125static void __cleanup_mnt(struct rcu_head *head)
1126{
1127 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1128}
1129
1130static LLIST_HEAD(delayed_mntput_list);
1131static void delayed_mntput(struct work_struct *unused)
1132{
1133 struct llist_node *node = llist_del_all(&delayed_mntput_list);
29785735 1134 struct mount *m, *t;
9ea459e1 1135
29785735
BP
1136 llist_for_each_entry_safe(m, t, node, mnt_llist)
1137 cleanup_mnt(m);
9ea459e1
AV
1138}
1139static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1140
900148dc 1141static void mntput_no_expire(struct mount *mnt)
b3e19d92 1142{
48a066e7 1143 rcu_read_lock();
9ea0a46c
AV
1144 if (likely(READ_ONCE(mnt->mnt_ns))) {
1145 /*
1146 * Since we don't do lock_mount_hash() here,
1147 * ->mnt_ns can change under us. However, if it's
1148 * non-NULL, then there's a reference that won't
1149 * be dropped until after an RCU delay done after
1150 * turning ->mnt_ns NULL. So if we observe it
1151 * non-NULL under rcu_read_lock(), the reference
1152 * we are dropping is not the final one.
1153 */
1154 mnt_add_count(mnt, -1);
48a066e7 1155 rcu_read_unlock();
f03c6599 1156 return;
b3e19d92 1157 }
719ea2fb 1158 lock_mount_hash();
119e1ef8
AV
1159 /*
1160 * make sure that if __legitimize_mnt() has not seen us grab
1161 * mount_lock, we'll see their refcount increment here.
1162 */
1163 smp_mb();
9ea0a46c 1164 mnt_add_count(mnt, -1);
b3e19d92 1165 if (mnt_get_count(mnt)) {
48a066e7 1166 rcu_read_unlock();
719ea2fb 1167 unlock_mount_hash();
99b7db7b
NP
1168 return;
1169 }
48a066e7
AV
1170 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1171 rcu_read_unlock();
1172 unlock_mount_hash();
1173 return;
1174 }
1175 mnt->mnt.mnt_flags |= MNT_DOOMED;
1176 rcu_read_unlock();
962830df 1177
39f7c4db 1178 list_del(&mnt->mnt_instance);
ce07d891
EB
1179
1180 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1181 struct mount *p, *tmp;
1182 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1183 umount_mnt(p);
1184 }
1185 }
719ea2fb 1186 unlock_mount_hash();
649a795a 1187
9ea459e1
AV
1188 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1189 struct task_struct *task = current;
1190 if (likely(!(task->flags & PF_KTHREAD))) {
1191 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1192 if (!task_work_add(task, &mnt->mnt_rcu, true))
1193 return;
1194 }
1195 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1196 schedule_delayed_work(&delayed_mntput_work, 1);
1197 return;
1198 }
1199 cleanup_mnt(mnt);
b3e19d92 1200}
b3e19d92
NP
1201
1202void mntput(struct vfsmount *mnt)
1203{
1204 if (mnt) {
863d684f 1205 struct mount *m = real_mount(mnt);
b3e19d92 1206 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1207 if (unlikely(m->mnt_expiry_mark))
1208 m->mnt_expiry_mark = 0;
1209 mntput_no_expire(m);
b3e19d92
NP
1210 }
1211}
1212EXPORT_SYMBOL(mntput);
1213
1214struct vfsmount *mntget(struct vfsmount *mnt)
1215{
1216 if (mnt)
83adc753 1217 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1218 return mnt;
1219}
1220EXPORT_SYMBOL(mntget);
1221
c6609c0a
IK
1222/* path_is_mountpoint() - Check if path is a mount in the current
1223 * namespace.
1224 *
1225 * d_mountpoint() can only be used reliably to establish if a dentry is
1226 * not mounted in any namespace and that common case is handled inline.
1227 * d_mountpoint() isn't aware of the possibility there may be multiple
1228 * mounts using a given dentry in a different namespace. This function
1229 * checks if the passed in path is a mountpoint rather than the dentry
1230 * alone.
1231 */
1232bool path_is_mountpoint(const struct path *path)
1233{
1234 unsigned seq;
1235 bool res;
1236
1237 if (!d_mountpoint(path->dentry))
1238 return false;
1239
1240 rcu_read_lock();
1241 do {
1242 seq = read_seqbegin(&mount_lock);
1243 res = __path_is_mountpoint(path);
1244 } while (read_seqretry(&mount_lock, seq));
1245 rcu_read_unlock();
1246
1247 return res;
1248}
1249EXPORT_SYMBOL(path_is_mountpoint);
1250
ca71cf71 1251struct vfsmount *mnt_clone_internal(const struct path *path)
7b7b1ace 1252{
3064c356
AV
1253 struct mount *p;
1254 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1255 if (IS_ERR(p))
1256 return ERR_CAST(p);
1257 p->mnt.mnt_flags |= MNT_INTERNAL;
1258 return &p->mnt;
7b7b1ace 1259}
1da177e4 1260
a1a2c409 1261#ifdef CONFIG_PROC_FS
0226f492 1262/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1263static void *m_start(struct seq_file *m, loff_t *pos)
1264{
ede1bf0d 1265 struct proc_mounts *p = m->private;
1da177e4 1266
390c6843 1267 down_read(&namespace_sem);
c7999c36
AV
1268 if (p->cached_event == p->ns->event) {
1269 void *v = p->cached_mount;
1270 if (*pos == p->cached_index)
1271 return v;
1272 if (*pos == p->cached_index + 1) {
1273 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1274 return p->cached_mount = v;
1275 }
1276 }
1277
1278 p->cached_event = p->ns->event;
1279 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1280 p->cached_index = *pos;
1281 return p->cached_mount;
1da177e4
LT
1282}
1283
1284static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1285{
ede1bf0d 1286 struct proc_mounts *p = m->private;
b0765fb8 1287
c7999c36
AV
1288 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1289 p->cached_index = *pos;
1290 return p->cached_mount;
1da177e4
LT
1291}
1292
1293static void m_stop(struct seq_file *m, void *v)
1294{
390c6843 1295 up_read(&namespace_sem);
1da177e4
LT
1296}
1297
0226f492 1298static int m_show(struct seq_file *m, void *v)
2d4d4864 1299{
ede1bf0d 1300 struct proc_mounts *p = m->private;
1a4eeaf2 1301 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1302 return p->show(m, &r->mnt);
1da177e4
LT
1303}
1304
a1a2c409 1305const struct seq_operations mounts_op = {
1da177e4
LT
1306 .start = m_start,
1307 .next = m_next,
1308 .stop = m_stop,
0226f492 1309 .show = m_show,
b4629fe2 1310};
a1a2c409 1311#endif /* CONFIG_PROC_FS */
b4629fe2 1312
1da177e4
LT
1313/**
1314 * may_umount_tree - check if a mount tree is busy
1315 * @mnt: root of mount tree
1316 *
1317 * This is called to check if a tree of mounts has any
1318 * open files, pwds, chroots or sub mounts that are
1319 * busy.
1320 */
909b0a88 1321int may_umount_tree(struct vfsmount *m)
1da177e4 1322{
909b0a88 1323 struct mount *mnt = real_mount(m);
36341f64
RP
1324 int actual_refs = 0;
1325 int minimum_refs = 0;
315fc83e 1326 struct mount *p;
909b0a88 1327 BUG_ON(!m);
1da177e4 1328
b3e19d92 1329 /* write lock needed for mnt_get_count */
719ea2fb 1330 lock_mount_hash();
909b0a88 1331 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1332 actual_refs += mnt_get_count(p);
1da177e4 1333 minimum_refs += 2;
1da177e4 1334 }
719ea2fb 1335 unlock_mount_hash();
1da177e4
LT
1336
1337 if (actual_refs > minimum_refs)
e3474a8e 1338 return 0;
1da177e4 1339
e3474a8e 1340 return 1;
1da177e4
LT
1341}
1342
1343EXPORT_SYMBOL(may_umount_tree);
1344
1345/**
1346 * may_umount - check if a mount point is busy
1347 * @mnt: root of mount
1348 *
1349 * This is called to check if a mount point has any
1350 * open files, pwds, chroots or sub mounts. If the
1351 * mount has sub mounts this will return busy
1352 * regardless of whether the sub mounts are busy.
1353 *
1354 * Doesn't take quota and stuff into account. IOW, in some cases it will
1355 * give false negatives. The main reason why it's here is that we need
1356 * a non-destructive way to look for easily umountable filesystems.
1357 */
1358int may_umount(struct vfsmount *mnt)
1359{
e3474a8e 1360 int ret = 1;
8ad08d8a 1361 down_read(&namespace_sem);
719ea2fb 1362 lock_mount_hash();
1ab59738 1363 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1364 ret = 0;
719ea2fb 1365 unlock_mount_hash();
8ad08d8a 1366 up_read(&namespace_sem);
a05964f3 1367 return ret;
1da177e4
LT
1368}
1369
1370EXPORT_SYMBOL(may_umount);
1371
38129a13 1372static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1373
97216be0 1374static void namespace_unlock(void)
70fbcdf4 1375{
a3b3c562 1376 struct hlist_head head;
97216be0 1377
a3b3c562 1378 hlist_move_list(&unmounted, &head);
97216be0 1379
97216be0
AV
1380 up_write(&namespace_sem);
1381
a3b3c562
EB
1382 if (likely(hlist_empty(&head)))
1383 return;
1384
22cb7405 1385 synchronize_rcu_expedited();
48a066e7 1386
87b95ce0 1387 group_pin_kill(&head);
70fbcdf4
RP
1388}
1389
97216be0 1390static inline void namespace_lock(void)
e3197d83 1391{
97216be0 1392 down_write(&namespace_sem);
e3197d83
AV
1393}
1394
e819f152
EB
1395enum umount_tree_flags {
1396 UMOUNT_SYNC = 1,
1397 UMOUNT_PROPAGATE = 2,
e0c9c0af 1398 UMOUNT_CONNECTED = 4,
e819f152 1399};
f2d0a123
EB
1400
1401static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1402{
1403 /* Leaving mounts connected is only valid for lazy umounts */
1404 if (how & UMOUNT_SYNC)
1405 return true;
1406
1407 /* A mount without a parent has nothing to be connected to */
1408 if (!mnt_has_parent(mnt))
1409 return true;
1410
1411 /* Because the reference counting rules change when mounts are
1412 * unmounted and connected, umounted mounts may not be
1413 * connected to mounted mounts.
1414 */
1415 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1416 return true;
1417
1418 /* Has it been requested that the mount remain connected? */
1419 if (how & UMOUNT_CONNECTED)
1420 return false;
1421
1422 /* Is the mount locked such that it needs to remain connected? */
1423 if (IS_MNT_LOCKED(mnt))
1424 return false;
1425
1426 /* By default disconnect the mount */
1427 return true;
1428}
1429
99b7db7b 1430/*
48a066e7 1431 * mount_lock must be held
99b7db7b
NP
1432 * namespace_sem must be held for write
1433 */
e819f152 1434static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1435{
c003b26f 1436 LIST_HEAD(tmp_list);
315fc83e 1437 struct mount *p;
1da177e4 1438
5d88457e
EB
1439 if (how & UMOUNT_PROPAGATE)
1440 propagate_mount_unlock(mnt);
1441
c003b26f 1442 /* Gather the mounts to umount */
590ce4bc
EB
1443 for (p = mnt; p; p = next_mnt(p, mnt)) {
1444 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1445 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1446 }
1da177e4 1447
411a938b 1448 /* Hide the mounts from mnt_mounts */
c003b26f 1449 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1450 list_del_init(&p->mnt_child);
c003b26f 1451 }
88b368f2 1452
c003b26f 1453 /* Add propogated mounts to the tmp_list */
e819f152 1454 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1455 propagate_umount(&tmp_list);
a05964f3 1456
c003b26f 1457 while (!list_empty(&tmp_list)) {
d2921684 1458 struct mnt_namespace *ns;
ce07d891 1459 bool disconnect;
c003b26f 1460 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1461 list_del_init(&p->mnt_expire);
1a4eeaf2 1462 list_del_init(&p->mnt_list);
d2921684
EB
1463 ns = p->mnt_ns;
1464 if (ns) {
1465 ns->mounts--;
1466 __touch_mnt_namespace(ns);
1467 }
143c8c91 1468 p->mnt_ns = NULL;
e819f152 1469 if (how & UMOUNT_SYNC)
48a066e7 1470 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1471
f2d0a123 1472 disconnect = disconnect_mount(p, how);
ce07d891
EB
1473
1474 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1475 disconnect ? &unmounted : NULL);
676da58d 1476 if (mnt_has_parent(p)) {
81b6b061 1477 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1478 if (!disconnect) {
1479 /* Don't forget about p */
1480 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1481 } else {
1482 umount_mnt(p);
1483 }
7c4b93d8 1484 }
0f0afb1d 1485 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1486 }
1487}
1488
b54b9be7 1489static void shrink_submounts(struct mount *mnt);
c35038be 1490
8d0347f6
DH
1491static int do_umount_root(struct super_block *sb)
1492{
1493 int ret = 0;
1494
1495 down_write(&sb->s_umount);
1496 if (!sb_rdonly(sb)) {
1497 struct fs_context *fc;
1498
1499 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1500 SB_RDONLY);
1501 if (IS_ERR(fc)) {
1502 ret = PTR_ERR(fc);
1503 } else {
1504 ret = parse_monolithic_mount_data(fc, NULL);
1505 if (!ret)
1506 ret = reconfigure_super(fc);
1507 put_fs_context(fc);
1508 }
1509 }
1510 up_write(&sb->s_umount);
1511 return ret;
1512}
1513
1ab59738 1514static int do_umount(struct mount *mnt, int flags)
1da177e4 1515{
1ab59738 1516 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1517 int retval;
1518
1ab59738 1519 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1520 if (retval)
1521 return retval;
1522
1523 /*
1524 * Allow userspace to request a mountpoint be expired rather than
1525 * unmounting unconditionally. Unmount only happens if:
1526 * (1) the mark is already set (the mark is cleared by mntput())
1527 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1528 */
1529 if (flags & MNT_EXPIRE) {
1ab59738 1530 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1531 flags & (MNT_FORCE | MNT_DETACH))
1532 return -EINVAL;
1533
b3e19d92
NP
1534 /*
1535 * probably don't strictly need the lock here if we examined
1536 * all race cases, but it's a slowpath.
1537 */
719ea2fb 1538 lock_mount_hash();
83adc753 1539 if (mnt_get_count(mnt) != 2) {
719ea2fb 1540 unlock_mount_hash();
1da177e4 1541 return -EBUSY;
b3e19d92 1542 }
719ea2fb 1543 unlock_mount_hash();
1da177e4 1544
863d684f 1545 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1546 return -EAGAIN;
1547 }
1548
1549 /*
1550 * If we may have to abort operations to get out of this
1551 * mount, and they will themselves hold resources we must
1552 * allow the fs to do things. In the Unix tradition of
1553 * 'Gee thats tricky lets do it in userspace' the umount_begin
1554 * might fail to complete on the first run through as other tasks
1555 * must return, and the like. Thats for the mount program to worry
1556 * about for the moment.
1557 */
1558
42faad99 1559 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1560 sb->s_op->umount_begin(sb);
42faad99 1561 }
1da177e4
LT
1562
1563 /*
1564 * No sense to grab the lock for this test, but test itself looks
1565 * somewhat bogus. Suggestions for better replacement?
1566 * Ho-hum... In principle, we might treat that as umount + switch
1567 * to rootfs. GC would eventually take care of the old vfsmount.
1568 * Actually it makes sense, especially if rootfs would contain a
1569 * /reboot - static binary that would close all descriptors and
1570 * call reboot(9). Then init(8) could umount root and exec /reboot.
1571 */
1ab59738 1572 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1573 /*
1574 * Special case for "unmounting" root ...
1575 * we just try to remount it readonly.
1576 */
bc6155d1 1577 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
a1480dcc 1578 return -EPERM;
8d0347f6 1579 return do_umount_root(sb);
1da177e4
LT
1580 }
1581
97216be0 1582 namespace_lock();
719ea2fb 1583 lock_mount_hash();
1da177e4 1584
25d202ed
EB
1585 /* Recheck MNT_LOCKED with the locks held */
1586 retval = -EINVAL;
1587 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1588 goto out;
1589
1590 event++;
48a066e7 1591 if (flags & MNT_DETACH) {
1a4eeaf2 1592 if (!list_empty(&mnt->mnt_list))
e819f152 1593 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1594 retval = 0;
48a066e7
AV
1595 } else {
1596 shrink_submounts(mnt);
1597 retval = -EBUSY;
1598 if (!propagate_mount_busy(mnt, 2)) {
1599 if (!list_empty(&mnt->mnt_list))
e819f152 1600 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1601 retval = 0;
1602 }
1da177e4 1603 }
25d202ed 1604out:
719ea2fb 1605 unlock_mount_hash();
e3197d83 1606 namespace_unlock();
1da177e4
LT
1607 return retval;
1608}
1609
80b5dce8
EB
1610/*
1611 * __detach_mounts - lazily unmount all mounts on the specified dentry
1612 *
1613 * During unlink, rmdir, and d_drop it is possible to loose the path
1614 * to an existing mountpoint, and wind up leaking the mount.
1615 * detach_mounts allows lazily unmounting those mounts instead of
1616 * leaking them.
1617 *
1618 * The caller may hold dentry->d_inode->i_mutex.
1619 */
1620void __detach_mounts(struct dentry *dentry)
1621{
1622 struct mountpoint *mp;
1623 struct mount *mnt;
1624
1625 namespace_lock();
3895dbf8 1626 lock_mount_hash();
80b5dce8 1627 mp = lookup_mountpoint(dentry);
f53e5797 1628 if (IS_ERR_OR_NULL(mp))
80b5dce8
EB
1629 goto out_unlock;
1630
e06b933e 1631 event++;
80b5dce8
EB
1632 while (!hlist_empty(&mp->m_list)) {
1633 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1634 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8
EB
1635 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1636 umount_mnt(mnt);
ce07d891 1637 }
e0c9c0af 1638 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8 1639 }
80b5dce8
EB
1640 put_mountpoint(mp);
1641out_unlock:
3895dbf8 1642 unlock_mount_hash();
80b5dce8
EB
1643 namespace_unlock();
1644}
1645
dd111b31 1646/*
9b40bc90
AV
1647 * Is the caller allowed to modify his namespace?
1648 */
1649static inline bool may_mount(void)
1650{
1651 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1652}
1653
9e8925b6
JL
1654static inline bool may_mandlock(void)
1655{
1656#ifndef CONFIG_MANDATORY_FILE_LOCKING
1657 return false;
1658#endif
95ace754 1659 return capable(CAP_SYS_ADMIN);
9e8925b6
JL
1660}
1661
1da177e4
LT
1662/*
1663 * Now umount can handle mount points as well as block devices.
1664 * This is important for filesystems which use unnamed block devices.
1665 *
1666 * We now support a flag for forced unmount like the other 'big iron'
1667 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1668 */
1669
3a18ef5c 1670int ksys_umount(char __user *name, int flags)
1da177e4 1671{
2d8f3038 1672 struct path path;
900148dc 1673 struct mount *mnt;
1da177e4 1674 int retval;
db1f05bb 1675 int lookup_flags = 0;
1da177e4 1676
db1f05bb
MS
1677 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1678 return -EINVAL;
1679
9b40bc90
AV
1680 if (!may_mount())
1681 return -EPERM;
1682
db1f05bb
MS
1683 if (!(flags & UMOUNT_NOFOLLOW))
1684 lookup_flags |= LOOKUP_FOLLOW;
1685
57d46577
RGB
1686 lookup_flags |= LOOKUP_NO_EVAL;
1687
197df04c 1688 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1689 if (retval)
1690 goto out;
900148dc 1691 mnt = real_mount(path.mnt);
1da177e4 1692 retval = -EINVAL;
2d8f3038 1693 if (path.dentry != path.mnt->mnt_root)
1da177e4 1694 goto dput_and_out;
143c8c91 1695 if (!check_mnt(mnt))
1da177e4 1696 goto dput_and_out;
25d202ed 1697 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
5ff9d8a6 1698 goto dput_and_out;
b2f5d4dc
EB
1699 retval = -EPERM;
1700 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1701 goto dput_and_out;
1da177e4 1702
900148dc 1703 retval = do_umount(mnt, flags);
1da177e4 1704dput_and_out:
429731b1 1705 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1706 dput(path.dentry);
900148dc 1707 mntput_no_expire(mnt);
1da177e4
LT
1708out:
1709 return retval;
1710}
1711
3a18ef5c
DB
1712SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1713{
1714 return ksys_umount(name, flags);
1715}
1716
1da177e4
LT
1717#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1718
1719/*
b58fed8b 1720 * The 2.0 compatible umount. No flags.
1da177e4 1721 */
bdc480e3 1722SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1723{
3a18ef5c 1724 return ksys_umount(name, 0);
1da177e4
LT
1725}
1726
1727#endif
1728
4ce5d2b1 1729static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1730{
4ce5d2b1 1731 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1732 return dentry->d_op == &ns_dentry_operations &&
1733 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1734}
1735
58be2825
AV
1736struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1737{
1738 return container_of(ns, struct mnt_namespace, ns);
1739}
1740
4ce5d2b1
EB
1741static bool mnt_ns_loop(struct dentry *dentry)
1742{
1743 /* Could bind mounting the mount namespace inode cause a
1744 * mount namespace loop?
1745 */
1746 struct mnt_namespace *mnt_ns;
1747 if (!is_mnt_ns_file(dentry))
1748 return false;
1749
f77c8014 1750 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1751 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1752}
1753
87129cc0 1754struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1755 int flag)
1da177e4 1756{
84d17192 1757 struct mount *res, *p, *q, *r, *parent;
1da177e4 1758
4ce5d2b1
EB
1759 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1760 return ERR_PTR(-EINVAL);
1761
1762 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1763 return ERR_PTR(-EINVAL);
9676f0c6 1764
36341f64 1765 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1766 if (IS_ERR(q))
1767 return q;
1768
a73324da 1769 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1770
1771 p = mnt;
6b41d536 1772 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1773 struct mount *s;
7ec02ef1 1774 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1775 continue;
1776
909b0a88 1777 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1778 if (!(flag & CL_COPY_UNBINDABLE) &&
1779 IS_MNT_UNBINDABLE(s)) {
df7342b2
EB
1780 if (s->mnt.mnt_flags & MNT_LOCKED) {
1781 /* Both unbindable and locked. */
1782 q = ERR_PTR(-EPERM);
1783 goto out;
1784 } else {
1785 s = skip_mnt_tree(s);
1786 continue;
1787 }
4ce5d2b1
EB
1788 }
1789 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1790 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1791 s = skip_mnt_tree(s);
1792 continue;
1793 }
0714a533
AV
1794 while (p != s->mnt_parent) {
1795 p = p->mnt_parent;
1796 q = q->mnt_parent;
1da177e4 1797 }
87129cc0 1798 p = s;
84d17192 1799 parent = q;
87129cc0 1800 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1801 if (IS_ERR(q))
1802 goto out;
719ea2fb 1803 lock_mount_hash();
1a4eeaf2 1804 list_add_tail(&q->mnt_list, &res->mnt_list);
1064f874 1805 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1806 unlock_mount_hash();
1da177e4
LT
1807 }
1808 }
1809 return res;
be34d1a3 1810out:
1da177e4 1811 if (res) {
719ea2fb 1812 lock_mount_hash();
e819f152 1813 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1814 unlock_mount_hash();
1da177e4 1815 }
be34d1a3 1816 return q;
1da177e4
LT
1817}
1818
be34d1a3
DH
1819/* Caller should check returned pointer for errors */
1820
ca71cf71 1821struct vfsmount *collect_mounts(const struct path *path)
8aec0809 1822{
cb338d06 1823 struct mount *tree;
97216be0 1824 namespace_lock();
cd4a4017
EB
1825 if (!check_mnt(real_mount(path->mnt)))
1826 tree = ERR_PTR(-EINVAL);
1827 else
1828 tree = copy_tree(real_mount(path->mnt), path->dentry,
1829 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1830 namespace_unlock();
be34d1a3 1831 if (IS_ERR(tree))
52e220d3 1832 return ERR_CAST(tree);
be34d1a3 1833 return &tree->mnt;
8aec0809
AV
1834}
1835
a07b2000
AV
1836static void free_mnt_ns(struct mnt_namespace *);
1837static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1838
1839void dissolve_on_fput(struct vfsmount *mnt)
1840{
1841 struct mnt_namespace *ns;
1842 namespace_lock();
1843 lock_mount_hash();
1844 ns = real_mount(mnt)->mnt_ns;
44dfd84a
DH
1845 if (ns) {
1846 if (is_anon_ns(ns))
1847 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1848 else
1849 ns = NULL;
1850 }
a07b2000
AV
1851 unlock_mount_hash();
1852 namespace_unlock();
44dfd84a
DH
1853 if (ns)
1854 free_mnt_ns(ns);
a07b2000
AV
1855}
1856
8aec0809
AV
1857void drop_collected_mounts(struct vfsmount *mnt)
1858{
97216be0 1859 namespace_lock();
719ea2fb 1860 lock_mount_hash();
9c8e0a1b 1861 umount_tree(real_mount(mnt), 0);
719ea2fb 1862 unlock_mount_hash();
3ab6abee 1863 namespace_unlock();
8aec0809
AV
1864}
1865
c771d683
MS
1866/**
1867 * clone_private_mount - create a private clone of a path
1868 *
1869 * This creates a new vfsmount, which will be the clone of @path. The new will
1870 * not be attached anywhere in the namespace and will be private (i.e. changes
1871 * to the originating mount won't be propagated into this).
1872 *
1873 * Release with mntput().
1874 */
ca71cf71 1875struct vfsmount *clone_private_mount(const struct path *path)
c771d683
MS
1876{
1877 struct mount *old_mnt = real_mount(path->mnt);
1878 struct mount *new_mnt;
1879
1880 if (IS_MNT_UNBINDABLE(old_mnt))
1881 return ERR_PTR(-EINVAL);
1882
c771d683 1883 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
c771d683
MS
1884 if (IS_ERR(new_mnt))
1885 return ERR_CAST(new_mnt);
1886
1887 return &new_mnt->mnt;
1888}
1889EXPORT_SYMBOL_GPL(clone_private_mount);
1890
1f707137
AV
1891int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1892 struct vfsmount *root)
1893{
1a4eeaf2 1894 struct mount *mnt;
1f707137
AV
1895 int res = f(root, arg);
1896 if (res)
1897 return res;
1a4eeaf2
AV
1898 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1899 res = f(&mnt->mnt, arg);
1f707137
AV
1900 if (res)
1901 return res;
1902 }
1903 return 0;
1904}
1905
3bd045cc
AV
1906static void lock_mnt_tree(struct mount *mnt)
1907{
1908 struct mount *p;
1909
1910 for (p = mnt; p; p = next_mnt(p, mnt)) {
1911 int flags = p->mnt.mnt_flags;
1912 /* Don't allow unprivileged users to change mount flags */
1913 flags |= MNT_LOCK_ATIME;
1914
1915 if (flags & MNT_READONLY)
1916 flags |= MNT_LOCK_READONLY;
1917
1918 if (flags & MNT_NODEV)
1919 flags |= MNT_LOCK_NODEV;
1920
1921 if (flags & MNT_NOSUID)
1922 flags |= MNT_LOCK_NOSUID;
1923
1924 if (flags & MNT_NOEXEC)
1925 flags |= MNT_LOCK_NOEXEC;
1926 /* Don't allow unprivileged users to reveal what is under a mount */
1927 if (list_empty(&p->mnt_expire))
1928 flags |= MNT_LOCKED;
1929 p->mnt.mnt_flags = flags;
1930 }
1931}
1932
4b8b21f4 1933static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1934{
315fc83e 1935 struct mount *p;
719f5d7f 1936
909b0a88 1937 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1938 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1939 mnt_release_group_id(p);
719f5d7f
MS
1940 }
1941}
1942
4b8b21f4 1943static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1944{
315fc83e 1945 struct mount *p;
719f5d7f 1946
909b0a88 1947 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1948 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1949 int err = mnt_alloc_group_id(p);
719f5d7f 1950 if (err) {
4b8b21f4 1951 cleanup_group_ids(mnt, p);
719f5d7f
MS
1952 return err;
1953 }
1954 }
1955 }
1956
1957 return 0;
1958}
1959
d2921684
EB
1960int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1961{
1962 unsigned int max = READ_ONCE(sysctl_mount_max);
1963 unsigned int mounts = 0, old, pending, sum;
1964 struct mount *p;
1965
1966 for (p = mnt; p; p = next_mnt(p, mnt))
1967 mounts++;
1968
1969 old = ns->mounts;
1970 pending = ns->pending_mounts;
1971 sum = old + pending;
1972 if ((old > sum) ||
1973 (pending > sum) ||
1974 (max < sum) ||
1975 (mounts > (max - sum)))
1976 return -ENOSPC;
1977
1978 ns->pending_mounts = pending + mounts;
1979 return 0;
1980}
1981
b90fa9ae
RP
1982/*
1983 * @source_mnt : mount tree to be attached
21444403
RP
1984 * @nd : place the mount tree @source_mnt is attached
1985 * @parent_nd : if non-null, detach the source_mnt from its parent and
1986 * store the parent mount and mountpoint dentry.
1987 * (done when source_mnt is moved)
b90fa9ae
RP
1988 *
1989 * NOTE: in the table below explains the semantics when a source mount
1990 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1991 * ---------------------------------------------------------------------------
1992 * | BIND MOUNT OPERATION |
1993 * |**************************************************************************
1994 * | source-->| shared | private | slave | unbindable |
1995 * | dest | | | | |
1996 * | | | | | | |
1997 * | v | | | | |
1998 * |**************************************************************************
1999 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2000 * | | | | | |
2001 * |non-shared| shared (+) | private | slave (*) | invalid |
2002 * ***************************************************************************
b90fa9ae
RP
2003 * A bind operation clones the source mount and mounts the clone on the
2004 * destination mount.
2005 *
2006 * (++) the cloned mount is propagated to all the mounts in the propagation
2007 * tree of the destination mount and the cloned mount is added to
2008 * the peer group of the source mount.
2009 * (+) the cloned mount is created under the destination mount and is marked
2010 * as shared. The cloned mount is added to the peer group of the source
2011 * mount.
5afe0022
RP
2012 * (+++) the mount is propagated to all the mounts in the propagation tree
2013 * of the destination mount and the cloned mount is made slave
2014 * of the same master as that of the source mount. The cloned mount
2015 * is marked as 'shared and slave'.
2016 * (*) the cloned mount is made a slave of the same master as that of the
2017 * source mount.
2018 *
9676f0c6
RP
2019 * ---------------------------------------------------------------------------
2020 * | MOVE MOUNT OPERATION |
2021 * |**************************************************************************
2022 * | source-->| shared | private | slave | unbindable |
2023 * | dest | | | | |
2024 * | | | | | | |
2025 * | v | | | | |
2026 * |**************************************************************************
2027 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2028 * | | | | | |
2029 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2030 * ***************************************************************************
5afe0022
RP
2031 *
2032 * (+) the mount is moved to the destination. And is then propagated to
2033 * all the mounts in the propagation tree of the destination mount.
21444403 2034 * (+*) the mount is moved to the destination.
5afe0022
RP
2035 * (+++) the mount is moved to the destination and is then propagated to
2036 * all the mounts belonging to the destination mount's propagation tree.
2037 * the mount is marked as 'shared and slave'.
2038 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
2039 *
2040 * if the source mount is a tree, the operations explained above is
2041 * applied to each mount in the tree.
2042 * Must be called without spinlocks held, since this function can sleep
2043 * in allocations.
2044 */
0fb54e50 2045static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
2046 struct mount *dest_mnt,
2047 struct mountpoint *dest_mp,
2048 struct path *parent_path)
b90fa9ae 2049{
3bd045cc 2050 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
38129a13 2051 HLIST_HEAD(tree_list);
d2921684 2052 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1064f874 2053 struct mountpoint *smp;
315fc83e 2054 struct mount *child, *p;
38129a13 2055 struct hlist_node *n;
719f5d7f 2056 int err;
b90fa9ae 2057
1064f874
EB
2058 /* Preallocate a mountpoint in case the new mounts need
2059 * to be tucked under other mounts.
2060 */
2061 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2062 if (IS_ERR(smp))
2063 return PTR_ERR(smp);
2064
d2921684
EB
2065 /* Is there space to add these mounts to the mount namespace? */
2066 if (!parent_path) {
2067 err = count_mounts(ns, source_mnt);
2068 if (err)
2069 goto out;
2070 }
2071
fc7be130 2072 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 2073 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
2074 if (err)
2075 goto out;
0b1b901b 2076 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 2077 lock_mount_hash();
0b1b901b
AV
2078 if (err)
2079 goto out_cleanup_ids;
909b0a88 2080 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 2081 set_mnt_shared(p);
0b1b901b
AV
2082 } else {
2083 lock_mount_hash();
b90fa9ae 2084 }
1a390689 2085 if (parent_path) {
0fb54e50 2086 detach_mnt(source_mnt, parent_path);
84d17192 2087 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 2088 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 2089 } else {
44dfd84a
DH
2090 if (source_mnt->mnt_ns) {
2091 /* move from anon - the caller will destroy */
2092 list_del_init(&source_mnt->mnt_ns->list);
2093 }
84d17192 2094 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1064f874 2095 commit_tree(source_mnt);
21444403 2096 }
b90fa9ae 2097
38129a13 2098 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 2099 struct mount *q;
38129a13 2100 hlist_del_init(&child->mnt_hash);
1064f874
EB
2101 q = __lookup_mnt(&child->mnt_parent->mnt,
2102 child->mnt_mountpoint);
2103 if (q)
2104 mnt_change_mountpoint(child, smp, q);
3bd045cc
AV
2105 /* Notice when we are propagating across user namespaces */
2106 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2107 lock_mnt_tree(child);
1064f874 2108 commit_tree(child);
b90fa9ae 2109 }
1064f874 2110 put_mountpoint(smp);
719ea2fb 2111 unlock_mount_hash();
99b7db7b 2112
b90fa9ae 2113 return 0;
719f5d7f
MS
2114
2115 out_cleanup_ids:
f2ebb3a9
AV
2116 while (!hlist_empty(&tree_list)) {
2117 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
d2921684 2118 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 2119 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
2120 }
2121 unlock_mount_hash();
0b1b901b 2122 cleanup_group_ids(source_mnt, NULL);
719f5d7f 2123 out:
d2921684 2124 ns->pending_mounts = 0;
1064f874
EB
2125
2126 read_seqlock_excl(&mount_lock);
2127 put_mountpoint(smp);
2128 read_sequnlock_excl(&mount_lock);
2129
719f5d7f 2130 return err;
b90fa9ae
RP
2131}
2132
84d17192 2133static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
2134{
2135 struct vfsmount *mnt;
84d17192 2136 struct dentry *dentry = path->dentry;
b12cea91 2137retry:
5955102c 2138 inode_lock(dentry->d_inode);
84d17192 2139 if (unlikely(cant_mount(dentry))) {
5955102c 2140 inode_unlock(dentry->d_inode);
84d17192 2141 return ERR_PTR(-ENOENT);
b12cea91 2142 }
97216be0 2143 namespace_lock();
b12cea91 2144 mnt = lookup_mnt(path);
84d17192 2145 if (likely(!mnt)) {
3895dbf8 2146 struct mountpoint *mp = get_mountpoint(dentry);
84d17192 2147 if (IS_ERR(mp)) {
97216be0 2148 namespace_unlock();
5955102c 2149 inode_unlock(dentry->d_inode);
84d17192
AV
2150 return mp;
2151 }
2152 return mp;
2153 }
97216be0 2154 namespace_unlock();
5955102c 2155 inode_unlock(path->dentry->d_inode);
b12cea91
AV
2156 path_put(path);
2157 path->mnt = mnt;
84d17192 2158 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2159 goto retry;
2160}
2161
84d17192 2162static void unlock_mount(struct mountpoint *where)
b12cea91 2163{
84d17192 2164 struct dentry *dentry = where->m_dentry;
3895dbf8
EB
2165
2166 read_seqlock_excl(&mount_lock);
84d17192 2167 put_mountpoint(where);
3895dbf8
EB
2168 read_sequnlock_excl(&mount_lock);
2169
328e6d90 2170 namespace_unlock();
5955102c 2171 inode_unlock(dentry->d_inode);
b12cea91
AV
2172}
2173
84d17192 2174static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2175{
e462ec50 2176 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
1da177e4
LT
2177 return -EINVAL;
2178
e36cb0b8
DH
2179 if (d_is_dir(mp->m_dentry) !=
2180 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2181 return -ENOTDIR;
2182
84d17192 2183 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
2184}
2185
7a2e8a8f
VA
2186/*
2187 * Sanity check the flags to change_mnt_propagation.
2188 */
2189
e462ec50 2190static int flags_to_propagation_type(int ms_flags)
7a2e8a8f 2191{
e462ec50 2192 int type = ms_flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2193
2194 /* Fail if any non-propagation flags are set */
2195 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2196 return 0;
2197 /* Only one propagation flag should be set */
2198 if (!is_power_of_2(type))
2199 return 0;
2200 return type;
2201}
2202
07b20889
RP
2203/*
2204 * recursively change the type of the mountpoint.
2205 */
e462ec50 2206static int do_change_type(struct path *path, int ms_flags)
07b20889 2207{
315fc83e 2208 struct mount *m;
4b8b21f4 2209 struct mount *mnt = real_mount(path->mnt);
e462ec50 2210 int recurse = ms_flags & MS_REC;
7a2e8a8f 2211 int type;
719f5d7f 2212 int err = 0;
07b20889 2213
2d92ab3c 2214 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2215 return -EINVAL;
2216
e462ec50 2217 type = flags_to_propagation_type(ms_flags);
7a2e8a8f
VA
2218 if (!type)
2219 return -EINVAL;
2220
97216be0 2221 namespace_lock();
719f5d7f
MS
2222 if (type == MS_SHARED) {
2223 err = invent_group_ids(mnt, recurse);
2224 if (err)
2225 goto out_unlock;
2226 }
2227
719ea2fb 2228 lock_mount_hash();
909b0a88 2229 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2230 change_mnt_propagation(m, type);
719ea2fb 2231 unlock_mount_hash();
719f5d7f
MS
2232
2233 out_unlock:
97216be0 2234 namespace_unlock();
719f5d7f 2235 return err;
07b20889
RP
2236}
2237
5ff9d8a6
EB
2238static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2239{
2240 struct mount *child;
2241 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2242 if (!is_subdir(child->mnt_mountpoint, dentry))
2243 continue;
2244
2245 if (child->mnt.mnt_flags & MNT_LOCKED)
2246 return true;
2247 }
2248 return false;
2249}
2250
a07b2000
AV
2251static struct mount *__do_loopback(struct path *old_path, int recurse)
2252{
2253 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2254
2255 if (IS_MNT_UNBINDABLE(old))
2256 return mnt;
2257
2258 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2259 return mnt;
2260
2261 if (!recurse && has_locked_children(old, old_path->dentry))
2262 return mnt;
2263
2264 if (recurse)
2265 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2266 else
2267 mnt = clone_mnt(old, old_path->dentry, 0);
2268
2269 if (!IS_ERR(mnt))
2270 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2271
2272 return mnt;
2273}
2274
1da177e4
LT
2275/*
2276 * do loopback mount.
2277 */
808d4e3c 2278static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2279 int recurse)
1da177e4 2280{
2d92ab3c 2281 struct path old_path;
a07b2000 2282 struct mount *mnt = NULL, *parent;
84d17192 2283 struct mountpoint *mp;
57eccb83 2284 int err;
1da177e4
LT
2285 if (!old_name || !*old_name)
2286 return -EINVAL;
815d405c 2287 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2288 if (err)
2289 return err;
2290
8823c079 2291 err = -EINVAL;
4ce5d2b1 2292 if (mnt_ns_loop(old_path.dentry))
dd111b31 2293 goto out;
8823c079 2294
84d17192 2295 mp = lock_mount(path);
a07b2000
AV
2296 if (IS_ERR(mp)) {
2297 err = PTR_ERR(mp);
b12cea91 2298 goto out;
a07b2000 2299 }
b12cea91 2300
84d17192 2301 parent = real_mount(path->mnt);
e149ed2b
AV
2302 if (!check_mnt(parent))
2303 goto out2;
2304
a07b2000 2305 mnt = __do_loopback(&old_path, recurse);
be34d1a3
DH
2306 if (IS_ERR(mnt)) {
2307 err = PTR_ERR(mnt);
e9c5d8a5 2308 goto out2;
be34d1a3 2309 }
ccd48bc7 2310
84d17192 2311 err = graft_tree(mnt, parent, mp);
ccd48bc7 2312 if (err) {
719ea2fb 2313 lock_mount_hash();
e819f152 2314 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2315 unlock_mount_hash();
5b83d2c5 2316 }
b12cea91 2317out2:
84d17192 2318 unlock_mount(mp);
ccd48bc7 2319out:
2d92ab3c 2320 path_put(&old_path);
1da177e4
LT
2321 return err;
2322}
2323
a07b2000
AV
2324static struct file *open_detached_copy(struct path *path, bool recursive)
2325{
2326 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2327 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2328 struct mount *mnt, *p;
2329 struct file *file;
2330
2331 if (IS_ERR(ns))
2332 return ERR_CAST(ns);
2333
2334 namespace_lock();
2335 mnt = __do_loopback(path, recursive);
2336 if (IS_ERR(mnt)) {
2337 namespace_unlock();
2338 free_mnt_ns(ns);
2339 return ERR_CAST(mnt);
2340 }
2341
2342 lock_mount_hash();
2343 for (p = mnt; p; p = next_mnt(p, mnt)) {
2344 p->mnt_ns = ns;
2345 ns->mounts++;
2346 }
2347 ns->root = mnt;
2348 list_add_tail(&ns->list, &mnt->mnt_list);
2349 mntget(&mnt->mnt);
2350 unlock_mount_hash();
2351 namespace_unlock();
2352
2353 mntput(path->mnt);
2354 path->mnt = &mnt->mnt;
2355 file = dentry_open(path, O_PATH, current_cred());
2356 if (IS_ERR(file))
2357 dissolve_on_fput(path->mnt);
2358 else
2359 file->f_mode |= FMODE_NEED_UNMOUNT;
2360 return file;
2361}
2362
2363SYSCALL_DEFINE3(open_tree, int, dfd, const char *, filename, unsigned, flags)
2364{
2365 struct file *file;
2366 struct path path;
2367 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2368 bool detached = flags & OPEN_TREE_CLONE;
2369 int error;
2370 int fd;
2371
2372 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2373
2374 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2375 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2376 OPEN_TREE_CLOEXEC))
2377 return -EINVAL;
2378
2379 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2380 return -EINVAL;
2381
2382 if (flags & AT_NO_AUTOMOUNT)
2383 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2384 if (flags & AT_SYMLINK_NOFOLLOW)
2385 lookup_flags &= ~LOOKUP_FOLLOW;
2386 if (flags & AT_EMPTY_PATH)
2387 lookup_flags |= LOOKUP_EMPTY;
2388
2389 if (detached && !may_mount())
2390 return -EPERM;
2391
2392 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2393 if (fd < 0)
2394 return fd;
2395
2396 error = user_path_at(dfd, filename, lookup_flags, &path);
2397 if (unlikely(error)) {
2398 file = ERR_PTR(error);
2399 } else {
2400 if (detached)
2401 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2402 else
2403 file = dentry_open(&path, O_PATH, current_cred());
2404 path_put(&path);
2405 }
2406 if (IS_ERR(file)) {
2407 put_unused_fd(fd);
2408 return PTR_ERR(file);
2409 }
2410 fd_install(fd, file);
2411 return fd;
2412}
2413
43f5e655
DH
2414/*
2415 * Don't allow locked mount flags to be cleared.
2416 *
2417 * No locks need to be held here while testing the various MNT_LOCK
2418 * flags because those flags can never be cleared once they are set.
2419 */
2420static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2421{
43f5e655
DH
2422 unsigned int fl = mnt->mnt.mnt_flags;
2423
2424 if ((fl & MNT_LOCK_READONLY) &&
2425 !(mnt_flags & MNT_READONLY))
2426 return false;
2427
2428 if ((fl & MNT_LOCK_NODEV) &&
2429 !(mnt_flags & MNT_NODEV))
2430 return false;
2431
2432 if ((fl & MNT_LOCK_NOSUID) &&
2433 !(mnt_flags & MNT_NOSUID))
2434 return false;
2435
2436 if ((fl & MNT_LOCK_NOEXEC) &&
2437 !(mnt_flags & MNT_NOEXEC))
2438 return false;
2439
2440 if ((fl & MNT_LOCK_ATIME) &&
2441 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2442 return false;
2e4b7fcd 2443
43f5e655
DH
2444 return true;
2445}
2446
2447static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2448{
43f5e655 2449 bool readonly_request = (mnt_flags & MNT_READONLY);
2e4b7fcd 2450
43f5e655 2451 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2e4b7fcd
DH
2452 return 0;
2453
2454 if (readonly_request)
43f5e655
DH
2455 return mnt_make_readonly(mnt);
2456
2457 return __mnt_unmake_readonly(mnt);
2458}
2459
2460/*
2461 * Update the user-settable attributes on a mount. The caller must hold
2462 * sb->s_umount for writing.
2463 */
2464static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2465{
2466 lock_mount_hash();
2467 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2468 mnt->mnt.mnt_flags = mnt_flags;
2469 touch_mnt_namespace(mnt->mnt_ns);
2470 unlock_mount_hash();
2471}
2472
2473/*
2474 * Handle reconfiguration of the mountpoint only without alteration of the
2475 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2476 * to mount(2).
2477 */
2478static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2479{
2480 struct super_block *sb = path->mnt->mnt_sb;
2481 struct mount *mnt = real_mount(path->mnt);
2482 int ret;
2483
2484 if (!check_mnt(mnt))
2485 return -EINVAL;
2486
2487 if (path->dentry != mnt->mnt.mnt_root)
2488 return -EINVAL;
2489
2490 if (!can_change_locked_flags(mnt, mnt_flags))
2491 return -EPERM;
2492
2493 down_write(&sb->s_umount);
2494 ret = change_mount_ro_state(mnt, mnt_flags);
2495 if (ret == 0)
2496 set_mount_attributes(mnt, mnt_flags);
2497 up_write(&sb->s_umount);
2498 return ret;
2e4b7fcd
DH
2499}
2500
1da177e4
LT
2501/*
2502 * change filesystem flags. dir should be a physical root of filesystem.
2503 * If you've mounted a non-root directory somewhere and want to do remount
2504 * on it - tough luck.
2505 */
e462ec50
DH
2506static int do_remount(struct path *path, int ms_flags, int sb_flags,
2507 int mnt_flags, void *data)
1da177e4
LT
2508{
2509 int err;
2d92ab3c 2510 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2511 struct mount *mnt = real_mount(path->mnt);
8d0347f6 2512 struct fs_context *fc;
1da177e4 2513
143c8c91 2514 if (!check_mnt(mnt))
1da177e4
LT
2515 return -EINVAL;
2516
2d92ab3c 2517 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2518 return -EINVAL;
2519
43f5e655 2520 if (!can_change_locked_flags(mnt, mnt_flags))
9566d674 2521 return -EPERM;
9566d674 2522
8d0347f6
DH
2523 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2524 if (IS_ERR(fc))
2525 return PTR_ERR(fc);
ff36fe2c 2526
8d0347f6
DH
2527 err = parse_monolithic_mount_data(fc, data);
2528 if (!err) {
2529 down_write(&sb->s_umount);
2530 err = -EPERM;
2531 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2532 err = reconfigure_super(fc);
2533 if (!err)
2534 set_mount_attributes(mnt, mnt_flags);
2535 }
2536 up_write(&sb->s_umount);
0e55a7cc 2537 }
8d0347f6 2538 put_fs_context(fc);
1da177e4
LT
2539 return err;
2540}
2541
cbbe362c 2542static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2543{
315fc83e 2544 struct mount *p;
909b0a88 2545 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2546 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2547 return 1;
2548 }
2549 return 0;
2550}
2551
44dfd84a
DH
2552/*
2553 * Check that there aren't references to earlier/same mount namespaces in the
2554 * specified subtree. Such references can act as pins for mount namespaces
2555 * that aren't checked by the mount-cycle checking code, thereby allowing
2556 * cycles to be made.
2557 */
2558static bool check_for_nsfs_mounts(struct mount *subtree)
2559{
2560 struct mount *p;
2561 bool ret = false;
2562
2563 lock_mount_hash();
2564 for (p = subtree; p; p = next_mnt(p, subtree))
2565 if (mnt_ns_loop(p->mnt.mnt_root))
2566 goto out;
2567
2568 ret = true;
2569out:
2570 unlock_mount_hash();
2571 return ret;
2572}
2573
2db154b3 2574static int do_move_mount(struct path *old_path, struct path *new_path)
1da177e4 2575{
2db154b3 2576 struct path parent_path = {.mnt = NULL, .dentry = NULL};
44dfd84a 2577 struct mnt_namespace *ns;
676da58d 2578 struct mount *p;
0fb54e50 2579 struct mount *old;
84d17192 2580 struct mountpoint *mp;
57eccb83 2581 int err;
44dfd84a 2582 bool attached;
1da177e4 2583
2db154b3 2584 mp = lock_mount(new_path);
84d17192 2585 if (IS_ERR(mp))
2db154b3 2586 return PTR_ERR(mp);
cc53ce53 2587
2db154b3
DH
2588 old = real_mount(old_path->mnt);
2589 p = real_mount(new_path->mnt);
44dfd84a
DH
2590 attached = mnt_has_parent(old);
2591 ns = old->mnt_ns;
143c8c91 2592
1da177e4 2593 err = -EINVAL;
44dfd84a
DH
2594 /* The mountpoint must be in our namespace. */
2595 if (!check_mnt(p))
2db154b3 2596 goto out;
1da177e4 2597
44dfd84a
DH
2598 /* The thing moved should be either ours or completely unattached. */
2599 if (attached && !check_mnt(old))
2600 goto out;
2601
2602 if (!attached && !is_anon_ns(ns))
2db154b3 2603 goto out;
5ff9d8a6 2604
2db154b3
DH
2605 if (old->mnt.mnt_flags & MNT_LOCKED)
2606 goto out;
1da177e4 2607
2db154b3
DH
2608 if (old_path->dentry != old_path->mnt->mnt_root)
2609 goto out;
1da177e4 2610
2db154b3
DH
2611 if (d_is_dir(new_path->dentry) !=
2612 d_is_dir(old_path->dentry))
2613 goto out;
21444403
RP
2614 /*
2615 * Don't move a mount residing in a shared parent.
2616 */
44dfd84a 2617 if (attached && IS_MNT_SHARED(old->mnt_parent))
2db154b3 2618 goto out;
9676f0c6
RP
2619 /*
2620 * Don't move a mount tree containing unbindable mounts to a destination
2621 * mount which is shared.
2622 */
fc7be130 2623 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2db154b3 2624 goto out;
1da177e4 2625 err = -ELOOP;
44dfd84a
DH
2626 if (!check_for_nsfs_mounts(old))
2627 goto out;
fc7be130 2628 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2629 if (p == old)
2db154b3 2630 goto out;
1da177e4 2631
2db154b3 2632 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
44dfd84a 2633 attached ? &parent_path : NULL);
4ac91378 2634 if (err)
2db154b3 2635 goto out;
1da177e4
LT
2636
2637 /* if the mount is moved, it should no longer be expire
2638 * automatically */
6776db3d 2639 list_del_init(&old->mnt_expire);
1da177e4 2640out:
2db154b3 2641 unlock_mount(mp);
44dfd84a 2642 if (!err) {
1a390689 2643 path_put(&parent_path);
44dfd84a
DH
2644 if (!attached)
2645 free_mnt_ns(ns);
2646 }
2db154b3
DH
2647 return err;
2648}
2649
2650static int do_move_mount_old(struct path *path, const char *old_name)
2651{
2652 struct path old_path;
2653 int err;
2654
2655 if (!old_name || !*old_name)
2656 return -EINVAL;
2657
2658 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2659 if (err)
2660 return err;
2661
2662 err = do_move_mount(&old_path, path);
2d92ab3c 2663 path_put(&old_path);
1da177e4
LT
2664 return err;
2665}
2666
9d412a43
AV
2667/*
2668 * add a mount into a namespace's mount tree
2669 */
95bc5f25 2670static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2671{
84d17192
AV
2672 struct mountpoint *mp;
2673 struct mount *parent;
9d412a43
AV
2674 int err;
2675
f2ebb3a9 2676 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2677
84d17192
AV
2678 mp = lock_mount(path);
2679 if (IS_ERR(mp))
2680 return PTR_ERR(mp);
9d412a43 2681
84d17192 2682 parent = real_mount(path->mnt);
9d412a43 2683 err = -EINVAL;
84d17192 2684 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2685 /* that's acceptable only for automounts done in private ns */
2686 if (!(mnt_flags & MNT_SHRINKABLE))
2687 goto unlock;
2688 /* ... and for those we'd better have mountpoint still alive */
84d17192 2689 if (!parent->mnt_ns)
156cacb1
AV
2690 goto unlock;
2691 }
9d412a43
AV
2692
2693 /* Refuse the same filesystem on the same mount point */
2694 err = -EBUSY;
95bc5f25 2695 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2696 path->mnt->mnt_root == path->dentry)
2697 goto unlock;
2698
2699 err = -EINVAL;
e36cb0b8 2700 if (d_is_symlink(newmnt->mnt.mnt_root))
9d412a43
AV
2701 goto unlock;
2702
95bc5f25 2703 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2704 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2705
2706unlock:
84d17192 2707 unlock_mount(mp);
9d412a43
AV
2708 return err;
2709}
b1e75df4 2710
132e4608
DH
2711static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2712
2713/*
2714 * Create a new mount using a superblock configuration and request it
2715 * be added to the namespace tree.
2716 */
2717static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2718 unsigned int mnt_flags)
2719{
2720 struct vfsmount *mnt;
2721 struct super_block *sb = fc->root->d_sb;
2722 int error;
2723
c9ce29ed
AV
2724 error = security_sb_kern_mount(sb);
2725 if (!error && mount_too_revealing(sb, &mnt_flags))
2726 error = -EPERM;
2727
2728 if (unlikely(error)) {
2729 fc_drop_locked(fc);
2730 return error;
132e4608
DH
2731 }
2732
2733 up_write(&sb->s_umount);
2734
2735 mnt = vfs_create_mount(fc);
2736 if (IS_ERR(mnt))
2737 return PTR_ERR(mnt);
2738
2739 error = do_add_mount(real_mount(mnt), mountpoint, mnt_flags);
2740 if (error < 0)
2741 mntput(mnt);
2742 return error;
2743}
1b852bce 2744
1da177e4
LT
2745/*
2746 * create a new mount for userspace and request it to be added into the
2747 * namespace's tree
2748 */
e462ec50 2749static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
808d4e3c 2750 int mnt_flags, const char *name, void *data)
1da177e4 2751{
0c55cfc4 2752 struct file_system_type *type;
a0c9a8b8
AV
2753 struct fs_context *fc;
2754 const char *subtype = NULL;
2755 int err = 0;
1da177e4 2756
0c55cfc4 2757 if (!fstype)
1da177e4
LT
2758 return -EINVAL;
2759
0c55cfc4
EB
2760 type = get_fs_type(fstype);
2761 if (!type)
2762 return -ENODEV;
2763
a0c9a8b8
AV
2764 if (type->fs_flags & FS_HAS_SUBTYPE) {
2765 subtype = strchr(fstype, '.');
2766 if (subtype) {
2767 subtype++;
2768 if (!*subtype) {
2769 put_filesystem(type);
2770 return -EINVAL;
2771 }
2772 } else {
2773 subtype = "";
2774 }
2775 }
0c55cfc4 2776
a0c9a8b8 2777 fc = fs_context_for_mount(type, sb_flags);
0c55cfc4 2778 put_filesystem(type);
a0c9a8b8
AV
2779 if (IS_ERR(fc))
2780 return PTR_ERR(fc);
2781
3e1aeb00
DH
2782 if (subtype)
2783 err = vfs_parse_fs_string(fc, "subtype",
2784 subtype, strlen(subtype));
2785 if (!err && name)
2786 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
a0c9a8b8
AV
2787 if (!err)
2788 err = parse_monolithic_mount_data(fc, data);
2789 if (!err)
2790 err = vfs_get_tree(fc);
132e4608
DH
2791 if (!err)
2792 err = do_new_mount_fc(fc, path, mnt_flags);
8654df4e 2793
a0c9a8b8 2794 put_fs_context(fc);
15f9a3f3 2795 return err;
1da177e4
LT
2796}
2797
19a167af
AV
2798int finish_automount(struct vfsmount *m, struct path *path)
2799{
6776db3d 2800 struct mount *mnt = real_mount(m);
19a167af
AV
2801 int err;
2802 /* The new mount record should have at least 2 refs to prevent it being
2803 * expired before we get a chance to add it
2804 */
6776db3d 2805 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2806
2807 if (m->mnt_sb == path->mnt->mnt_sb &&
2808 m->mnt_root == path->dentry) {
b1e75df4
AV
2809 err = -ELOOP;
2810 goto fail;
19a167af
AV
2811 }
2812
95bc5f25 2813 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2814 if (!err)
2815 return 0;
2816fail:
2817 /* remove m from any expiration list it may be on */
6776db3d 2818 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2819 namespace_lock();
6776db3d 2820 list_del_init(&mnt->mnt_expire);
97216be0 2821 namespace_unlock();
19a167af 2822 }
b1e75df4
AV
2823 mntput(m);
2824 mntput(m);
19a167af
AV
2825 return err;
2826}
2827
ea5b778a
DH
2828/**
2829 * mnt_set_expiry - Put a mount on an expiration list
2830 * @mnt: The mount to list.
2831 * @expiry_list: The list to add the mount to.
2832 */
2833void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2834{
97216be0 2835 namespace_lock();
ea5b778a 2836
6776db3d 2837 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2838
97216be0 2839 namespace_unlock();
ea5b778a
DH
2840}
2841EXPORT_SYMBOL(mnt_set_expiry);
2842
1da177e4
LT
2843/*
2844 * process a list of expirable mountpoints with the intent of discarding any
2845 * mountpoints that aren't in use and haven't been touched since last we came
2846 * here
2847 */
2848void mark_mounts_for_expiry(struct list_head *mounts)
2849{
761d5c38 2850 struct mount *mnt, *next;
1da177e4
LT
2851 LIST_HEAD(graveyard);
2852
2853 if (list_empty(mounts))
2854 return;
2855
97216be0 2856 namespace_lock();
719ea2fb 2857 lock_mount_hash();
1da177e4
LT
2858
2859 /* extract from the expiration list every vfsmount that matches the
2860 * following criteria:
2861 * - only referenced by its parent vfsmount
2862 * - still marked for expiry (marked on the last call here; marks are
2863 * cleared by mntput())
2864 */
6776db3d 2865 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2866 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2867 propagate_mount_busy(mnt, 1))
1da177e4 2868 continue;
6776db3d 2869 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2870 }
bcc5c7d2 2871 while (!list_empty(&graveyard)) {
6776db3d 2872 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2873 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2874 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2875 }
719ea2fb 2876 unlock_mount_hash();
3ab6abee 2877 namespace_unlock();
5528f911
TM
2878}
2879
2880EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2881
2882/*
2883 * Ripoff of 'select_parent()'
2884 *
2885 * search the list of submounts for a given mountpoint, and move any
2886 * shrinkable submounts to the 'graveyard' list.
2887 */
692afc31 2888static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2889{
692afc31 2890 struct mount *this_parent = parent;
5528f911
TM
2891 struct list_head *next;
2892 int found = 0;
2893
2894repeat:
6b41d536 2895 next = this_parent->mnt_mounts.next;
5528f911 2896resume:
6b41d536 2897 while (next != &this_parent->mnt_mounts) {
5528f911 2898 struct list_head *tmp = next;
6b41d536 2899 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2900
2901 next = tmp->next;
692afc31 2902 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2903 continue;
5528f911
TM
2904 /*
2905 * Descend a level if the d_mounts list is non-empty.
2906 */
6b41d536 2907 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2908 this_parent = mnt;
2909 goto repeat;
2910 }
1da177e4 2911
1ab59738 2912 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2913 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2914 found++;
2915 }
1da177e4 2916 }
5528f911
TM
2917 /*
2918 * All done at this level ... ascend and resume the search
2919 */
2920 if (this_parent != parent) {
6b41d536 2921 next = this_parent->mnt_child.next;
0714a533 2922 this_parent = this_parent->mnt_parent;
5528f911
TM
2923 goto resume;
2924 }
2925 return found;
2926}
2927
2928/*
2929 * process a list of expirable mountpoints with the intent of discarding any
2930 * submounts of a specific parent mountpoint
99b7db7b 2931 *
48a066e7 2932 * mount_lock must be held for write
5528f911 2933 */
b54b9be7 2934static void shrink_submounts(struct mount *mnt)
5528f911
TM
2935{
2936 LIST_HEAD(graveyard);
761d5c38 2937 struct mount *m;
5528f911 2938
5528f911 2939 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2940 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2941 while (!list_empty(&graveyard)) {
761d5c38 2942 m = list_first_entry(&graveyard, struct mount,
6776db3d 2943 mnt_expire);
143c8c91 2944 touch_mnt_namespace(m->mnt_ns);
e819f152 2945 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
2946 }
2947 }
1da177e4
LT
2948}
2949
1da177e4
LT
2950/*
2951 * Some copy_from_user() implementations do not return the exact number of
2952 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2953 * Note that this function differs from copy_from_user() in that it will oops
2954 * on bad values of `to', rather than returning a short copy.
2955 */
b58fed8b
RP
2956static long exact_copy_from_user(void *to, const void __user * from,
2957 unsigned long n)
1da177e4
LT
2958{
2959 char *t = to;
2960 const char __user *f = from;
2961 char c;
2962
96d4f267 2963 if (!access_ok(from, n))
1da177e4
LT
2964 return n;
2965
2966 while (n) {
2967 if (__get_user(c, f)) {
2968 memset(t, 0, n);
2969 break;
2970 }
2971 *t++ = c;
2972 f++;
2973 n--;
2974 }
2975 return n;
2976}
2977
b40ef869 2978void *copy_mount_options(const void __user * data)
1da177e4
LT
2979{
2980 int i;
1da177e4 2981 unsigned long size;
b40ef869 2982 char *copy;
b58fed8b 2983
1da177e4 2984 if (!data)
b40ef869 2985 return NULL;
1da177e4 2986
b40ef869
AV
2987 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2988 if (!copy)
2989 return ERR_PTR(-ENOMEM);
1da177e4
LT
2990
2991 /* We only care that *some* data at the address the user
2992 * gave us is valid. Just in case, we'll zero
2993 * the remainder of the page.
2994 */
2995 /* copy_from_user cannot cross TASK_SIZE ! */
2996 size = TASK_SIZE - (unsigned long)data;
2997 if (size > PAGE_SIZE)
2998 size = PAGE_SIZE;
2999
b40ef869 3000 i = size - exact_copy_from_user(copy, data, size);
1da177e4 3001 if (!i) {
b40ef869
AV
3002 kfree(copy);
3003 return ERR_PTR(-EFAULT);
1da177e4
LT
3004 }
3005 if (i != PAGE_SIZE)
b40ef869
AV
3006 memset(copy + i, 0, PAGE_SIZE - i);
3007 return copy;
1da177e4
LT
3008}
3009
b8850d1f 3010char *copy_mount_string(const void __user *data)
eca6f534 3011{
fbdb4401 3012 return data ? strndup_user(data, PATH_MAX) : NULL;
eca6f534
VN
3013}
3014
1da177e4
LT
3015/*
3016 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3017 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3018 *
3019 * data is a (void *) that can point to any structure up to
3020 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3021 * information (or be NULL).
3022 *
3023 * Pre-0.97 versions of mount() didn't have a flags word.
3024 * When the flags word was introduced its top half was required
3025 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3026 * Therefore, if this magic number is present, it carries no information
3027 * and must be discarded.
3028 */
5e6123f3 3029long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 3030 const char *type_page, unsigned long flags, void *data_page)
1da177e4 3031{
2d92ab3c 3032 struct path path;
e462ec50 3033 unsigned int mnt_flags = 0, sb_flags;
1da177e4 3034 int retval = 0;
1da177e4
LT
3035
3036 /* Discard magic */
3037 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3038 flags &= ~MS_MGC_MSK;
3039
3040 /* Basic sanity checks */
1da177e4
LT
3041 if (data_page)
3042 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3043
e462ec50
DH
3044 if (flags & MS_NOUSER)
3045 return -EINVAL;
3046
a27ab9f2 3047 /* ... and get the mountpoint */
5e6123f3 3048 retval = user_path(dir_name, &path);
a27ab9f2
TH
3049 if (retval)
3050 return retval;
3051
3052 retval = security_sb_mount(dev_name, &path,
3053 type_page, flags, data_page);
0d5cadb8
AV
3054 if (!retval && !may_mount())
3055 retval = -EPERM;
e462ec50 3056 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
9e8925b6 3057 retval = -EPERM;
a27ab9f2
TH
3058 if (retval)
3059 goto dput_out;
3060
613cbe3d
AK
3061 /* Default to relatime unless overriden */
3062 if (!(flags & MS_NOATIME))
3063 mnt_flags |= MNT_RELATIME;
0a1c01c9 3064
1da177e4
LT
3065 /* Separate the per-mountpoint flags */
3066 if (flags & MS_NOSUID)
3067 mnt_flags |= MNT_NOSUID;
3068 if (flags & MS_NODEV)
3069 mnt_flags |= MNT_NODEV;
3070 if (flags & MS_NOEXEC)
3071 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
3072 if (flags & MS_NOATIME)
3073 mnt_flags |= MNT_NOATIME;
3074 if (flags & MS_NODIRATIME)
3075 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
3076 if (flags & MS_STRICTATIME)
3077 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
a9e5b732 3078 if (flags & MS_RDONLY)
2e4b7fcd 3079 mnt_flags |= MNT_READONLY;
fc33a7bb 3080
ffbc6f0e
EB
3081 /* The default atime for remount is preservation */
3082 if ((flags & MS_REMOUNT) &&
3083 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3084 MS_STRICTATIME)) == 0)) {
3085 mnt_flags &= ~MNT_ATIME_MASK;
3086 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
3087 }
3088
e462ec50
DH
3089 sb_flags = flags & (SB_RDONLY |
3090 SB_SYNCHRONOUS |
3091 SB_MANDLOCK |
3092 SB_DIRSYNC |
3093 SB_SILENT |
917086ff 3094 SB_POSIXACL |
d7ee9469 3095 SB_LAZYTIME |
917086ff 3096 SB_I_VERSION);
1da177e4 3097
43f5e655
DH
3098 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3099 retval = do_reconfigure_mnt(&path, mnt_flags);
3100 else if (flags & MS_REMOUNT)
e462ec50 3101 retval = do_remount(&path, flags, sb_flags, mnt_flags,
1da177e4
LT
3102 data_page);
3103 else if (flags & MS_BIND)
2d92ab3c 3104 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 3105 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 3106 retval = do_change_type(&path, flags);
1da177e4 3107 else if (flags & MS_MOVE)
2db154b3 3108 retval = do_move_mount_old(&path, dev_name);
1da177e4 3109 else
e462ec50 3110 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
1da177e4
LT
3111 dev_name, data_page);
3112dput_out:
2d92ab3c 3113 path_put(&path);
1da177e4
LT
3114 return retval;
3115}
3116
537f7ccb
EB
3117static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3118{
3119 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3120}
3121
3122static void dec_mnt_namespaces(struct ucounts *ucounts)
3123{
3124 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3125}
3126
771b1371
EB
3127static void free_mnt_ns(struct mnt_namespace *ns)
3128{
74e83122
AV
3129 if (!is_anon_ns(ns))
3130 ns_free_inum(&ns->ns);
537f7ccb 3131 dec_mnt_namespaces(ns->ucounts);
771b1371
EB
3132 put_user_ns(ns->user_ns);
3133 kfree(ns);
3134}
3135
8823c079
EB
3136/*
3137 * Assign a sequence number so we can detect when we attempt to bind
3138 * mount a reference to an older mount namespace into the current
3139 * mount namespace, preventing reference counting loops. A 64bit
3140 * number incrementing at 10Ghz will take 12,427 years to wrap which
3141 * is effectively never, so we can ignore the possibility.
3142 */
3143static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3144
74e83122 3145static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
cf8d2c11
TM
3146{
3147 struct mnt_namespace *new_ns;
537f7ccb 3148 struct ucounts *ucounts;
98f842e6 3149 int ret;
cf8d2c11 3150
537f7ccb
EB
3151 ucounts = inc_mnt_namespaces(user_ns);
3152 if (!ucounts)
df75e774 3153 return ERR_PTR(-ENOSPC);
537f7ccb 3154
74e83122 3155 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
537f7ccb
EB
3156 if (!new_ns) {
3157 dec_mnt_namespaces(ucounts);
cf8d2c11 3158 return ERR_PTR(-ENOMEM);
537f7ccb 3159 }
74e83122
AV
3160 if (!anon) {
3161 ret = ns_alloc_inum(&new_ns->ns);
3162 if (ret) {
3163 kfree(new_ns);
3164 dec_mnt_namespaces(ucounts);
3165 return ERR_PTR(ret);
3166 }
98f842e6 3167 }
33c42940 3168 new_ns->ns.ops = &mntns_operations;
74e83122
AV
3169 if (!anon)
3170 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11 3171 atomic_set(&new_ns->count, 1);
cf8d2c11
TM
3172 INIT_LIST_HEAD(&new_ns->list);
3173 init_waitqueue_head(&new_ns->poll);
771b1371 3174 new_ns->user_ns = get_user_ns(user_ns);
537f7ccb 3175 new_ns->ucounts = ucounts;
cf8d2c11
TM
3176 return new_ns;
3177}
3178
0766f788 3179__latent_entropy
9559f689
AV
3180struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3181 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 3182{
6b3286ed 3183 struct mnt_namespace *new_ns;
7f2da1e7 3184 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 3185 struct mount *p, *q;
9559f689 3186 struct mount *old;
cb338d06 3187 struct mount *new;
7a472ef4 3188 int copy_flags;
1da177e4 3189
9559f689
AV
3190 BUG_ON(!ns);
3191
3192 if (likely(!(flags & CLONE_NEWNS))) {
3193 get_mnt_ns(ns);
3194 return ns;
3195 }
3196
3197 old = ns->root;
3198
74e83122 3199 new_ns = alloc_mnt_ns(user_ns, false);
cf8d2c11
TM
3200 if (IS_ERR(new_ns))
3201 return new_ns;
1da177e4 3202
97216be0 3203 namespace_lock();
1da177e4 3204 /* First pass: copy the tree topology */
4ce5d2b1 3205 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 3206 if (user_ns != ns->user_ns)
3bd045cc 3207 copy_flags |= CL_SHARED_TO_SLAVE;
7a472ef4 3208 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 3209 if (IS_ERR(new)) {
328e6d90 3210 namespace_unlock();
771b1371 3211 free_mnt_ns(new_ns);
be34d1a3 3212 return ERR_CAST(new);
1da177e4 3213 }
3bd045cc
AV
3214 if (user_ns != ns->user_ns) {
3215 lock_mount_hash();
3216 lock_mnt_tree(new);
3217 unlock_mount_hash();
3218 }
be08d6d2 3219 new_ns->root = new;
1a4eeaf2 3220 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
3221
3222 /*
3223 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3224 * as belonging to new namespace. We have already acquired a private
3225 * fs_struct, so tsk->fs->lock is not needed.
3226 */
909b0a88 3227 p = old;
cb338d06 3228 q = new;
1da177e4 3229 while (p) {
143c8c91 3230 q->mnt_ns = new_ns;
d2921684 3231 new_ns->mounts++;
9559f689
AV
3232 if (new_fs) {
3233 if (&p->mnt == new_fs->root.mnt) {
3234 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 3235 rootmnt = &p->mnt;
1da177e4 3236 }
9559f689
AV
3237 if (&p->mnt == new_fs->pwd.mnt) {
3238 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 3239 pwdmnt = &p->mnt;
1da177e4 3240 }
1da177e4 3241 }
909b0a88
AV
3242 p = next_mnt(p, old);
3243 q = next_mnt(q, new);
4ce5d2b1
EB
3244 if (!q)
3245 break;
3246 while (p->mnt.mnt_root != q->mnt.mnt_root)
3247 p = next_mnt(p, old);
1da177e4 3248 }
328e6d90 3249 namespace_unlock();
1da177e4 3250
1da177e4 3251 if (rootmnt)
f03c6599 3252 mntput(rootmnt);
1da177e4 3253 if (pwdmnt)
f03c6599 3254 mntput(pwdmnt);
1da177e4 3255
741a2951 3256 return new_ns;
1da177e4
LT
3257}
3258
74e83122 3259struct dentry *mount_subtree(struct vfsmount *m, const char *name)
ea441d11 3260{
74e83122 3261 struct mount *mnt = real_mount(m);
ea441d11 3262 struct mnt_namespace *ns;
d31da0f0 3263 struct super_block *s;
ea441d11
AV
3264 struct path path;
3265 int err;
3266
74e83122
AV
3267 ns = alloc_mnt_ns(&init_user_ns, true);
3268 if (IS_ERR(ns)) {
3269 mntput(m);
ea441d11 3270 return ERR_CAST(ns);
74e83122
AV
3271 }
3272 mnt->mnt_ns = ns;
3273 ns->root = mnt;
3274 ns->mounts++;
3275 list_add(&mnt->mnt_list, &ns->list);
ea441d11 3276
74e83122 3277 err = vfs_path_lookup(m->mnt_root, m,
ea441d11
AV
3278 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3279
3280 put_mnt_ns(ns);
3281
3282 if (err)
3283 return ERR_PTR(err);
3284
3285 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
3286 s = path.mnt->mnt_sb;
3287 atomic_inc(&s->s_active);
ea441d11
AV
3288 mntput(path.mnt);
3289 /* lock the sucker */
d31da0f0 3290 down_write(&s->s_umount);
ea441d11
AV
3291 /* ... and return the root of (sub)tree on it */
3292 return path.dentry;
3293}
3294EXPORT_SYMBOL(mount_subtree);
3295
312db1aa
DB
3296int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
3297 unsigned long flags, void __user *data)
1da177e4 3298{
eca6f534
VN
3299 int ret;
3300 char *kernel_type;
eca6f534 3301 char *kernel_dev;
b40ef869 3302 void *options;
1da177e4 3303
b8850d1f
TG
3304 kernel_type = copy_mount_string(type);
3305 ret = PTR_ERR(kernel_type);
3306 if (IS_ERR(kernel_type))
eca6f534 3307 goto out_type;
1da177e4 3308
b8850d1f
TG
3309 kernel_dev = copy_mount_string(dev_name);
3310 ret = PTR_ERR(kernel_dev);
3311 if (IS_ERR(kernel_dev))
eca6f534 3312 goto out_dev;
1da177e4 3313
b40ef869
AV
3314 options = copy_mount_options(data);
3315 ret = PTR_ERR(options);
3316 if (IS_ERR(options))
eca6f534 3317 goto out_data;
1da177e4 3318
b40ef869 3319 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 3320
b40ef869 3321 kfree(options);
eca6f534
VN
3322out_data:
3323 kfree(kernel_dev);
3324out_dev:
eca6f534
VN
3325 kfree(kernel_type);
3326out_type:
3327 return ret;
1da177e4
LT
3328}
3329
312db1aa
DB
3330SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3331 char __user *, type, unsigned long, flags, void __user *, data)
3332{
3333 return ksys_mount(dev_name, dir_name, type, flags, data);
3334}
3335
2db154b3 3336/*
93766fbd
DH
3337 * Create a kernel mount representation for a new, prepared superblock
3338 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3339 */
3340SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3341 unsigned int, attr_flags)
3342{
3343 struct mnt_namespace *ns;
3344 struct fs_context *fc;
3345 struct file *file;
3346 struct path newmount;
3347 struct mount *mnt;
3348 struct fd f;
3349 unsigned int mnt_flags = 0;
3350 long ret;
3351
3352 if (!may_mount())
3353 return -EPERM;
3354
3355 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3356 return -EINVAL;
3357
3358 if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3359 MOUNT_ATTR_NOSUID |
3360 MOUNT_ATTR_NODEV |
3361 MOUNT_ATTR_NOEXEC |
3362 MOUNT_ATTR__ATIME |
3363 MOUNT_ATTR_NODIRATIME))
3364 return -EINVAL;
3365
3366 if (attr_flags & MOUNT_ATTR_RDONLY)
3367 mnt_flags |= MNT_READONLY;
3368 if (attr_flags & MOUNT_ATTR_NOSUID)
3369 mnt_flags |= MNT_NOSUID;
3370 if (attr_flags & MOUNT_ATTR_NODEV)
3371 mnt_flags |= MNT_NODEV;
3372 if (attr_flags & MOUNT_ATTR_NOEXEC)
3373 mnt_flags |= MNT_NOEXEC;
3374 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3375 mnt_flags |= MNT_NODIRATIME;
3376
3377 switch (attr_flags & MOUNT_ATTR__ATIME) {
3378 case MOUNT_ATTR_STRICTATIME:
3379 break;
3380 case MOUNT_ATTR_NOATIME:
3381 mnt_flags |= MNT_NOATIME;
3382 break;
3383 case MOUNT_ATTR_RELATIME:
3384 mnt_flags |= MNT_RELATIME;
3385 break;
3386 default:
3387 return -EINVAL;
3388 }
3389
3390 f = fdget(fs_fd);
3391 if (!f.file)
3392 return -EBADF;
3393
3394 ret = -EINVAL;
3395 if (f.file->f_op != &fscontext_fops)
3396 goto err_fsfd;
3397
3398 fc = f.file->private_data;
3399
3400 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3401 if (ret < 0)
3402 goto err_fsfd;
3403
3404 /* There must be a valid superblock or we can't mount it */
3405 ret = -EINVAL;
3406 if (!fc->root)
3407 goto err_unlock;
3408
3409 ret = -EPERM;
3410 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3411 pr_warn("VFS: Mount too revealing\n");
3412 goto err_unlock;
3413 }
3414
3415 ret = -EBUSY;
3416 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3417 goto err_unlock;
3418
3419 ret = -EPERM;
3420 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3421 goto err_unlock;
3422
3423 newmount.mnt = vfs_create_mount(fc);
3424 if (IS_ERR(newmount.mnt)) {
3425 ret = PTR_ERR(newmount.mnt);
3426 goto err_unlock;
3427 }
3428 newmount.dentry = dget(fc->root);
3429 newmount.mnt->mnt_flags = mnt_flags;
3430
3431 /* We've done the mount bit - now move the file context into more or
3432 * less the same state as if we'd done an fspick(). We don't want to
3433 * do any memory allocation or anything like that at this point as we
3434 * don't want to have to handle any errors incurred.
3435 */
3436 vfs_clean_context(fc);
3437
3438 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3439 if (IS_ERR(ns)) {
3440 ret = PTR_ERR(ns);
3441 goto err_path;
3442 }
3443 mnt = real_mount(newmount.mnt);
3444 mnt->mnt_ns = ns;
3445 ns->root = mnt;
3446 ns->mounts = 1;
3447 list_add(&mnt->mnt_list, &ns->list);
3448
3449 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3450 * it, not just simply put it.
3451 */
3452 file = dentry_open(&newmount, O_PATH, fc->cred);
3453 if (IS_ERR(file)) {
3454 dissolve_on_fput(newmount.mnt);
3455 ret = PTR_ERR(file);
3456 goto err_path;
3457 }
3458 file->f_mode |= FMODE_NEED_UNMOUNT;
3459
3460 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3461 if (ret >= 0)
3462 fd_install(ret, file);
3463 else
3464 fput(file);
3465
3466err_path:
3467 path_put(&newmount);
3468err_unlock:
3469 mutex_unlock(&fc->uapi_mutex);
3470err_fsfd:
3471 fdput(f);
3472 return ret;
3473}
3474
3475/*
3476 * Move a mount from one place to another. In combination with
3477 * fsopen()/fsmount() this is used to install a new mount and in combination
3478 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3479 * a mount subtree.
2db154b3
DH
3480 *
3481 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3482 */
3483SYSCALL_DEFINE5(move_mount,
3484 int, from_dfd, const char *, from_pathname,
3485 int, to_dfd, const char *, to_pathname,
3486 unsigned int, flags)
3487{
3488 struct path from_path, to_path;
3489 unsigned int lflags;
3490 int ret = 0;
3491
3492 if (!may_mount())
3493 return -EPERM;
3494
3495 if (flags & ~MOVE_MOUNT__MASK)
3496 return -EINVAL;
3497
3498 /* If someone gives a pathname, they aren't permitted to move
3499 * from an fd that requires unmount as we can't get at the flag
3500 * to clear it afterwards.
3501 */
3502 lflags = 0;
3503 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3504 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3505 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3506
3507 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3508 if (ret < 0)
3509 return ret;
3510
3511 lflags = 0;
3512 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3513 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3514 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3515
3516 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3517 if (ret < 0)
3518 goto out_from;
3519
3520 ret = security_move_mount(&from_path, &to_path);
3521 if (ret < 0)
3522 goto out_to;
3523
3524 ret = do_move_mount(&from_path, &to_path);
3525
3526out_to:
3527 path_put(&to_path);
3528out_from:
3529 path_put(&from_path);
3530 return ret;
3531}
3532
afac7cba
AV
3533/*
3534 * Return true if path is reachable from root
3535 *
48a066e7 3536 * namespace_sem or mount_lock is held
afac7cba 3537 */
643822b4 3538bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
3539 const struct path *root)
3540{
643822b4 3541 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 3542 dentry = mnt->mnt_mountpoint;
0714a533 3543 mnt = mnt->mnt_parent;
afac7cba 3544 }
643822b4 3545 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
3546}
3547
640eb7e7 3548bool path_is_under(const struct path *path1, const struct path *path2)
afac7cba 3549{
25ab4c9b 3550 bool res;
48a066e7 3551 read_seqlock_excl(&mount_lock);
643822b4 3552 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 3553 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3554 return res;
3555}
3556EXPORT_SYMBOL(path_is_under);
3557
1da177e4
LT
3558/*
3559 * pivot_root Semantics:
3560 * Moves the root file system of the current process to the directory put_old,
3561 * makes new_root as the new root file system of the current process, and sets
3562 * root/cwd of all processes which had them on the current root to new_root.
3563 *
3564 * Restrictions:
3565 * The new_root and put_old must be directories, and must not be on the
3566 * same file system as the current process root. The put_old must be
3567 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3568 * pointed to by put_old must yield the same directory as new_root. No other
3569 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3570 *
4a0d11fa
NB
3571 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3572 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3573 * in this situation.
3574 *
1da177e4
LT
3575 * Notes:
3576 * - we don't move root/cwd if they are not at the root (reason: if something
3577 * cared enough to change them, it's probably wrong to force them elsewhere)
3578 * - it's okay to pick a root that isn't the root of a file system, e.g.
3579 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3580 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3581 * first.
3582 */
3480b257
HC
3583SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3584 const char __user *, put_old)
1da177e4 3585{
2d8f3038 3586 struct path new, old, parent_path, root_parent, root;
84d17192
AV
3587 struct mount *new_mnt, *root_mnt, *old_mnt;
3588 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3589 int error;
3590
9b40bc90 3591 if (!may_mount())
1da177e4
LT
3592 return -EPERM;
3593
2d8f3038 3594 error = user_path_dir(new_root, &new);
1da177e4
LT
3595 if (error)
3596 goto out0;
1da177e4 3597
2d8f3038 3598 error = user_path_dir(put_old, &old);
1da177e4
LT
3599 if (error)
3600 goto out1;
3601
2d8f3038 3602 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3603 if (error)
3604 goto out2;
1da177e4 3605
f7ad3c6b 3606 get_fs_root(current->fs, &root);
84d17192
AV
3607 old_mp = lock_mount(&old);
3608 error = PTR_ERR(old_mp);
3609 if (IS_ERR(old_mp))
b12cea91
AV
3610 goto out3;
3611
1da177e4 3612 error = -EINVAL;
419148da
AV
3613 new_mnt = real_mount(new.mnt);
3614 root_mnt = real_mount(root.mnt);
84d17192
AV
3615 old_mnt = real_mount(old.mnt);
3616 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
3617 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3618 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 3619 goto out4;
143c8c91 3620 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3621 goto out4;
5ff9d8a6
EB
3622 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3623 goto out4;
1da177e4 3624 error = -ENOENT;
f3da392e 3625 if (d_unlinked(new.dentry))
b12cea91 3626 goto out4;
1da177e4 3627 error = -EBUSY;
84d17192 3628 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3629 goto out4; /* loop, on the same file system */
1da177e4 3630 error = -EINVAL;
8c3ee42e 3631 if (root.mnt->mnt_root != root.dentry)
b12cea91 3632 goto out4; /* not a mountpoint */
676da58d 3633 if (!mnt_has_parent(root_mnt))
b12cea91 3634 goto out4; /* not attached */
84d17192 3635 root_mp = root_mnt->mnt_mp;
2d8f3038 3636 if (new.mnt->mnt_root != new.dentry)
b12cea91 3637 goto out4; /* not a mountpoint */
676da58d 3638 if (!mnt_has_parent(new_mnt))
b12cea91 3639 goto out4; /* not attached */
4ac91378 3640 /* make sure we can reach put_old from new_root */
84d17192 3641 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3642 goto out4;
0d082601
EB
3643 /* make certain new is below the root */
3644 if (!is_path_reachable(new_mnt, new.dentry, &root))
3645 goto out4;
84d17192 3646 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 3647 lock_mount_hash();
419148da
AV
3648 detach_mnt(new_mnt, &parent_path);
3649 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
3650 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3651 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3652 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3653 }
4ac91378 3654 /* mount old root on put_old */
84d17192 3655 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3656 /* mount new_root on / */
84d17192 3657 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 3658 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3659 /* A moved mount should not expire automatically */
3660 list_del_init(&new_mnt->mnt_expire);
3895dbf8 3661 put_mountpoint(root_mp);
719ea2fb 3662 unlock_mount_hash();
2d8f3038 3663 chroot_fs_refs(&root, &new);
1da177e4 3664 error = 0;
b12cea91 3665out4:
84d17192 3666 unlock_mount(old_mp);
b12cea91
AV
3667 if (!error) {
3668 path_put(&root_parent);
3669 path_put(&parent_path);
3670 }
3671out3:
8c3ee42e 3672 path_put(&root);
b12cea91 3673out2:
2d8f3038 3674 path_put(&old);
1da177e4 3675out1:
2d8f3038 3676 path_put(&new);
1da177e4 3677out0:
1da177e4 3678 return error;
1da177e4
LT
3679}
3680
3681static void __init init_mount_tree(void)
3682{
3683 struct vfsmount *mnt;
74e83122 3684 struct mount *m;
6b3286ed 3685 struct mnt_namespace *ns;
ac748a09 3686 struct path root;
0c55cfc4 3687 struct file_system_type *type;
1da177e4 3688
0c55cfc4
EB
3689 type = get_fs_type("rootfs");
3690 if (!type)
3691 panic("Can't find rootfs type");
3692 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3693 put_filesystem(type);
1da177e4
LT
3694 if (IS_ERR(mnt))
3695 panic("Can't create rootfs");
b3e19d92 3696
74e83122 3697 ns = alloc_mnt_ns(&init_user_ns, false);
3b22edc5 3698 if (IS_ERR(ns))
1da177e4 3699 panic("Can't allocate initial namespace");
74e83122
AV
3700 m = real_mount(mnt);
3701 m->mnt_ns = ns;
3702 ns->root = m;
3703 ns->mounts = 1;
3704 list_add(&m->mnt_list, &ns->list);
6b3286ed
KK
3705 init_task.nsproxy->mnt_ns = ns;
3706 get_mnt_ns(ns);
3707
be08d6d2
AV
3708 root.mnt = mnt;
3709 root.dentry = mnt->mnt_root;
da362b09 3710 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3711
3712 set_fs_pwd(current->fs, &root);
3713 set_fs_root(current->fs, &root);
1da177e4
LT
3714}
3715
74bf17cf 3716void __init mnt_init(void)
1da177e4 3717{
15a67dd8 3718 int err;
1da177e4 3719
7d6fec45 3720 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3721 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3722
0818bf27 3723 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3724 sizeof(struct hlist_head),
0818bf27 3725 mhash_entries, 19,
3d375d78 3726 HASH_ZERO,
0818bf27
AV
3727 &m_hash_shift, &m_hash_mask, 0, 0);
3728 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3729 sizeof(struct hlist_head),
3730 mphash_entries, 19,
3d375d78 3731 HASH_ZERO,
0818bf27 3732 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3733
84d17192 3734 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3735 panic("Failed to allocate mount hash table\n");
3736
4b93dc9b
TH
3737 kernfs_init();
3738
15a67dd8
RD
3739 err = sysfs_init();
3740 if (err)
3741 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3742 __func__, err);
00d26666
GKH
3743 fs_kobj = kobject_create_and_add("fs", NULL);
3744 if (!fs_kobj)
8e24eea7 3745 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3746 init_rootfs();
3747 init_mount_tree();
3748}
3749
616511d0 3750void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3751{
d498b25a 3752 if (!atomic_dec_and_test(&ns->count))
616511d0 3753 return;
7b00ed6f 3754 drop_collected_mounts(&ns->root->mnt);
771b1371 3755 free_mnt_ns(ns);
1da177e4 3756}
9d412a43 3757
d911b458 3758struct vfsmount *kern_mount(struct file_system_type *type)
9d412a43 3759{
423e0ab0 3760 struct vfsmount *mnt;
d911b458 3761 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
423e0ab0
TC
3762 if (!IS_ERR(mnt)) {
3763 /*
3764 * it is a longterm mount, don't release mnt until
3765 * we unmount before file sys is unregistered
3766 */
f7a99c5b 3767 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3768 }
3769 return mnt;
9d412a43 3770}
d911b458 3771EXPORT_SYMBOL_GPL(kern_mount);
423e0ab0
TC
3772
3773void kern_unmount(struct vfsmount *mnt)
3774{
3775 /* release long term mount so mount point can be released */
3776 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3777 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3778 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3779 mntput(mnt);
3780 }
3781}
3782EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3783
3784bool our_mnt(struct vfsmount *mnt)
3785{
143c8c91 3786 return check_mnt(real_mount(mnt));
02125a82 3787}
8823c079 3788
3151527e
EB
3789bool current_chrooted(void)
3790{
3791 /* Does the current process have a non-standard root */
3792 struct path ns_root;
3793 struct path fs_root;
3794 bool chrooted;
3795
3796 /* Find the namespace root */
3797 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3798 ns_root.dentry = ns_root.mnt->mnt_root;
3799 path_get(&ns_root);
3800 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3801 ;
3802
3803 get_fs_root(current->fs, &fs_root);
3804
3805 chrooted = !path_equal(&fs_root, &ns_root);
3806
3807 path_put(&fs_root);
3808 path_put(&ns_root);
3809
3810 return chrooted;
3811}
3812
132e4608
DH
3813static bool mnt_already_visible(struct mnt_namespace *ns,
3814 const struct super_block *sb,
8654df4e 3815 int *new_mnt_flags)
87a8ebd6 3816{
8c6cf9cc 3817 int new_flags = *new_mnt_flags;
87a8ebd6 3818 struct mount *mnt;
e51db735 3819 bool visible = false;
87a8ebd6 3820
44bb4385 3821 down_read(&namespace_sem);
87a8ebd6 3822 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 3823 struct mount *child;
77b1a97d
EB
3824 int mnt_flags;
3825
132e4608 3826 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
e51db735
EB
3827 continue;
3828
7e96c1b0
EB
3829 /* This mount is not fully visible if it's root directory
3830 * is not the root directory of the filesystem.
3831 */
3832 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3833 continue;
3834
a1935c17 3835 /* A local view of the mount flags */
77b1a97d 3836 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 3837
695e9df0 3838 /* Don't miss readonly hidden in the superblock flags */
bc98a42c 3839 if (sb_rdonly(mnt->mnt.mnt_sb))
695e9df0
EB
3840 mnt_flags |= MNT_LOCK_READONLY;
3841
8c6cf9cc
EB
3842 /* Verify the mount flags are equal to or more permissive
3843 * than the proposed new mount.
3844 */
77b1a97d 3845 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
3846 !(new_flags & MNT_READONLY))
3847 continue;
77b1a97d
EB
3848 if ((mnt_flags & MNT_LOCK_ATIME) &&
3849 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
3850 continue;
3851
ceeb0e5d
EB
3852 /* This mount is not fully visible if there are any
3853 * locked child mounts that cover anything except for
3854 * empty directories.
e51db735
EB
3855 */
3856 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3857 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 3858 /* Only worry about locked mounts */
d71ed6c9 3859 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 3860 continue;
7236c85e
EB
3861 /* Is the directory permanetly empty? */
3862 if (!is_empty_dir_inode(inode))
e51db735 3863 goto next;
87a8ebd6 3864 }
8c6cf9cc 3865 /* Preserve the locked attributes */
77b1a97d 3866 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 3867 MNT_LOCK_ATIME);
e51db735
EB
3868 visible = true;
3869 goto found;
3870 next: ;
87a8ebd6 3871 }
e51db735 3872found:
44bb4385 3873 up_read(&namespace_sem);
e51db735 3874 return visible;
87a8ebd6
EB
3875}
3876
132e4608 3877static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
8654df4e 3878{
a1935c17 3879 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
3880 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3881 unsigned long s_iflags;
3882
3883 if (ns->user_ns == &init_user_ns)
3884 return false;
3885
3886 /* Can this filesystem be too revealing? */
132e4608 3887 s_iflags = sb->s_iflags;
8654df4e
EB
3888 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3889 return false;
3890
a1935c17
EB
3891 if ((s_iflags & required_iflags) != required_iflags) {
3892 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3893 required_iflags);
3894 return true;
3895 }
3896
132e4608 3897 return !mnt_already_visible(ns, sb, new_mnt_flags);
8654df4e
EB
3898}
3899
380cf5ba
AL
3900bool mnt_may_suid(struct vfsmount *mnt)
3901{
3902 /*
3903 * Foreign mounts (accessed via fchdir or through /proc
3904 * symlinks) are always treated as if they are nosuid. This
3905 * prevents namespaces from trusting potentially unsafe
3906 * suid/sgid bits, file caps, or security labels that originate
3907 * in other namespaces.
3908 */
3909 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3910 current_in_userns(mnt->mnt_sb->s_user_ns);
3911}
3912
64964528 3913static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3914{
58be2825 3915 struct ns_common *ns = NULL;
8823c079
EB
3916 struct nsproxy *nsproxy;
3917
728dba3a
EB
3918 task_lock(task);
3919 nsproxy = task->nsproxy;
8823c079 3920 if (nsproxy) {
58be2825
AV
3921 ns = &nsproxy->mnt_ns->ns;
3922 get_mnt_ns(to_mnt_ns(ns));
8823c079 3923 }
728dba3a 3924 task_unlock(task);
8823c079
EB
3925
3926 return ns;
3927}
3928
64964528 3929static void mntns_put(struct ns_common *ns)
8823c079 3930{
58be2825 3931 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3932}
3933
64964528 3934static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3935{
3936 struct fs_struct *fs = current->fs;
4f757f3c 3937 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
8823c079 3938 struct path root;
4f757f3c 3939 int err;
8823c079 3940
0c55cfc4 3941 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3942 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3943 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3944 return -EPERM;
8823c079 3945
74e83122
AV
3946 if (is_anon_ns(mnt_ns))
3947 return -EINVAL;
3948
8823c079
EB
3949 if (fs->users != 1)
3950 return -EINVAL;
3951
3952 get_mnt_ns(mnt_ns);
4f757f3c 3953 old_mnt_ns = nsproxy->mnt_ns;
8823c079
EB
3954 nsproxy->mnt_ns = mnt_ns;
3955
3956 /* Find the root */
4f757f3c
AV
3957 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3958 "/", LOOKUP_DOWN, &root);
3959 if (err) {
3960 /* revert to old namespace */
3961 nsproxy->mnt_ns = old_mnt_ns;
3962 put_mnt_ns(mnt_ns);
3963 return err;
3964 }
8823c079 3965
4068367c
AV
3966 put_mnt_ns(old_mnt_ns);
3967
8823c079
EB
3968 /* Update the pwd and root */
3969 set_fs_pwd(fs, &root);
3970 set_fs_root(fs, &root);
3971
3972 path_put(&root);
3973 return 0;
3974}
3975
bcac25a5
AV
3976static struct user_namespace *mntns_owner(struct ns_common *ns)
3977{
3978 return to_mnt_ns(ns)->user_ns;
3979}
3980
8823c079
EB
3981const struct proc_ns_operations mntns_operations = {
3982 .name = "mnt",
3983 .type = CLONE_NEWNS,
3984 .get = mntns_get,
3985 .put = mntns_put,
3986 .install = mntns_install,
bcac25a5 3987 .owner = mntns_owner,
8823c079 3988};