]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/huge_memory.c
cifs: Fix lease buffer length error
[thirdparty/kernel/linux.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
f7ccbae4 12#include <linux/sched/coredump.h>
6a3827d7 13#include <linux/sched/numa_balancing.h>
71e3aac0
AA
14#include <linux/highmem.h>
15#include <linux/hugetlb.h>
16#include <linux/mmu_notifier.h>
17#include <linux/rmap.h>
18#include <linux/swap.h>
97ae1749 19#include <linux/shrinker.h>
ba76149f 20#include <linux/mm_inline.h>
e9b61f19 21#include <linux/swapops.h>
4897c765 22#include <linux/dax.h>
ba76149f 23#include <linux/khugepaged.h>
878aee7d 24#include <linux/freezer.h>
f25748e3 25#include <linux/pfn_t.h>
a664b2d8 26#include <linux/mman.h>
3565fce3 27#include <linux/memremap.h>
325adeb5 28#include <linux/pagemap.h>
49071d43 29#include <linux/debugfs.h>
4daae3b4 30#include <linux/migrate.h>
43b5fbbd 31#include <linux/hashtable.h>
6b251fc9 32#include <linux/userfaultfd_k.h>
33c3fc71 33#include <linux/page_idle.h>
baa355fd 34#include <linux/shmem_fs.h>
6b31d595 35#include <linux/oom.h>
98fa15f3 36#include <linux/numa.h>
97ae1749 37
71e3aac0
AA
38#include <asm/tlb.h>
39#include <asm/pgalloc.h>
40#include "internal.h"
41
ba76149f 42/*
b14d595a
MD
43 * By default, transparent hugepage support is disabled in order to avoid
44 * risking an increased memory footprint for applications that are not
45 * guaranteed to benefit from it. When transparent hugepage support is
46 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
47 * Defrag is invoked by khugepaged hugepage allocations and by page faults
48 * for all hugepage allocations.
ba76149f 49 */
71e3aac0 50unsigned long transparent_hugepage_flags __read_mostly =
13ece886 51#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 52 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
53#endif
54#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
55 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56#endif
444eb2a4 57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
58 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
59 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 60
9a982250 61static struct shrinker deferred_split_shrinker;
f000565a 62
97ae1749 63static atomic_t huge_zero_refcount;
56873f43 64struct page *huge_zero_page __read_mostly;
4a6c1297 65
7635d9cb
MH
66bool transparent_hugepage_enabled(struct vm_area_struct *vma)
67{
68 if (vma_is_anonymous(vma))
69 return __transparent_hugepage_enabled(vma);
70 if (vma_is_shmem(vma) && shmem_huge_enabled(vma))
71 return __transparent_hugepage_enabled(vma);
72
73 return false;
74}
75
6fcb52a5 76static struct page *get_huge_zero_page(void)
97ae1749
KS
77{
78 struct page *zero_page;
79retry:
80 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 81 return READ_ONCE(huge_zero_page);
97ae1749
KS
82
83 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 84 HPAGE_PMD_ORDER);
d8a8e1f0
KS
85 if (!zero_page) {
86 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 87 return NULL;
d8a8e1f0
KS
88 }
89 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 90 preempt_disable();
5918d10a 91 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 92 preempt_enable();
5ddacbe9 93 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
94 goto retry;
95 }
96
97 /* We take additional reference here. It will be put back by shrinker */
98 atomic_set(&huge_zero_refcount, 2);
99 preempt_enable();
4db0c3c2 100 return READ_ONCE(huge_zero_page);
4a6c1297
KS
101}
102
6fcb52a5 103static void put_huge_zero_page(void)
4a6c1297 104{
97ae1749
KS
105 /*
106 * Counter should never go to zero here. Only shrinker can put
107 * last reference.
108 */
109 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
110}
111
6fcb52a5
AL
112struct page *mm_get_huge_zero_page(struct mm_struct *mm)
113{
114 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
115 return READ_ONCE(huge_zero_page);
116
117 if (!get_huge_zero_page())
118 return NULL;
119
120 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
121 put_huge_zero_page();
122
123 return READ_ONCE(huge_zero_page);
124}
125
126void mm_put_huge_zero_page(struct mm_struct *mm)
127{
128 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
129 put_huge_zero_page();
130}
131
48896466
GC
132static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
133 struct shrink_control *sc)
4a6c1297 134{
48896466
GC
135 /* we can free zero page only if last reference remains */
136 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
137}
97ae1749 138
48896466
GC
139static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
140 struct shrink_control *sc)
141{
97ae1749 142 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
143 struct page *zero_page = xchg(&huge_zero_page, NULL);
144 BUG_ON(zero_page == NULL);
5ddacbe9 145 __free_pages(zero_page, compound_order(zero_page));
48896466 146 return HPAGE_PMD_NR;
97ae1749
KS
147 }
148
149 return 0;
4a6c1297
KS
150}
151
97ae1749 152static struct shrinker huge_zero_page_shrinker = {
48896466
GC
153 .count_objects = shrink_huge_zero_page_count,
154 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
155 .seeks = DEFAULT_SEEKS,
156};
157
71e3aac0 158#ifdef CONFIG_SYSFS
71e3aac0
AA
159static ssize_t enabled_show(struct kobject *kobj,
160 struct kobj_attribute *attr, char *buf)
161{
444eb2a4
MG
162 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
163 return sprintf(buf, "[always] madvise never\n");
164 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
165 return sprintf(buf, "always [madvise] never\n");
166 else
167 return sprintf(buf, "always madvise [never]\n");
71e3aac0 168}
444eb2a4 169
71e3aac0
AA
170static ssize_t enabled_store(struct kobject *kobj,
171 struct kobj_attribute *attr,
172 const char *buf, size_t count)
173{
21440d7e 174 ssize_t ret = count;
ba76149f 175
21440d7e
DR
176 if (!memcmp("always", buf,
177 min(sizeof("always")-1, count))) {
178 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
179 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
180 } else if (!memcmp("madvise", buf,
181 min(sizeof("madvise")-1, count))) {
182 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
184 } else if (!memcmp("never", buf,
185 min(sizeof("never")-1, count))) {
186 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
187 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
188 } else
189 ret = -EINVAL;
ba76149f
AA
190
191 if (ret > 0) {
b46e756f 192 int err = start_stop_khugepaged();
ba76149f
AA
193 if (err)
194 ret = err;
195 }
ba76149f 196 return ret;
71e3aac0
AA
197}
198static struct kobj_attribute enabled_attr =
199 __ATTR(enabled, 0644, enabled_show, enabled_store);
200
b46e756f 201ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
202 struct kobj_attribute *attr, char *buf,
203 enum transparent_hugepage_flag flag)
204{
e27e6151
BH
205 return sprintf(buf, "%d\n",
206 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 207}
e27e6151 208
b46e756f 209ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
210 struct kobj_attribute *attr,
211 const char *buf, size_t count,
212 enum transparent_hugepage_flag flag)
213{
e27e6151
BH
214 unsigned long value;
215 int ret;
216
217 ret = kstrtoul(buf, 10, &value);
218 if (ret < 0)
219 return ret;
220 if (value > 1)
221 return -EINVAL;
222
223 if (value)
71e3aac0 224 set_bit(flag, &transparent_hugepage_flags);
e27e6151 225 else
71e3aac0 226 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
227
228 return count;
229}
230
71e3aac0
AA
231static ssize_t defrag_show(struct kobject *kobj,
232 struct kobj_attribute *attr, char *buf)
233{
444eb2a4 234 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 235 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 236 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
237 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
238 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
239 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
240 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
241 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
242 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 243}
21440d7e 244
71e3aac0
AA
245static ssize_t defrag_store(struct kobject *kobj,
246 struct kobj_attribute *attr,
247 const char *buf, size_t count)
248{
21440d7e
DR
249 if (!memcmp("always", buf,
250 min(sizeof("always")-1, count))) {
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
21440d7e
DR
255 } else if (!memcmp("defer+madvise", buf,
256 min(sizeof("defer+madvise")-1, count))) {
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
260 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
4fad7fb6
DR
261 } else if (!memcmp("defer", buf,
262 min(sizeof("defer")-1, count))) {
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
266 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
21440d7e
DR
267 } else if (!memcmp("madvise", buf,
268 min(sizeof("madvise")-1, count))) {
269 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
270 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
272 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
273 } else if (!memcmp("never", buf,
274 min(sizeof("never")-1, count))) {
275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
277 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
278 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
279 } else
280 return -EINVAL;
281
282 return count;
71e3aac0
AA
283}
284static struct kobj_attribute defrag_attr =
285 __ATTR(defrag, 0644, defrag_show, defrag_store);
286
79da5407
KS
287static ssize_t use_zero_page_show(struct kobject *kobj,
288 struct kobj_attribute *attr, char *buf)
289{
b46e756f 290 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
291 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
292}
293static ssize_t use_zero_page_store(struct kobject *kobj,
294 struct kobj_attribute *attr, const char *buf, size_t count)
295{
b46e756f 296 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
297 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
298}
299static struct kobj_attribute use_zero_page_attr =
300 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
301
302static ssize_t hpage_pmd_size_show(struct kobject *kobj,
303 struct kobj_attribute *attr, char *buf)
304{
305 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
306}
307static struct kobj_attribute hpage_pmd_size_attr =
308 __ATTR_RO(hpage_pmd_size);
309
71e3aac0
AA
310#ifdef CONFIG_DEBUG_VM
311static ssize_t debug_cow_show(struct kobject *kobj,
312 struct kobj_attribute *attr, char *buf)
313{
b46e756f 314 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
315 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
316}
317static ssize_t debug_cow_store(struct kobject *kobj,
318 struct kobj_attribute *attr,
319 const char *buf, size_t count)
320{
b46e756f 321 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
322 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
323}
324static struct kobj_attribute debug_cow_attr =
325 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
326#endif /* CONFIG_DEBUG_VM */
327
328static struct attribute *hugepage_attr[] = {
329 &enabled_attr.attr,
330 &defrag_attr.attr,
79da5407 331 &use_zero_page_attr.attr,
49920d28 332 &hpage_pmd_size_attr.attr,
e496cf3d 333#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
334 &shmem_enabled_attr.attr,
335#endif
71e3aac0
AA
336#ifdef CONFIG_DEBUG_VM
337 &debug_cow_attr.attr,
338#endif
339 NULL,
340};
341
8aa95a21 342static const struct attribute_group hugepage_attr_group = {
71e3aac0 343 .attrs = hugepage_attr,
ba76149f
AA
344};
345
569e5590 346static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 347{
71e3aac0
AA
348 int err;
349
569e5590
SL
350 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
351 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 352 pr_err("failed to create transparent hugepage kobject\n");
569e5590 353 return -ENOMEM;
ba76149f
AA
354 }
355
569e5590 356 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 357 if (err) {
ae3a8c1c 358 pr_err("failed to register transparent hugepage group\n");
569e5590 359 goto delete_obj;
ba76149f
AA
360 }
361
569e5590 362 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 363 if (err) {
ae3a8c1c 364 pr_err("failed to register transparent hugepage group\n");
569e5590 365 goto remove_hp_group;
ba76149f 366 }
569e5590
SL
367
368 return 0;
369
370remove_hp_group:
371 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
372delete_obj:
373 kobject_put(*hugepage_kobj);
374 return err;
375}
376
377static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
378{
379 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
380 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
381 kobject_put(hugepage_kobj);
382}
383#else
384static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
385{
386 return 0;
387}
388
389static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
390{
391}
392#endif /* CONFIG_SYSFS */
393
394static int __init hugepage_init(void)
395{
396 int err;
397 struct kobject *hugepage_kobj;
398
399 if (!has_transparent_hugepage()) {
400 transparent_hugepage_flags = 0;
401 return -EINVAL;
402 }
403
ff20c2e0
KS
404 /*
405 * hugepages can't be allocated by the buddy allocator
406 */
407 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
408 /*
409 * we use page->mapping and page->index in second tail page
410 * as list_head: assuming THP order >= 2
411 */
412 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
413
569e5590
SL
414 err = hugepage_init_sysfs(&hugepage_kobj);
415 if (err)
65ebb64f 416 goto err_sysfs;
ba76149f 417
b46e756f 418 err = khugepaged_init();
ba76149f 419 if (err)
65ebb64f 420 goto err_slab;
ba76149f 421
65ebb64f
KS
422 err = register_shrinker(&huge_zero_page_shrinker);
423 if (err)
424 goto err_hzp_shrinker;
9a982250
KS
425 err = register_shrinker(&deferred_split_shrinker);
426 if (err)
427 goto err_split_shrinker;
97ae1749 428
97562cd2
RR
429 /*
430 * By default disable transparent hugepages on smaller systems,
431 * where the extra memory used could hurt more than TLB overhead
432 * is likely to save. The admin can still enable it through /sys.
433 */
ca79b0c2 434 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
97562cd2 435 transparent_hugepage_flags = 0;
79553da2
KS
436 return 0;
437 }
97562cd2 438
79553da2 439 err = start_stop_khugepaged();
65ebb64f
KS
440 if (err)
441 goto err_khugepaged;
ba76149f 442
569e5590 443 return 0;
65ebb64f 444err_khugepaged:
9a982250
KS
445 unregister_shrinker(&deferred_split_shrinker);
446err_split_shrinker:
65ebb64f
KS
447 unregister_shrinker(&huge_zero_page_shrinker);
448err_hzp_shrinker:
b46e756f 449 khugepaged_destroy();
65ebb64f 450err_slab:
569e5590 451 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 452err_sysfs:
ba76149f 453 return err;
71e3aac0 454}
a64fb3cd 455subsys_initcall(hugepage_init);
71e3aac0
AA
456
457static int __init setup_transparent_hugepage(char *str)
458{
459 int ret = 0;
460 if (!str)
461 goto out;
462 if (!strcmp(str, "always")) {
463 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
464 &transparent_hugepage_flags);
465 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
466 &transparent_hugepage_flags);
467 ret = 1;
468 } else if (!strcmp(str, "madvise")) {
469 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
470 &transparent_hugepage_flags);
471 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
472 &transparent_hugepage_flags);
473 ret = 1;
474 } else if (!strcmp(str, "never")) {
475 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
476 &transparent_hugepage_flags);
477 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
478 &transparent_hugepage_flags);
479 ret = 1;
480 }
481out:
482 if (!ret)
ae3a8c1c 483 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
484 return ret;
485}
486__setup("transparent_hugepage=", setup_transparent_hugepage);
487
f55e1014 488pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 489{
f55e1014 490 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
491 pmd = pmd_mkwrite(pmd);
492 return pmd;
493}
494
9a982250
KS
495static inline struct list_head *page_deferred_list(struct page *page)
496{
fa3015b7
MW
497 /* ->lru in the tail pages is occupied by compound_head. */
498 return &page[2].deferred_list;
9a982250
KS
499}
500
501void prep_transhuge_page(struct page *page)
502{
503 /*
504 * we use page->mapping and page->indexlru in second tail page
505 * as list_head: assuming THP order >= 2
506 */
9a982250
KS
507
508 INIT_LIST_HEAD(page_deferred_list(page));
509 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
510}
511
74d2fad1
TK
512unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
513 loff_t off, unsigned long flags, unsigned long size)
514{
515 unsigned long addr;
516 loff_t off_end = off + len;
517 loff_t off_align = round_up(off, size);
518 unsigned long len_pad;
519
520 if (off_end <= off_align || (off_end - off_align) < size)
521 return 0;
522
523 len_pad = len + size;
524 if (len_pad < len || (off + len_pad) < off)
525 return 0;
526
527 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
528 off >> PAGE_SHIFT, flags);
529 if (IS_ERR_VALUE(addr))
530 return 0;
531
532 addr += (off - addr) & (size - 1);
533 return addr;
534}
535
536unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
537 unsigned long len, unsigned long pgoff, unsigned long flags)
538{
539 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
540
541 if (addr)
542 goto out;
543 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
544 goto out;
545
546 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
547 if (addr)
548 return addr;
549
550 out:
551 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
552}
553EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
554
2b740303
SJ
555static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
556 struct page *page, gfp_t gfp)
71e3aac0 557{
82b0f8c3 558 struct vm_area_struct *vma = vmf->vma;
00501b53 559 struct mem_cgroup *memcg;
71e3aac0 560 pgtable_t pgtable;
82b0f8c3 561 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 562 vm_fault_t ret = 0;
71e3aac0 563
309381fe 564 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 565
2cf85583 566 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
567 put_page(page);
568 count_vm_event(THP_FAULT_FALLBACK);
569 return VM_FAULT_FALLBACK;
570 }
00501b53 571
4cf58924 572 pgtable = pte_alloc_one(vma->vm_mm);
00501b53 573 if (unlikely(!pgtable)) {
6b31d595
MH
574 ret = VM_FAULT_OOM;
575 goto release;
00501b53 576 }
71e3aac0 577
c79b57e4 578 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
579 /*
580 * The memory barrier inside __SetPageUptodate makes sure that
581 * clear_huge_page writes become visible before the set_pmd_at()
582 * write.
583 */
71e3aac0
AA
584 __SetPageUptodate(page);
585
82b0f8c3
JK
586 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
587 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 588 goto unlock_release;
71e3aac0
AA
589 } else {
590 pmd_t entry;
6b251fc9 591
6b31d595
MH
592 ret = check_stable_address_space(vma->vm_mm);
593 if (ret)
594 goto unlock_release;
595
6b251fc9
AA
596 /* Deliver the page fault to userland */
597 if (userfaultfd_missing(vma)) {
2b740303 598 vm_fault_t ret2;
6b251fc9 599
82b0f8c3 600 spin_unlock(vmf->ptl);
f627c2f5 601 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 602 put_page(page);
bae473a4 603 pte_free(vma->vm_mm, pgtable);
2b740303
SJ
604 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
605 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
606 return ret2;
6b251fc9
AA
607 }
608
3122359a 609 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 610 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 611 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 612 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 613 lru_cache_add_active_or_unevictable(page, vma);
82b0f8c3
JK
614 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
615 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4 616 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 617 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 618 spin_unlock(vmf->ptl);
6b251fc9 619 count_vm_event(THP_FAULT_ALLOC);
1ff9e6e1 620 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
71e3aac0
AA
621 }
622
aa2e878e 623 return 0;
6b31d595
MH
624unlock_release:
625 spin_unlock(vmf->ptl);
626release:
627 if (pgtable)
628 pte_free(vma->vm_mm, pgtable);
629 mem_cgroup_cancel_charge(page, memcg, true);
630 put_page(page);
631 return ret;
632
71e3aac0
AA
633}
634
444eb2a4 635/*
21440d7e
DR
636 * always: directly stall for all thp allocations
637 * defer: wake kswapd and fail if not immediately available
638 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
639 * fail if not immediately available
640 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
641 * available
642 * never: never stall for any thp allocation
444eb2a4 643 */
356ff8a9 644static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
444eb2a4 645{
21440d7e 646 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
25160354 647
2f0799a0 648 /* Always do synchronous compaction */
21440d7e 649 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
356ff8a9 650 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
2f0799a0
DR
651
652 /* Kick kcompactd and fail quickly */
21440d7e 653 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
356ff8a9 654 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
2f0799a0
DR
655
656 /* Synchronous compaction if madvised, otherwise kick kcompactd */
21440d7e 657 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
356ff8a9
DR
658 return GFP_TRANSHUGE_LIGHT |
659 (vma_madvised ? __GFP_DIRECT_RECLAIM :
660 __GFP_KSWAPD_RECLAIM);
2f0799a0
DR
661
662 /* Only do synchronous compaction if madvised */
21440d7e 663 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
356ff8a9
DR
664 return GFP_TRANSHUGE_LIGHT |
665 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
2f0799a0 666
356ff8a9 667 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
668}
669
c4088ebd 670/* Caller must hold page table lock. */
d295e341 671static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 672 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 673 struct page *zero_page)
fc9fe822
KS
674{
675 pmd_t entry;
7c414164
AM
676 if (!pmd_none(*pmd))
677 return false;
5918d10a 678 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 679 entry = pmd_mkhuge(entry);
12c9d70b
MW
680 if (pgtable)
681 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 682 set_pmd_at(mm, haddr, pmd, entry);
c4812909 683 mm_inc_nr_ptes(mm);
7c414164 684 return true;
fc9fe822
KS
685}
686
2b740303 687vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 688{
82b0f8c3 689 struct vm_area_struct *vma = vmf->vma;
077fcf11 690 gfp_t gfp;
71e3aac0 691 struct page *page;
82b0f8c3 692 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 693
128ec037 694 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 695 return VM_FAULT_FALLBACK;
128ec037
KS
696 if (unlikely(anon_vma_prepare(vma)))
697 return VM_FAULT_OOM;
6d50e60c 698 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 699 return VM_FAULT_OOM;
82b0f8c3 700 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 701 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
702 transparent_hugepage_use_zero_page()) {
703 pgtable_t pgtable;
704 struct page *zero_page;
705 bool set;
2b740303 706 vm_fault_t ret;
4cf58924 707 pgtable = pte_alloc_one(vma->vm_mm);
128ec037 708 if (unlikely(!pgtable))
ba76149f 709 return VM_FAULT_OOM;
6fcb52a5 710 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 711 if (unlikely(!zero_page)) {
bae473a4 712 pte_free(vma->vm_mm, pgtable);
81ab4201 713 count_vm_event(THP_FAULT_FALLBACK);
c0292554 714 return VM_FAULT_FALLBACK;
b9bbfbe3 715 }
82b0f8c3 716 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
717 ret = 0;
718 set = false;
82b0f8c3 719 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
720 ret = check_stable_address_space(vma->vm_mm);
721 if (ret) {
722 spin_unlock(vmf->ptl);
723 } else if (userfaultfd_missing(vma)) {
82b0f8c3
JK
724 spin_unlock(vmf->ptl);
725 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
726 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
727 } else {
bae473a4 728 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
729 haddr, vmf->pmd, zero_page);
730 spin_unlock(vmf->ptl);
6b251fc9
AA
731 set = true;
732 }
733 } else
82b0f8c3 734 spin_unlock(vmf->ptl);
6fcb52a5 735 if (!set)
bae473a4 736 pte_free(vma->vm_mm, pgtable);
6b251fc9 737 return ret;
71e3aac0 738 }
356ff8a9
DR
739 gfp = alloc_hugepage_direct_gfpmask(vma);
740 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
741 if (unlikely(!page)) {
742 count_vm_event(THP_FAULT_FALLBACK);
c0292554 743 return VM_FAULT_FALLBACK;
128ec037 744 }
9a982250 745 prep_transhuge_page(page);
82b0f8c3 746 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
747}
748
ae18d6dc 749static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
750 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
751 pgtable_t pgtable)
5cad465d
MW
752{
753 struct mm_struct *mm = vma->vm_mm;
754 pmd_t entry;
755 spinlock_t *ptl;
756
757 ptl = pmd_lock(mm, pmd);
c6f3c5ee
AK
758 if (!pmd_none(*pmd)) {
759 if (write) {
760 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
761 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
762 goto out_unlock;
763 }
764 entry = pmd_mkyoung(*pmd);
765 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
766 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
767 update_mmu_cache_pmd(vma, addr, pmd);
768 }
769
770 goto out_unlock;
771 }
772
f25748e3
DW
773 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
774 if (pfn_t_devmap(pfn))
775 entry = pmd_mkdevmap(entry);
01871e59 776 if (write) {
f55e1014
LT
777 entry = pmd_mkyoung(pmd_mkdirty(entry));
778 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 779 }
3b6521f5
OH
780
781 if (pgtable) {
782 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 783 mm_inc_nr_ptes(mm);
c6f3c5ee 784 pgtable = NULL;
3b6521f5
OH
785 }
786
01871e59
RZ
787 set_pmd_at(mm, addr, pmd, entry);
788 update_mmu_cache_pmd(vma, addr, pmd);
c6f3c5ee
AK
789
790out_unlock:
5cad465d 791 spin_unlock(ptl);
c6f3c5ee
AK
792 if (pgtable)
793 pte_free(mm, pgtable);
5cad465d
MW
794}
795
226ab561 796vm_fault_t vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 797 pmd_t *pmd, pfn_t pfn, bool write)
5cad465d
MW
798{
799 pgprot_t pgprot = vma->vm_page_prot;
3b6521f5 800 pgtable_t pgtable = NULL;
5cad465d
MW
801 /*
802 * If we had pmd_special, we could avoid all these restrictions,
803 * but we need to be consistent with PTEs and architectures that
804 * can't support a 'special' bit.
805 */
e1fb4a08
DJ
806 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
807 !pfn_t_devmap(pfn));
5cad465d
MW
808 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
809 (VM_PFNMAP|VM_MIXEDMAP));
810 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
811
812 if (addr < vma->vm_start || addr >= vma->vm_end)
813 return VM_FAULT_SIGBUS;
308a047c 814
3b6521f5 815 if (arch_needs_pgtable_deposit()) {
4cf58924 816 pgtable = pte_alloc_one(vma->vm_mm);
3b6521f5
OH
817 if (!pgtable)
818 return VM_FAULT_OOM;
819 }
820
308a047c
BP
821 track_pfn_insert(vma, &pgprot, pfn);
822
3b6521f5 823 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
ae18d6dc 824 return VM_FAULT_NOPAGE;
5cad465d 825}
dee41079 826EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 827
a00cc7d9 828#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 829static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 830{
f55e1014 831 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
832 pud = pud_mkwrite(pud);
833 return pud;
834}
835
836static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
837 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
838{
839 struct mm_struct *mm = vma->vm_mm;
840 pud_t entry;
841 spinlock_t *ptl;
842
843 ptl = pud_lock(mm, pud);
c6f3c5ee
AK
844 if (!pud_none(*pud)) {
845 if (write) {
846 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
847 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
848 goto out_unlock;
849 }
850 entry = pud_mkyoung(*pud);
851 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
852 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
853 update_mmu_cache_pud(vma, addr, pud);
854 }
855 goto out_unlock;
856 }
857
a00cc7d9
MW
858 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
859 if (pfn_t_devmap(pfn))
860 entry = pud_mkdevmap(entry);
861 if (write) {
f55e1014
LT
862 entry = pud_mkyoung(pud_mkdirty(entry));
863 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
864 }
865 set_pud_at(mm, addr, pud, entry);
866 update_mmu_cache_pud(vma, addr, pud);
c6f3c5ee
AK
867
868out_unlock:
a00cc7d9
MW
869 spin_unlock(ptl);
870}
871
226ab561 872vm_fault_t vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
a00cc7d9
MW
873 pud_t *pud, pfn_t pfn, bool write)
874{
875 pgprot_t pgprot = vma->vm_page_prot;
876 /*
877 * If we had pud_special, we could avoid all these restrictions,
878 * but we need to be consistent with PTEs and architectures that
879 * can't support a 'special' bit.
880 */
62ec0d8c
DJ
881 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
882 !pfn_t_devmap(pfn));
a00cc7d9
MW
883 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
884 (VM_PFNMAP|VM_MIXEDMAP));
885 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
886
887 if (addr < vma->vm_start || addr >= vma->vm_end)
888 return VM_FAULT_SIGBUS;
889
890 track_pfn_insert(vma, &pgprot, pfn);
891
892 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
893 return VM_FAULT_NOPAGE;
894}
895EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
896#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
897
3565fce3 898static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 899 pmd_t *pmd, int flags)
3565fce3
DW
900{
901 pmd_t _pmd;
902
a8f97366
KS
903 _pmd = pmd_mkyoung(*pmd);
904 if (flags & FOLL_WRITE)
905 _pmd = pmd_mkdirty(_pmd);
3565fce3 906 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 907 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
908 update_mmu_cache_pmd(vma, addr, pmd);
909}
910
911struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 912 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
913{
914 unsigned long pfn = pmd_pfn(*pmd);
915 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
916 struct page *page;
917
918 assert_spin_locked(pmd_lockptr(mm, pmd));
919
8310d48b
KF
920 /*
921 * When we COW a devmap PMD entry, we split it into PTEs, so we should
922 * not be in this function with `flags & FOLL_COW` set.
923 */
924 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
925
f6f37321 926 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
927 return NULL;
928
929 if (pmd_present(*pmd) && pmd_devmap(*pmd))
930 /* pass */;
931 else
932 return NULL;
933
934 if (flags & FOLL_TOUCH)
a8f97366 935 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
936
937 /*
938 * device mapped pages can only be returned if the
939 * caller will manage the page reference count.
940 */
941 if (!(flags & FOLL_GET))
942 return ERR_PTR(-EEXIST);
943
944 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
945 *pgmap = get_dev_pagemap(pfn, *pgmap);
946 if (!*pgmap)
3565fce3
DW
947 return ERR_PTR(-EFAULT);
948 page = pfn_to_page(pfn);
949 get_page(page);
3565fce3
DW
950
951 return page;
952}
953
71e3aac0
AA
954int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
955 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
956 struct vm_area_struct *vma)
957{
c4088ebd 958 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
959 struct page *src_page;
960 pmd_t pmd;
12c9d70b 961 pgtable_t pgtable = NULL;
628d47ce 962 int ret = -ENOMEM;
71e3aac0 963
628d47ce
KS
964 /* Skip if can be re-fill on fault */
965 if (!vma_is_anonymous(vma))
966 return 0;
967
4cf58924 968 pgtable = pte_alloc_one(dst_mm);
628d47ce
KS
969 if (unlikely(!pgtable))
970 goto out;
71e3aac0 971
c4088ebd
KS
972 dst_ptl = pmd_lock(dst_mm, dst_pmd);
973 src_ptl = pmd_lockptr(src_mm, src_pmd);
974 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
975
976 ret = -EAGAIN;
977 pmd = *src_pmd;
84c3fc4e
ZY
978
979#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
980 if (unlikely(is_swap_pmd(pmd))) {
981 swp_entry_t entry = pmd_to_swp_entry(pmd);
982
983 VM_BUG_ON(!is_pmd_migration_entry(pmd));
984 if (is_write_migration_entry(entry)) {
985 make_migration_entry_read(&entry);
986 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
987 if (pmd_swp_soft_dirty(*src_pmd))
988 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
989 set_pmd_at(src_mm, addr, src_pmd, pmd);
990 }
dd8a67f9 991 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 992 mm_inc_nr_ptes(dst_mm);
dd8a67f9 993 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
994 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
995 ret = 0;
996 goto out_unlock;
997 }
998#endif
999
628d47ce 1000 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
1001 pte_free(dst_mm, pgtable);
1002 goto out_unlock;
1003 }
fc9fe822 1004 /*
c4088ebd 1005 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1006 * under splitting since we don't split the page itself, only pmd to
1007 * a page table.
1008 */
1009 if (is_huge_zero_pmd(pmd)) {
5918d10a 1010 struct page *zero_page;
97ae1749
KS
1011 /*
1012 * get_huge_zero_page() will never allocate a new page here,
1013 * since we already have a zero page to copy. It just takes a
1014 * reference.
1015 */
6fcb52a5 1016 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 1017 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1018 zero_page);
fc9fe822
KS
1019 ret = 0;
1020 goto out_unlock;
1021 }
de466bd6 1022
628d47ce
KS
1023 src_page = pmd_page(pmd);
1024 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1025 get_page(src_page);
1026 page_dup_rmap(src_page, true);
1027 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 1028 mm_inc_nr_ptes(dst_mm);
628d47ce 1029 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
1030
1031 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1032 pmd = pmd_mkold(pmd_wrprotect(pmd));
1033 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1034
1035 ret = 0;
1036out_unlock:
c4088ebd
KS
1037 spin_unlock(src_ptl);
1038 spin_unlock(dst_ptl);
71e3aac0
AA
1039out:
1040 return ret;
1041}
1042
a00cc7d9
MW
1043#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1044static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1045 pud_t *pud, int flags)
a00cc7d9
MW
1046{
1047 pud_t _pud;
1048
a8f97366
KS
1049 _pud = pud_mkyoung(*pud);
1050 if (flags & FOLL_WRITE)
1051 _pud = pud_mkdirty(_pud);
a00cc7d9 1052 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1053 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1054 update_mmu_cache_pud(vma, addr, pud);
1055}
1056
1057struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1058 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1059{
1060 unsigned long pfn = pud_pfn(*pud);
1061 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1062 struct page *page;
1063
1064 assert_spin_locked(pud_lockptr(mm, pud));
1065
f6f37321 1066 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1067 return NULL;
1068
1069 if (pud_present(*pud) && pud_devmap(*pud))
1070 /* pass */;
1071 else
1072 return NULL;
1073
1074 if (flags & FOLL_TOUCH)
a8f97366 1075 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1076
1077 /*
1078 * device mapped pages can only be returned if the
1079 * caller will manage the page reference count.
1080 */
1081 if (!(flags & FOLL_GET))
1082 return ERR_PTR(-EEXIST);
1083
1084 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1085 *pgmap = get_dev_pagemap(pfn, *pgmap);
1086 if (!*pgmap)
a00cc7d9
MW
1087 return ERR_PTR(-EFAULT);
1088 page = pfn_to_page(pfn);
1089 get_page(page);
a00cc7d9
MW
1090
1091 return page;
1092}
1093
1094int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1095 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1096 struct vm_area_struct *vma)
1097{
1098 spinlock_t *dst_ptl, *src_ptl;
1099 pud_t pud;
1100 int ret;
1101
1102 dst_ptl = pud_lock(dst_mm, dst_pud);
1103 src_ptl = pud_lockptr(src_mm, src_pud);
1104 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1105
1106 ret = -EAGAIN;
1107 pud = *src_pud;
1108 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1109 goto out_unlock;
1110
1111 /*
1112 * When page table lock is held, the huge zero pud should not be
1113 * under splitting since we don't split the page itself, only pud to
1114 * a page table.
1115 */
1116 if (is_huge_zero_pud(pud)) {
1117 /* No huge zero pud yet */
1118 }
1119
1120 pudp_set_wrprotect(src_mm, addr, src_pud);
1121 pud = pud_mkold(pud_wrprotect(pud));
1122 set_pud_at(dst_mm, addr, dst_pud, pud);
1123
1124 ret = 0;
1125out_unlock:
1126 spin_unlock(src_ptl);
1127 spin_unlock(dst_ptl);
1128 return ret;
1129}
1130
1131void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1132{
1133 pud_t entry;
1134 unsigned long haddr;
1135 bool write = vmf->flags & FAULT_FLAG_WRITE;
1136
1137 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1138 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1139 goto unlock;
1140
1141 entry = pud_mkyoung(orig_pud);
1142 if (write)
1143 entry = pud_mkdirty(entry);
1144 haddr = vmf->address & HPAGE_PUD_MASK;
1145 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1146 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1147
1148unlock:
1149 spin_unlock(vmf->ptl);
1150}
1151#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1152
82b0f8c3 1153void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1154{
1155 pmd_t entry;
1156 unsigned long haddr;
20f664aa 1157 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1158
82b0f8c3
JK
1159 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1160 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1161 goto unlock;
1162
1163 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1164 if (write)
1165 entry = pmd_mkdirty(entry);
82b0f8c3 1166 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1167 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1168 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1169
1170unlock:
82b0f8c3 1171 spin_unlock(vmf->ptl);
a1dd450b
WD
1172}
1173
2b740303
SJ
1174static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1175 pmd_t orig_pmd, struct page *page)
71e3aac0 1176{
82b0f8c3
JK
1177 struct vm_area_struct *vma = vmf->vma;
1178 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
00501b53 1179 struct mem_cgroup *memcg;
71e3aac0
AA
1180 pgtable_t pgtable;
1181 pmd_t _pmd;
2b740303
SJ
1182 int i;
1183 vm_fault_t ret = 0;
71e3aac0 1184 struct page **pages;
ac46d4f3 1185 struct mmu_notifier_range range;
71e3aac0 1186
6da2ec56
KC
1187 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1188 GFP_KERNEL);
71e3aac0
AA
1189 if (unlikely(!pages)) {
1190 ret |= VM_FAULT_OOM;
1191 goto out;
1192 }
1193
1194 for (i = 0; i < HPAGE_PMD_NR; i++) {
41b6167e 1195 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 1196 vmf->address, page_to_nid(page));
b9bbfbe3 1197 if (unlikely(!pages[i] ||
2cf85583 1198 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
bae473a4 1199 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1200 if (pages[i])
71e3aac0 1201 put_page(pages[i]);
b9bbfbe3 1202 while (--i >= 0) {
00501b53
JW
1203 memcg = (void *)page_private(pages[i]);
1204 set_page_private(pages[i], 0);
f627c2f5
KS
1205 mem_cgroup_cancel_charge(pages[i], memcg,
1206 false);
b9bbfbe3
AA
1207 put_page(pages[i]);
1208 }
71e3aac0
AA
1209 kfree(pages);
1210 ret |= VM_FAULT_OOM;
1211 goto out;
1212 }
00501b53 1213 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1214 }
1215
1216 for (i = 0; i < HPAGE_PMD_NR; i++) {
1217 copy_user_highpage(pages[i], page + i,
0089e485 1218 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1219 __SetPageUptodate(pages[i]);
1220 cond_resched();
1221 }
1222
ac46d4f3
JG
1223 mmu_notifier_range_init(&range, vma->vm_mm, haddr,
1224 haddr + HPAGE_PMD_SIZE);
1225 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1226
82b0f8c3
JK
1227 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1228 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0 1229 goto out_free_pages;
309381fe 1230 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1231
0f10851e
JG
1232 /*
1233 * Leave pmd empty until pte is filled note we must notify here as
1234 * concurrent CPU thread might write to new page before the call to
1235 * mmu_notifier_invalidate_range_end() happens which can lead to a
1236 * device seeing memory write in different order than CPU.
1237 *
ad56b738 1238 * See Documentation/vm/mmu_notifier.rst
0f10851e 1239 */
82b0f8c3 1240 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
71e3aac0 1241
82b0f8c3 1242 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
bae473a4 1243 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1244
1245 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1246 pte_t entry;
71e3aac0
AA
1247 entry = mk_pte(pages[i], vma->vm_page_prot);
1248 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1249 memcg = (void *)page_private(pages[i]);
1250 set_page_private(pages[i], 0);
82b0f8c3 1251 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
f627c2f5 1252 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1253 lru_cache_add_active_or_unevictable(pages[i], vma);
82b0f8c3
JK
1254 vmf->pte = pte_offset_map(&_pmd, haddr);
1255 VM_BUG_ON(!pte_none(*vmf->pte));
1256 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1257 pte_unmap(vmf->pte);
71e3aac0
AA
1258 }
1259 kfree(pages);
1260
71e3aac0 1261 smp_wmb(); /* make pte visible before pmd */
82b0f8c3 1262 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
d281ee61 1263 page_remove_rmap(page, true);
82b0f8c3 1264 spin_unlock(vmf->ptl);
71e3aac0 1265
4645b9fe
JG
1266 /*
1267 * No need to double call mmu_notifier->invalidate_range() callback as
1268 * the above pmdp_huge_clear_flush_notify() did already call it.
1269 */
ac46d4f3 1270 mmu_notifier_invalidate_range_only_end(&range);
2ec74c3e 1271
71e3aac0
AA
1272 ret |= VM_FAULT_WRITE;
1273 put_page(page);
1274
1275out:
1276 return ret;
1277
1278out_free_pages:
82b0f8c3 1279 spin_unlock(vmf->ptl);
ac46d4f3 1280 mmu_notifier_invalidate_range_end(&range);
b9bbfbe3 1281 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1282 memcg = (void *)page_private(pages[i]);
1283 set_page_private(pages[i], 0);
f627c2f5 1284 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1285 put_page(pages[i]);
b9bbfbe3 1286 }
71e3aac0
AA
1287 kfree(pages);
1288 goto out;
1289}
1290
2b740303 1291vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1292{
82b0f8c3 1293 struct vm_area_struct *vma = vmf->vma;
93b4796d 1294 struct page *page = NULL, *new_page;
00501b53 1295 struct mem_cgroup *memcg;
82b0f8c3 1296 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
ac46d4f3 1297 struct mmu_notifier_range range;
3b363692 1298 gfp_t huge_gfp; /* for allocation and charge */
2b740303 1299 vm_fault_t ret = 0;
71e3aac0 1300
82b0f8c3 1301 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1302 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1303 if (is_huge_zero_pmd(orig_pmd))
1304 goto alloc;
82b0f8c3
JK
1305 spin_lock(vmf->ptl);
1306 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0
AA
1307 goto out_unlock;
1308
1309 page = pmd_page(orig_pmd);
309381fe 1310 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1311 /*
1312 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1313 * part.
1f25fe20 1314 */
ba3c4ce6
HY
1315 if (!trylock_page(page)) {
1316 get_page(page);
1317 spin_unlock(vmf->ptl);
1318 lock_page(page);
1319 spin_lock(vmf->ptl);
1320 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1321 unlock_page(page);
1322 put_page(page);
1323 goto out_unlock;
1324 }
1325 put_page(page);
1326 }
1327 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1328 pmd_t entry;
1329 entry = pmd_mkyoung(orig_pmd);
f55e1014 1330 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3
JK
1331 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1332 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
71e3aac0 1333 ret |= VM_FAULT_WRITE;
ba3c4ce6 1334 unlock_page(page);
71e3aac0
AA
1335 goto out_unlock;
1336 }
ba3c4ce6 1337 unlock_page(page);
ddc58f27 1338 get_page(page);
82b0f8c3 1339 spin_unlock(vmf->ptl);
93b4796d 1340alloc:
7635d9cb 1341 if (__transparent_hugepage_enabled(vma) &&
077fcf11 1342 !transparent_hugepage_debug_cow()) {
356ff8a9
DR
1343 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1344 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1345 } else
71e3aac0
AA
1346 new_page = NULL;
1347
9a982250
KS
1348 if (likely(new_page)) {
1349 prep_transhuge_page(new_page);
1350 } else {
eecc1e42 1351 if (!page) {
82b0f8c3 1352 split_huge_pmd(vma, vmf->pmd, vmf->address);
e9b71ca9 1353 ret |= VM_FAULT_FALLBACK;
93b4796d 1354 } else {
82b0f8c3 1355 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
9845cbbd 1356 if (ret & VM_FAULT_OOM) {
82b0f8c3 1357 split_huge_pmd(vma, vmf->pmd, vmf->address);
9845cbbd
KS
1358 ret |= VM_FAULT_FALLBACK;
1359 }
ddc58f27 1360 put_page(page);
93b4796d 1361 }
17766dde 1362 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1363 goto out;
1364 }
1365
2cf85583 1366 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
2a70f6a7 1367 huge_gfp, &memcg, true))) {
b9bbfbe3 1368 put_page(new_page);
82b0f8c3 1369 split_huge_pmd(vma, vmf->pmd, vmf->address);
bae473a4 1370 if (page)
ddc58f27 1371 put_page(page);
9845cbbd 1372 ret |= VM_FAULT_FALLBACK;
17766dde 1373 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1374 goto out;
1375 }
1376
17766dde 1377 count_vm_event(THP_FAULT_ALLOC);
1ff9e6e1 1378 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
17766dde 1379
eecc1e42 1380 if (!page)
c79b57e4 1381 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
93b4796d 1382 else
c9f4cd71
HY
1383 copy_user_huge_page(new_page, page, vmf->address,
1384 vma, HPAGE_PMD_NR);
71e3aac0
AA
1385 __SetPageUptodate(new_page);
1386
ac46d4f3
JG
1387 mmu_notifier_range_init(&range, vma->vm_mm, haddr,
1388 haddr + HPAGE_PMD_SIZE);
1389 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1390
82b0f8c3 1391 spin_lock(vmf->ptl);
93b4796d 1392 if (page)
ddc58f27 1393 put_page(page);
82b0f8c3
JK
1394 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1395 spin_unlock(vmf->ptl);
f627c2f5 1396 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1397 put_page(new_page);
2ec74c3e 1398 goto out_mn;
b9bbfbe3 1399 } else {
71e3aac0 1400 pmd_t entry;
3122359a 1401 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 1402 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3 1403 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
d281ee61 1404 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1405 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1406 lru_cache_add_active_or_unevictable(new_page, vma);
82b0f8c3
JK
1407 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1408 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
eecc1e42 1409 if (!page) {
bae473a4 1410 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1411 } else {
309381fe 1412 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1413 page_remove_rmap(page, true);
93b4796d
KS
1414 put_page(page);
1415 }
71e3aac0
AA
1416 ret |= VM_FAULT_WRITE;
1417 }
82b0f8c3 1418 spin_unlock(vmf->ptl);
2ec74c3e 1419out_mn:
4645b9fe
JG
1420 /*
1421 * No need to double call mmu_notifier->invalidate_range() callback as
1422 * the above pmdp_huge_clear_flush_notify() did already call it.
1423 */
ac46d4f3 1424 mmu_notifier_invalidate_range_only_end(&range);
71e3aac0
AA
1425out:
1426 return ret;
2ec74c3e 1427out_unlock:
82b0f8c3 1428 spin_unlock(vmf->ptl);
2ec74c3e 1429 return ret;
71e3aac0
AA
1430}
1431
8310d48b
KF
1432/*
1433 * FOLL_FORCE can write to even unwritable pmd's, but only
1434 * after we've gone through a COW cycle and they are dirty.
1435 */
1436static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1437{
f6f37321 1438 return pmd_write(pmd) ||
8310d48b
KF
1439 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1440}
1441
b676b293 1442struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1443 unsigned long addr,
1444 pmd_t *pmd,
1445 unsigned int flags)
1446{
b676b293 1447 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1448 struct page *page = NULL;
1449
c4088ebd 1450 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1451
8310d48b 1452 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1453 goto out;
1454
85facf25
KS
1455 /* Avoid dumping huge zero page */
1456 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1457 return ERR_PTR(-EFAULT);
1458
2b4847e7 1459 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1460 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1461 goto out;
1462
71e3aac0 1463 page = pmd_page(*pmd);
ca120cf6 1464 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3565fce3 1465 if (flags & FOLL_TOUCH)
a8f97366 1466 touch_pmd(vma, addr, pmd, flags);
de60f5f1 1467 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1468 /*
1469 * We don't mlock() pte-mapped THPs. This way we can avoid
1470 * leaking mlocked pages into non-VM_LOCKED VMAs.
1471 *
9a73f61b
KS
1472 * For anon THP:
1473 *
e90309c9
KS
1474 * In most cases the pmd is the only mapping of the page as we
1475 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1476 * writable private mappings in populate_vma_page_range().
1477 *
1478 * The only scenario when we have the page shared here is if we
1479 * mlocking read-only mapping shared over fork(). We skip
1480 * mlocking such pages.
9a73f61b
KS
1481 *
1482 * For file THP:
1483 *
1484 * We can expect PageDoubleMap() to be stable under page lock:
1485 * for file pages we set it in page_add_file_rmap(), which
1486 * requires page to be locked.
e90309c9 1487 */
9a73f61b
KS
1488
1489 if (PageAnon(page) && compound_mapcount(page) != 1)
1490 goto skip_mlock;
1491 if (PageDoubleMap(page) || !page->mapping)
1492 goto skip_mlock;
1493 if (!trylock_page(page))
1494 goto skip_mlock;
1495 lru_add_drain();
1496 if (page->mapping && !PageDoubleMap(page))
1497 mlock_vma_page(page);
1498 unlock_page(page);
b676b293 1499 }
9a73f61b 1500skip_mlock:
71e3aac0 1501 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1502 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0 1503 if (flags & FOLL_GET)
ddc58f27 1504 get_page(page);
71e3aac0
AA
1505
1506out:
1507 return page;
1508}
1509
d10e63f2 1510/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1511vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1512{
82b0f8c3 1513 struct vm_area_struct *vma = vmf->vma;
b8916634 1514 struct anon_vma *anon_vma = NULL;
b32967ff 1515 struct page *page;
82b0f8c3 1516 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
98fa15f3 1517 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
90572890 1518 int target_nid, last_cpupid = -1;
8191acbd
MG
1519 bool page_locked;
1520 bool migrated = false;
b191f9b1 1521 bool was_writable;
6688cc05 1522 int flags = 0;
d10e63f2 1523
82b0f8c3
JK
1524 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1525 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1526 goto out_unlock;
1527
de466bd6
MG
1528 /*
1529 * If there are potential migrations, wait for completion and retry
1530 * without disrupting NUMA hinting information. Do not relock and
1531 * check_same as the page may no longer be mapped.
1532 */
82b0f8c3
JK
1533 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1534 page = pmd_page(*vmf->pmd);
3c226c63
MR
1535 if (!get_page_unless_zero(page))
1536 goto out_unlock;
82b0f8c3 1537 spin_unlock(vmf->ptl);
9a1ea439 1538 put_and_wait_on_page_locked(page);
de466bd6
MG
1539 goto out;
1540 }
1541
d10e63f2 1542 page = pmd_page(pmd);
a1a46184 1543 BUG_ON(is_huge_zero_page(page));
8191acbd 1544 page_nid = page_to_nid(page);
90572890 1545 last_cpupid = page_cpupid_last(page);
03c5a6e1 1546 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1547 if (page_nid == this_nid) {
03c5a6e1 1548 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1549 flags |= TNF_FAULT_LOCAL;
1550 }
4daae3b4 1551
bea66fbd 1552 /* See similar comment in do_numa_page for explanation */
288bc549 1553 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1554 flags |= TNF_NO_GROUP;
1555
ff9042b1
MG
1556 /*
1557 * Acquire the page lock to serialise THP migrations but avoid dropping
1558 * page_table_lock if at all possible
1559 */
b8916634
MG
1560 page_locked = trylock_page(page);
1561 target_nid = mpol_misplaced(page, vma, haddr);
98fa15f3 1562 if (target_nid == NUMA_NO_NODE) {
b8916634 1563 /* If the page was locked, there are no parallel migrations */
a54a407f 1564 if (page_locked)
b8916634 1565 goto clear_pmdnuma;
2b4847e7 1566 }
4daae3b4 1567
de466bd6 1568 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1569 if (!page_locked) {
98fa15f3 1570 page_nid = NUMA_NO_NODE;
3c226c63
MR
1571 if (!get_page_unless_zero(page))
1572 goto out_unlock;
82b0f8c3 1573 spin_unlock(vmf->ptl);
9a1ea439 1574 put_and_wait_on_page_locked(page);
b8916634
MG
1575 goto out;
1576 }
1577
2b4847e7
MG
1578 /*
1579 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1580 * to serialises splits
1581 */
b8916634 1582 get_page(page);
82b0f8c3 1583 spin_unlock(vmf->ptl);
b8916634 1584 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1585
c69307d5 1586 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1587 spin_lock(vmf->ptl);
1588 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1589 unlock_page(page);
1590 put_page(page);
98fa15f3 1591 page_nid = NUMA_NO_NODE;
4daae3b4 1592 goto out_unlock;
b32967ff 1593 }
ff9042b1 1594
c3a489ca
MG
1595 /* Bail if we fail to protect against THP splits for any reason */
1596 if (unlikely(!anon_vma)) {
1597 put_page(page);
98fa15f3 1598 page_nid = NUMA_NO_NODE;
c3a489ca
MG
1599 goto clear_pmdnuma;
1600 }
1601
8b1b436d
PZ
1602 /*
1603 * Since we took the NUMA fault, we must have observed the !accessible
1604 * bit. Make sure all other CPUs agree with that, to avoid them
1605 * modifying the page we're about to migrate.
1606 *
1607 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1608 * inc_tlb_flush_pending().
1609 *
1610 * We are not sure a pending tlb flush here is for a huge page
1611 * mapping or not. Hence use the tlb range variant
8b1b436d 1612 */
7066f0f9 1613 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1614 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1615 /*
1616 * change_huge_pmd() released the pmd lock before
1617 * invalidating the secondary MMUs sharing the primary
1618 * MMU pagetables (with ->invalidate_range()). The
1619 * mmu_notifier_invalidate_range_end() (which
1620 * internally calls ->invalidate_range()) in
1621 * change_pmd_range() will run after us, so we can't
1622 * rely on it here and we need an explicit invalidate.
1623 */
1624 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1625 haddr + HPAGE_PMD_SIZE);
1626 }
8b1b436d 1627
a54a407f
MG
1628 /*
1629 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1630 * and access rights restored.
a54a407f 1631 */
82b0f8c3 1632 spin_unlock(vmf->ptl);
8b1b436d 1633
bae473a4 1634 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1635 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1636 if (migrated) {
1637 flags |= TNF_MIGRATED;
8191acbd 1638 page_nid = target_nid;
074c2381
MG
1639 } else
1640 flags |= TNF_MIGRATE_FAIL;
b32967ff 1641
8191acbd 1642 goto out;
b32967ff 1643clear_pmdnuma:
a54a407f 1644 BUG_ON(!PageLocked(page));
288bc549 1645 was_writable = pmd_savedwrite(pmd);
4d942466 1646 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1647 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1648 if (was_writable)
1649 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1650 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1651 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1652 unlock_page(page);
d10e63f2 1653out_unlock:
82b0f8c3 1654 spin_unlock(vmf->ptl);
b8916634
MG
1655
1656out:
1657 if (anon_vma)
1658 page_unlock_anon_vma_read(anon_vma);
1659
98fa15f3 1660 if (page_nid != NUMA_NO_NODE)
82b0f8c3 1661 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1662 flags);
8191acbd 1663
d10e63f2
MG
1664 return 0;
1665}
1666
319904ad
HY
1667/*
1668 * Return true if we do MADV_FREE successfully on entire pmd page.
1669 * Otherwise, return false.
1670 */
1671bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1672 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1673{
1674 spinlock_t *ptl;
1675 pmd_t orig_pmd;
1676 struct page *page;
1677 struct mm_struct *mm = tlb->mm;
319904ad 1678 bool ret = false;
b8d3c4c3 1679
07e32661
AK
1680 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1681
b6ec57f4
KS
1682 ptl = pmd_trans_huge_lock(pmd, vma);
1683 if (!ptl)
25eedabe 1684 goto out_unlocked;
b8d3c4c3
MK
1685
1686 orig_pmd = *pmd;
319904ad 1687 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1688 goto out;
b8d3c4c3 1689
84c3fc4e
ZY
1690 if (unlikely(!pmd_present(orig_pmd))) {
1691 VM_BUG_ON(thp_migration_supported() &&
1692 !is_pmd_migration_entry(orig_pmd));
1693 goto out;
1694 }
1695
b8d3c4c3
MK
1696 page = pmd_page(orig_pmd);
1697 /*
1698 * If other processes are mapping this page, we couldn't discard
1699 * the page unless they all do MADV_FREE so let's skip the page.
1700 */
1701 if (page_mapcount(page) != 1)
1702 goto out;
1703
1704 if (!trylock_page(page))
1705 goto out;
1706
1707 /*
1708 * If user want to discard part-pages of THP, split it so MADV_FREE
1709 * will deactivate only them.
1710 */
1711 if (next - addr != HPAGE_PMD_SIZE) {
1712 get_page(page);
1713 spin_unlock(ptl);
9818b8cd 1714 split_huge_page(page);
b8d3c4c3 1715 unlock_page(page);
bbf29ffc 1716 put_page(page);
b8d3c4c3
MK
1717 goto out_unlocked;
1718 }
1719
1720 if (PageDirty(page))
1721 ClearPageDirty(page);
1722 unlock_page(page);
1723
b8d3c4c3 1724 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1725 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1726 orig_pmd = pmd_mkold(orig_pmd);
1727 orig_pmd = pmd_mkclean(orig_pmd);
1728
1729 set_pmd_at(mm, addr, pmd, orig_pmd);
1730 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1731 }
802a3a92
SL
1732
1733 mark_page_lazyfree(page);
319904ad 1734 ret = true;
b8d3c4c3
MK
1735out:
1736 spin_unlock(ptl);
1737out_unlocked:
1738 return ret;
1739}
1740
953c66c2
AK
1741static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1742{
1743 pgtable_t pgtable;
1744
1745 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1746 pte_free(mm, pgtable);
c4812909 1747 mm_dec_nr_ptes(mm);
953c66c2
AK
1748}
1749
71e3aac0 1750int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1751 pmd_t *pmd, unsigned long addr)
71e3aac0 1752{
da146769 1753 pmd_t orig_pmd;
bf929152 1754 spinlock_t *ptl;
71e3aac0 1755
07e32661
AK
1756 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1757
b6ec57f4
KS
1758 ptl = __pmd_trans_huge_lock(pmd, vma);
1759 if (!ptl)
da146769
KS
1760 return 0;
1761 /*
1762 * For architectures like ppc64 we look at deposited pgtable
1763 * when calling pmdp_huge_get_and_clear. So do the
1764 * pgtable_trans_huge_withdraw after finishing pmdp related
1765 * operations.
1766 */
1767 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1768 tlb->fullmm);
1769 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1770 if (vma_is_dax(vma)) {
3b6521f5
OH
1771 if (arch_needs_pgtable_deposit())
1772 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1773 spin_unlock(ptl);
1774 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1775 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1776 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1777 zap_deposited_table(tlb->mm, pmd);
da146769 1778 spin_unlock(ptl);
c0f2e176 1779 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1780 } else {
616b8371
ZY
1781 struct page *page = NULL;
1782 int flush_needed = 1;
1783
1784 if (pmd_present(orig_pmd)) {
1785 page = pmd_page(orig_pmd);
1786 page_remove_rmap(page, true);
1787 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1788 VM_BUG_ON_PAGE(!PageHead(page), page);
1789 } else if (thp_migration_supported()) {
1790 swp_entry_t entry;
1791
1792 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1793 entry = pmd_to_swp_entry(orig_pmd);
1794 page = pfn_to_page(swp_offset(entry));
1795 flush_needed = 0;
1796 } else
1797 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1798
b5072380 1799 if (PageAnon(page)) {
c14a6eb4 1800 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1801 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1802 } else {
953c66c2
AK
1803 if (arch_needs_pgtable_deposit())
1804 zap_deposited_table(tlb->mm, pmd);
fadae295 1805 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1806 }
616b8371 1807
da146769 1808 spin_unlock(ptl);
616b8371
ZY
1809 if (flush_needed)
1810 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1811 }
da146769 1812 return 1;
71e3aac0
AA
1813}
1814
1dd38b6c
AK
1815#ifndef pmd_move_must_withdraw
1816static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1817 spinlock_t *old_pmd_ptl,
1818 struct vm_area_struct *vma)
1819{
1820 /*
1821 * With split pmd lock we also need to move preallocated
1822 * PTE page table if new_pmd is on different PMD page table.
1823 *
1824 * We also don't deposit and withdraw tables for file pages.
1825 */
1826 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1827}
1828#endif
1829
ab6e3d09
NH
1830static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1831{
1832#ifdef CONFIG_MEM_SOFT_DIRTY
1833 if (unlikely(is_pmd_migration_entry(pmd)))
1834 pmd = pmd_swp_mksoft_dirty(pmd);
1835 else if (pmd_present(pmd))
1836 pmd = pmd_mksoft_dirty(pmd);
1837#endif
1838 return pmd;
1839}
1840
bf8616d5 1841bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1842 unsigned long new_addr, unsigned long old_end,
eb66ae03 1843 pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1844{
bf929152 1845 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1846 pmd_t pmd;
37a1c49a 1847 struct mm_struct *mm = vma->vm_mm;
5d190420 1848 bool force_flush = false;
37a1c49a
AA
1849
1850 if ((old_addr & ~HPAGE_PMD_MASK) ||
1851 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1852 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1853 return false;
37a1c49a
AA
1854
1855 /*
1856 * The destination pmd shouldn't be established, free_pgtables()
1857 * should have release it.
1858 */
1859 if (WARN_ON(!pmd_none(*new_pmd))) {
1860 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1861 return false;
37a1c49a
AA
1862 }
1863
bf929152
KS
1864 /*
1865 * We don't have to worry about the ordering of src and dst
1866 * ptlocks because exclusive mmap_sem prevents deadlock.
1867 */
b6ec57f4
KS
1868 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1869 if (old_ptl) {
bf929152
KS
1870 new_ptl = pmd_lockptr(mm, new_pmd);
1871 if (new_ptl != old_ptl)
1872 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1873 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1874 if (pmd_present(pmd))
a2ce2666 1875 force_flush = true;
025c5b24 1876 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1877
1dd38b6c 1878 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1879 pgtable_t pgtable;
3592806c
KS
1880 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1881 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1882 }
ab6e3d09
NH
1883 pmd = move_soft_dirty_pmd(pmd);
1884 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1885 if (force_flush)
1886 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1887 if (new_ptl != old_ptl)
1888 spin_unlock(new_ptl);
bf929152 1889 spin_unlock(old_ptl);
4b471e88 1890 return true;
37a1c49a 1891 }
4b471e88 1892 return false;
37a1c49a
AA
1893}
1894
f123d74a
MG
1895/*
1896 * Returns
1897 * - 0 if PMD could not be locked
1898 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1899 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1900 */
cd7548ab 1901int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1902 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1903{
1904 struct mm_struct *mm = vma->vm_mm;
bf929152 1905 spinlock_t *ptl;
0a85e51d
KS
1906 pmd_t entry;
1907 bool preserve_write;
1908 int ret;
cd7548ab 1909
b6ec57f4 1910 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1911 if (!ptl)
1912 return 0;
e944fd67 1913
0a85e51d
KS
1914 preserve_write = prot_numa && pmd_write(*pmd);
1915 ret = 1;
e944fd67 1916
84c3fc4e
ZY
1917#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1918 if (is_swap_pmd(*pmd)) {
1919 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1920
1921 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1922 if (is_write_migration_entry(entry)) {
1923 pmd_t newpmd;
1924 /*
1925 * A protection check is difficult so
1926 * just be safe and disable write
1927 */
1928 make_migration_entry_read(&entry);
1929 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1930 if (pmd_swp_soft_dirty(*pmd))
1931 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1932 set_pmd_at(mm, addr, pmd, newpmd);
1933 }
1934 goto unlock;
1935 }
1936#endif
1937
0a85e51d
KS
1938 /*
1939 * Avoid trapping faults against the zero page. The read-only
1940 * data is likely to be read-cached on the local CPU and
1941 * local/remote hits to the zero page are not interesting.
1942 */
1943 if (prot_numa && is_huge_zero_pmd(*pmd))
1944 goto unlock;
025c5b24 1945
0a85e51d
KS
1946 if (prot_numa && pmd_protnone(*pmd))
1947 goto unlock;
1948
ced10803
KS
1949 /*
1950 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1951 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1952 * which is also under down_read(mmap_sem):
1953 *
1954 * CPU0: CPU1:
1955 * change_huge_pmd(prot_numa=1)
1956 * pmdp_huge_get_and_clear_notify()
1957 * madvise_dontneed()
1958 * zap_pmd_range()
1959 * pmd_trans_huge(*pmd) == 0 (without ptl)
1960 * // skip the pmd
1961 * set_pmd_at();
1962 * // pmd is re-established
1963 *
1964 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1965 * which may break userspace.
1966 *
1967 * pmdp_invalidate() is required to make sure we don't miss
1968 * dirty/young flags set by hardware.
1969 */
a3cf988f 1970 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 1971
0a85e51d
KS
1972 entry = pmd_modify(entry, newprot);
1973 if (preserve_write)
1974 entry = pmd_mk_savedwrite(entry);
1975 ret = HPAGE_PMD_NR;
1976 set_pmd_at(mm, addr, pmd, entry);
1977 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1978unlock:
1979 spin_unlock(ptl);
025c5b24
NH
1980 return ret;
1981}
1982
1983/*
8f19b0c0 1984 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1985 *
8f19b0c0
HY
1986 * Note that if it returns page table lock pointer, this routine returns without
1987 * unlocking page table lock. So callers must unlock it.
025c5b24 1988 */
b6ec57f4 1989spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1990{
b6ec57f4
KS
1991 spinlock_t *ptl;
1992 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
1993 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1994 pmd_devmap(*pmd)))
b6ec57f4
KS
1995 return ptl;
1996 spin_unlock(ptl);
1997 return NULL;
cd7548ab
JW
1998}
1999
a00cc7d9
MW
2000/*
2001 * Returns true if a given pud maps a thp, false otherwise.
2002 *
2003 * Note that if it returns true, this routine returns without unlocking page
2004 * table lock. So callers must unlock it.
2005 */
2006spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2007{
2008 spinlock_t *ptl;
2009
2010 ptl = pud_lock(vma->vm_mm, pud);
2011 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2012 return ptl;
2013 spin_unlock(ptl);
2014 return NULL;
2015}
2016
2017#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2018int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2019 pud_t *pud, unsigned long addr)
2020{
a00cc7d9
MW
2021 spinlock_t *ptl;
2022
2023 ptl = __pud_trans_huge_lock(pud, vma);
2024 if (!ptl)
2025 return 0;
2026 /*
2027 * For architectures like ppc64 we look at deposited pgtable
2028 * when calling pudp_huge_get_and_clear. So do the
2029 * pgtable_trans_huge_withdraw after finishing pudp related
2030 * operations.
2031 */
70516b93 2032 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
a00cc7d9
MW
2033 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2034 if (vma_is_dax(vma)) {
2035 spin_unlock(ptl);
2036 /* No zero page support yet */
2037 } else {
2038 /* No support for anonymous PUD pages yet */
2039 BUG();
2040 }
2041 return 1;
2042}
2043
2044static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2045 unsigned long haddr)
2046{
2047 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2048 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2049 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2050 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2051
ce9311cf 2052 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
2053
2054 pudp_huge_clear_flush_notify(vma, haddr, pud);
2055}
2056
2057void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2058 unsigned long address)
2059{
2060 spinlock_t *ptl;
ac46d4f3 2061 struct mmu_notifier_range range;
a00cc7d9 2062
ac46d4f3
JG
2063 mmu_notifier_range_init(&range, vma->vm_mm, address & HPAGE_PUD_MASK,
2064 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2065 mmu_notifier_invalidate_range_start(&range);
2066 ptl = pud_lock(vma->vm_mm, pud);
a00cc7d9
MW
2067 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2068 goto out;
ac46d4f3 2069 __split_huge_pud_locked(vma, pud, range.start);
a00cc7d9
MW
2070
2071out:
2072 spin_unlock(ptl);
4645b9fe
JG
2073 /*
2074 * No need to double call mmu_notifier->invalidate_range() callback as
2075 * the above pudp_huge_clear_flush_notify() did already call it.
2076 */
ac46d4f3 2077 mmu_notifier_invalidate_range_only_end(&range);
a00cc7d9
MW
2078}
2079#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2080
eef1b3ba
KS
2081static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2082 unsigned long haddr, pmd_t *pmd)
2083{
2084 struct mm_struct *mm = vma->vm_mm;
2085 pgtable_t pgtable;
2086 pmd_t _pmd;
2087 int i;
2088
0f10851e
JG
2089 /*
2090 * Leave pmd empty until pte is filled note that it is fine to delay
2091 * notification until mmu_notifier_invalidate_range_end() as we are
2092 * replacing a zero pmd write protected page with a zero pte write
2093 * protected page.
2094 *
ad56b738 2095 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
2096 */
2097 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2098
2099 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2100 pmd_populate(mm, &_pmd, pgtable);
2101
2102 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2103 pte_t *pte, entry;
2104 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2105 entry = pte_mkspecial(entry);
2106 pte = pte_offset_map(&_pmd, haddr);
2107 VM_BUG_ON(!pte_none(*pte));
2108 set_pte_at(mm, haddr, pte, entry);
2109 pte_unmap(pte);
2110 }
2111 smp_wmb(); /* make pte visible before pmd */
2112 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2113}
2114
2115static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2116 unsigned long haddr, bool freeze)
eef1b3ba
KS
2117{
2118 struct mm_struct *mm = vma->vm_mm;
2119 struct page *page;
2120 pgtable_t pgtable;
423ac9af 2121 pmd_t old_pmd, _pmd;
a3cf988f 2122 bool young, write, soft_dirty, pmd_migration = false;
2ac015e2 2123 unsigned long addr;
eef1b3ba
KS
2124 int i;
2125
2126 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2127 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2128 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2129 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2130 && !pmd_devmap(*pmd));
eef1b3ba
KS
2131
2132 count_vm_event(THP_SPLIT_PMD);
2133
d21b9e57
KS
2134 if (!vma_is_anonymous(vma)) {
2135 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2136 /*
2137 * We are going to unmap this huge page. So
2138 * just go ahead and zap it
2139 */
2140 if (arch_needs_pgtable_deposit())
2141 zap_deposited_table(mm, pmd);
d21b9e57
KS
2142 if (vma_is_dax(vma))
2143 return;
2144 page = pmd_page(_pmd);
e1f1b157
HD
2145 if (!PageDirty(page) && pmd_dirty(_pmd))
2146 set_page_dirty(page);
d21b9e57
KS
2147 if (!PageReferenced(page) && pmd_young(_pmd))
2148 SetPageReferenced(page);
2149 page_remove_rmap(page, true);
2150 put_page(page);
fadae295 2151 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba
KS
2152 return;
2153 } else if (is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2154 /*
2155 * FIXME: Do we want to invalidate secondary mmu by calling
2156 * mmu_notifier_invalidate_range() see comments below inside
2157 * __split_huge_pmd() ?
2158 *
2159 * We are going from a zero huge page write protected to zero
2160 * small page also write protected so it does not seems useful
2161 * to invalidate secondary mmu at this time.
2162 */
eef1b3ba
KS
2163 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2164 }
2165
423ac9af
AK
2166 /*
2167 * Up to this point the pmd is present and huge and userland has the
2168 * whole access to the hugepage during the split (which happens in
2169 * place). If we overwrite the pmd with the not-huge version pointing
2170 * to the pte here (which of course we could if all CPUs were bug
2171 * free), userland could trigger a small page size TLB miss on the
2172 * small sized TLB while the hugepage TLB entry is still established in
2173 * the huge TLB. Some CPU doesn't like that.
2174 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2175 * 383 on page 93. Intel should be safe but is also warns that it's
2176 * only safe if the permission and cache attributes of the two entries
2177 * loaded in the two TLB is identical (which should be the case here).
2178 * But it is generally safer to never allow small and huge TLB entries
2179 * for the same virtual address to be loaded simultaneously. So instead
2180 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2181 * current pmd notpresent (atomically because here the pmd_trans_huge
2182 * must remain set at all times on the pmd until the split is complete
2183 * for this pmd), then we flush the SMP TLB and finally we write the
2184 * non-huge version of the pmd entry with pmd_populate.
2185 */
2186 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2187
423ac9af 2188 pmd_migration = is_pmd_migration_entry(old_pmd);
2e83ee1d 2189 if (unlikely(pmd_migration)) {
84c3fc4e
ZY
2190 swp_entry_t entry;
2191
423ac9af 2192 entry = pmd_to_swp_entry(old_pmd);
84c3fc4e 2193 page = pfn_to_page(swp_offset(entry));
2e83ee1d
PX
2194 write = is_write_migration_entry(entry);
2195 young = false;
2196 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2197 } else {
423ac9af 2198 page = pmd_page(old_pmd);
2e83ee1d
PX
2199 if (pmd_dirty(old_pmd))
2200 SetPageDirty(page);
2201 write = pmd_write(old_pmd);
2202 young = pmd_young(old_pmd);
2203 soft_dirty = pmd_soft_dirty(old_pmd);
2204 }
eef1b3ba 2205 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2206 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba 2207
423ac9af
AK
2208 /*
2209 * Withdraw the table only after we mark the pmd entry invalid.
2210 * This's critical for some architectures (Power).
2211 */
eef1b3ba
KS
2212 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2213 pmd_populate(mm, &_pmd, pgtable);
2214
2ac015e2 2215 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2216 pte_t entry, *pte;
2217 /*
2218 * Note that NUMA hinting access restrictions are not
2219 * transferred to avoid any possibility of altering
2220 * permissions across VMAs.
2221 */
84c3fc4e 2222 if (freeze || pmd_migration) {
ba988280
KS
2223 swp_entry_t swp_entry;
2224 swp_entry = make_migration_entry(page + i, write);
2225 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2226 if (soft_dirty)
2227 entry = pte_swp_mksoft_dirty(entry);
ba988280 2228 } else {
6d2329f8 2229 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2230 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2231 if (!write)
2232 entry = pte_wrprotect(entry);
2233 if (!young)
2234 entry = pte_mkold(entry);
804dd150
AA
2235 if (soft_dirty)
2236 entry = pte_mksoft_dirty(entry);
ba988280 2237 }
2ac015e2 2238 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2239 BUG_ON(!pte_none(*pte));
2ac015e2 2240 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2241 atomic_inc(&page[i]._mapcount);
2242 pte_unmap(pte);
2243 }
2244
2245 /*
2246 * Set PG_double_map before dropping compound_mapcount to avoid
2247 * false-negative page_mapped().
2248 */
2249 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2250 for (i = 0; i < HPAGE_PMD_NR; i++)
2251 atomic_inc(&page[i]._mapcount);
2252 }
2253
2254 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2255 /* Last compound_mapcount is gone. */
11fb9989 2256 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
2257 if (TestClearPageDoubleMap(page)) {
2258 /* No need in mapcount reference anymore */
2259 for (i = 0; i < HPAGE_PMD_NR; i++)
2260 atomic_dec(&page[i]._mapcount);
2261 }
2262 }
2263
2264 smp_wmb(); /* make pte visible before pmd */
2265 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2266
2267 if (freeze) {
2ac015e2 2268 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2269 page_remove_rmap(page + i, false);
2270 put_page(page + i);
2271 }
2272 }
eef1b3ba
KS
2273}
2274
2275void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2276 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2277{
2278 spinlock_t *ptl;
ac46d4f3 2279 struct mmu_notifier_range range;
eef1b3ba 2280
ac46d4f3
JG
2281 mmu_notifier_range_init(&range, vma->vm_mm, address & HPAGE_PMD_MASK,
2282 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2283 mmu_notifier_invalidate_range_start(&range);
2284 ptl = pmd_lock(vma->vm_mm, pmd);
33f4751e
NH
2285
2286 /*
2287 * If caller asks to setup a migration entries, we need a page to check
2288 * pmd against. Otherwise we can end up replacing wrong page.
2289 */
2290 VM_BUG_ON(freeze && !page);
2291 if (page && page != pmd_page(*pmd))
2292 goto out;
2293
5c7fb56e 2294 if (pmd_trans_huge(*pmd)) {
33f4751e 2295 page = pmd_page(*pmd);
5c7fb56e 2296 if (PageMlocked(page))
5f737714 2297 clear_page_mlock(page);
84c3fc4e 2298 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2299 goto out;
ac46d4f3 2300 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
e90309c9 2301out:
eef1b3ba 2302 spin_unlock(ptl);
4645b9fe
JG
2303 /*
2304 * No need to double call mmu_notifier->invalidate_range() callback.
2305 * They are 3 cases to consider inside __split_huge_pmd_locked():
2306 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2307 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2308 * fault will trigger a flush_notify before pointing to a new page
2309 * (it is fine if the secondary mmu keeps pointing to the old zero
2310 * page in the meantime)
2311 * 3) Split a huge pmd into pte pointing to the same page. No need
2312 * to invalidate secondary tlb entry they are all still valid.
2313 * any further changes to individual pte will notify. So no need
2314 * to call mmu_notifier->invalidate_range()
2315 */
ac46d4f3 2316 mmu_notifier_invalidate_range_only_end(&range);
eef1b3ba
KS
2317}
2318
fec89c10
KS
2319void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2320 bool freeze, struct page *page)
94fcc585 2321{
f72e7dcd 2322 pgd_t *pgd;
c2febafc 2323 p4d_t *p4d;
f72e7dcd 2324 pud_t *pud;
94fcc585
AA
2325 pmd_t *pmd;
2326
78ddc534 2327 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2328 if (!pgd_present(*pgd))
2329 return;
2330
c2febafc
KS
2331 p4d = p4d_offset(pgd, address);
2332 if (!p4d_present(*p4d))
2333 return;
2334
2335 pud = pud_offset(p4d, address);
f72e7dcd
HD
2336 if (!pud_present(*pud))
2337 return;
2338
2339 pmd = pmd_offset(pud, address);
fec89c10 2340
33f4751e 2341 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2342}
2343
e1b9996b 2344void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2345 unsigned long start,
2346 unsigned long end,
2347 long adjust_next)
2348{
2349 /*
2350 * If the new start address isn't hpage aligned and it could
2351 * previously contain an hugepage: check if we need to split
2352 * an huge pmd.
2353 */
2354 if (start & ~HPAGE_PMD_MASK &&
2355 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2356 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2357 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2358
2359 /*
2360 * If the new end address isn't hpage aligned and it could
2361 * previously contain an hugepage: check if we need to split
2362 * an huge pmd.
2363 */
2364 if (end & ~HPAGE_PMD_MASK &&
2365 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2366 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2367 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2368
2369 /*
2370 * If we're also updating the vma->vm_next->vm_start, if the new
2371 * vm_next->vm_start isn't page aligned and it could previously
2372 * contain an hugepage: check if we need to split an huge pmd.
2373 */
2374 if (adjust_next > 0) {
2375 struct vm_area_struct *next = vma->vm_next;
2376 unsigned long nstart = next->vm_start;
2377 nstart += adjust_next << PAGE_SHIFT;
2378 if (nstart & ~HPAGE_PMD_MASK &&
2379 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2380 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2381 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2382 }
2383}
e9b61f19 2384
906f9cdf 2385static void unmap_page(struct page *page)
e9b61f19 2386{
baa355fd 2387 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
c7ab0d2f 2388 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2389 bool unmap_success;
e9b61f19
KS
2390
2391 VM_BUG_ON_PAGE(!PageHead(page), page);
2392
baa355fd 2393 if (PageAnon(page))
b5ff8161 2394 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2395
666e5a40
MK
2396 unmap_success = try_to_unmap(page, ttu_flags);
2397 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2398}
2399
906f9cdf 2400static void remap_page(struct page *page)
e9b61f19 2401{
fec89c10 2402 int i;
ace71a19
KS
2403 if (PageTransHuge(page)) {
2404 remove_migration_ptes(page, page, true);
2405 } else {
2406 for (i = 0; i < HPAGE_PMD_NR; i++)
2407 remove_migration_ptes(page + i, page + i, true);
2408 }
e9b61f19
KS
2409}
2410
8df651c7 2411static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2412 struct lruvec *lruvec, struct list_head *list)
2413{
e9b61f19
KS
2414 struct page *page_tail = head + tail;
2415
8df651c7 2416 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2417
2418 /*
605ca5ed
KK
2419 * Clone page flags before unfreezing refcount.
2420 *
2421 * After successful get_page_unless_zero() might follow flags change,
2422 * for exmaple lock_page() which set PG_waiters.
e9b61f19 2423 */
e9b61f19
KS
2424 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2425 page_tail->flags |= (head->flags &
2426 ((1L << PG_referenced) |
2427 (1L << PG_swapbacked) |
38d8b4e6 2428 (1L << PG_swapcache) |
e9b61f19
KS
2429 (1L << PG_mlocked) |
2430 (1L << PG_uptodate) |
2431 (1L << PG_active) |
1899ad18 2432 (1L << PG_workingset) |
e9b61f19 2433 (1L << PG_locked) |
b8d3c4c3
MK
2434 (1L << PG_unevictable) |
2435 (1L << PG_dirty)));
e9b61f19 2436
173d9d9f
HD
2437 /* ->mapping in first tail page is compound_mapcount */
2438 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2439 page_tail);
2440 page_tail->mapping = head->mapping;
2441 page_tail->index = head->index + tail;
2442
605ca5ed 2443 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2444 smp_wmb();
2445
605ca5ed
KK
2446 /*
2447 * Clear PageTail before unfreezing page refcount.
2448 *
2449 * After successful get_page_unless_zero() might follow put_page()
2450 * which needs correct compound_head().
2451 */
e9b61f19
KS
2452 clear_compound_head(page_tail);
2453
605ca5ed
KK
2454 /* Finally unfreeze refcount. Additional reference from page cache. */
2455 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2456 PageSwapCache(head)));
2457
e9b61f19
KS
2458 if (page_is_young(head))
2459 set_page_young(page_tail);
2460 if (page_is_idle(head))
2461 set_page_idle(page_tail);
2462
e9b61f19 2463 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2464
2465 /*
2466 * always add to the tail because some iterators expect new
2467 * pages to show after the currently processed elements - e.g.
2468 * migrate_pages
2469 */
e9b61f19 2470 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2471}
2472
baa355fd 2473static void __split_huge_page(struct page *page, struct list_head *list,
006d3ff2 2474 pgoff_t end, unsigned long flags)
e9b61f19
KS
2475{
2476 struct page *head = compound_head(page);
f4b7e272 2477 pg_data_t *pgdat = page_pgdat(head);
e9b61f19 2478 struct lruvec *lruvec;
8df651c7 2479 int i;
e9b61f19 2480
f4b7e272 2481 lruvec = mem_cgroup_page_lruvec(head, pgdat);
e9b61f19
KS
2482
2483 /* complete memcg works before add pages to LRU */
2484 mem_cgroup_split_huge_fixup(head);
2485
baa355fd 2486 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 2487 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2488 /* Some pages can be beyond i_size: drop them from page cache */
2489 if (head[i].index >= end) {
2d077d4b 2490 ClearPageDirty(head + i);
baa355fd 2491 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2492 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2493 shmem_uncharge(head->mapping->host, 1);
baa355fd
KS
2494 put_page(head + i);
2495 }
2496 }
e9b61f19
KS
2497
2498 ClearPageCompound(head);
baa355fd
KS
2499 /* See comment in __split_huge_page_tail() */
2500 if (PageAnon(head)) {
aa5dc07f 2501 /* Additional pin to swap cache */
38d8b4e6
HY
2502 if (PageSwapCache(head))
2503 page_ref_add(head, 2);
2504 else
2505 page_ref_inc(head);
baa355fd 2506 } else {
aa5dc07f 2507 /* Additional pin to page cache */
baa355fd 2508 page_ref_add(head, 2);
b93b0163 2509 xa_unlock(&head->mapping->i_pages);
baa355fd
KS
2510 }
2511
f4b7e272 2512 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
e9b61f19 2513
906f9cdf 2514 remap_page(head);
e9b61f19
KS
2515
2516 for (i = 0; i < HPAGE_PMD_NR; i++) {
2517 struct page *subpage = head + i;
2518 if (subpage == page)
2519 continue;
2520 unlock_page(subpage);
2521
2522 /*
2523 * Subpages may be freed if there wasn't any mapping
2524 * like if add_to_swap() is running on a lru page that
2525 * had its mapping zapped. And freeing these pages
2526 * requires taking the lru_lock so we do the put_page
2527 * of the tail pages after the split is complete.
2528 */
2529 put_page(subpage);
2530 }
2531}
2532
b20ce5e0
KS
2533int total_mapcount(struct page *page)
2534{
dd78fedd 2535 int i, compound, ret;
b20ce5e0
KS
2536
2537 VM_BUG_ON_PAGE(PageTail(page), page);
2538
2539 if (likely(!PageCompound(page)))
2540 return atomic_read(&page->_mapcount) + 1;
2541
dd78fedd 2542 compound = compound_mapcount(page);
b20ce5e0 2543 if (PageHuge(page))
dd78fedd
KS
2544 return compound;
2545 ret = compound;
b20ce5e0
KS
2546 for (i = 0; i < HPAGE_PMD_NR; i++)
2547 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2548 /* File pages has compound_mapcount included in _mapcount */
2549 if (!PageAnon(page))
2550 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2551 if (PageDoubleMap(page))
2552 ret -= HPAGE_PMD_NR;
2553 return ret;
2554}
2555
6d0a07ed
AA
2556/*
2557 * This calculates accurately how many mappings a transparent hugepage
2558 * has (unlike page_mapcount() which isn't fully accurate). This full
2559 * accuracy is primarily needed to know if copy-on-write faults can
2560 * reuse the page and change the mapping to read-write instead of
2561 * copying them. At the same time this returns the total_mapcount too.
2562 *
2563 * The function returns the highest mapcount any one of the subpages
2564 * has. If the return value is one, even if different processes are
2565 * mapping different subpages of the transparent hugepage, they can
2566 * all reuse it, because each process is reusing a different subpage.
2567 *
2568 * The total_mapcount is instead counting all virtual mappings of the
2569 * subpages. If the total_mapcount is equal to "one", it tells the
2570 * caller all mappings belong to the same "mm" and in turn the
2571 * anon_vma of the transparent hugepage can become the vma->anon_vma
2572 * local one as no other process may be mapping any of the subpages.
2573 *
2574 * It would be more accurate to replace page_mapcount() with
2575 * page_trans_huge_mapcount(), however we only use
2576 * page_trans_huge_mapcount() in the copy-on-write faults where we
2577 * need full accuracy to avoid breaking page pinning, because
2578 * page_trans_huge_mapcount() is slower than page_mapcount().
2579 */
2580int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2581{
2582 int i, ret, _total_mapcount, mapcount;
2583
2584 /* hugetlbfs shouldn't call it */
2585 VM_BUG_ON_PAGE(PageHuge(page), page);
2586
2587 if (likely(!PageTransCompound(page))) {
2588 mapcount = atomic_read(&page->_mapcount) + 1;
2589 if (total_mapcount)
2590 *total_mapcount = mapcount;
2591 return mapcount;
2592 }
2593
2594 page = compound_head(page);
2595
2596 _total_mapcount = ret = 0;
2597 for (i = 0; i < HPAGE_PMD_NR; i++) {
2598 mapcount = atomic_read(&page[i]._mapcount) + 1;
2599 ret = max(ret, mapcount);
2600 _total_mapcount += mapcount;
2601 }
2602 if (PageDoubleMap(page)) {
2603 ret -= 1;
2604 _total_mapcount -= HPAGE_PMD_NR;
2605 }
2606 mapcount = compound_mapcount(page);
2607 ret += mapcount;
2608 _total_mapcount += mapcount;
2609 if (total_mapcount)
2610 *total_mapcount = _total_mapcount;
2611 return ret;
2612}
2613
b8f593cd
HY
2614/* Racy check whether the huge page can be split */
2615bool can_split_huge_page(struct page *page, int *pextra_pins)
2616{
2617 int extra_pins;
2618
aa5dc07f 2619 /* Additional pins from page cache */
b8f593cd
HY
2620 if (PageAnon(page))
2621 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2622 else
2623 extra_pins = HPAGE_PMD_NR;
2624 if (pextra_pins)
2625 *pextra_pins = extra_pins;
2626 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2627}
2628
e9b61f19
KS
2629/*
2630 * This function splits huge page into normal pages. @page can point to any
2631 * subpage of huge page to split. Split doesn't change the position of @page.
2632 *
2633 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2634 * The huge page must be locked.
2635 *
2636 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2637 *
2638 * Both head page and tail pages will inherit mapping, flags, and so on from
2639 * the hugepage.
2640 *
2641 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2642 * they are not mapped.
2643 *
2644 * Returns 0 if the hugepage is split successfully.
2645 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2646 * us.
2647 */
2648int split_huge_page_to_list(struct page *page, struct list_head *list)
2649{
2650 struct page *head = compound_head(page);
a3d0a918 2651 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
baa355fd
KS
2652 struct anon_vma *anon_vma = NULL;
2653 struct address_space *mapping = NULL;
2654 int count, mapcount, extra_pins, ret;
d9654322 2655 bool mlocked;
0b9b6fff 2656 unsigned long flags;
006d3ff2 2657 pgoff_t end;
e9b61f19
KS
2658
2659 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
e9b61f19 2660 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
2661 VM_BUG_ON_PAGE(!PageCompound(page), page);
2662
59807685
HY
2663 if (PageWriteback(page))
2664 return -EBUSY;
2665
baa355fd
KS
2666 if (PageAnon(head)) {
2667 /*
2668 * The caller does not necessarily hold an mmap_sem that would
2669 * prevent the anon_vma disappearing so we first we take a
2670 * reference to it and then lock the anon_vma for write. This
2671 * is similar to page_lock_anon_vma_read except the write lock
2672 * is taken to serialise against parallel split or collapse
2673 * operations.
2674 */
2675 anon_vma = page_get_anon_vma(head);
2676 if (!anon_vma) {
2677 ret = -EBUSY;
2678 goto out;
2679 }
006d3ff2 2680 end = -1;
baa355fd
KS
2681 mapping = NULL;
2682 anon_vma_lock_write(anon_vma);
2683 } else {
2684 mapping = head->mapping;
2685
2686 /* Truncated ? */
2687 if (!mapping) {
2688 ret = -EBUSY;
2689 goto out;
2690 }
2691
baa355fd
KS
2692 anon_vma = NULL;
2693 i_mmap_lock_read(mapping);
006d3ff2
HD
2694
2695 /*
2696 *__split_huge_page() may need to trim off pages beyond EOF:
2697 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2698 * which cannot be nested inside the page tree lock. So note
2699 * end now: i_size itself may be changed at any moment, but
2700 * head page lock is good enough to serialize the trimming.
2701 */
2702 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2703 }
e9b61f19
KS
2704
2705 /*
906f9cdf 2706 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2707 * split PMDs
2708 */
b8f593cd 2709 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2710 ret = -EBUSY;
2711 goto out_unlock;
2712 }
2713
d9654322 2714 mlocked = PageMlocked(page);
906f9cdf 2715 unmap_page(head);
e9b61f19
KS
2716 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2717
d9654322
KS
2718 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2719 if (mlocked)
2720 lru_add_drain();
2721
baa355fd 2722 /* prevent PageLRU to go away from under us, and freeze lru stats */
f4b7e272 2723 spin_lock_irqsave(&pgdata->lru_lock, flags);
baa355fd
KS
2724
2725 if (mapping) {
aa5dc07f 2726 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2727
baa355fd 2728 /*
aa5dc07f 2729 * Check if the head page is present in page cache.
baa355fd
KS
2730 * We assume all tail are present too, if head is there.
2731 */
aa5dc07f
MW
2732 xa_lock(&mapping->i_pages);
2733 if (xas_load(&xas) != head)
baa355fd
KS
2734 goto fail;
2735 }
2736
0139aa7b 2737 /* Prevent deferred_split_scan() touching ->_refcount */
baa355fd 2738 spin_lock(&pgdata->split_queue_lock);
e9b61f19
KS
2739 count = page_count(head);
2740 mapcount = total_mapcount(head);
baa355fd 2741 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2742 if (!list_empty(page_deferred_list(head))) {
a3d0a918 2743 pgdata->split_queue_len--;
9a982250
KS
2744 list_del(page_deferred_list(head));
2745 }
65c45377 2746 if (mapping)
11fb9989 2747 __dec_node_page_state(page, NR_SHMEM_THPS);
baa355fd 2748 spin_unlock(&pgdata->split_queue_lock);
006d3ff2 2749 __split_huge_page(page, list, end, flags);
59807685
HY
2750 if (PageSwapCache(head)) {
2751 swp_entry_t entry = { .val = page_private(head) };
2752
2753 ret = split_swap_cluster(entry);
2754 } else
2755 ret = 0;
e9b61f19 2756 } else {
baa355fd
KS
2757 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2758 pr_alert("total_mapcount: %u, page_count(): %u\n",
2759 mapcount, count);
2760 if (PageTail(page))
2761 dump_page(head, NULL);
2762 dump_page(page, "total_mapcount(head) > 0");
2763 BUG();
2764 }
2765 spin_unlock(&pgdata->split_queue_lock);
2766fail: if (mapping)
b93b0163 2767 xa_unlock(&mapping->i_pages);
f4b7e272 2768 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
906f9cdf 2769 remap_page(head);
e9b61f19
KS
2770 ret = -EBUSY;
2771 }
2772
2773out_unlock:
baa355fd
KS
2774 if (anon_vma) {
2775 anon_vma_unlock_write(anon_vma);
2776 put_anon_vma(anon_vma);
2777 }
2778 if (mapping)
2779 i_mmap_unlock_read(mapping);
e9b61f19
KS
2780out:
2781 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2782 return ret;
2783}
9a982250
KS
2784
2785void free_transhuge_page(struct page *page)
2786{
a3d0a918 2787 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2788 unsigned long flags;
2789
a3d0a918 2790 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2791 if (!list_empty(page_deferred_list(page))) {
a3d0a918 2792 pgdata->split_queue_len--;
9a982250
KS
2793 list_del(page_deferred_list(page));
2794 }
a3d0a918 2795 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2796 free_compound_page(page);
2797}
2798
2799void deferred_split_huge_page(struct page *page)
2800{
a3d0a918 2801 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2802 unsigned long flags;
2803
2804 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2805
a3d0a918 2806 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2807 if (list_empty(page_deferred_list(page))) {
f9719a03 2808 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
2809 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2810 pgdata->split_queue_len++;
9a982250 2811 }
a3d0a918 2812 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2813}
2814
2815static unsigned long deferred_split_count(struct shrinker *shrink,
2816 struct shrink_control *sc)
2817{
a3d0a918 2818 struct pglist_data *pgdata = NODE_DATA(sc->nid);
6aa7de05 2819 return READ_ONCE(pgdata->split_queue_len);
9a982250
KS
2820}
2821
2822static unsigned long deferred_split_scan(struct shrinker *shrink,
2823 struct shrink_control *sc)
2824{
a3d0a918 2825 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
2826 unsigned long flags;
2827 LIST_HEAD(list), *pos, *next;
2828 struct page *page;
2829 int split = 0;
2830
a3d0a918 2831 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2832 /* Take pin on all head pages to avoid freeing them under us */
ae026204 2833 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
2834 page = list_entry((void *)pos, struct page, mapping);
2835 page = compound_head(page);
e3ae1953
KS
2836 if (get_page_unless_zero(page)) {
2837 list_move(page_deferred_list(page), &list);
2838 } else {
2839 /* We lost race with put_compound_page() */
9a982250 2840 list_del_init(page_deferred_list(page));
a3d0a918 2841 pgdata->split_queue_len--;
9a982250 2842 }
e3ae1953
KS
2843 if (!--sc->nr_to_scan)
2844 break;
9a982250 2845 }
a3d0a918 2846 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2847
2848 list_for_each_safe(pos, next, &list) {
2849 page = list_entry((void *)pos, struct page, mapping);
fa41b900
KS
2850 if (!trylock_page(page))
2851 goto next;
9a982250
KS
2852 /* split_huge_page() removes page from list on success */
2853 if (!split_huge_page(page))
2854 split++;
2855 unlock_page(page);
fa41b900 2856next:
9a982250
KS
2857 put_page(page);
2858 }
2859
a3d0a918
KS
2860 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2861 list_splice_tail(&list, &pgdata->split_queue);
2862 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 2863
cb8d68ec
KS
2864 /*
2865 * Stop shrinker if we didn't split any page, but the queue is empty.
2866 * This can happen if pages were freed under us.
2867 */
2868 if (!split && list_empty(&pgdata->split_queue))
2869 return SHRINK_STOP;
2870 return split;
9a982250
KS
2871}
2872
2873static struct shrinker deferred_split_shrinker = {
2874 .count_objects = deferred_split_count,
2875 .scan_objects = deferred_split_scan,
2876 .seeks = DEFAULT_SEEKS,
a3d0a918 2877 .flags = SHRINKER_NUMA_AWARE,
9a982250 2878};
49071d43
KS
2879
2880#ifdef CONFIG_DEBUG_FS
2881static int split_huge_pages_set(void *data, u64 val)
2882{
2883 struct zone *zone;
2884 struct page *page;
2885 unsigned long pfn, max_zone_pfn;
2886 unsigned long total = 0, split = 0;
2887
2888 if (val != 1)
2889 return -EINVAL;
2890
2891 for_each_populated_zone(zone) {
2892 max_zone_pfn = zone_end_pfn(zone);
2893 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2894 if (!pfn_valid(pfn))
2895 continue;
2896
2897 page = pfn_to_page(pfn);
2898 if (!get_page_unless_zero(page))
2899 continue;
2900
2901 if (zone != page_zone(page))
2902 goto next;
2903
baa355fd 2904 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2905 goto next;
2906
2907 total++;
2908 lock_page(page);
2909 if (!split_huge_page(page))
2910 split++;
2911 unlock_page(page);
2912next:
2913 put_page(page);
2914 }
2915 }
2916
145bdaa1 2917 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2918
2919 return 0;
2920}
2921DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2922 "%llu\n");
2923
2924static int __init split_huge_pages_debugfs(void)
2925{
d9f7979c
GKH
2926 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2927 &split_huge_pages_fops);
49071d43
KS
2928 return 0;
2929}
2930late_initcall(split_huge_pages_debugfs);
2931#endif
616b8371
ZY
2932
2933#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2934void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2935 struct page *page)
2936{
2937 struct vm_area_struct *vma = pvmw->vma;
2938 struct mm_struct *mm = vma->vm_mm;
2939 unsigned long address = pvmw->address;
2940 pmd_t pmdval;
2941 swp_entry_t entry;
ab6e3d09 2942 pmd_t pmdswp;
616b8371
ZY
2943
2944 if (!(pvmw->pmd && !pvmw->pte))
2945 return;
2946
616b8371
ZY
2947 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2948 pmdval = *pvmw->pmd;
2949 pmdp_invalidate(vma, address, pvmw->pmd);
2950 if (pmd_dirty(pmdval))
2951 set_page_dirty(page);
2952 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
2953 pmdswp = swp_entry_to_pmd(entry);
2954 if (pmd_soft_dirty(pmdval))
2955 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2956 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
2957 page_remove_rmap(page, true);
2958 put_page(page);
616b8371
ZY
2959}
2960
2961void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2962{
2963 struct vm_area_struct *vma = pvmw->vma;
2964 struct mm_struct *mm = vma->vm_mm;
2965 unsigned long address = pvmw->address;
2966 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2967 pmd_t pmde;
2968 swp_entry_t entry;
2969
2970 if (!(pvmw->pmd && !pvmw->pte))
2971 return;
2972
2973 entry = pmd_to_swp_entry(*pvmw->pmd);
2974 get_page(new);
2975 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
2976 if (pmd_swp_soft_dirty(*pvmw->pmd))
2977 pmde = pmd_mksoft_dirty(pmde);
616b8371 2978 if (is_write_migration_entry(entry))
f55e1014 2979 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
2980
2981 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
2982 if (PageAnon(new))
2983 page_add_anon_rmap(new, vma, mmun_start, true);
2984 else
2985 page_add_file_rmap(new, true);
616b8371 2986 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 2987 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
2988 mlock_vma_page(new);
2989 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2990}
2991#endif