]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/mlock.c
cifs: Fix lease buffer length error
[thirdparty/kernel/linux.git] / mm / mlock.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/mlock.c
4 *
5 * (C) Copyright 1995 Linus Torvalds
6 * (C) Copyright 2002 Christoph Hellwig
7 */
8
c59ede7b 9#include <linux/capability.h>
1da177e4
LT
10#include <linux/mman.h>
11#include <linux/mm.h>
8703e8a4 12#include <linux/sched/user.h>
b291f000
NP
13#include <linux/swap.h>
14#include <linux/swapops.h>
15#include <linux/pagemap.h>
7225522b 16#include <linux/pagevec.h>
1da177e4
LT
17#include <linux/mempolicy.h>
18#include <linux/syscalls.h>
e8edc6e0 19#include <linux/sched.h>
b95f1b31 20#include <linux/export.h>
b291f000
NP
21#include <linux/rmap.h>
22#include <linux/mmzone.h>
23#include <linux/hugetlb.h>
7225522b
VB
24#include <linux/memcontrol.h>
25#include <linux/mm_inline.h>
b291f000
NP
26
27#include "internal.h"
1da177e4 28
7f43add4 29bool can_do_mlock(void)
e8edc6e0 30{
59e99e5b 31 if (rlimit(RLIMIT_MEMLOCK) != 0)
7f43add4 32 return true;
a5a6579d 33 if (capable(CAP_IPC_LOCK))
7f43add4
WX
34 return true;
35 return false;
e8edc6e0
AD
36}
37EXPORT_SYMBOL(can_do_mlock);
1da177e4 38
b291f000
NP
39/*
40 * Mlocked pages are marked with PageMlocked() flag for efficient testing
41 * in vmscan and, possibly, the fault path; and to support semi-accurate
42 * statistics.
43 *
44 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
45 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
46 * The unevictable list is an LRU sibling list to the [in]active lists.
47 * PageUnevictable is set to indicate the unevictable state.
48 *
49 * When lazy mlocking via vmscan, it is important to ensure that the
50 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
51 * may have mlocked a page that is being munlocked. So lazy mlock must take
52 * the mmap_sem for read, and verify that the vma really is locked
53 * (see mm/rmap.c).
54 */
55
56/*
57 * LRU accounting for clear_page_mlock()
58 */
e6c509f8 59void clear_page_mlock(struct page *page)
b291f000 60{
e6c509f8 61 if (!TestClearPageMlocked(page))
b291f000 62 return;
b291f000 63
8449d21f
DR
64 mod_zone_page_state(page_zone(page), NR_MLOCK,
65 -hpage_nr_pages(page));
5344b7e6 66 count_vm_event(UNEVICTABLE_PGCLEARED);
9c4e6b1a
SB
67 /*
68 * The previous TestClearPageMlocked() corresponds to the smp_mb()
69 * in __pagevec_lru_add_fn().
70 *
71 * See __pagevec_lru_add_fn for more explanation.
72 */
b291f000
NP
73 if (!isolate_lru_page(page)) {
74 putback_lru_page(page);
75 } else {
76 /*
8891d6da 77 * We lost the race. the page already moved to evictable list.
b291f000 78 */
8891d6da 79 if (PageUnevictable(page))
5344b7e6 80 count_vm_event(UNEVICTABLE_PGSTRANDED);
b291f000
NP
81 }
82}
83
84/*
85 * Mark page as mlocked if not already.
86 * If page on LRU, isolate and putback to move to unevictable list.
87 */
88void mlock_vma_page(struct page *page)
89{
57e68e9c 90 /* Serialize with page migration */
b291f000
NP
91 BUG_ON(!PageLocked(page));
92
e90309c9
KS
93 VM_BUG_ON_PAGE(PageTail(page), page);
94 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
95
5344b7e6 96 if (!TestSetPageMlocked(page)) {
8449d21f
DR
97 mod_zone_page_state(page_zone(page), NR_MLOCK,
98 hpage_nr_pages(page));
5344b7e6
NP
99 count_vm_event(UNEVICTABLE_PGMLOCKED);
100 if (!isolate_lru_page(page))
101 putback_lru_page(page);
102 }
b291f000
NP
103}
104
01cc2e58
VB
105/*
106 * Isolate a page from LRU with optional get_page() pin.
107 * Assumes lru_lock already held and page already pinned.
108 */
109static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
110{
111 if (PageLRU(page)) {
112 struct lruvec *lruvec;
113
599d0c95 114 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
01cc2e58
VB
115 if (getpage)
116 get_page(page);
117 ClearPageLRU(page);
118 del_page_from_lru_list(page, lruvec, page_lru(page));
119 return true;
120 }
121
122 return false;
123}
124
7225522b
VB
125/*
126 * Finish munlock after successful page isolation
127 *
128 * Page must be locked. This is a wrapper for try_to_munlock()
129 * and putback_lru_page() with munlock accounting.
130 */
131static void __munlock_isolated_page(struct page *page)
132{
7225522b
VB
133 /*
134 * Optimization: if the page was mapped just once, that's our mapping
135 * and we don't need to check all the other vmas.
136 */
137 if (page_mapcount(page) > 1)
192d7232 138 try_to_munlock(page);
7225522b
VB
139
140 /* Did try_to_unlock() succeed or punt? */
192d7232 141 if (!PageMlocked(page))
7225522b
VB
142 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
143
144 putback_lru_page(page);
145}
146
147/*
148 * Accounting for page isolation fail during munlock
149 *
150 * Performs accounting when page isolation fails in munlock. There is nothing
151 * else to do because it means some other task has already removed the page
152 * from the LRU. putback_lru_page() will take care of removing the page from
153 * the unevictable list, if necessary. vmscan [page_referenced()] will move
154 * the page back to the unevictable list if some other vma has it mlocked.
155 */
156static void __munlock_isolation_failed(struct page *page)
157{
158 if (PageUnevictable(page))
01cc2e58 159 __count_vm_event(UNEVICTABLE_PGSTRANDED);
7225522b 160 else
01cc2e58 161 __count_vm_event(UNEVICTABLE_PGMUNLOCKED);
7225522b
VB
162}
163
6927c1dd
LS
164/**
165 * munlock_vma_page - munlock a vma page
b7701a5f 166 * @page: page to be unlocked, either a normal page or THP page head
c424be1c
VB
167 *
168 * returns the size of the page as a page mask (0 for normal page,
169 * HPAGE_PMD_NR - 1 for THP head page)
b291f000 170 *
6927c1dd
LS
171 * called from munlock()/munmap() path with page supposedly on the LRU.
172 * When we munlock a page, because the vma where we found the page is being
173 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
174 * page locked so that we can leave it on the unevictable lru list and not
175 * bother vmscan with it. However, to walk the page's rmap list in
176 * try_to_munlock() we must isolate the page from the LRU. If some other
177 * task has removed the page from the LRU, we won't be able to do that.
178 * So we clear the PageMlocked as we might not get another chance. If we
179 * can't isolate the page, we leave it for putback_lru_page() and vmscan
180 * [page_referenced()/try_to_unmap()] to deal with.
b291f000 181 */
ff6a6da6 182unsigned int munlock_vma_page(struct page *page)
b291f000 183{
7162a1e8 184 int nr_pages;
f4b7e272 185 pg_data_t *pgdat = page_pgdat(page);
ff6a6da6 186
57e68e9c 187 /* For try_to_munlock() and to serialize with page migration */
b291f000
NP
188 BUG_ON(!PageLocked(page));
189
e90309c9
KS
190 VM_BUG_ON_PAGE(PageTail(page), page);
191
c424be1c 192 /*
01cc2e58
VB
193 * Serialize with any parallel __split_huge_page_refcount() which
194 * might otherwise copy PageMlocked to part of the tail pages before
195 * we clear it in the head page. It also stabilizes hpage_nr_pages().
c424be1c 196 */
f4b7e272 197 spin_lock_irq(&pgdat->lru_lock);
01cc2e58 198
655548bf
KS
199 if (!TestClearPageMlocked(page)) {
200 /* Potentially, PTE-mapped THP: do not skip the rest PTEs */
201 nr_pages = 1;
01cc2e58 202 goto unlock_out;
655548bf 203 }
01cc2e58 204
655548bf 205 nr_pages = hpage_nr_pages(page);
f4b7e272 206 __mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
01cc2e58
VB
207
208 if (__munlock_isolate_lru_page(page, true)) {
f4b7e272 209 spin_unlock_irq(&pgdat->lru_lock);
01cc2e58
VB
210 __munlock_isolated_page(page);
211 goto out;
212 }
213 __munlock_isolation_failed(page);
214
215unlock_out:
f4b7e272 216 spin_unlock_irq(&pgdat->lru_lock);
01cc2e58
VB
217
218out:
c424be1c 219 return nr_pages - 1;
b291f000
NP
220}
221
9978ad58
LS
222/*
223 * convert get_user_pages() return value to posix mlock() error
224 */
225static int __mlock_posix_error_return(long retval)
226{
227 if (retval == -EFAULT)
228 retval = -ENOMEM;
229 else if (retval == -ENOMEM)
230 retval = -EAGAIN;
231 return retval;
b291f000
NP
232}
233
56afe477
VB
234/*
235 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
236 *
237 * The fast path is available only for evictable pages with single mapping.
238 * Then we can bypass the per-cpu pvec and get better performance.
239 * when mapcount > 1 we need try_to_munlock() which can fail.
240 * when !page_evictable(), we need the full redo logic of putback_lru_page to
241 * avoid leaving evictable page in unevictable list.
242 *
243 * In case of success, @page is added to @pvec and @pgrescued is incremented
244 * in case that the page was previously unevictable. @page is also unlocked.
245 */
246static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
247 int *pgrescued)
248{
309381fe
SL
249 VM_BUG_ON_PAGE(PageLRU(page), page);
250 VM_BUG_ON_PAGE(!PageLocked(page), page);
56afe477
VB
251
252 if (page_mapcount(page) <= 1 && page_evictable(page)) {
253 pagevec_add(pvec, page);
254 if (TestClearPageUnevictable(page))
255 (*pgrescued)++;
256 unlock_page(page);
257 return true;
258 }
259
260 return false;
261}
262
263/*
264 * Putback multiple evictable pages to the LRU
265 *
266 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
267 * the pages might have meanwhile become unevictable but that is OK.
268 */
269static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
270{
271 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
272 /*
273 *__pagevec_lru_add() calls release_pages() so we don't call
274 * put_page() explicitly
275 */
276 __pagevec_lru_add(pvec);
277 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
278}
279
7225522b
VB
280/*
281 * Munlock a batch of pages from the same zone
282 *
283 * The work is split to two main phases. First phase clears the Mlocked flag
284 * and attempts to isolate the pages, all under a single zone lru lock.
285 * The second phase finishes the munlock only for pages where isolation
286 * succeeded.
287 *
7a8010cd 288 * Note that the pagevec may be modified during the process.
7225522b
VB
289 */
290static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
291{
292 int i;
293 int nr = pagevec_count(pvec);
70feee0e 294 int delta_munlocked = -nr;
56afe477
VB
295 struct pagevec pvec_putback;
296 int pgrescued = 0;
7225522b 297
86679820 298 pagevec_init(&pvec_putback);
3b25df93 299
7225522b 300 /* Phase 1: page isolation */
f4b7e272 301 spin_lock_irq(&zone->zone_pgdat->lru_lock);
7225522b
VB
302 for (i = 0; i < nr; i++) {
303 struct page *page = pvec->pages[i];
304
305 if (TestClearPageMlocked(page)) {
7225522b 306 /*
01cc2e58
VB
307 * We already have pin from follow_page_mask()
308 * so we can spare the get_page() here.
7225522b 309 */
01cc2e58
VB
310 if (__munlock_isolate_lru_page(page, false))
311 continue;
312 else
313 __munlock_isolation_failed(page);
70feee0e
YX
314 } else {
315 delta_munlocked++;
7225522b 316 }
01cc2e58
VB
317
318 /*
319 * We won't be munlocking this page in the next phase
320 * but we still need to release the follow_page_mask()
321 * pin. We cannot do it under lru_lock however. If it's
322 * the last pin, __page_cache_release() would deadlock.
323 */
324 pagevec_add(&pvec_putback, pvec->pages[i]);
325 pvec->pages[i] = NULL;
7225522b 326 }
1ebb7cc6 327 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
f4b7e272 328 spin_unlock_irq(&zone->zone_pgdat->lru_lock);
7225522b 329
3b25df93
VB
330 /* Now we can release pins of pages that we are not munlocking */
331 pagevec_release(&pvec_putback);
332
56afe477 333 /* Phase 2: page munlock */
7225522b
VB
334 for (i = 0; i < nr; i++) {
335 struct page *page = pvec->pages[i];
336
337 if (page) {
338 lock_page(page);
56afe477
VB
339 if (!__putback_lru_fast_prepare(page, &pvec_putback,
340 &pgrescued)) {
5b40998a
VB
341 /*
342 * Slow path. We don't want to lose the last
343 * pin before unlock_page()
344 */
345 get_page(page); /* for putback_lru_page() */
56afe477
VB
346 __munlock_isolated_page(page);
347 unlock_page(page);
5b40998a 348 put_page(page); /* from follow_page_mask() */
56afe477 349 }
7225522b
VB
350 }
351 }
56afe477 352
5b40998a
VB
353 /*
354 * Phase 3: page putback for pages that qualified for the fast path
355 * This will also call put_page() to return pin from follow_page_mask()
356 */
56afe477
VB
357 if (pagevec_count(&pvec_putback))
358 __putback_lru_fast(&pvec_putback, pgrescued);
7a8010cd
VB
359}
360
361/*
362 * Fill up pagevec for __munlock_pagevec using pte walk
363 *
364 * The function expects that the struct page corresponding to @start address is
365 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
366 *
367 * The rest of @pvec is filled by subsequent pages within the same pmd and same
368 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
369 * pages also get pinned.
370 *
371 * Returns the address of the next page that should be scanned. This equals
372 * @start + PAGE_SIZE when no page could be added by the pte walk.
373 */
374static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
9472f23c
JK
375 struct vm_area_struct *vma, struct zone *zone,
376 unsigned long start, unsigned long end)
7a8010cd
VB
377{
378 pte_t *pte;
379 spinlock_t *ptl;
380
381 /*
382 * Initialize pte walk starting at the already pinned page where we
eadb41ae
VB
383 * are sure that there is a pte, as it was pinned under the same
384 * mmap_sem write op.
7a8010cd
VB
385 */
386 pte = get_locked_pte(vma->vm_mm, start, &ptl);
eadb41ae
VB
387 /* Make sure we do not cross the page table boundary */
388 end = pgd_addr_end(start, end);
c2febafc 389 end = p4d_addr_end(start, end);
eadb41ae
VB
390 end = pud_addr_end(start, end);
391 end = pmd_addr_end(start, end);
7a8010cd
VB
392
393 /* The page next to the pinned page is the first we will try to get */
394 start += PAGE_SIZE;
395 while (start < end) {
396 struct page *page = NULL;
397 pte++;
398 if (pte_present(*pte))
399 page = vm_normal_page(vma, start, *pte);
400 /*
401 * Break if page could not be obtained or the page's node+zone does not
402 * match
403 */
9472f23c 404 if (!page || page_zone(page) != zone)
7a8010cd 405 break;
56afe477 406
e90309c9
KS
407 /*
408 * Do not use pagevec for PTE-mapped THP,
409 * munlock_vma_pages_range() will handle them.
410 */
411 if (PageTransCompound(page))
412 break;
413
7a8010cd
VB
414 get_page(page);
415 /*
416 * Increase the address that will be returned *before* the
417 * eventual break due to pvec becoming full by adding the page
418 */
419 start += PAGE_SIZE;
420 if (pagevec_add(pvec, page) == 0)
421 break;
422 }
423 pte_unmap_unlock(pte, ptl);
424 return start;
7225522b
VB
425}
426
b291f000 427/*
ba470de4
RR
428 * munlock_vma_pages_range() - munlock all pages in the vma range.'
429 * @vma - vma containing range to be munlock()ed.
430 * @start - start address in @vma of the range
431 * @end - end of range in @vma.
432 *
433 * For mremap(), munmap() and exit().
434 *
435 * Called with @vma VM_LOCKED.
436 *
437 * Returns with VM_LOCKED cleared. Callers must be prepared to
438 * deal with this.
439 *
440 * We don't save and restore VM_LOCKED here because pages are
441 * still on lru. In unmap path, pages might be scanned by reclaim
442 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
443 * free them. This will result in freeing mlocked pages.
b291f000 444 */
ba470de4 445void munlock_vma_pages_range(struct vm_area_struct *vma,
408e82b7 446 unsigned long start, unsigned long end)
b291f000 447{
de60f5f1 448 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
408e82b7 449
ff6a6da6 450 while (start < end) {
ab7a5af7 451 struct page *page;
6ebb4a1b 452 unsigned int page_mask = 0;
c424be1c 453 unsigned long page_increm;
7a8010cd
VB
454 struct pagevec pvec;
455 struct zone *zone;
ff6a6da6 456
86679820 457 pagevec_init(&pvec);
6e919717
HD
458 /*
459 * Although FOLL_DUMP is intended for get_dump_page(),
460 * it just so happens that its special treatment of the
461 * ZERO_PAGE (returning an error instead of doing get_page)
462 * suits munlock very well (and if somehow an abnormal page
463 * has sneaked into the range, we won't oops here: great).
464 */
6ebb4a1b 465 page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
7a8010cd 466
e90309c9
KS
467 if (page && !IS_ERR(page)) {
468 if (PageTransTail(page)) {
469 VM_BUG_ON_PAGE(PageMlocked(page), page);
470 put_page(page); /* follow_page_mask() */
471 } else if (PageTransHuge(page)) {
472 lock_page(page);
473 /*
474 * Any THP page found by follow_page_mask() may
475 * have gotten split before reaching
6ebb4a1b
KS
476 * munlock_vma_page(), so we need to compute
477 * the page_mask here instead.
e90309c9
KS
478 */
479 page_mask = munlock_vma_page(page);
480 unlock_page(page);
481 put_page(page); /* follow_page_mask() */
482 } else {
483 /*
484 * Non-huge pages are handled in batches via
485 * pagevec. The pin from follow_page_mask()
486 * prevents them from collapsing by THP.
487 */
488 pagevec_add(&pvec, page);
489 zone = page_zone(page);
7a8010cd 490
e90309c9
KS
491 /*
492 * Try to fill the rest of pagevec using fast
493 * pte walk. This will also update start to
494 * the next page to process. Then munlock the
495 * pagevec.
496 */
497 start = __munlock_pagevec_fill(&pvec, vma,
9472f23c 498 zone, start, end);
e90309c9
KS
499 __munlock_pagevec(&pvec, zone);
500 goto next;
501 }
408e82b7 502 }
c424be1c 503 page_increm = 1 + page_mask;
ff6a6da6 504 start += page_increm * PAGE_SIZE;
7a8010cd 505next:
408e82b7
HD
506 cond_resched();
507 }
b291f000
NP
508}
509
510/*
511 * mlock_fixup - handle mlock[all]/munlock[all] requests.
512 *
513 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
514 * munlock is a no-op. However, for some special vmas, we go ahead and
cea10a19 515 * populate the ptes.
b291f000
NP
516 *
517 * For vmas that pass the filters, merge/split as appropriate.
518 */
1da177e4 519static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
ca16d140 520 unsigned long start, unsigned long end, vm_flags_t newflags)
1da177e4 521{
b291f000 522 struct mm_struct *mm = vma->vm_mm;
1da177e4 523 pgoff_t pgoff;
b291f000 524 int nr_pages;
1da177e4 525 int ret = 0;
ca16d140 526 int lock = !!(newflags & VM_LOCKED);
b155b4fd 527 vm_flags_t old_flags = vma->vm_flags;
1da177e4 528
fed067da 529 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
e1fb4a08
DJ
530 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
531 vma_is_dax(vma))
b0f205c2
EM
532 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
533 goto out;
b291f000 534
1da177e4
LT
535 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
536 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
19a809af
AA
537 vma->vm_file, pgoff, vma_policy(vma),
538 vma->vm_userfaultfd_ctx);
1da177e4
LT
539 if (*prev) {
540 vma = *prev;
541 goto success;
542 }
543
1da177e4
LT
544 if (start != vma->vm_start) {
545 ret = split_vma(mm, vma, start, 1);
546 if (ret)
547 goto out;
548 }
549
550 if (end != vma->vm_end) {
551 ret = split_vma(mm, vma, end, 0);
552 if (ret)
553 goto out;
554 }
555
556success:
b291f000
NP
557 /*
558 * Keep track of amount of locked VM.
559 */
560 nr_pages = (end - start) >> PAGE_SHIFT;
561 if (!lock)
562 nr_pages = -nr_pages;
b155b4fd
SG
563 else if (old_flags & VM_LOCKED)
564 nr_pages = 0;
b291f000
NP
565 mm->locked_vm += nr_pages;
566
1da177e4
LT
567 /*
568 * vm_flags is protected by the mmap_sem held in write mode.
569 * It's okay if try_to_unmap_one unmaps a page just after we
fc05f566 570 * set VM_LOCKED, populate_vma_page_range will bring it back.
1da177e4 571 */
1da177e4 572
fed067da 573 if (lock)
408e82b7 574 vma->vm_flags = newflags;
fed067da 575 else
408e82b7 576 munlock_vma_pages_range(vma, start, end);
1da177e4 577
1da177e4 578out:
b291f000 579 *prev = vma;
1da177e4
LT
580 return ret;
581}
582
1aab92ec
EM
583static int apply_vma_lock_flags(unsigned long start, size_t len,
584 vm_flags_t flags)
1da177e4
LT
585{
586 unsigned long nstart, end, tmp;
587 struct vm_area_struct * vma, * prev;
588 int error;
589
8fd9e488 590 VM_BUG_ON(offset_in_page(start));
fed067da 591 VM_BUG_ON(len != PAGE_ALIGN(len));
1da177e4
LT
592 end = start + len;
593 if (end < start)
594 return -EINVAL;
595 if (end == start)
596 return 0;
097d5910 597 vma = find_vma(current->mm, start);
1da177e4
LT
598 if (!vma || vma->vm_start > start)
599 return -ENOMEM;
600
097d5910 601 prev = vma->vm_prev;
1da177e4
LT
602 if (start > vma->vm_start)
603 prev = vma;
604
605 for (nstart = start ; ; ) {
b0f205c2 606 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
1da177e4 607
1aab92ec 608 newflags |= flags;
1da177e4 609
1aab92ec 610 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
1da177e4
LT
611 tmp = vma->vm_end;
612 if (tmp > end)
613 tmp = end;
614 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
615 if (error)
616 break;
617 nstart = tmp;
618 if (nstart < prev->vm_end)
619 nstart = prev->vm_end;
620 if (nstart >= end)
621 break;
622
623 vma = prev->vm_next;
624 if (!vma || vma->vm_start != nstart) {
625 error = -ENOMEM;
626 break;
627 }
628 }
629 return error;
630}
631
0cf2f6f6
SG
632/*
633 * Go through vma areas and sum size of mlocked
634 * vma pages, as return value.
635 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
636 * is also counted.
637 * Return value: previously mlocked page counts
638 */
639static int count_mm_mlocked_page_nr(struct mm_struct *mm,
640 unsigned long start, size_t len)
641{
642 struct vm_area_struct *vma;
643 int count = 0;
644
645 if (mm == NULL)
646 mm = current->mm;
647
648 vma = find_vma(mm, start);
649 if (vma == NULL)
650 vma = mm->mmap;
651
652 for (; vma ; vma = vma->vm_next) {
653 if (start >= vma->vm_end)
654 continue;
655 if (start + len <= vma->vm_start)
656 break;
657 if (vma->vm_flags & VM_LOCKED) {
658 if (start > vma->vm_start)
659 count -= (start - vma->vm_start);
660 if (start + len < vma->vm_end) {
661 count += start + len - vma->vm_start;
662 break;
663 }
664 count += vma->vm_end - vma->vm_start;
665 }
666 }
667
668 return count >> PAGE_SHIFT;
669}
670
dc0ef0df 671static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
1da177e4
LT
672{
673 unsigned long locked;
674 unsigned long lock_limit;
675 int error = -ENOMEM;
676
677 if (!can_do_mlock())
678 return -EPERM;
679
8fd9e488 680 len = PAGE_ALIGN(len + (offset_in_page(start)));
1da177e4
LT
681 start &= PAGE_MASK;
682
59e99e5b 683 lock_limit = rlimit(RLIMIT_MEMLOCK);
1da177e4 684 lock_limit >>= PAGE_SHIFT;
1f1cd705
DB
685 locked = len >> PAGE_SHIFT;
686
dc0ef0df
MH
687 if (down_write_killable(&current->mm->mmap_sem))
688 return -EINTR;
1f1cd705
DB
689
690 locked += current->mm->locked_vm;
0cf2f6f6
SG
691 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
692 /*
693 * It is possible that the regions requested intersect with
694 * previously mlocked areas, that part area in "mm->locked_vm"
695 * should not be counted to new mlock increment count. So check
696 * and adjust locked count if necessary.
697 */
698 locked -= count_mm_mlocked_page_nr(current->mm,
699 start, len);
700 }
1da177e4
LT
701
702 /* check against resource limits */
703 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
1aab92ec 704 error = apply_vma_lock_flags(start, len, flags);
1f1cd705 705
1da177e4 706 up_write(&current->mm->mmap_sem);
c561259c
KS
707 if (error)
708 return error;
709
710 error = __mm_populate(start, len, 0);
711 if (error)
712 return __mlock_posix_error_return(error);
713 return 0;
1da177e4
LT
714}
715
1aab92ec
EM
716SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
717{
718 return do_mlock(start, len, VM_LOCKED);
719}
720
a8ca5d0e
EM
721SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
722{
b0f205c2
EM
723 vm_flags_t vm_flags = VM_LOCKED;
724
725 if (flags & ~MLOCK_ONFAULT)
a8ca5d0e
EM
726 return -EINVAL;
727
b0f205c2
EM
728 if (flags & MLOCK_ONFAULT)
729 vm_flags |= VM_LOCKONFAULT;
730
731 return do_mlock(start, len, vm_flags);
a8ca5d0e
EM
732}
733
6a6160a7 734SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
1da177e4
LT
735{
736 int ret;
737
8fd9e488 738 len = PAGE_ALIGN(len + (offset_in_page(start)));
1da177e4 739 start &= PAGE_MASK;
1f1cd705 740
dc0ef0df
MH
741 if (down_write_killable(&current->mm->mmap_sem))
742 return -EINTR;
1aab92ec 743 ret = apply_vma_lock_flags(start, len, 0);
1da177e4 744 up_write(&current->mm->mmap_sem);
1f1cd705 745
1da177e4
LT
746 return ret;
747}
748
b0f205c2
EM
749/*
750 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
751 * and translate into the appropriate modifications to mm->def_flags and/or the
752 * flags for all current VMAs.
753 *
754 * There are a couple of subtleties with this. If mlockall() is called multiple
755 * times with different flags, the values do not necessarily stack. If mlockall
756 * is called once including the MCL_FUTURE flag and then a second time without
757 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
758 */
1aab92ec 759static int apply_mlockall_flags(int flags)
1da177e4
LT
760{
761 struct vm_area_struct * vma, * prev = NULL;
b0f205c2 762 vm_flags_t to_add = 0;
1da177e4 763
b0f205c2
EM
764 current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
765 if (flags & MCL_FUTURE) {
09a9f1d2 766 current->mm->def_flags |= VM_LOCKED;
1aab92ec 767
b0f205c2
EM
768 if (flags & MCL_ONFAULT)
769 current->mm->def_flags |= VM_LOCKONFAULT;
770
771 if (!(flags & MCL_CURRENT))
772 goto out;
773 }
774
775 if (flags & MCL_CURRENT) {
776 to_add |= VM_LOCKED;
777 if (flags & MCL_ONFAULT)
778 to_add |= VM_LOCKONFAULT;
779 }
1da177e4
LT
780
781 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
ca16d140 782 vm_flags_t newflags;
1da177e4 783
b0f205c2
EM
784 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
785 newflags |= to_add;
1da177e4
LT
786
787 /* Ignore errors */
788 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
50d4fb78 789 cond_resched();
1da177e4
LT
790 }
791out:
792 return 0;
793}
794
3480b257 795SYSCALL_DEFINE1(mlockall, int, flags)
1da177e4
LT
796{
797 unsigned long lock_limit;
86d2adcc 798 int ret;
1da177e4 799
b0f205c2 800 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)))
86d2adcc 801 return -EINVAL;
1da177e4 802
1da177e4 803 if (!can_do_mlock())
86d2adcc 804 return -EPERM;
1da177e4 805
59e99e5b 806 lock_limit = rlimit(RLIMIT_MEMLOCK);
1da177e4
LT
807 lock_limit >>= PAGE_SHIFT;
808
dc0ef0df
MH
809 if (down_write_killable(&current->mm->mmap_sem))
810 return -EINTR;
1f1cd705 811
dc0ef0df 812 ret = -ENOMEM;
1da177e4
LT
813 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
814 capable(CAP_IPC_LOCK))
1aab92ec 815 ret = apply_mlockall_flags(flags);
1da177e4 816 up_write(&current->mm->mmap_sem);
bebeb3d6
ML
817 if (!ret && (flags & MCL_CURRENT))
818 mm_populate(0, TASK_SIZE);
86d2adcc 819
1da177e4
LT
820 return ret;
821}
822
3480b257 823SYSCALL_DEFINE0(munlockall)
1da177e4
LT
824{
825 int ret;
826
dc0ef0df
MH
827 if (down_write_killable(&current->mm->mmap_sem))
828 return -EINTR;
1aab92ec 829 ret = apply_mlockall_flags(0);
1da177e4
LT
830 up_write(&current->mm->mmap_sem);
831 return ret;
832}
833
834/*
835 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
836 * shm segments) get accounted against the user_struct instead.
837 */
838static DEFINE_SPINLOCK(shmlock_user_lock);
839
840int user_shm_lock(size_t size, struct user_struct *user)
841{
842 unsigned long lock_limit, locked;
843 int allowed = 0;
844
845 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
59e99e5b 846 lock_limit = rlimit(RLIMIT_MEMLOCK);
5ed44a40
HB
847 if (lock_limit == RLIM_INFINITY)
848 allowed = 1;
1da177e4
LT
849 lock_limit >>= PAGE_SHIFT;
850 spin_lock(&shmlock_user_lock);
5ed44a40
HB
851 if (!allowed &&
852 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
1da177e4
LT
853 goto out;
854 get_uid(user);
855 user->locked_shm += locked;
856 allowed = 1;
857out:
858 spin_unlock(&shmlock_user_lock);
859 return allowed;
860}
861
862void user_shm_unlock(size_t size, struct user_struct *user)
863{
864 spin_lock(&shmlock_user_lock);
865 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
866 spin_unlock(&shmlock_user_lock);
867 free_uid(user);
868}