]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/page_alloc.c
[PATCH] reduce MAX_NR_ZONES: make ZONE_DMA32 optional
[thirdparty/kernel/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
9f158333 24#include <linux/kernel.h>
1da177e4
LT
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
bdc8cb98 35#include <linux/memory_hotplug.h>
1da177e4
LT
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
4be38e35 38#include <linux/mempolicy.h>
6811378e 39#include <linux/stop_machine.h>
1da177e4
LT
40
41#include <asm/tlbflush.h>
ac924c60 42#include <asm/div64.h>
1da177e4
LT
43#include "internal.h"
44
45/*
46 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
47 * initializer cleaner
48 */
c3d8c141 49nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
7223a93a 50EXPORT_SYMBOL(node_online_map);
c3d8c141 51nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
7223a93a 52EXPORT_SYMBOL(node_possible_map);
6c231b7b 53unsigned long totalram_pages __read_mostly;
cb45b0e9 54unsigned long totalreserve_pages __read_mostly;
1da177e4 55long nr_swap_pages;
8ad4b1fb 56int percpu_pagelist_fraction;
1da177e4 57
d98c7a09 58static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 59
1da177e4
LT
60/*
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
67 *
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
1da177e4 70 */
2f1b6248
CL
71int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
72 256,
fb0e7942 73#ifdef CONFIG_ZONE_DMA32
2f1b6248 74 256,
fb0e7942 75#endif
2f1b6248
CL
76 32
77};
1da177e4
LT
78
79EXPORT_SYMBOL(totalram_pages);
1da177e4
LT
80
81/*
82 * Used by page_zone() to look up the address of the struct zone whose
83 * id is encoded in the upper bits of page->flags
84 */
c3d8c141 85struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
1da177e4
LT
86EXPORT_SYMBOL(zone_table);
87
2f1b6248
CL
88static char *zone_names[MAX_NR_ZONES] = {
89 "DMA",
fb0e7942 90#ifdef CONFIG_ZONE_DMA32
2f1b6248 91 "DMA32",
fb0e7942 92#endif
2f1b6248
CL
93 "Normal",
94 "HighMem"
95};
96
1da177e4
LT
97int min_free_kbytes = 1024;
98
86356ab1
YG
99unsigned long __meminitdata nr_kernel_pages;
100unsigned long __meminitdata nr_all_pages;
1da177e4 101
13e7444b 102#ifdef CONFIG_DEBUG_VM
c6a57e19 103static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 104{
bdc8cb98
DH
105 int ret = 0;
106 unsigned seq;
107 unsigned long pfn = page_to_pfn(page);
c6a57e19 108
bdc8cb98
DH
109 do {
110 seq = zone_span_seqbegin(zone);
111 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
112 ret = 1;
113 else if (pfn < zone->zone_start_pfn)
114 ret = 1;
115 } while (zone_span_seqretry(zone, seq));
116
117 return ret;
c6a57e19
DH
118}
119
120static int page_is_consistent(struct zone *zone, struct page *page)
121{
1da177e4
LT
122#ifdef CONFIG_HOLES_IN_ZONE
123 if (!pfn_valid(page_to_pfn(page)))
c6a57e19 124 return 0;
1da177e4
LT
125#endif
126 if (zone != page_zone(page))
c6a57e19
DH
127 return 0;
128
129 return 1;
130}
131/*
132 * Temporary debugging check for pages not lying within a given zone.
133 */
134static int bad_range(struct zone *zone, struct page *page)
135{
136 if (page_outside_zone_boundaries(zone, page))
1da177e4 137 return 1;
c6a57e19
DH
138 if (!page_is_consistent(zone, page))
139 return 1;
140
1da177e4
LT
141 return 0;
142}
13e7444b
NP
143#else
144static inline int bad_range(struct zone *zone, struct page *page)
145{
146 return 0;
147}
148#endif
149
224abf92 150static void bad_page(struct page *page)
1da177e4 151{
224abf92 152 printk(KERN_EMERG "Bad page state in process '%s'\n"
7365f3d1
HD
153 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
154 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
155 KERN_EMERG "Backtrace:\n",
224abf92
NP
156 current->comm, page, (int)(2*sizeof(unsigned long)),
157 (unsigned long)page->flags, page->mapping,
158 page_mapcount(page), page_count(page));
1da177e4 159 dump_stack();
334795ec
HD
160 page->flags &= ~(1 << PG_lru |
161 1 << PG_private |
1da177e4 162 1 << PG_locked |
1da177e4
LT
163 1 << PG_active |
164 1 << PG_dirty |
334795ec
HD
165 1 << PG_reclaim |
166 1 << PG_slab |
1da177e4 167 1 << PG_swapcache |
676165a8
NP
168 1 << PG_writeback |
169 1 << PG_buddy );
1da177e4
LT
170 set_page_count(page, 0);
171 reset_page_mapcount(page);
172 page->mapping = NULL;
9f158333 173 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
174}
175
1da177e4
LT
176/*
177 * Higher-order pages are called "compound pages". They are structured thusly:
178 *
179 * The first PAGE_SIZE page is called the "head page".
180 *
181 * The remaining PAGE_SIZE pages are called "tail pages".
182 *
183 * All pages have PG_compound set. All pages have their ->private pointing at
184 * the head page (even the head page has this).
185 *
41d78ba5
HD
186 * The first tail page's ->lru.next holds the address of the compound page's
187 * put_page() function. Its ->lru.prev holds the order of allocation.
188 * This usage means that zero-order pages may not be compound.
1da177e4 189 */
d98c7a09
HD
190
191static void free_compound_page(struct page *page)
192{
193 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
194}
195
1da177e4
LT
196static void prep_compound_page(struct page *page, unsigned long order)
197{
198 int i;
199 int nr_pages = 1 << order;
200
d98c7a09 201 page[1].lru.next = (void *)free_compound_page; /* set dtor */
41d78ba5 202 page[1].lru.prev = (void *)order;
1da177e4
LT
203 for (i = 0; i < nr_pages; i++) {
204 struct page *p = page + i;
205
5e9dace8 206 __SetPageCompound(p);
4c21e2f2 207 set_page_private(p, (unsigned long)page);
1da177e4
LT
208 }
209}
210
211static void destroy_compound_page(struct page *page, unsigned long order)
212{
213 int i;
214 int nr_pages = 1 << order;
215
41d78ba5 216 if (unlikely((unsigned long)page[1].lru.prev != order))
224abf92 217 bad_page(page);
1da177e4
LT
218
219 for (i = 0; i < nr_pages; i++) {
220 struct page *p = page + i;
221
224abf92
NP
222 if (unlikely(!PageCompound(p) |
223 (page_private(p) != (unsigned long)page)))
224 bad_page(page);
5e9dace8 225 __ClearPageCompound(p);
1da177e4
LT
226 }
227}
1da177e4 228
17cf4406
NP
229static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
230{
231 int i;
232
725d704e 233 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
6626c5d5
AM
234 /*
235 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
236 * and __GFP_HIGHMEM from hard or soft interrupt context.
237 */
725d704e 238 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
239 for (i = 0; i < (1 << order); i++)
240 clear_highpage(page + i);
241}
242
1da177e4
LT
243/*
244 * function for dealing with page's order in buddy system.
245 * zone->lock is already acquired when we use these.
246 * So, we don't need atomic page->flags operations here.
247 */
6aa3001b
AM
248static inline unsigned long page_order(struct page *page)
249{
4c21e2f2 250 return page_private(page);
1da177e4
LT
251}
252
6aa3001b
AM
253static inline void set_page_order(struct page *page, int order)
254{
4c21e2f2 255 set_page_private(page, order);
676165a8 256 __SetPageBuddy(page);
1da177e4
LT
257}
258
259static inline void rmv_page_order(struct page *page)
260{
676165a8 261 __ClearPageBuddy(page);
4c21e2f2 262 set_page_private(page, 0);
1da177e4
LT
263}
264
265/*
266 * Locate the struct page for both the matching buddy in our
267 * pair (buddy1) and the combined O(n+1) page they form (page).
268 *
269 * 1) Any buddy B1 will have an order O twin B2 which satisfies
270 * the following equation:
271 * B2 = B1 ^ (1 << O)
272 * For example, if the starting buddy (buddy2) is #8 its order
273 * 1 buddy is #10:
274 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
275 *
276 * 2) Any buddy B will have an order O+1 parent P which
277 * satisfies the following equation:
278 * P = B & ~(1 << O)
279 *
d6e05edc 280 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
281 */
282static inline struct page *
283__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
284{
285 unsigned long buddy_idx = page_idx ^ (1 << order);
286
287 return page + (buddy_idx - page_idx);
288}
289
290static inline unsigned long
291__find_combined_index(unsigned long page_idx, unsigned int order)
292{
293 return (page_idx & ~(1 << order));
294}
295
296/*
297 * This function checks whether a page is free && is the buddy
298 * we can do coalesce a page and its buddy if
13e7444b 299 * (a) the buddy is not in a hole &&
676165a8 300 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
301 * (c) a page and its buddy have the same order &&
302 * (d) a page and its buddy are in the same zone.
676165a8
NP
303 *
304 * For recording whether a page is in the buddy system, we use PG_buddy.
305 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 306 *
676165a8 307 * For recording page's order, we use page_private(page).
1da177e4 308 */
cb2b95e1
AW
309static inline int page_is_buddy(struct page *page, struct page *buddy,
310 int order)
1da177e4 311{
13e7444b 312#ifdef CONFIG_HOLES_IN_ZONE
cb2b95e1 313 if (!pfn_valid(page_to_pfn(buddy)))
13e7444b
NP
314 return 0;
315#endif
316
cb2b95e1
AW
317 if (page_zone_id(page) != page_zone_id(buddy))
318 return 0;
319
320 if (PageBuddy(buddy) && page_order(buddy) == order) {
321 BUG_ON(page_count(buddy) != 0);
6aa3001b 322 return 1;
676165a8 323 }
6aa3001b 324 return 0;
1da177e4
LT
325}
326
327/*
328 * Freeing function for a buddy system allocator.
329 *
330 * The concept of a buddy system is to maintain direct-mapped table
331 * (containing bit values) for memory blocks of various "orders".
332 * The bottom level table contains the map for the smallest allocatable
333 * units of memory (here, pages), and each level above it describes
334 * pairs of units from the levels below, hence, "buddies".
335 * At a high level, all that happens here is marking the table entry
336 * at the bottom level available, and propagating the changes upward
337 * as necessary, plus some accounting needed to play nicely with other
338 * parts of the VM system.
339 * At each level, we keep a list of pages, which are heads of continuous
676165a8 340 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 341 * order is recorded in page_private(page) field.
1da177e4
LT
342 * So when we are allocating or freeing one, we can derive the state of the
343 * other. That is, if we allocate a small block, and both were
344 * free, the remainder of the region must be split into blocks.
345 * If a block is freed, and its buddy is also free, then this
346 * triggers coalescing into a block of larger size.
347 *
348 * -- wli
349 */
350
48db57f8 351static inline void __free_one_page(struct page *page,
1da177e4
LT
352 struct zone *zone, unsigned int order)
353{
354 unsigned long page_idx;
355 int order_size = 1 << order;
356
224abf92 357 if (unlikely(PageCompound(page)))
1da177e4
LT
358 destroy_compound_page(page, order);
359
360 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
361
725d704e
NP
362 VM_BUG_ON(page_idx & (order_size - 1));
363 VM_BUG_ON(bad_range(zone, page));
1da177e4
LT
364
365 zone->free_pages += order_size;
366 while (order < MAX_ORDER-1) {
367 unsigned long combined_idx;
368 struct free_area *area;
369 struct page *buddy;
370
1da177e4 371 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 372 if (!page_is_buddy(page, buddy, order))
1da177e4 373 break; /* Move the buddy up one level. */
13e7444b 374
1da177e4
LT
375 list_del(&buddy->lru);
376 area = zone->free_area + order;
377 area->nr_free--;
378 rmv_page_order(buddy);
13e7444b 379 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
380 page = page + (combined_idx - page_idx);
381 page_idx = combined_idx;
382 order++;
383 }
384 set_page_order(page, order);
385 list_add(&page->lru, &zone->free_area[order].free_list);
386 zone->free_area[order].nr_free++;
387}
388
224abf92 389static inline int free_pages_check(struct page *page)
1da177e4 390{
92be2e33
NP
391 if (unlikely(page_mapcount(page) |
392 (page->mapping != NULL) |
393 (page_count(page) != 0) |
1da177e4
LT
394 (page->flags & (
395 1 << PG_lru |
396 1 << PG_private |
397 1 << PG_locked |
398 1 << PG_active |
399 1 << PG_reclaim |
400 1 << PG_slab |
401 1 << PG_swapcache |
b5810039 402 1 << PG_writeback |
676165a8
NP
403 1 << PG_reserved |
404 1 << PG_buddy ))))
224abf92 405 bad_page(page);
1da177e4 406 if (PageDirty(page))
242e5468 407 __ClearPageDirty(page);
689bcebf
HD
408 /*
409 * For now, we report if PG_reserved was found set, but do not
410 * clear it, and do not free the page. But we shall soon need
411 * to do more, for when the ZERO_PAGE count wraps negative.
412 */
413 return PageReserved(page);
1da177e4
LT
414}
415
416/*
417 * Frees a list of pages.
418 * Assumes all pages on list are in same zone, and of same order.
207f36ee 419 * count is the number of pages to free.
1da177e4
LT
420 *
421 * If the zone was previously in an "all pages pinned" state then look to
422 * see if this freeing clears that state.
423 *
424 * And clear the zone's pages_scanned counter, to hold off the "all pages are
425 * pinned" detection logic.
426 */
48db57f8
NP
427static void free_pages_bulk(struct zone *zone, int count,
428 struct list_head *list, int order)
1da177e4 429{
c54ad30c 430 spin_lock(&zone->lock);
1da177e4
LT
431 zone->all_unreclaimable = 0;
432 zone->pages_scanned = 0;
48db57f8
NP
433 while (count--) {
434 struct page *page;
435
725d704e 436 VM_BUG_ON(list_empty(list));
1da177e4 437 page = list_entry(list->prev, struct page, lru);
48db57f8 438 /* have to delete it as __free_one_page list manipulates */
1da177e4 439 list_del(&page->lru);
48db57f8 440 __free_one_page(page, zone, order);
1da177e4 441 }
c54ad30c 442 spin_unlock(&zone->lock);
1da177e4
LT
443}
444
48db57f8 445static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4
LT
446{
447 LIST_HEAD(list);
48db57f8
NP
448 list_add(&page->lru, &list);
449 free_pages_bulk(zone, 1, &list, order);
450}
451
452static void __free_pages_ok(struct page *page, unsigned int order)
453{
454 unsigned long flags;
1da177e4 455 int i;
689bcebf 456 int reserved = 0;
1da177e4
LT
457
458 arch_free_page(page, order);
de5097c2 459 if (!PageHighMem(page))
f9b8404c
IM
460 debug_check_no_locks_freed(page_address(page),
461 PAGE_SIZE<<order);
1da177e4 462
1da177e4 463 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 464 reserved += free_pages_check(page + i);
689bcebf
HD
465 if (reserved)
466 return;
467
48db57f8 468 kernel_map_pages(page, 1 << order, 0);
c54ad30c 469 local_irq_save(flags);
f8891e5e 470 __count_vm_events(PGFREE, 1 << order);
48db57f8 471 free_one_page(page_zone(page), page, order);
c54ad30c 472 local_irq_restore(flags);
1da177e4
LT
473}
474
a226f6c8
DH
475/*
476 * permit the bootmem allocator to evade page validation on high-order frees
477 */
478void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
479{
480 if (order == 0) {
481 __ClearPageReserved(page);
482 set_page_count(page, 0);
7835e98b 483 set_page_refcounted(page);
545b1ea9 484 __free_page(page);
a226f6c8 485 } else {
a226f6c8
DH
486 int loop;
487
545b1ea9 488 prefetchw(page);
a226f6c8
DH
489 for (loop = 0; loop < BITS_PER_LONG; loop++) {
490 struct page *p = &page[loop];
491
545b1ea9
NP
492 if (loop + 1 < BITS_PER_LONG)
493 prefetchw(p + 1);
a226f6c8
DH
494 __ClearPageReserved(p);
495 set_page_count(p, 0);
496 }
497
7835e98b 498 set_page_refcounted(page);
545b1ea9 499 __free_pages(page, order);
a226f6c8
DH
500 }
501}
502
1da177e4
LT
503
504/*
505 * The order of subdivision here is critical for the IO subsystem.
506 * Please do not alter this order without good reasons and regression
507 * testing. Specifically, as large blocks of memory are subdivided,
508 * the order in which smaller blocks are delivered depends on the order
509 * they're subdivided in this function. This is the primary factor
510 * influencing the order in which pages are delivered to the IO
511 * subsystem according to empirical testing, and this is also justified
512 * by considering the behavior of a buddy system containing a single
513 * large block of memory acted on by a series of small allocations.
514 * This behavior is a critical factor in sglist merging's success.
515 *
516 * -- wli
517 */
085cc7d5 518static inline void expand(struct zone *zone, struct page *page,
1da177e4
LT
519 int low, int high, struct free_area *area)
520{
521 unsigned long size = 1 << high;
522
523 while (high > low) {
524 area--;
525 high--;
526 size >>= 1;
725d704e 527 VM_BUG_ON(bad_range(zone, &page[size]));
1da177e4
LT
528 list_add(&page[size].lru, &area->free_list);
529 area->nr_free++;
530 set_page_order(&page[size], high);
531 }
1da177e4
LT
532}
533
1da177e4
LT
534/*
535 * This page is about to be returned from the page allocator
536 */
17cf4406 537static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 538{
92be2e33
NP
539 if (unlikely(page_mapcount(page) |
540 (page->mapping != NULL) |
541 (page_count(page) != 0) |
334795ec
HD
542 (page->flags & (
543 1 << PG_lru |
1da177e4
LT
544 1 << PG_private |
545 1 << PG_locked |
1da177e4
LT
546 1 << PG_active |
547 1 << PG_dirty |
548 1 << PG_reclaim |
334795ec 549 1 << PG_slab |
1da177e4 550 1 << PG_swapcache |
b5810039 551 1 << PG_writeback |
676165a8
NP
552 1 << PG_reserved |
553 1 << PG_buddy ))))
224abf92 554 bad_page(page);
1da177e4 555
689bcebf
HD
556 /*
557 * For now, we report if PG_reserved was found set, but do not
558 * clear it, and do not allocate the page: as a safety net.
559 */
560 if (PageReserved(page))
561 return 1;
562
1da177e4
LT
563 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
564 1 << PG_referenced | 1 << PG_arch_1 |
565 1 << PG_checked | 1 << PG_mappedtodisk);
4c21e2f2 566 set_page_private(page, 0);
7835e98b 567 set_page_refcounted(page);
1da177e4 568 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
569
570 if (gfp_flags & __GFP_ZERO)
571 prep_zero_page(page, order, gfp_flags);
572
573 if (order && (gfp_flags & __GFP_COMP))
574 prep_compound_page(page, order);
575
689bcebf 576 return 0;
1da177e4
LT
577}
578
579/*
580 * Do the hard work of removing an element from the buddy allocator.
581 * Call me with the zone->lock already held.
582 */
583static struct page *__rmqueue(struct zone *zone, unsigned int order)
584{
585 struct free_area * area;
586 unsigned int current_order;
587 struct page *page;
588
589 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
590 area = zone->free_area + current_order;
591 if (list_empty(&area->free_list))
592 continue;
593
594 page = list_entry(area->free_list.next, struct page, lru);
595 list_del(&page->lru);
596 rmv_page_order(page);
597 area->nr_free--;
598 zone->free_pages -= 1UL << order;
085cc7d5
NP
599 expand(zone, page, order, current_order, area);
600 return page;
1da177e4
LT
601 }
602
603 return NULL;
604}
605
606/*
607 * Obtain a specified number of elements from the buddy allocator, all under
608 * a single hold of the lock, for efficiency. Add them to the supplied list.
609 * Returns the number of new pages which were placed at *list.
610 */
611static int rmqueue_bulk(struct zone *zone, unsigned int order,
612 unsigned long count, struct list_head *list)
613{
1da177e4 614 int i;
1da177e4 615
c54ad30c 616 spin_lock(&zone->lock);
1da177e4 617 for (i = 0; i < count; ++i) {
085cc7d5
NP
618 struct page *page = __rmqueue(zone, order);
619 if (unlikely(page == NULL))
1da177e4 620 break;
1da177e4
LT
621 list_add_tail(&page->lru, list);
622 }
c54ad30c 623 spin_unlock(&zone->lock);
085cc7d5 624 return i;
1da177e4
LT
625}
626
4ae7c039 627#ifdef CONFIG_NUMA
8fce4d8e
CL
628/*
629 * Called from the slab reaper to drain pagesets on a particular node that
630 * belong to the currently executing processor.
879336c3
CL
631 * Note that this function must be called with the thread pinned to
632 * a single processor.
8fce4d8e
CL
633 */
634void drain_node_pages(int nodeid)
4ae7c039 635{
8fce4d8e 636 int i, z;
4ae7c039
CL
637 unsigned long flags;
638
8fce4d8e
CL
639 for (z = 0; z < MAX_NR_ZONES; z++) {
640 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
4ae7c039
CL
641 struct per_cpu_pageset *pset;
642
23316bc8 643 pset = zone_pcp(zone, smp_processor_id());
4ae7c039
CL
644 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
645 struct per_cpu_pages *pcp;
646
647 pcp = &pset->pcp[i];
879336c3
CL
648 if (pcp->count) {
649 local_irq_save(flags);
650 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
651 pcp->count = 0;
652 local_irq_restore(flags);
653 }
4ae7c039
CL
654 }
655 }
4ae7c039
CL
656}
657#endif
658
1da177e4
LT
659#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
660static void __drain_pages(unsigned int cpu)
661{
c54ad30c 662 unsigned long flags;
1da177e4
LT
663 struct zone *zone;
664 int i;
665
666 for_each_zone(zone) {
667 struct per_cpu_pageset *pset;
668
e7c8d5c9 669 pset = zone_pcp(zone, cpu);
1da177e4
LT
670 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
671 struct per_cpu_pages *pcp;
672
673 pcp = &pset->pcp[i];
c54ad30c 674 local_irq_save(flags);
48db57f8
NP
675 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
676 pcp->count = 0;
c54ad30c 677 local_irq_restore(flags);
1da177e4
LT
678 }
679 }
680}
681#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
682
683#ifdef CONFIG_PM
684
685void mark_free_pages(struct zone *zone)
686{
687 unsigned long zone_pfn, flags;
688 int order;
689 struct list_head *curr;
690
691 if (!zone->spanned_pages)
692 return;
693
694 spin_lock_irqsave(&zone->lock, flags);
695 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
696 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
697
698 for (order = MAX_ORDER - 1; order >= 0; --order)
699 list_for_each(curr, &zone->free_area[order].free_list) {
700 unsigned long start_pfn, i;
701
702 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
703
704 for (i=0; i < (1<<order); i++)
705 SetPageNosaveFree(pfn_to_page(start_pfn+i));
706 }
707 spin_unlock_irqrestore(&zone->lock, flags);
708}
709
710/*
711 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
712 */
713void drain_local_pages(void)
714{
715 unsigned long flags;
716
717 local_irq_save(flags);
718 __drain_pages(smp_processor_id());
719 local_irq_restore(flags);
720}
721#endif /* CONFIG_PM */
722
1da177e4
LT
723/*
724 * Free a 0-order page
725 */
1da177e4
LT
726static void fastcall free_hot_cold_page(struct page *page, int cold)
727{
728 struct zone *zone = page_zone(page);
729 struct per_cpu_pages *pcp;
730 unsigned long flags;
731
732 arch_free_page(page, 0);
733
1da177e4
LT
734 if (PageAnon(page))
735 page->mapping = NULL;
224abf92 736 if (free_pages_check(page))
689bcebf
HD
737 return;
738
689bcebf
HD
739 kernel_map_pages(page, 1, 0);
740
e7c8d5c9 741 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 742 local_irq_save(flags);
f8891e5e 743 __count_vm_event(PGFREE);
1da177e4
LT
744 list_add(&page->lru, &pcp->list);
745 pcp->count++;
48db57f8
NP
746 if (pcp->count >= pcp->high) {
747 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
748 pcp->count -= pcp->batch;
749 }
1da177e4
LT
750 local_irq_restore(flags);
751 put_cpu();
752}
753
754void fastcall free_hot_page(struct page *page)
755{
756 free_hot_cold_page(page, 0);
757}
758
759void fastcall free_cold_page(struct page *page)
760{
761 free_hot_cold_page(page, 1);
762}
763
8dfcc9ba
NP
764/*
765 * split_page takes a non-compound higher-order page, and splits it into
766 * n (1<<order) sub-pages: page[0..n]
767 * Each sub-page must be freed individually.
768 *
769 * Note: this is probably too low level an operation for use in drivers.
770 * Please consult with lkml before using this in your driver.
771 */
772void split_page(struct page *page, unsigned int order)
773{
774 int i;
775
725d704e
NP
776 VM_BUG_ON(PageCompound(page));
777 VM_BUG_ON(!page_count(page));
7835e98b
NP
778 for (i = 1; i < (1 << order); i++)
779 set_page_refcounted(page + i);
8dfcc9ba 780}
8dfcc9ba 781
1da177e4
LT
782/*
783 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
784 * we cheat by calling it from here, in the order > 0 path. Saves a branch
785 * or two.
786 */
a74609fa
NP
787static struct page *buffered_rmqueue(struct zonelist *zonelist,
788 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
789{
790 unsigned long flags;
689bcebf 791 struct page *page;
1da177e4 792 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 793 int cpu;
1da177e4 794
689bcebf 795again:
a74609fa 796 cpu = get_cpu();
48db57f8 797 if (likely(order == 0)) {
1da177e4
LT
798 struct per_cpu_pages *pcp;
799
a74609fa 800 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1da177e4 801 local_irq_save(flags);
a74609fa 802 if (!pcp->count) {
1da177e4
LT
803 pcp->count += rmqueue_bulk(zone, 0,
804 pcp->batch, &pcp->list);
a74609fa
NP
805 if (unlikely(!pcp->count))
806 goto failed;
1da177e4 807 }
a74609fa
NP
808 page = list_entry(pcp->list.next, struct page, lru);
809 list_del(&page->lru);
810 pcp->count--;
7fb1d9fc 811 } else {
1da177e4
LT
812 spin_lock_irqsave(&zone->lock, flags);
813 page = __rmqueue(zone, order);
a74609fa
NP
814 spin_unlock(&zone->lock);
815 if (!page)
816 goto failed;
1da177e4
LT
817 }
818
f8891e5e 819 __count_zone_vm_events(PGALLOC, zone, 1 << order);
ca889e6c 820 zone_statistics(zonelist, zone);
a74609fa
NP
821 local_irq_restore(flags);
822 put_cpu();
1da177e4 823
725d704e 824 VM_BUG_ON(bad_range(zone, page));
17cf4406 825 if (prep_new_page(page, order, gfp_flags))
a74609fa 826 goto again;
1da177e4 827 return page;
a74609fa
NP
828
829failed:
830 local_irq_restore(flags);
831 put_cpu();
832 return NULL;
1da177e4
LT
833}
834
7fb1d9fc 835#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
836#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
837#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
838#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
839#define ALLOC_HARDER 0x10 /* try to alloc harder */
840#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
841#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 842
1da177e4
LT
843/*
844 * Return 1 if free pages are above 'mark'. This takes into account the order
845 * of the allocation.
846 */
847int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 848 int classzone_idx, int alloc_flags)
1da177e4
LT
849{
850 /* free_pages my go negative - that's OK */
851 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
852 int o;
853
7fb1d9fc 854 if (alloc_flags & ALLOC_HIGH)
1da177e4 855 min -= min / 2;
7fb1d9fc 856 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
857 min -= min / 4;
858
859 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
860 return 0;
861 for (o = 0; o < order; o++) {
862 /* At the next order, this order's pages become unavailable */
863 free_pages -= z->free_area[o].nr_free << o;
864
865 /* Require fewer higher order pages to be free */
866 min >>= 1;
867
868 if (free_pages <= min)
869 return 0;
870 }
871 return 1;
872}
873
7fb1d9fc
RS
874/*
875 * get_page_from_freeliest goes through the zonelist trying to allocate
876 * a page.
877 */
878static struct page *
879get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
880 struct zonelist *zonelist, int alloc_flags)
753ee728 881{
7fb1d9fc
RS
882 struct zone **z = zonelist->zones;
883 struct page *page = NULL;
884 int classzone_idx = zone_idx(*z);
885
886 /*
887 * Go through the zonelist once, looking for a zone with enough free.
888 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
889 */
890 do {
891 if ((alloc_flags & ALLOC_CPUSET) &&
892 !cpuset_zone_allowed(*z, gfp_mask))
893 continue;
894
895 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
896 unsigned long mark;
897 if (alloc_flags & ALLOC_WMARK_MIN)
898 mark = (*z)->pages_min;
899 else if (alloc_flags & ALLOC_WMARK_LOW)
900 mark = (*z)->pages_low;
901 else
902 mark = (*z)->pages_high;
903 if (!zone_watermark_ok(*z, order, mark,
7fb1d9fc 904 classzone_idx, alloc_flags))
9eeff239
CL
905 if (!zone_reclaim_mode ||
906 !zone_reclaim(*z, gfp_mask, order))
907 continue;
7fb1d9fc
RS
908 }
909
a74609fa 910 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
7fb1d9fc 911 if (page) {
7fb1d9fc
RS
912 break;
913 }
914 } while (*(++z) != NULL);
915 return page;
753ee728
MH
916}
917
1da177e4
LT
918/*
919 * This is the 'heart' of the zoned buddy allocator.
920 */
921struct page * fastcall
dd0fc66f 922__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
923 struct zonelist *zonelist)
924{
260b2367 925 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 926 struct zone **z;
1da177e4
LT
927 struct page *page;
928 struct reclaim_state reclaim_state;
929 struct task_struct *p = current;
1da177e4 930 int do_retry;
7fb1d9fc 931 int alloc_flags;
1da177e4
LT
932 int did_some_progress;
933
934 might_sleep_if(wait);
935
6b1de916 936restart:
7fb1d9fc 937 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 938
7fb1d9fc 939 if (unlikely(*z == NULL)) {
1da177e4
LT
940 /* Should this ever happen?? */
941 return NULL;
942 }
6b1de916 943
7fb1d9fc 944 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 945 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
946 if (page)
947 goto got_pg;
1da177e4 948
6b1de916 949 do {
43b0bc00 950 wakeup_kswapd(*z, order);
6b1de916 951 } while (*(++z));
1da177e4 952
9bf2229f 953 /*
7fb1d9fc
RS
954 * OK, we're below the kswapd watermark and have kicked background
955 * reclaim. Now things get more complex, so set up alloc_flags according
956 * to how we want to proceed.
957 *
958 * The caller may dip into page reserves a bit more if the caller
959 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
960 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
961 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 962 */
3148890b 963 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
964 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
965 alloc_flags |= ALLOC_HARDER;
966 if (gfp_mask & __GFP_HIGH)
967 alloc_flags |= ALLOC_HIGH;
bdd804f4
PJ
968 if (wait)
969 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
970
971 /*
972 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 973 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
974 *
975 * This is the last chance, in general, before the goto nopage.
976 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 977 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 978 */
7fb1d9fc
RS
979 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
980 if (page)
981 goto got_pg;
1da177e4
LT
982
983 /* This allocation should allow future memory freeing. */
b84a35be
NP
984
985 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
986 && !in_interrupt()) {
987 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 988nofail_alloc:
b84a35be 989 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 990 page = get_page_from_freelist(gfp_mask, order,
47f3a867 991 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
992 if (page)
993 goto got_pg;
885036d3
KK
994 if (gfp_mask & __GFP_NOFAIL) {
995 blk_congestion_wait(WRITE, HZ/50);
996 goto nofail_alloc;
997 }
1da177e4
LT
998 }
999 goto nopage;
1000 }
1001
1002 /* Atomic allocations - we can't balance anything */
1003 if (!wait)
1004 goto nopage;
1005
1006rebalance:
1007 cond_resched();
1008
1009 /* We now go into synchronous reclaim */
3e0d98b9 1010 cpuset_memory_pressure_bump();
1da177e4
LT
1011 p->flags |= PF_MEMALLOC;
1012 reclaim_state.reclaimed_slab = 0;
1013 p->reclaim_state = &reclaim_state;
1014
7fb1d9fc 1015 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1da177e4
LT
1016
1017 p->reclaim_state = NULL;
1018 p->flags &= ~PF_MEMALLOC;
1019
1020 cond_resched();
1021
1022 if (likely(did_some_progress)) {
7fb1d9fc
RS
1023 page = get_page_from_freelist(gfp_mask, order,
1024 zonelist, alloc_flags);
1025 if (page)
1026 goto got_pg;
1da177e4
LT
1027 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1028 /*
1029 * Go through the zonelist yet one more time, keep
1030 * very high watermark here, this is only to catch
1031 * a parallel oom killing, we must fail if we're still
1032 * under heavy pressure.
1033 */
7fb1d9fc 1034 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1035 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
1036 if (page)
1037 goto got_pg;
1da177e4 1038
9b0f8b04 1039 out_of_memory(zonelist, gfp_mask, order);
1da177e4
LT
1040 goto restart;
1041 }
1042
1043 /*
1044 * Don't let big-order allocations loop unless the caller explicitly
1045 * requests that. Wait for some write requests to complete then retry.
1046 *
1047 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1048 * <= 3, but that may not be true in other implementations.
1049 */
1050 do_retry = 0;
1051 if (!(gfp_mask & __GFP_NORETRY)) {
1052 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1053 do_retry = 1;
1054 if (gfp_mask & __GFP_NOFAIL)
1055 do_retry = 1;
1056 }
1057 if (do_retry) {
1058 blk_congestion_wait(WRITE, HZ/50);
1059 goto rebalance;
1060 }
1061
1062nopage:
1063 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1064 printk(KERN_WARNING "%s: page allocation failure."
1065 " order:%d, mode:0x%x\n",
1066 p->comm, order, gfp_mask);
1067 dump_stack();
578c2fd6 1068 show_mem();
1da177e4 1069 }
1da177e4 1070got_pg:
1da177e4
LT
1071 return page;
1072}
1073
1074EXPORT_SYMBOL(__alloc_pages);
1075
1076/*
1077 * Common helper functions.
1078 */
dd0fc66f 1079fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1080{
1081 struct page * page;
1082 page = alloc_pages(gfp_mask, order);
1083 if (!page)
1084 return 0;
1085 return (unsigned long) page_address(page);
1086}
1087
1088EXPORT_SYMBOL(__get_free_pages);
1089
dd0fc66f 1090fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1091{
1092 struct page * page;
1093
1094 /*
1095 * get_zeroed_page() returns a 32-bit address, which cannot represent
1096 * a highmem page
1097 */
725d704e 1098 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1099
1100 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1101 if (page)
1102 return (unsigned long) page_address(page);
1103 return 0;
1104}
1105
1106EXPORT_SYMBOL(get_zeroed_page);
1107
1108void __pagevec_free(struct pagevec *pvec)
1109{
1110 int i = pagevec_count(pvec);
1111
1112 while (--i >= 0)
1113 free_hot_cold_page(pvec->pages[i], pvec->cold);
1114}
1115
1116fastcall void __free_pages(struct page *page, unsigned int order)
1117{
b5810039 1118 if (put_page_testzero(page)) {
1da177e4
LT
1119 if (order == 0)
1120 free_hot_page(page);
1121 else
1122 __free_pages_ok(page, order);
1123 }
1124}
1125
1126EXPORT_SYMBOL(__free_pages);
1127
1128fastcall void free_pages(unsigned long addr, unsigned int order)
1129{
1130 if (addr != 0) {
725d704e 1131 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1132 __free_pages(virt_to_page((void *)addr), order);
1133 }
1134}
1135
1136EXPORT_SYMBOL(free_pages);
1137
1138/*
1139 * Total amount of free (allocatable) RAM:
1140 */
1141unsigned int nr_free_pages(void)
1142{
1143 unsigned int sum = 0;
1144 struct zone *zone;
1145
1146 for_each_zone(zone)
1147 sum += zone->free_pages;
1148
1149 return sum;
1150}
1151
1152EXPORT_SYMBOL(nr_free_pages);
1153
1154#ifdef CONFIG_NUMA
1155unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1156{
1157 unsigned int i, sum = 0;
1158
1159 for (i = 0; i < MAX_NR_ZONES; i++)
1160 sum += pgdat->node_zones[i].free_pages;
1161
1162 return sum;
1163}
1164#endif
1165
1166static unsigned int nr_free_zone_pages(int offset)
1167{
e310fd43
MB
1168 /* Just pick one node, since fallback list is circular */
1169 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1170 unsigned int sum = 0;
1171
e310fd43
MB
1172 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1173 struct zone **zonep = zonelist->zones;
1174 struct zone *zone;
1da177e4 1175
e310fd43
MB
1176 for (zone = *zonep++; zone; zone = *zonep++) {
1177 unsigned long size = zone->present_pages;
1178 unsigned long high = zone->pages_high;
1179 if (size > high)
1180 sum += size - high;
1da177e4
LT
1181 }
1182
1183 return sum;
1184}
1185
1186/*
1187 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1188 */
1189unsigned int nr_free_buffer_pages(void)
1190{
af4ca457 1191 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4
LT
1192}
1193
1194/*
1195 * Amount of free RAM allocatable within all zones
1196 */
1197unsigned int nr_free_pagecache_pages(void)
1198{
af4ca457 1199 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1da177e4 1200}
1da177e4
LT
1201#ifdef CONFIG_NUMA
1202static void show_node(struct zone *zone)
1203{
1204 printk("Node %d ", zone->zone_pgdat->node_id);
1205}
1206#else
1207#define show_node(zone) do { } while (0)
1208#endif
1209
1da177e4
LT
1210void si_meminfo(struct sysinfo *val)
1211{
1212 val->totalram = totalram_pages;
1213 val->sharedram = 0;
1214 val->freeram = nr_free_pages();
1215 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1216 val->totalhigh = totalhigh_pages;
1217 val->freehigh = nr_free_highpages();
1da177e4
LT
1218 val->mem_unit = PAGE_SIZE;
1219}
1220
1221EXPORT_SYMBOL(si_meminfo);
1222
1223#ifdef CONFIG_NUMA
1224void si_meminfo_node(struct sysinfo *val, int nid)
1225{
1226 pg_data_t *pgdat = NODE_DATA(nid);
1227
1228 val->totalram = pgdat->node_present_pages;
1229 val->freeram = nr_free_pages_pgdat(pgdat);
98d2b0eb 1230#ifdef CONFIG_HIGHMEM
1da177e4
LT
1231 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1232 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
98d2b0eb
CL
1233#else
1234 val->totalhigh = 0;
1235 val->freehigh = 0;
1236#endif
1da177e4
LT
1237 val->mem_unit = PAGE_SIZE;
1238}
1239#endif
1240
1241#define K(x) ((x) << (PAGE_SHIFT-10))
1242
1243/*
1244 * Show free area list (used inside shift_scroll-lock stuff)
1245 * We also calculate the percentage fragmentation. We do this by counting the
1246 * memory on each free list with the exception of the first item on the list.
1247 */
1248void show_free_areas(void)
1249{
1da177e4
LT
1250 int cpu, temperature;
1251 unsigned long active;
1252 unsigned long inactive;
1253 unsigned long free;
1254 struct zone *zone;
1255
1256 for_each_zone(zone) {
1257 show_node(zone);
1258 printk("%s per-cpu:", zone->name);
1259
f3fe6512 1260 if (!populated_zone(zone)) {
1da177e4
LT
1261 printk(" empty\n");
1262 continue;
1263 } else
1264 printk("\n");
1265
6b482c67 1266 for_each_online_cpu(cpu) {
1da177e4
LT
1267 struct per_cpu_pageset *pageset;
1268
e7c8d5c9 1269 pageset = zone_pcp(zone, cpu);
1da177e4
LT
1270
1271 for (temperature = 0; temperature < 2; temperature++)
2d92c5c9 1272 printk("cpu %d %s: high %d, batch %d used:%d\n",
1da177e4
LT
1273 cpu,
1274 temperature ? "cold" : "hot",
1da177e4 1275 pageset->pcp[temperature].high,
4ae7c039
CL
1276 pageset->pcp[temperature].batch,
1277 pageset->pcp[temperature].count);
1da177e4
LT
1278 }
1279 }
1280
1da177e4
LT
1281 get_zone_counts(&active, &inactive, &free);
1282
1da177e4
LT
1283 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1284 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1285 active,
1286 inactive,
b1e7a8fd 1287 global_page_state(NR_FILE_DIRTY),
ce866b34 1288 global_page_state(NR_WRITEBACK),
fd39fc85 1289 global_page_state(NR_UNSTABLE_NFS),
1da177e4 1290 nr_free_pages(),
9a865ffa 1291 global_page_state(NR_SLAB),
65ba55f5 1292 global_page_state(NR_FILE_MAPPED),
df849a15 1293 global_page_state(NR_PAGETABLE));
1da177e4
LT
1294
1295 for_each_zone(zone) {
1296 int i;
1297
1298 show_node(zone);
1299 printk("%s"
1300 " free:%lukB"
1301 " min:%lukB"
1302 " low:%lukB"
1303 " high:%lukB"
1304 " active:%lukB"
1305 " inactive:%lukB"
1306 " present:%lukB"
1307 " pages_scanned:%lu"
1308 " all_unreclaimable? %s"
1309 "\n",
1310 zone->name,
1311 K(zone->free_pages),
1312 K(zone->pages_min),
1313 K(zone->pages_low),
1314 K(zone->pages_high),
1315 K(zone->nr_active),
1316 K(zone->nr_inactive),
1317 K(zone->present_pages),
1318 zone->pages_scanned,
1319 (zone->all_unreclaimable ? "yes" : "no")
1320 );
1321 printk("lowmem_reserve[]:");
1322 for (i = 0; i < MAX_NR_ZONES; i++)
1323 printk(" %lu", zone->lowmem_reserve[i]);
1324 printk("\n");
1325 }
1326
1327 for_each_zone(zone) {
8f9de51a 1328 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
1329
1330 show_node(zone);
1331 printk("%s: ", zone->name);
f3fe6512 1332 if (!populated_zone(zone)) {
1da177e4
LT
1333 printk("empty\n");
1334 continue;
1335 }
1336
1337 spin_lock_irqsave(&zone->lock, flags);
1338 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
1339 nr[order] = zone->free_area[order].nr_free;
1340 total += nr[order] << order;
1da177e4
LT
1341 }
1342 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
1343 for (order = 0; order < MAX_ORDER; order++)
1344 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
1345 printk("= %lukB\n", K(total));
1346 }
1347
1348 show_swap_cache_info();
1349}
1350
1351/*
1352 * Builds allocation fallback zone lists.
1a93205b
CL
1353 *
1354 * Add all populated zones of a node to the zonelist.
1da177e4 1355 */
86356ab1 1356static int __meminit build_zonelists_node(pg_data_t *pgdat,
070f8032 1357 struct zonelist *zonelist, int nr_zones, int zone_type)
1da177e4 1358{
1a93205b
CL
1359 struct zone *zone;
1360
98d2b0eb 1361 BUG_ON(zone_type >= MAX_NR_ZONES);
02a68a5e
CL
1362
1363 do {
070f8032 1364 zone = pgdat->node_zones + zone_type;
1a93205b 1365 if (populated_zone(zone)) {
070f8032
CL
1366 zonelist->zones[nr_zones++] = zone;
1367 check_highest_zone(zone_type);
1da177e4 1368 }
070f8032 1369 zone_type--;
02a68a5e 1370
070f8032
CL
1371 } while (zone_type >= 0);
1372 return nr_zones;
1da177e4
LT
1373}
1374
260b2367
AV
1375static inline int highest_zone(int zone_bits)
1376{
1377 int res = ZONE_NORMAL;
1378 if (zone_bits & (__force int)__GFP_HIGHMEM)
1379 res = ZONE_HIGHMEM;
fb0e7942 1380#ifdef CONFIG_ZONE_DMA32
a2f1b424
AK
1381 if (zone_bits & (__force int)__GFP_DMA32)
1382 res = ZONE_DMA32;
fb0e7942 1383#endif
260b2367
AV
1384 if (zone_bits & (__force int)__GFP_DMA)
1385 res = ZONE_DMA;
1386 return res;
1387}
1388
1da177e4
LT
1389#ifdef CONFIG_NUMA
1390#define MAX_NODE_LOAD (num_online_nodes())
86356ab1 1391static int __meminitdata node_load[MAX_NUMNODES];
1da177e4 1392/**
4dc3b16b 1393 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1394 * @node: node whose fallback list we're appending
1395 * @used_node_mask: nodemask_t of already used nodes
1396 *
1397 * We use a number of factors to determine which is the next node that should
1398 * appear on a given node's fallback list. The node should not have appeared
1399 * already in @node's fallback list, and it should be the next closest node
1400 * according to the distance array (which contains arbitrary distance values
1401 * from each node to each node in the system), and should also prefer nodes
1402 * with no CPUs, since presumably they'll have very little allocation pressure
1403 * on them otherwise.
1404 * It returns -1 if no node is found.
1405 */
86356ab1 1406static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 1407{
4cf808eb 1408 int n, val;
1da177e4
LT
1409 int min_val = INT_MAX;
1410 int best_node = -1;
1411
4cf808eb
LT
1412 /* Use the local node if we haven't already */
1413 if (!node_isset(node, *used_node_mask)) {
1414 node_set(node, *used_node_mask);
1415 return node;
1416 }
1da177e4 1417
4cf808eb
LT
1418 for_each_online_node(n) {
1419 cpumask_t tmp;
1da177e4
LT
1420
1421 /* Don't want a node to appear more than once */
1422 if (node_isset(n, *used_node_mask))
1423 continue;
1424
1da177e4
LT
1425 /* Use the distance array to find the distance */
1426 val = node_distance(node, n);
1427
4cf808eb
LT
1428 /* Penalize nodes under us ("prefer the next node") */
1429 val += (n < node);
1430
1da177e4
LT
1431 /* Give preference to headless and unused nodes */
1432 tmp = node_to_cpumask(n);
1433 if (!cpus_empty(tmp))
1434 val += PENALTY_FOR_NODE_WITH_CPUS;
1435
1436 /* Slight preference for less loaded node */
1437 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1438 val += node_load[n];
1439
1440 if (val < min_val) {
1441 min_val = val;
1442 best_node = n;
1443 }
1444 }
1445
1446 if (best_node >= 0)
1447 node_set(best_node, *used_node_mask);
1448
1449 return best_node;
1450}
1451
86356ab1 1452static void __meminit build_zonelists(pg_data_t *pgdat)
1da177e4
LT
1453{
1454 int i, j, k, node, local_node;
1455 int prev_node, load;
1456 struct zonelist *zonelist;
1457 nodemask_t used_mask;
1458
1459 /* initialize zonelists */
1460 for (i = 0; i < GFP_ZONETYPES; i++) {
1461 zonelist = pgdat->node_zonelists + i;
1462 zonelist->zones[0] = NULL;
1463 }
1464
1465 /* NUMA-aware ordering of nodes */
1466 local_node = pgdat->node_id;
1467 load = num_online_nodes();
1468 prev_node = local_node;
1469 nodes_clear(used_mask);
1470 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
1471 int distance = node_distance(local_node, node);
1472
1473 /*
1474 * If another node is sufficiently far away then it is better
1475 * to reclaim pages in a zone before going off node.
1476 */
1477 if (distance > RECLAIM_DISTANCE)
1478 zone_reclaim_mode = 1;
1479
1da177e4
LT
1480 /*
1481 * We don't want to pressure a particular node.
1482 * So adding penalty to the first node in same
1483 * distance group to make it round-robin.
1484 */
9eeff239
CL
1485
1486 if (distance != node_distance(local_node, prev_node))
1da177e4
LT
1487 node_load[node] += load;
1488 prev_node = node;
1489 load--;
1490 for (i = 0; i < GFP_ZONETYPES; i++) {
1491 zonelist = pgdat->node_zonelists + i;
1492 for (j = 0; zonelist->zones[j] != NULL; j++);
1493
260b2367 1494 k = highest_zone(i);
1da177e4
LT
1495
1496 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1497 zonelist->zones[j] = NULL;
1498 }
1499 }
1500}
1501
1502#else /* CONFIG_NUMA */
1503
86356ab1 1504static void __meminit build_zonelists(pg_data_t *pgdat)
1da177e4 1505{
2f1b6248
CL
1506 int i, node, local_node;
1507 enum zone_type k;
1508 enum zone_type j;
1da177e4
LT
1509
1510 local_node = pgdat->node_id;
1511 for (i = 0; i < GFP_ZONETYPES; i++) {
1512 struct zonelist *zonelist;
1513
1514 zonelist = pgdat->node_zonelists + i;
1515
1516 j = 0;
260b2367 1517 k = highest_zone(i);
1da177e4
LT
1518 j = build_zonelists_node(pgdat, zonelist, j, k);
1519 /*
1520 * Now we build the zonelist so that it contains the zones
1521 * of all the other nodes.
1522 * We don't want to pressure a particular node, so when
1523 * building the zones for node N, we make sure that the
1524 * zones coming right after the local ones are those from
1525 * node N+1 (modulo N)
1526 */
1527 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1528 if (!node_online(node))
1529 continue;
1530 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1531 }
1532 for (node = 0; node < local_node; node++) {
1533 if (!node_online(node))
1534 continue;
1535 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1536 }
1537
1538 zonelist->zones[j] = NULL;
1539 }
1540}
1541
1542#endif /* CONFIG_NUMA */
1543
6811378e
YG
1544/* return values int ....just for stop_machine_run() */
1545static int __meminit __build_all_zonelists(void *dummy)
1da177e4 1546{
6811378e
YG
1547 int nid;
1548 for_each_online_node(nid)
1549 build_zonelists(NODE_DATA(nid));
1550 return 0;
1551}
1552
1553void __meminit build_all_zonelists(void)
1554{
1555 if (system_state == SYSTEM_BOOTING) {
1556 __build_all_zonelists(0);
1557 cpuset_init_current_mems_allowed();
1558 } else {
1559 /* we have to stop all cpus to guaranntee there is no user
1560 of zonelist */
1561 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1562 /* cpuset refresh routine should be here */
1563 }
bd1e22b8
AM
1564 vm_total_pages = nr_free_pagecache_pages();
1565 printk("Built %i zonelists. Total pages: %ld\n",
1566 num_online_nodes(), vm_total_pages);
1da177e4
LT
1567}
1568
1569/*
1570 * Helper functions to size the waitqueue hash table.
1571 * Essentially these want to choose hash table sizes sufficiently
1572 * large so that collisions trying to wait on pages are rare.
1573 * But in fact, the number of active page waitqueues on typical
1574 * systems is ridiculously low, less than 200. So this is even
1575 * conservative, even though it seems large.
1576 *
1577 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1578 * waitqueues, i.e. the size of the waitq table given the number of pages.
1579 */
1580#define PAGES_PER_WAITQUEUE 256
1581
cca448fe 1582#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 1583static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
1584{
1585 unsigned long size = 1;
1586
1587 pages /= PAGES_PER_WAITQUEUE;
1588
1589 while (size < pages)
1590 size <<= 1;
1591
1592 /*
1593 * Once we have dozens or even hundreds of threads sleeping
1594 * on IO we've got bigger problems than wait queue collision.
1595 * Limit the size of the wait table to a reasonable size.
1596 */
1597 size = min(size, 4096UL);
1598
1599 return max(size, 4UL);
1600}
cca448fe
YG
1601#else
1602/*
1603 * A zone's size might be changed by hot-add, so it is not possible to determine
1604 * a suitable size for its wait_table. So we use the maximum size now.
1605 *
1606 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1607 *
1608 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1609 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1610 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1611 *
1612 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1613 * or more by the traditional way. (See above). It equals:
1614 *
1615 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1616 * ia64(16K page size) : = ( 8G + 4M)byte.
1617 * powerpc (64K page size) : = (32G +16M)byte.
1618 */
1619static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1620{
1621 return 4096UL;
1622}
1623#endif
1da177e4
LT
1624
1625/*
1626 * This is an integer logarithm so that shifts can be used later
1627 * to extract the more random high bits from the multiplicative
1628 * hash function before the remainder is taken.
1629 */
1630static inline unsigned long wait_table_bits(unsigned long size)
1631{
1632 return ffz(~size);
1633}
1634
1635#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1636
1637static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1638 unsigned long *zones_size, unsigned long *zholes_size)
1639{
1640 unsigned long realtotalpages, totalpages = 0;
1641 int i;
1642
1643 for (i = 0; i < MAX_NR_ZONES; i++)
1644 totalpages += zones_size[i];
1645 pgdat->node_spanned_pages = totalpages;
1646
1647 realtotalpages = totalpages;
1648 if (zholes_size)
1649 for (i = 0; i < MAX_NR_ZONES; i++)
1650 realtotalpages -= zholes_size[i];
1651 pgdat->node_present_pages = realtotalpages;
1652 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1653}
1654
1655
1656/*
1657 * Initially all pages are reserved - free ones are freed
1658 * up by free_all_bootmem() once the early boot process is
1659 * done. Non-atomic initialization, single-pass.
1660 */
c09b4240 1661void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1da177e4
LT
1662 unsigned long start_pfn)
1663{
1da177e4 1664 struct page *page;
29751f69
AW
1665 unsigned long end_pfn = start_pfn + size;
1666 unsigned long pfn;
1da177e4 1667
cbe8dd4a 1668 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
d41dee36
AW
1669 if (!early_pfn_valid(pfn))
1670 continue;
1671 page = pfn_to_page(pfn);
1672 set_page_links(page, zone, nid, pfn);
7835e98b 1673 init_page_count(page);
1da177e4
LT
1674 reset_page_mapcount(page);
1675 SetPageReserved(page);
1676 INIT_LIST_HEAD(&page->lru);
1677#ifdef WANT_PAGE_VIRTUAL
1678 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1679 if (!is_highmem_idx(zone))
3212c6be 1680 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 1681#endif
1da177e4
LT
1682 }
1683}
1684
1685void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1686 unsigned long size)
1687{
1688 int order;
1689 for (order = 0; order < MAX_ORDER ; order++) {
1690 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1691 zone->free_area[order].nr_free = 0;
1692 }
1693}
1694
d41dee36 1695#define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
2f1b6248
CL
1696void zonetable_add(struct zone *zone, int nid, enum zone_type zid,
1697 unsigned long pfn, unsigned long size)
d41dee36
AW
1698{
1699 unsigned long snum = pfn_to_section_nr(pfn);
1700 unsigned long end = pfn_to_section_nr(pfn + size);
1701
1702 if (FLAGS_HAS_NODE)
1703 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1704 else
1705 for (; snum <= end; snum++)
1706 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1707}
1708
1da177e4
LT
1709#ifndef __HAVE_ARCH_MEMMAP_INIT
1710#define memmap_init(size, nid, zone, start_pfn) \
1711 memmap_init_zone((size), (nid), (zone), (start_pfn))
1712#endif
1713
6292d9aa 1714static int __cpuinit zone_batchsize(struct zone *zone)
e7c8d5c9
CL
1715{
1716 int batch;
1717
1718 /*
1719 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 1720 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
1721 *
1722 * OK, so we don't know how big the cache is. So guess.
1723 */
1724 batch = zone->present_pages / 1024;
ba56e91c
SR
1725 if (batch * PAGE_SIZE > 512 * 1024)
1726 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
1727 batch /= 4; /* We effectively *= 4 below */
1728 if (batch < 1)
1729 batch = 1;
1730
1731 /*
0ceaacc9
NP
1732 * Clamp the batch to a 2^n - 1 value. Having a power
1733 * of 2 value was found to be more likely to have
1734 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 1735 *
0ceaacc9
NP
1736 * For example if 2 tasks are alternately allocating
1737 * batches of pages, one task can end up with a lot
1738 * of pages of one half of the possible page colors
1739 * and the other with pages of the other colors.
e7c8d5c9 1740 */
0ceaacc9 1741 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 1742
e7c8d5c9
CL
1743 return batch;
1744}
1745
2caaad41
CL
1746inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1747{
1748 struct per_cpu_pages *pcp;
1749
1c6fe946
MD
1750 memset(p, 0, sizeof(*p));
1751
2caaad41
CL
1752 pcp = &p->pcp[0]; /* hot */
1753 pcp->count = 0;
2caaad41
CL
1754 pcp->high = 6 * batch;
1755 pcp->batch = max(1UL, 1 * batch);
1756 INIT_LIST_HEAD(&pcp->list);
1757
1758 pcp = &p->pcp[1]; /* cold*/
1759 pcp->count = 0;
2caaad41 1760 pcp->high = 2 * batch;
e46a5e28 1761 pcp->batch = max(1UL, batch/2);
2caaad41
CL
1762 INIT_LIST_HEAD(&pcp->list);
1763}
1764
8ad4b1fb
RS
1765/*
1766 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1767 * to the value high for the pageset p.
1768 */
1769
1770static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1771 unsigned long high)
1772{
1773 struct per_cpu_pages *pcp;
1774
1775 pcp = &p->pcp[0]; /* hot list */
1776 pcp->high = high;
1777 pcp->batch = max(1UL, high/4);
1778 if ((high/4) > (PAGE_SHIFT * 8))
1779 pcp->batch = PAGE_SHIFT * 8;
1780}
1781
1782
e7c8d5c9
CL
1783#ifdef CONFIG_NUMA
1784/*
2caaad41
CL
1785 * Boot pageset table. One per cpu which is going to be used for all
1786 * zones and all nodes. The parameters will be set in such a way
1787 * that an item put on a list will immediately be handed over to
1788 * the buddy list. This is safe since pageset manipulation is done
1789 * with interrupts disabled.
1790 *
1791 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
1792 *
1793 * The boot_pagesets must be kept even after bootup is complete for
1794 * unused processors and/or zones. They do play a role for bootstrapping
1795 * hotplugged processors.
1796 *
1797 * zoneinfo_show() and maybe other functions do
1798 * not check if the processor is online before following the pageset pointer.
1799 * Other parts of the kernel may not check if the zone is available.
2caaad41 1800 */
88a2a4ac 1801static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
1802
1803/*
1804 * Dynamically allocate memory for the
e7c8d5c9
CL
1805 * per cpu pageset array in struct zone.
1806 */
6292d9aa 1807static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
1808{
1809 struct zone *zone, *dzone;
e7c8d5c9
CL
1810
1811 for_each_zone(zone) {
e7c8d5c9 1812
23316bc8 1813 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
e7c8d5c9 1814 GFP_KERNEL, cpu_to_node(cpu));
23316bc8 1815 if (!zone_pcp(zone, cpu))
e7c8d5c9 1816 goto bad;
e7c8d5c9 1817
23316bc8 1818 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
1819
1820 if (percpu_pagelist_fraction)
1821 setup_pagelist_highmark(zone_pcp(zone, cpu),
1822 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
1823 }
1824
1825 return 0;
1826bad:
1827 for_each_zone(dzone) {
1828 if (dzone == zone)
1829 break;
23316bc8
NP
1830 kfree(zone_pcp(dzone, cpu));
1831 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
1832 }
1833 return -ENOMEM;
1834}
1835
1836static inline void free_zone_pagesets(int cpu)
1837{
e7c8d5c9
CL
1838 struct zone *zone;
1839
1840 for_each_zone(zone) {
1841 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1842
f3ef9ead
DR
1843 /* Free per_cpu_pageset if it is slab allocated */
1844 if (pset != &boot_pageset[cpu])
1845 kfree(pset);
e7c8d5c9 1846 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 1847 }
e7c8d5c9
CL
1848}
1849
9c7b216d 1850static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
1851 unsigned long action,
1852 void *hcpu)
1853{
1854 int cpu = (long)hcpu;
1855 int ret = NOTIFY_OK;
1856
1857 switch (action) {
1858 case CPU_UP_PREPARE:
1859 if (process_zones(cpu))
1860 ret = NOTIFY_BAD;
1861 break;
b0d41693 1862 case CPU_UP_CANCELED:
e7c8d5c9
CL
1863 case CPU_DEAD:
1864 free_zone_pagesets(cpu);
1865 break;
e7c8d5c9
CL
1866 default:
1867 break;
1868 }
1869 return ret;
1870}
1871
74b85f37 1872static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
1873 { &pageset_cpuup_callback, NULL, 0 };
1874
78d9955b 1875void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
1876{
1877 int err;
1878
1879 /* Initialize per_cpu_pageset for cpu 0.
1880 * A cpuup callback will do this for every cpu
1881 * as it comes online
1882 */
1883 err = process_zones(smp_processor_id());
1884 BUG_ON(err);
1885 register_cpu_notifier(&pageset_notifier);
1886}
1887
1888#endif
1889
c09b4240 1890static __meminit
cca448fe 1891int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
1892{
1893 int i;
1894 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 1895 size_t alloc_size;
ed8ece2e
DH
1896
1897 /*
1898 * The per-page waitqueue mechanism uses hashed waitqueues
1899 * per zone.
1900 */
02b694de
YG
1901 zone->wait_table_hash_nr_entries =
1902 wait_table_hash_nr_entries(zone_size_pages);
1903 zone->wait_table_bits =
1904 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
1905 alloc_size = zone->wait_table_hash_nr_entries
1906 * sizeof(wait_queue_head_t);
1907
1908 if (system_state == SYSTEM_BOOTING) {
1909 zone->wait_table = (wait_queue_head_t *)
1910 alloc_bootmem_node(pgdat, alloc_size);
1911 } else {
1912 /*
1913 * This case means that a zone whose size was 0 gets new memory
1914 * via memory hot-add.
1915 * But it may be the case that a new node was hot-added. In
1916 * this case vmalloc() will not be able to use this new node's
1917 * memory - this wait_table must be initialized to use this new
1918 * node itself as well.
1919 * To use this new node's memory, further consideration will be
1920 * necessary.
1921 */
1922 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
1923 }
1924 if (!zone->wait_table)
1925 return -ENOMEM;
ed8ece2e 1926
02b694de 1927 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 1928 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
1929
1930 return 0;
ed8ece2e
DH
1931}
1932
c09b4240 1933static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
1934{
1935 int cpu;
1936 unsigned long batch = zone_batchsize(zone);
1937
1938 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1939#ifdef CONFIG_NUMA
1940 /* Early boot. Slab allocator not functional yet */
23316bc8 1941 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
1942 setup_pageset(&boot_pageset[cpu],0);
1943#else
1944 setup_pageset(zone_pcp(zone,cpu), batch);
1945#endif
1946 }
f5335c0f
AB
1947 if (zone->present_pages)
1948 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1949 zone->name, zone->present_pages, batch);
ed8ece2e
DH
1950}
1951
718127cc
YG
1952__meminit int init_currently_empty_zone(struct zone *zone,
1953 unsigned long zone_start_pfn,
1954 unsigned long size)
ed8ece2e
DH
1955{
1956 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
1957 int ret;
1958 ret = zone_wait_table_init(zone, size);
1959 if (ret)
1960 return ret;
ed8ece2e
DH
1961 pgdat->nr_zones = zone_idx(zone) + 1;
1962
ed8ece2e
DH
1963 zone->zone_start_pfn = zone_start_pfn;
1964
1965 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1966
1967 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
718127cc
YG
1968
1969 return 0;
ed8ece2e
DH
1970}
1971
1da177e4
LT
1972/*
1973 * Set up the zone data structures:
1974 * - mark all pages reserved
1975 * - mark all memory queues empty
1976 * - clear the memory bitmaps
1977 */
86356ab1 1978static void __meminit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
1979 unsigned long *zones_size, unsigned long *zholes_size)
1980{
2f1b6248 1981 enum zone_type j;
ed8ece2e 1982 int nid = pgdat->node_id;
1da177e4 1983 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 1984 int ret;
1da177e4 1985
208d54e5 1986 pgdat_resize_init(pgdat);
1da177e4
LT
1987 pgdat->nr_zones = 0;
1988 init_waitqueue_head(&pgdat->kswapd_wait);
1989 pgdat->kswapd_max_order = 0;
1990
1991 for (j = 0; j < MAX_NR_ZONES; j++) {
1992 struct zone *zone = pgdat->node_zones + j;
1993 unsigned long size, realsize;
1da177e4 1994
1da177e4
LT
1995 realsize = size = zones_size[j];
1996 if (zholes_size)
1997 realsize -= zholes_size[j];
1998
98d2b0eb 1999 if (!is_highmem_idx(j))
1da177e4
LT
2000 nr_kernel_pages += realsize;
2001 nr_all_pages += realsize;
2002
2003 zone->spanned_pages = size;
2004 zone->present_pages = realsize;
9614634f
CL
2005#ifdef CONFIG_NUMA
2006 zone->min_unmapped_ratio = (realsize*sysctl_min_unmapped_ratio)
2007 / 100;
2008#endif
1da177e4
LT
2009 zone->name = zone_names[j];
2010 spin_lock_init(&zone->lock);
2011 spin_lock_init(&zone->lru_lock);
bdc8cb98 2012 zone_seqlock_init(zone);
1da177e4
LT
2013 zone->zone_pgdat = pgdat;
2014 zone->free_pages = 0;
2015
2016 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2017
ed8ece2e 2018 zone_pcp_init(zone);
1da177e4
LT
2019 INIT_LIST_HEAD(&zone->active_list);
2020 INIT_LIST_HEAD(&zone->inactive_list);
2021 zone->nr_scan_active = 0;
2022 zone->nr_scan_inactive = 0;
2023 zone->nr_active = 0;
2024 zone->nr_inactive = 0;
2244b95a 2025 zap_zone_vm_stats(zone);
53e9a615 2026 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
2027 if (!size)
2028 continue;
2029
d41dee36 2030 zonetable_add(zone, nid, j, zone_start_pfn, size);
718127cc
YG
2031 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2032 BUG_ON(ret);
1da177e4 2033 zone_start_pfn += size;
1da177e4
LT
2034 }
2035}
2036
2037static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2038{
1da177e4
LT
2039 /* Skip empty nodes */
2040 if (!pgdat->node_spanned_pages)
2041 return;
2042
d41dee36 2043#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
2044 /* ia64 gets its own node_mem_map, before this, without bootmem */
2045 if (!pgdat->node_mem_map) {
e984bb43 2046 unsigned long size, start, end;
d41dee36
AW
2047 struct page *map;
2048
e984bb43
BP
2049 /*
2050 * The zone's endpoints aren't required to be MAX_ORDER
2051 * aligned but the node_mem_map endpoints must be in order
2052 * for the buddy allocator to function correctly.
2053 */
2054 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2055 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2056 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2057 size = (end - start) * sizeof(struct page);
6f167ec7
DH
2058 map = alloc_remap(pgdat->node_id, size);
2059 if (!map)
2060 map = alloc_bootmem_node(pgdat, size);
e984bb43 2061 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 2062 }
d41dee36 2063#ifdef CONFIG_FLATMEM
1da177e4
LT
2064 /*
2065 * With no DISCONTIG, the global mem_map is just set as node 0's
2066 */
2067 if (pgdat == NODE_DATA(0))
2068 mem_map = NODE_DATA(0)->node_mem_map;
2069#endif
d41dee36 2070#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
2071}
2072
86356ab1 2073void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
1da177e4
LT
2074 unsigned long *zones_size, unsigned long node_start_pfn,
2075 unsigned long *zholes_size)
2076{
2077 pgdat->node_id = nid;
2078 pgdat->node_start_pfn = node_start_pfn;
2079 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2080
2081 alloc_node_mem_map(pgdat);
2082
2083 free_area_init_core(pgdat, zones_size, zholes_size);
2084}
2085
93b7504e 2086#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
2087static bootmem_data_t contig_bootmem_data;
2088struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2089
2090EXPORT_SYMBOL(contig_page_data);
93b7504e 2091#endif
1da177e4
LT
2092
2093void __init free_area_init(unsigned long *zones_size)
2094{
93b7504e 2095 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
2096 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2097}
1da177e4 2098
1da177e4
LT
2099#ifdef CONFIG_HOTPLUG_CPU
2100static int page_alloc_cpu_notify(struct notifier_block *self,
2101 unsigned long action, void *hcpu)
2102{
2103 int cpu = (unsigned long)hcpu;
1da177e4
LT
2104
2105 if (action == CPU_DEAD) {
1da177e4
LT
2106 local_irq_disable();
2107 __drain_pages(cpu);
f8891e5e 2108 vm_events_fold_cpu(cpu);
1da177e4 2109 local_irq_enable();
2244b95a 2110 refresh_cpu_vm_stats(cpu);
1da177e4
LT
2111 }
2112 return NOTIFY_OK;
2113}
2114#endif /* CONFIG_HOTPLUG_CPU */
2115
2116void __init page_alloc_init(void)
2117{
2118 hotcpu_notifier(page_alloc_cpu_notify, 0);
2119}
2120
cb45b0e9
HA
2121/*
2122 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2123 * or min_free_kbytes changes.
2124 */
2125static void calculate_totalreserve_pages(void)
2126{
2127 struct pglist_data *pgdat;
2128 unsigned long reserve_pages = 0;
2129 int i, j;
2130
2131 for_each_online_pgdat(pgdat) {
2132 for (i = 0; i < MAX_NR_ZONES; i++) {
2133 struct zone *zone = pgdat->node_zones + i;
2134 unsigned long max = 0;
2135
2136 /* Find valid and maximum lowmem_reserve in the zone */
2137 for (j = i; j < MAX_NR_ZONES; j++) {
2138 if (zone->lowmem_reserve[j] > max)
2139 max = zone->lowmem_reserve[j];
2140 }
2141
2142 /* we treat pages_high as reserved pages. */
2143 max += zone->pages_high;
2144
2145 if (max > zone->present_pages)
2146 max = zone->present_pages;
2147 reserve_pages += max;
2148 }
2149 }
2150 totalreserve_pages = reserve_pages;
2151}
2152
1da177e4
LT
2153/*
2154 * setup_per_zone_lowmem_reserve - called whenever
2155 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2156 * has a correct pages reserved value, so an adequate number of
2157 * pages are left in the zone after a successful __alloc_pages().
2158 */
2159static void setup_per_zone_lowmem_reserve(void)
2160{
2161 struct pglist_data *pgdat;
2162 int j, idx;
2163
ec936fc5 2164 for_each_online_pgdat(pgdat) {
1da177e4
LT
2165 for (j = 0; j < MAX_NR_ZONES; j++) {
2166 struct zone *zone = pgdat->node_zones + j;
2167 unsigned long present_pages = zone->present_pages;
2168
2169 zone->lowmem_reserve[j] = 0;
2170
2171 for (idx = j-1; idx >= 0; idx--) {
2172 struct zone *lower_zone;
2173
2174 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2175 sysctl_lowmem_reserve_ratio[idx] = 1;
2176
2177 lower_zone = pgdat->node_zones + idx;
2178 lower_zone->lowmem_reserve[j] = present_pages /
2179 sysctl_lowmem_reserve_ratio[idx];
2180 present_pages += lower_zone->present_pages;
2181 }
2182 }
2183 }
cb45b0e9
HA
2184
2185 /* update totalreserve_pages */
2186 calculate_totalreserve_pages();
1da177e4
LT
2187}
2188
2189/*
2190 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2191 * that the pages_{min,low,high} values for each zone are set correctly
2192 * with respect to min_free_kbytes.
2193 */
3947be19 2194void setup_per_zone_pages_min(void)
1da177e4
LT
2195{
2196 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2197 unsigned long lowmem_pages = 0;
2198 struct zone *zone;
2199 unsigned long flags;
2200
2201 /* Calculate total number of !ZONE_HIGHMEM pages */
2202 for_each_zone(zone) {
2203 if (!is_highmem(zone))
2204 lowmem_pages += zone->present_pages;
2205 }
2206
2207 for_each_zone(zone) {
ac924c60
AM
2208 u64 tmp;
2209
1da177e4 2210 spin_lock_irqsave(&zone->lru_lock, flags);
ac924c60
AM
2211 tmp = (u64)pages_min * zone->present_pages;
2212 do_div(tmp, lowmem_pages);
1da177e4
LT
2213 if (is_highmem(zone)) {
2214 /*
669ed175
NP
2215 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2216 * need highmem pages, so cap pages_min to a small
2217 * value here.
2218 *
2219 * The (pages_high-pages_low) and (pages_low-pages_min)
2220 * deltas controls asynch page reclaim, and so should
2221 * not be capped for highmem.
1da177e4
LT
2222 */
2223 int min_pages;
2224
2225 min_pages = zone->present_pages / 1024;
2226 if (min_pages < SWAP_CLUSTER_MAX)
2227 min_pages = SWAP_CLUSTER_MAX;
2228 if (min_pages > 128)
2229 min_pages = 128;
2230 zone->pages_min = min_pages;
2231 } else {
669ed175
NP
2232 /*
2233 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
2234 * proportionate to the zone's size.
2235 */
669ed175 2236 zone->pages_min = tmp;
1da177e4
LT
2237 }
2238
ac924c60
AM
2239 zone->pages_low = zone->pages_min + (tmp >> 2);
2240 zone->pages_high = zone->pages_min + (tmp >> 1);
1da177e4
LT
2241 spin_unlock_irqrestore(&zone->lru_lock, flags);
2242 }
cb45b0e9
HA
2243
2244 /* update totalreserve_pages */
2245 calculate_totalreserve_pages();
1da177e4
LT
2246}
2247
2248/*
2249 * Initialise min_free_kbytes.
2250 *
2251 * For small machines we want it small (128k min). For large machines
2252 * we want it large (64MB max). But it is not linear, because network
2253 * bandwidth does not increase linearly with machine size. We use
2254 *
2255 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2256 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2257 *
2258 * which yields
2259 *
2260 * 16MB: 512k
2261 * 32MB: 724k
2262 * 64MB: 1024k
2263 * 128MB: 1448k
2264 * 256MB: 2048k
2265 * 512MB: 2896k
2266 * 1024MB: 4096k
2267 * 2048MB: 5792k
2268 * 4096MB: 8192k
2269 * 8192MB: 11584k
2270 * 16384MB: 16384k
2271 */
2272static int __init init_per_zone_pages_min(void)
2273{
2274 unsigned long lowmem_kbytes;
2275
2276 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2277
2278 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2279 if (min_free_kbytes < 128)
2280 min_free_kbytes = 128;
2281 if (min_free_kbytes > 65536)
2282 min_free_kbytes = 65536;
2283 setup_per_zone_pages_min();
2284 setup_per_zone_lowmem_reserve();
2285 return 0;
2286}
2287module_init(init_per_zone_pages_min)
2288
2289/*
2290 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2291 * that we can call two helper functions whenever min_free_kbytes
2292 * changes.
2293 */
2294int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2295 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2296{
2297 proc_dointvec(table, write, file, buffer, length, ppos);
2298 setup_per_zone_pages_min();
2299 return 0;
2300}
2301
9614634f
CL
2302#ifdef CONFIG_NUMA
2303int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
2304 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2305{
2306 struct zone *zone;
2307 int rc;
2308
2309 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2310 if (rc)
2311 return rc;
2312
2313 for_each_zone(zone)
2314 zone->min_unmapped_ratio = (zone->present_pages *
2315 sysctl_min_unmapped_ratio) / 100;
2316 return 0;
2317}
2318#endif
2319
1da177e4
LT
2320/*
2321 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2322 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2323 * whenever sysctl_lowmem_reserve_ratio changes.
2324 *
2325 * The reserve ratio obviously has absolutely no relation with the
2326 * pages_min watermarks. The lowmem reserve ratio can only make sense
2327 * if in function of the boot time zone sizes.
2328 */
2329int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2330 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2331{
2332 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2333 setup_per_zone_lowmem_reserve();
2334 return 0;
2335}
2336
8ad4b1fb
RS
2337/*
2338 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2339 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2340 * can have before it gets flushed back to buddy allocator.
2341 */
2342
2343int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2344 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2345{
2346 struct zone *zone;
2347 unsigned int cpu;
2348 int ret;
2349
2350 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2351 if (!write || (ret == -EINVAL))
2352 return ret;
2353 for_each_zone(zone) {
2354 for_each_online_cpu(cpu) {
2355 unsigned long high;
2356 high = zone->present_pages / percpu_pagelist_fraction;
2357 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2358 }
2359 }
2360 return 0;
2361}
2362
f034b5d4 2363int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
2364
2365#ifdef CONFIG_NUMA
2366static int __init set_hashdist(char *str)
2367{
2368 if (!str)
2369 return 0;
2370 hashdist = simple_strtoul(str, &str, 0);
2371 return 1;
2372}
2373__setup("hashdist=", set_hashdist);
2374#endif
2375
2376/*
2377 * allocate a large system hash table from bootmem
2378 * - it is assumed that the hash table must contain an exact power-of-2
2379 * quantity of entries
2380 * - limit is the number of hash buckets, not the total allocation size
2381 */
2382void *__init alloc_large_system_hash(const char *tablename,
2383 unsigned long bucketsize,
2384 unsigned long numentries,
2385 int scale,
2386 int flags,
2387 unsigned int *_hash_shift,
2388 unsigned int *_hash_mask,
2389 unsigned long limit)
2390{
2391 unsigned long long max = limit;
2392 unsigned long log2qty, size;
2393 void *table = NULL;
2394
2395 /* allow the kernel cmdline to have a say */
2396 if (!numentries) {
2397 /* round applicable memory size up to nearest megabyte */
2398 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2399 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2400 numentries >>= 20 - PAGE_SHIFT;
2401 numentries <<= 20 - PAGE_SHIFT;
2402
2403 /* limit to 1 bucket per 2^scale bytes of low memory */
2404 if (scale > PAGE_SHIFT)
2405 numentries >>= (scale - PAGE_SHIFT);
2406 else
2407 numentries <<= (PAGE_SHIFT - scale);
2408 }
6e692ed3 2409 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
2410
2411 /* limit allocation size to 1/16 total memory by default */
2412 if (max == 0) {
2413 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2414 do_div(max, bucketsize);
2415 }
2416
2417 if (numentries > max)
2418 numentries = max;
2419
2420 log2qty = long_log2(numentries);
2421
2422 do {
2423 size = bucketsize << log2qty;
2424 if (flags & HASH_EARLY)
2425 table = alloc_bootmem(size);
2426 else if (hashdist)
2427 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2428 else {
2429 unsigned long order;
2430 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2431 ;
2432 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2433 }
2434 } while (!table && size > PAGE_SIZE && --log2qty);
2435
2436 if (!table)
2437 panic("Failed to allocate %s hash table\n", tablename);
2438
2439 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2440 tablename,
2441 (1U << log2qty),
2442 long_log2(size) - PAGE_SHIFT,
2443 size);
2444
2445 if (_hash_shift)
2446 *_hash_shift = log2qty;
2447 if (_hash_mask)
2448 *_hash_mask = (1 << log2qty) - 1;
2449
2450 return table;
2451}
a117e66e
KH
2452
2453#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
a117e66e
KH
2454struct page *pfn_to_page(unsigned long pfn)
2455{
67de6482 2456 return __pfn_to_page(pfn);
a117e66e
KH
2457}
2458unsigned long page_to_pfn(struct page *page)
2459{
67de6482 2460 return __page_to_pfn(page);
a117e66e 2461}
a117e66e
KH
2462EXPORT_SYMBOL(pfn_to_page);
2463EXPORT_SYMBOL(page_to_pfn);
2464#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */