]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/vmalloc.c
Merge tag 'perf-tools-for-v6.10-1-2024-05-21' of git://git.kernel.org/pub/scm/linux...
[thirdparty/kernel/linux.git] / mm / vmalloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 7 * Numa awareness, Christoph Lameter, SGI, June 2005
d758ffe6 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
c3edc401 15#include <linux/sched/signal.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
868b104d 21#include <linux/set_memory.h>
3ac7fe5a 22#include <linux/debugobjects.h>
23016969 23#include <linux/kallsyms.h>
db64fe02 24#include <linux/list.h>
4da56b99 25#include <linux/notifier.h>
db64fe02 26#include <linux/rbtree.h>
0f14599c 27#include <linux/xarray.h>
5da96bdd 28#include <linux/io.h>
db64fe02 29#include <linux/rcupdate.h>
f0aa6617 30#include <linux/pfn.h>
89219d37 31#include <linux/kmemleak.h>
60063497 32#include <linux/atomic.h>
3b32123d 33#include <linux/compiler.h>
4e5aa1f4 34#include <linux/memcontrol.h>
32fcfd40 35#include <linux/llist.h>
4c91c07c 36#include <linux/uio.h>
0f616be1 37#include <linux/bitops.h>
68ad4a33 38#include <linux/rbtree_augmented.h>
bdebd6a2 39#include <linux/overflow.h>
c0eb315a 40#include <linux/pgtable.h>
f7ee1f13 41#include <linux/hugetlb.h>
451769eb 42#include <linux/sched/mm.h>
1da177e4 43#include <asm/tlbflush.h>
2dca6999 44#include <asm/shmparam.h>
21e516b9 45#include <linux/page_owner.h>
1da177e4 46
cf243da6
URS
47#define CREATE_TRACE_POINTS
48#include <trace/events/vmalloc.h>
49
dd56b046 50#include "internal.h"
2a681cfa 51#include "pgalloc-track.h"
dd56b046 52
82a70ce0
CH
53#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
54static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
55
56static int __init set_nohugeiomap(char *str)
57{
58 ioremap_max_page_shift = PAGE_SHIFT;
59 return 0;
60}
61early_param("nohugeiomap", set_nohugeiomap);
62#else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
63static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
64#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
65
121e6f32
NP
66#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
67static bool __ro_after_init vmap_allow_huge = true;
68
69static int __init set_nohugevmalloc(char *str)
70{
71 vmap_allow_huge = false;
72 return 0;
73}
74early_param("nohugevmalloc", set_nohugevmalloc);
75#else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
76static const bool vmap_allow_huge = false;
77#endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
78
186525bd
IM
79bool is_vmalloc_addr(const void *x)
80{
4aff1dc4 81 unsigned long addr = (unsigned long)kasan_reset_tag(x);
186525bd
IM
82
83 return addr >= VMALLOC_START && addr < VMALLOC_END;
84}
85EXPORT_SYMBOL(is_vmalloc_addr);
86
32fcfd40
AV
87struct vfree_deferred {
88 struct llist_head list;
89 struct work_struct wq;
90};
91static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
92
db64fe02 93/*** Page table manipulation functions ***/
5e9e3d77
NP
94static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
95 phys_addr_t phys_addr, pgprot_t prot,
f7ee1f13 96 unsigned int max_page_shift, pgtbl_mod_mask *mask)
5e9e3d77
NP
97{
98 pte_t *pte;
99 u64 pfn;
21e516b9 100 struct page *page;
f7ee1f13 101 unsigned long size = PAGE_SIZE;
5e9e3d77
NP
102
103 pfn = phys_addr >> PAGE_SHIFT;
104 pte = pte_alloc_kernel_track(pmd, addr, mask);
105 if (!pte)
106 return -ENOMEM;
107 do {
21e516b9
HP
108 if (!pte_none(ptep_get(pte))) {
109 if (pfn_valid(pfn)) {
110 page = pfn_to_page(pfn);
111 dump_page(page, "remapping already mapped page");
112 }
113 BUG();
114 }
f7ee1f13
CL
115
116#ifdef CONFIG_HUGETLB_PAGE
117 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
118 if (size != PAGE_SIZE) {
119 pte_t entry = pfn_pte(pfn, prot);
120
f7ee1f13 121 entry = arch_make_huge_pte(entry, ilog2(size), 0);
935d4f0c 122 set_huge_pte_at(&init_mm, addr, pte, entry, size);
f7ee1f13
CL
123 pfn += PFN_DOWN(size);
124 continue;
125 }
126#endif
5e9e3d77
NP
127 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
128 pfn++;
f7ee1f13 129 } while (pte += PFN_DOWN(size), addr += size, addr != end);
5e9e3d77
NP
130 *mask |= PGTBL_PTE_MODIFIED;
131 return 0;
132}
133
134static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
135 phys_addr_t phys_addr, pgprot_t prot,
136 unsigned int max_page_shift)
137{
138 if (max_page_shift < PMD_SHIFT)
139 return 0;
140
141 if (!arch_vmap_pmd_supported(prot))
142 return 0;
143
144 if ((end - addr) != PMD_SIZE)
145 return 0;
146
147 if (!IS_ALIGNED(addr, PMD_SIZE))
148 return 0;
149
150 if (!IS_ALIGNED(phys_addr, PMD_SIZE))
151 return 0;
152
153 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
154 return 0;
155
156 return pmd_set_huge(pmd, phys_addr, prot);
157}
158
159static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
160 phys_addr_t phys_addr, pgprot_t prot,
161 unsigned int max_page_shift, pgtbl_mod_mask *mask)
162{
163 pmd_t *pmd;
164 unsigned long next;
165
166 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
167 if (!pmd)
168 return -ENOMEM;
169 do {
170 next = pmd_addr_end(addr, end);
171
172 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
173 max_page_shift)) {
174 *mask |= PGTBL_PMD_MODIFIED;
175 continue;
176 }
177
f7ee1f13 178 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
5e9e3d77
NP
179 return -ENOMEM;
180 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
181 return 0;
182}
183
184static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
185 phys_addr_t phys_addr, pgprot_t prot,
186 unsigned int max_page_shift)
187{
188 if (max_page_shift < PUD_SHIFT)
189 return 0;
190
191 if (!arch_vmap_pud_supported(prot))
192 return 0;
193
194 if ((end - addr) != PUD_SIZE)
195 return 0;
196
197 if (!IS_ALIGNED(addr, PUD_SIZE))
198 return 0;
199
200 if (!IS_ALIGNED(phys_addr, PUD_SIZE))
201 return 0;
202
203 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
204 return 0;
205
206 return pud_set_huge(pud, phys_addr, prot);
207}
208
209static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
210 phys_addr_t phys_addr, pgprot_t prot,
211 unsigned int max_page_shift, pgtbl_mod_mask *mask)
212{
213 pud_t *pud;
214 unsigned long next;
215
216 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
217 if (!pud)
218 return -ENOMEM;
219 do {
220 next = pud_addr_end(addr, end);
221
222 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
223 max_page_shift)) {
224 *mask |= PGTBL_PUD_MODIFIED;
225 continue;
226 }
227
228 if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
229 max_page_shift, mask))
230 return -ENOMEM;
231 } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
232 return 0;
233}
234
235static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
236 phys_addr_t phys_addr, pgprot_t prot,
237 unsigned int max_page_shift)
238{
239 if (max_page_shift < P4D_SHIFT)
240 return 0;
241
242 if (!arch_vmap_p4d_supported(prot))
243 return 0;
244
245 if ((end - addr) != P4D_SIZE)
246 return 0;
247
248 if (!IS_ALIGNED(addr, P4D_SIZE))
249 return 0;
250
251 if (!IS_ALIGNED(phys_addr, P4D_SIZE))
252 return 0;
253
254 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
255 return 0;
256
257 return p4d_set_huge(p4d, phys_addr, prot);
258}
259
260static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
261 phys_addr_t phys_addr, pgprot_t prot,
262 unsigned int max_page_shift, pgtbl_mod_mask *mask)
263{
264 p4d_t *p4d;
265 unsigned long next;
266
267 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
268 if (!p4d)
269 return -ENOMEM;
270 do {
271 next = p4d_addr_end(addr, end);
272
273 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
274 max_page_shift)) {
275 *mask |= PGTBL_P4D_MODIFIED;
276 continue;
277 }
278
279 if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
280 max_page_shift, mask))
281 return -ENOMEM;
282 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
283 return 0;
284}
285
5d87510d 286static int vmap_range_noflush(unsigned long addr, unsigned long end,
5e9e3d77
NP
287 phys_addr_t phys_addr, pgprot_t prot,
288 unsigned int max_page_shift)
289{
290 pgd_t *pgd;
291 unsigned long start;
292 unsigned long next;
293 int err;
294 pgtbl_mod_mask mask = 0;
295
296 might_sleep();
297 BUG_ON(addr >= end);
298
299 start = addr;
300 pgd = pgd_offset_k(addr);
301 do {
302 next = pgd_addr_end(addr, end);
303 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
304 max_page_shift, &mask);
305 if (err)
306 break;
307 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
308
5e9e3d77
NP
309 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
310 arch_sync_kernel_mappings(start, end);
311
312 return err;
313}
b221385b 314
d7bca919
AS
315int vmap_page_range(unsigned long addr, unsigned long end,
316 phys_addr_t phys_addr, pgprot_t prot)
317{
318 int err;
319
320 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
321 ioremap_max_page_shift);
322 flush_cache_vmap(addr, end);
323 if (!err)
324 err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
325 ioremap_max_page_shift);
326 return err;
327}
328
82a70ce0
CH
329int ioremap_page_range(unsigned long addr, unsigned long end,
330 phys_addr_t phys_addr, pgprot_t prot)
5d87510d 331{
3e49a866 332 struct vm_struct *area;
5d87510d 333
3e49a866
AS
334 area = find_vm_area((void *)addr);
335 if (!area || !(area->flags & VM_IOREMAP)) {
336 WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr);
337 return -EINVAL;
338 }
339 if (addr != (unsigned long)area->addr ||
340 (void *)end != area->addr + get_vm_area_size(area)) {
341 WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n",
342 addr, end, (long)area->addr,
343 (long)area->addr + get_vm_area_size(area));
344 return -ERANGE;
345 }
d7bca919 346 return vmap_page_range(addr, end, phys_addr, prot);
5d87510d
NP
347}
348
2ba3e694
JR
349static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
350 pgtbl_mod_mask *mask)
1da177e4
LT
351{
352 pte_t *pte;
353
354 pte = pte_offset_kernel(pmd, addr);
355 do {
356 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
357 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
358 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 359 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
360}
361
2ba3e694
JR
362static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
363 pgtbl_mod_mask *mask)
1da177e4
LT
364{
365 pmd_t *pmd;
366 unsigned long next;
2ba3e694 367 int cleared;
1da177e4
LT
368
369 pmd = pmd_offset(pud, addr);
370 do {
371 next = pmd_addr_end(addr, end);
2ba3e694
JR
372
373 cleared = pmd_clear_huge(pmd);
374 if (cleared || pmd_bad(*pmd))
375 *mask |= PGTBL_PMD_MODIFIED;
376
377 if (cleared)
b9820d8f 378 continue;
1da177e4
LT
379 if (pmd_none_or_clear_bad(pmd))
380 continue;
2ba3e694 381 vunmap_pte_range(pmd, addr, next, mask);
e47110e9
AK
382
383 cond_resched();
1da177e4
LT
384 } while (pmd++, addr = next, addr != end);
385}
386
2ba3e694
JR
387static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
388 pgtbl_mod_mask *mask)
1da177e4
LT
389{
390 pud_t *pud;
391 unsigned long next;
2ba3e694 392 int cleared;
1da177e4 393
c2febafc 394 pud = pud_offset(p4d, addr);
1da177e4
LT
395 do {
396 next = pud_addr_end(addr, end);
2ba3e694
JR
397
398 cleared = pud_clear_huge(pud);
399 if (cleared || pud_bad(*pud))
400 *mask |= PGTBL_PUD_MODIFIED;
401
402 if (cleared)
b9820d8f 403 continue;
1da177e4
LT
404 if (pud_none_or_clear_bad(pud))
405 continue;
2ba3e694 406 vunmap_pmd_range(pud, addr, next, mask);
1da177e4
LT
407 } while (pud++, addr = next, addr != end);
408}
409
2ba3e694
JR
410static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
411 pgtbl_mod_mask *mask)
c2febafc
KS
412{
413 p4d_t *p4d;
414 unsigned long next;
415
416 p4d = p4d_offset(pgd, addr);
417 do {
418 next = p4d_addr_end(addr, end);
2ba3e694 419
c8db8c26
L
420 p4d_clear_huge(p4d);
421 if (p4d_bad(*p4d))
2ba3e694
JR
422 *mask |= PGTBL_P4D_MODIFIED;
423
c2febafc
KS
424 if (p4d_none_or_clear_bad(p4d))
425 continue;
2ba3e694 426 vunmap_pud_range(p4d, addr, next, mask);
c2febafc
KS
427 } while (p4d++, addr = next, addr != end);
428}
429
4ad0ae8c
NP
430/*
431 * vunmap_range_noflush is similar to vunmap_range, but does not
432 * flush caches or TLBs.
b521c43f 433 *
4ad0ae8c
NP
434 * The caller is responsible for calling flush_cache_vmap() before calling
435 * this function, and flush_tlb_kernel_range after it has returned
436 * successfully (and before the addresses are expected to cause a page fault
437 * or be re-mapped for something else, if TLB flushes are being delayed or
438 * coalesced).
b521c43f 439 *
4ad0ae8c 440 * This is an internal function only. Do not use outside mm/.
b521c43f 441 */
b073d7f8 442void __vunmap_range_noflush(unsigned long start, unsigned long end)
1da177e4 443{
1da177e4 444 unsigned long next;
b521c43f 445 pgd_t *pgd;
2ba3e694
JR
446 unsigned long addr = start;
447 pgtbl_mod_mask mask = 0;
1da177e4
LT
448
449 BUG_ON(addr >= end);
450 pgd = pgd_offset_k(addr);
1da177e4
LT
451 do {
452 next = pgd_addr_end(addr, end);
2ba3e694
JR
453 if (pgd_bad(*pgd))
454 mask |= PGTBL_PGD_MODIFIED;
1da177e4
LT
455 if (pgd_none_or_clear_bad(pgd))
456 continue;
2ba3e694 457 vunmap_p4d_range(pgd, addr, next, &mask);
1da177e4 458 } while (pgd++, addr = next, addr != end);
2ba3e694
JR
459
460 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
461 arch_sync_kernel_mappings(start, end);
1da177e4
LT
462}
463
b073d7f8
AP
464void vunmap_range_noflush(unsigned long start, unsigned long end)
465{
466 kmsan_vunmap_range_noflush(start, end);
467 __vunmap_range_noflush(start, end);
468}
469
4ad0ae8c
NP
470/**
471 * vunmap_range - unmap kernel virtual addresses
472 * @addr: start of the VM area to unmap
473 * @end: end of the VM area to unmap (non-inclusive)
474 *
475 * Clears any present PTEs in the virtual address range, flushes TLBs and
476 * caches. Any subsequent access to the address before it has been re-mapped
477 * is a kernel bug.
478 */
479void vunmap_range(unsigned long addr, unsigned long end)
480{
481 flush_cache_vunmap(addr, end);
482 vunmap_range_noflush(addr, end);
483 flush_tlb_kernel_range(addr, end);
484}
485
0a264884 486static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
2ba3e694
JR
487 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
488 pgtbl_mod_mask *mask)
1da177e4
LT
489{
490 pte_t *pte;
491
db64fe02
NP
492 /*
493 * nr is a running index into the array which helps higher level
494 * callers keep track of where we're up to.
495 */
496
2ba3e694 497 pte = pte_alloc_kernel_track(pmd, addr, mask);
1da177e4
LT
498 if (!pte)
499 return -ENOMEM;
500 do {
db64fe02
NP
501 struct page *page = pages[*nr];
502
c33c7948 503 if (WARN_ON(!pte_none(ptep_get(pte))))
db64fe02
NP
504 return -EBUSY;
505 if (WARN_ON(!page))
1da177e4 506 return -ENOMEM;
4fcdcc12
YN
507 if (WARN_ON(!pfn_valid(page_to_pfn(page))))
508 return -EINVAL;
509
1da177e4 510 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 511 (*nr)++;
1da177e4 512 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 513 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
514 return 0;
515}
516
0a264884 517static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
2ba3e694
JR
518 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
519 pgtbl_mod_mask *mask)
1da177e4
LT
520{
521 pmd_t *pmd;
522 unsigned long next;
523
2ba3e694 524 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
1da177e4
LT
525 if (!pmd)
526 return -ENOMEM;
527 do {
528 next = pmd_addr_end(addr, end);
0a264884 529 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
1da177e4
LT
530 return -ENOMEM;
531 } while (pmd++, addr = next, addr != end);
532 return 0;
533}
534
0a264884 535static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
2ba3e694
JR
536 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
537 pgtbl_mod_mask *mask)
1da177e4
LT
538{
539 pud_t *pud;
540 unsigned long next;
541
2ba3e694 542 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
1da177e4
LT
543 if (!pud)
544 return -ENOMEM;
545 do {
546 next = pud_addr_end(addr, end);
0a264884 547 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
1da177e4
LT
548 return -ENOMEM;
549 } while (pud++, addr = next, addr != end);
550 return 0;
551}
552
0a264884 553static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
2ba3e694
JR
554 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
555 pgtbl_mod_mask *mask)
c2febafc
KS
556{
557 p4d_t *p4d;
558 unsigned long next;
559
2ba3e694 560 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
c2febafc
KS
561 if (!p4d)
562 return -ENOMEM;
563 do {
564 next = p4d_addr_end(addr, end);
0a264884 565 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
c2febafc
KS
566 return -ENOMEM;
567 } while (p4d++, addr = next, addr != end);
568 return 0;
569}
570
121e6f32
NP
571static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
572 pgprot_t prot, struct page **pages)
1da177e4 573{
2ba3e694 574 unsigned long start = addr;
b521c43f 575 pgd_t *pgd;
121e6f32 576 unsigned long next;
db64fe02
NP
577 int err = 0;
578 int nr = 0;
2ba3e694 579 pgtbl_mod_mask mask = 0;
1da177e4
LT
580
581 BUG_ON(addr >= end);
582 pgd = pgd_offset_k(addr);
1da177e4
LT
583 do {
584 next = pgd_addr_end(addr, end);
2ba3e694
JR
585 if (pgd_bad(*pgd))
586 mask |= PGTBL_PGD_MODIFIED;
0a264884 587 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
1da177e4 588 if (err)
bf88c8c8 589 return err;
1da177e4 590 } while (pgd++, addr = next, addr != end);
db64fe02 591
2ba3e694
JR
592 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
593 arch_sync_kernel_mappings(start, end);
594
60bb4465 595 return 0;
1da177e4
LT
596}
597
b67177ec
NP
598/*
599 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
600 * flush caches.
601 *
602 * The caller is responsible for calling flush_cache_vmap() after this
603 * function returns successfully and before the addresses are accessed.
604 *
605 * This is an internal function only. Do not use outside mm/.
606 */
b073d7f8 607int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
121e6f32
NP
608 pgprot_t prot, struct page **pages, unsigned int page_shift)
609{
610 unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
611
612 WARN_ON(page_shift < PAGE_SHIFT);
613
614 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
615 page_shift == PAGE_SHIFT)
616 return vmap_small_pages_range_noflush(addr, end, prot, pages);
617
618 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
619 int err;
620
621 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
08262ac5 622 page_to_phys(pages[i]), prot,
121e6f32
NP
623 page_shift);
624 if (err)
625 return err;
626
627 addr += 1UL << page_shift;
628 }
629
630 return 0;
631}
b073d7f8
AP
632
633int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
634 pgprot_t prot, struct page **pages, unsigned int page_shift)
635{
47ebd031
AP
636 int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
637 page_shift);
638
639 if (ret)
640 return ret;
b073d7f8
AP
641 return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
642}
121e6f32 643
121e6f32 644/**
b67177ec 645 * vmap_pages_range - map pages to a kernel virtual address
121e6f32 646 * @addr: start of the VM area to map
b67177ec 647 * @end: end of the VM area to map (non-inclusive)
121e6f32 648 * @prot: page protection flags to use
b67177ec
NP
649 * @pages: pages to map (always PAGE_SIZE pages)
650 * @page_shift: maximum shift that the pages may be mapped with, @pages must
651 * be aligned and contiguous up to at least this shift.
121e6f32
NP
652 *
653 * RETURNS:
654 * 0 on success, -errno on failure.
655 */
b67177ec
NP
656static int vmap_pages_range(unsigned long addr, unsigned long end,
657 pgprot_t prot, struct page **pages, unsigned int page_shift)
8fc48985 658{
b67177ec 659 int err;
8fc48985 660
b67177ec
NP
661 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
662 flush_cache_vmap(addr, end);
663 return err;
8fc48985
TH
664}
665
e6f79822
AS
666static int check_sparse_vm_area(struct vm_struct *area, unsigned long start,
667 unsigned long end)
668{
669 might_sleep();
670 if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS))
671 return -EINVAL;
672 if (WARN_ON_ONCE(area->flags & VM_NO_GUARD))
673 return -EINVAL;
674 if (WARN_ON_ONCE(!(area->flags & VM_SPARSE)))
675 return -EINVAL;
676 if ((end - start) >> PAGE_SHIFT > totalram_pages())
677 return -E2BIG;
678 if (start < (unsigned long)area->addr ||
679 (void *)end > area->addr + get_vm_area_size(area))
680 return -ERANGE;
681 return 0;
682}
683
684/**
685 * vm_area_map_pages - map pages inside given sparse vm_area
686 * @area: vm_area
687 * @start: start address inside vm_area
688 * @end: end address inside vm_area
689 * @pages: pages to map (always PAGE_SIZE pages)
690 */
691int vm_area_map_pages(struct vm_struct *area, unsigned long start,
692 unsigned long end, struct page **pages)
693{
694 int err;
695
696 err = check_sparse_vm_area(area, start, end);
697 if (err)
698 return err;
699
700 return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT);
701}
702
703/**
704 * vm_area_unmap_pages - unmap pages inside given sparse vm_area
705 * @area: vm_area
706 * @start: start address inside vm_area
707 * @end: end address inside vm_area
708 */
709void vm_area_unmap_pages(struct vm_struct *area, unsigned long start,
710 unsigned long end)
711{
712 if (check_sparse_vm_area(area, start, end))
713 return;
714
715 vunmap_range(start, end);
716}
717
81ac3ad9 718int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
719{
720 /*
ab4f2ee1 721 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
722 * and fall back on vmalloc() if that fails. Others
723 * just put it in the vmalloc space.
724 */
725#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
4aff1dc4 726 unsigned long addr = (unsigned long)kasan_reset_tag(x);
73bdf0a6
LT
727 if (addr >= MODULES_VADDR && addr < MODULES_END)
728 return 1;
729#endif
730 return is_vmalloc_addr(x);
731}
01858469 732EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
73bdf0a6 733
48667e7a 734/*
c0eb315a
NP
735 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
736 * return the tail page that corresponds to the base page address, which
737 * matches small vmap mappings.
48667e7a 738 */
add688fb 739struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
740{
741 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 742 struct page *page = NULL;
48667e7a 743 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
744 p4d_t *p4d;
745 pud_t *pud;
746 pmd_t *pmd;
747 pte_t *ptep, pte;
48667e7a 748
7aa413de
IM
749 /*
750 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
751 * architectures that do not vmalloc module space
752 */
73bdf0a6 753 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 754
c2febafc
KS
755 if (pgd_none(*pgd))
756 return NULL;
c0eb315a
NP
757 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
758 return NULL; /* XXX: no allowance for huge pgd */
759 if (WARN_ON_ONCE(pgd_bad(*pgd)))
760 return NULL;
761
c2febafc
KS
762 p4d = p4d_offset(pgd, addr);
763 if (p4d_none(*p4d))
764 return NULL;
c0eb315a
NP
765 if (p4d_leaf(*p4d))
766 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
767 if (WARN_ON_ONCE(p4d_bad(*p4d)))
768 return NULL;
029c54b0 769
c0eb315a
NP
770 pud = pud_offset(p4d, addr);
771 if (pud_none(*pud))
772 return NULL;
773 if (pud_leaf(*pud))
774 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
775 if (WARN_ON_ONCE(pud_bad(*pud)))
c2febafc 776 return NULL;
c0eb315a 777
c2febafc 778 pmd = pmd_offset(pud, addr);
c0eb315a
NP
779 if (pmd_none(*pmd))
780 return NULL;
781 if (pmd_leaf(*pmd))
782 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
783 if (WARN_ON_ONCE(pmd_bad(*pmd)))
c2febafc
KS
784 return NULL;
785
0d1c81ed 786 ptep = pte_offset_kernel(pmd, addr);
c33c7948 787 pte = ptep_get(ptep);
c2febafc
KS
788 if (pte_present(pte))
789 page = pte_page(pte);
c0eb315a 790
add688fb 791 return page;
48667e7a 792}
add688fb 793EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
794
795/*
add688fb 796 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 797 */
add688fb 798unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 799{
add688fb 800 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 801}
add688fb 802EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 803
db64fe02
NP
804
805/*** Global kva allocator ***/
806
bb850f4d 807#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
a6cf4e0f 808#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
bb850f4d 809
db64fe02 810
e36176be 811static DEFINE_SPINLOCK(free_vmap_area_lock);
68ad4a33 812static bool vmap_initialized __read_mostly;
89699605 813
68ad4a33
URS
814/*
815 * This kmem_cache is used for vmap_area objects. Instead of
816 * allocating from slab we reuse an object from this cache to
817 * make things faster. Especially in "no edge" splitting of
818 * free block.
819 */
820static struct kmem_cache *vmap_area_cachep;
821
822/*
823 * This linked list is used in pair with free_vmap_area_root.
824 * It gives O(1) access to prev/next to perform fast coalescing.
825 */
826static LIST_HEAD(free_vmap_area_list);
827
828/*
829 * This augment red-black tree represents the free vmap space.
830 * All vmap_area objects in this tree are sorted by va->va_start
831 * address. It is used for allocation and merging when a vmap
832 * object is released.
833 *
834 * Each vmap_area node contains a maximum available free block
835 * of its sub-tree, right or left. Therefore it is possible to
836 * find a lowest match of free area.
837 */
838static struct rb_root free_vmap_area_root = RB_ROOT;
839
82dd23e8
URS
840/*
841 * Preload a CPU with one object for "no edge" split case. The
842 * aim is to get rid of allocations from the atomic context, thus
843 * to use more permissive allocation masks.
844 */
845static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
846
d0936029 847/*
15e02a39
URS
848 * This structure defines a single, solid model where a list and
849 * rb-tree are part of one entity protected by the lock. Nodes are
850 * sorted in ascending order, thus for O(1) access to left/right
851 * neighbors a list is used as well as for sequential traversal.
d0936029
URS
852 */
853struct rb_list {
854 struct rb_root root;
855 struct list_head head;
856 spinlock_t lock;
857};
858
15e02a39
URS
859/*
860 * A fast size storage contains VAs up to 1M size. A pool consists
861 * of linked between each other ready to go VAs of certain sizes.
862 * An index in the pool-array corresponds to number of pages + 1.
863 */
864#define MAX_VA_SIZE_PAGES 256
865
72210662
URS
866struct vmap_pool {
867 struct list_head head;
868 unsigned long len;
869};
870
871/*
15e02a39
URS
872 * An effective vmap-node logic. Users make use of nodes instead
873 * of a global heap. It allows to balance an access and mitigate
874 * contention.
72210662 875 */
d0936029 876static struct vmap_node {
72210662
URS
877 /* Simple size segregated storage. */
878 struct vmap_pool pool[MAX_VA_SIZE_PAGES];
879 spinlock_t pool_lock;
880 bool skip_populate;
881
d0936029
URS
882 /* Bookkeeping data of this node. */
883 struct rb_list busy;
282631cb
URS
884 struct rb_list lazy;
885
886 /*
887 * Ready-to-free areas.
888 */
889 struct list_head purge_list;
72210662
URS
890 struct work_struct purge_work;
891 unsigned long nr_purged;
d0936029
URS
892} single;
893
15e02a39
URS
894/*
895 * Initial setup consists of one single node, i.e. a balancing
896 * is fully disabled. Later on, after vmap is initialized these
897 * parameters are updated based on a system capacity.
898 */
d0936029
URS
899static struct vmap_node *vmap_nodes = &single;
900static __read_mostly unsigned int nr_vmap_nodes = 1;
901static __read_mostly unsigned int vmap_zone_size = 1;
902
903static inline unsigned int
904addr_to_node_id(unsigned long addr)
905{
906 return (addr / vmap_zone_size) % nr_vmap_nodes;
907}
908
909static inline struct vmap_node *
910addr_to_node(unsigned long addr)
911{
912 return &vmap_nodes[addr_to_node_id(addr)];
913}
914
72210662
URS
915static inline struct vmap_node *
916id_to_node(unsigned int id)
917{
918 return &vmap_nodes[id % nr_vmap_nodes];
919}
920
921/*
922 * We use the value 0 to represent "no node", that is why
923 * an encoded value will be the node-id incremented by 1.
924 * It is always greater then 0. A valid node_id which can
925 * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id
926 * is not valid 0 is returned.
927 */
928static unsigned int
929encode_vn_id(unsigned int node_id)
930{
931 /* Can store U8_MAX [0:254] nodes. */
932 if (node_id < nr_vmap_nodes)
933 return (node_id + 1) << BITS_PER_BYTE;
934
935 /* Warn and no node encoded. */
936 WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id);
937 return 0;
938}
939
940/*
941 * Returns an encoded node-id, the valid range is within
942 * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is
943 * returned if extracted data is wrong.
944 */
945static unsigned int
946decode_vn_id(unsigned int val)
947{
948 unsigned int node_id = (val >> BITS_PER_BYTE) - 1;
949
950 /* Can store U8_MAX [0:254] nodes. */
951 if (node_id < nr_vmap_nodes)
952 return node_id;
953
954 /* If it was _not_ zero, warn. */
955 WARN_ONCE(node_id != UINT_MAX,
956 "Decode wrong node id (%d)\n", node_id);
957
958 return nr_vmap_nodes;
959}
960
961static bool
962is_vn_id_valid(unsigned int node_id)
963{
964 if (node_id < nr_vmap_nodes)
965 return true;
966
967 return false;
968}
969
68ad4a33
URS
970static __always_inline unsigned long
971va_size(struct vmap_area *va)
972{
973 return (va->va_end - va->va_start);
974}
975
976static __always_inline unsigned long
977get_subtree_max_size(struct rb_node *node)
978{
979 struct vmap_area *va;
980
981 va = rb_entry_safe(node, struct vmap_area, rb_node);
982 return va ? va->subtree_max_size : 0;
983}
89699605 984
315cc066
ML
985RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
986 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
68ad4a33 987
77e50af0 988static void reclaim_and_purge_vmap_areas(void);
68ad4a33 989static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
690467c8
URS
990static void drain_vmap_area_work(struct work_struct *work);
991static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
db64fe02 992
97105f0a
RG
993static atomic_long_t nr_vmalloc_pages;
994
995unsigned long vmalloc_nr_pages(void)
996{
997 return atomic_long_read(&nr_vmalloc_pages);
998}
999
fc2c2269
URS
1000static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
1001{
1002 struct rb_node *n = root->rb_node;
1003
1004 addr = (unsigned long)kasan_reset_tag((void *)addr);
1005
1006 while (n) {
1007 struct vmap_area *va;
1008
1009 va = rb_entry(n, struct vmap_area, rb_node);
1010 if (addr < va->va_start)
1011 n = n->rb_left;
1012 else if (addr >= va->va_end)
1013 n = n->rb_right;
1014 else
1015 return va;
1016 }
1017
1018 return NULL;
1019}
1020
153090f2 1021/* Look up the first VA which satisfies addr < va_end, NULL if none. */
d0936029 1022static struct vmap_area *
53becf32 1023__find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root)
f181234a
CW
1024{
1025 struct vmap_area *va = NULL;
d0936029 1026 struct rb_node *n = root->rb_node;
f181234a 1027
4aff1dc4
AK
1028 addr = (unsigned long)kasan_reset_tag((void *)addr);
1029
f181234a
CW
1030 while (n) {
1031 struct vmap_area *tmp;
1032
1033 tmp = rb_entry(n, struct vmap_area, rb_node);
1034 if (tmp->va_end > addr) {
1035 va = tmp;
1036 if (tmp->va_start <= addr)
1037 break;
1038
1039 n = n->rb_left;
1040 } else
1041 n = n->rb_right;
1042 }
1043
1044 return va;
1045}
1046
53becf32
URS
1047/*
1048 * Returns a node where a first VA, that satisfies addr < va_end, resides.
1049 * If success, a node is locked. A user is responsible to unlock it when a
1050 * VA is no longer needed to be accessed.
1051 *
1052 * Returns NULL if nothing found.
1053 */
1054static struct vmap_node *
1055find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va)
1056{
fc2c2269
URS
1057 unsigned long va_start_lowest;
1058 struct vmap_node *vn;
53becf32
URS
1059 int i;
1060
fc2c2269
URS
1061repeat:
1062 for (i = 0, va_start_lowest = 0; i < nr_vmap_nodes; i++) {
53becf32
URS
1063 vn = &vmap_nodes[i];
1064
1065 spin_lock(&vn->busy.lock);
fc2c2269
URS
1066 *va = __find_vmap_area_exceed_addr(addr, &vn->busy.root);
1067
1068 if (*va)
1069 if (!va_start_lowest || (*va)->va_start < va_start_lowest)
1070 va_start_lowest = (*va)->va_start;
53becf32
URS
1071 spin_unlock(&vn->busy.lock);
1072 }
1073
fc2c2269
URS
1074 /*
1075 * Check if found VA exists, it might have gone away. In this case we
1076 * repeat the search because a VA has been removed concurrently and we
1077 * need to proceed to the next one, which is a rare case.
1078 */
1079 if (va_start_lowest) {
1080 vn = addr_to_node(va_start_lowest);
53becf32 1081
fc2c2269
URS
1082 spin_lock(&vn->busy.lock);
1083 *va = __find_vmap_area(va_start_lowest, &vn->busy.root);
db64fe02 1084
fc2c2269
URS
1085 if (*va)
1086 return vn;
4aff1dc4 1087
fc2c2269
URS
1088 spin_unlock(&vn->busy.lock);
1089 goto repeat;
db64fe02
NP
1090 }
1091
1092 return NULL;
1093}
1094
68ad4a33
URS
1095/*
1096 * This function returns back addresses of parent node
1097 * and its left or right link for further processing.
9c801f61
URS
1098 *
1099 * Otherwise NULL is returned. In that case all further
1100 * steps regarding inserting of conflicting overlap range
1101 * have to be declined and actually considered as a bug.
68ad4a33
URS
1102 */
1103static __always_inline struct rb_node **
1104find_va_links(struct vmap_area *va,
1105 struct rb_root *root, struct rb_node *from,
1106 struct rb_node **parent)
1107{
1108 struct vmap_area *tmp_va;
1109 struct rb_node **link;
1110
1111 if (root) {
1112 link = &root->rb_node;
1113 if (unlikely(!*link)) {
1114 *parent = NULL;
1115 return link;
1116 }
1117 } else {
1118 link = &from;
1119 }
db64fe02 1120
68ad4a33
URS
1121 /*
1122 * Go to the bottom of the tree. When we hit the last point
1123 * we end up with parent rb_node and correct direction, i name
1124 * it link, where the new va->rb_node will be attached to.
1125 */
1126 do {
1127 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
db64fe02 1128
68ad4a33
URS
1129 /*
1130 * During the traversal we also do some sanity check.
1131 * Trigger the BUG() if there are sides(left/right)
1132 * or full overlaps.
1133 */
753df96b 1134 if (va->va_end <= tmp_va->va_start)
68ad4a33 1135 link = &(*link)->rb_left;
753df96b 1136 else if (va->va_start >= tmp_va->va_end)
68ad4a33 1137 link = &(*link)->rb_right;
9c801f61
URS
1138 else {
1139 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
1140 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
1141
1142 return NULL;
1143 }
68ad4a33
URS
1144 } while (*link);
1145
1146 *parent = &tmp_va->rb_node;
1147 return link;
1148}
1149
1150static __always_inline struct list_head *
1151get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
1152{
1153 struct list_head *list;
1154
1155 if (unlikely(!parent))
1156 /*
1157 * The red-black tree where we try to find VA neighbors
1158 * before merging or inserting is empty, i.e. it means
1159 * there is no free vmap space. Normally it does not
1160 * happen but we handle this case anyway.
1161 */
1162 return NULL;
1163
1164 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
1165 return (&parent->rb_right == link ? list->next : list);
1166}
1167
1168static __always_inline void
8eb510db
URS
1169__link_va(struct vmap_area *va, struct rb_root *root,
1170 struct rb_node *parent, struct rb_node **link,
1171 struct list_head *head, bool augment)
68ad4a33
URS
1172{
1173 /*
1174 * VA is still not in the list, but we can
1175 * identify its future previous list_head node.
1176 */
1177 if (likely(parent)) {
1178 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
1179 if (&parent->rb_right != link)
1180 head = head->prev;
db64fe02
NP
1181 }
1182
68ad4a33
URS
1183 /* Insert to the rb-tree */
1184 rb_link_node(&va->rb_node, parent, link);
8eb510db 1185 if (augment) {
68ad4a33
URS
1186 /*
1187 * Some explanation here. Just perform simple insertion
1188 * to the tree. We do not set va->subtree_max_size to
1189 * its current size before calling rb_insert_augmented().
153090f2 1190 * It is because we populate the tree from the bottom
68ad4a33
URS
1191 * to parent levels when the node _is_ in the tree.
1192 *
1193 * Therefore we set subtree_max_size to zero after insertion,
1194 * to let __augment_tree_propagate_from() puts everything to
1195 * the correct order later on.
1196 */
1197 rb_insert_augmented(&va->rb_node,
1198 root, &free_vmap_area_rb_augment_cb);
1199 va->subtree_max_size = 0;
1200 } else {
1201 rb_insert_color(&va->rb_node, root);
1202 }
db64fe02 1203
68ad4a33
URS
1204 /* Address-sort this list */
1205 list_add(&va->list, head);
db64fe02
NP
1206}
1207
68ad4a33 1208static __always_inline void
8eb510db
URS
1209link_va(struct vmap_area *va, struct rb_root *root,
1210 struct rb_node *parent, struct rb_node **link,
1211 struct list_head *head)
1212{
1213 __link_va(va, root, parent, link, head, false);
1214}
1215
1216static __always_inline void
1217link_va_augment(struct vmap_area *va, struct rb_root *root,
1218 struct rb_node *parent, struct rb_node **link,
1219 struct list_head *head)
1220{
1221 __link_va(va, root, parent, link, head, true);
1222}
1223
1224static __always_inline void
1225__unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
68ad4a33 1226{
460e42d1
URS
1227 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
1228 return;
db64fe02 1229
8eb510db 1230 if (augment)
460e42d1
URS
1231 rb_erase_augmented(&va->rb_node,
1232 root, &free_vmap_area_rb_augment_cb);
1233 else
1234 rb_erase(&va->rb_node, root);
1235
5d7a7c54 1236 list_del_init(&va->list);
460e42d1 1237 RB_CLEAR_NODE(&va->rb_node);
68ad4a33
URS
1238}
1239
8eb510db
URS
1240static __always_inline void
1241unlink_va(struct vmap_area *va, struct rb_root *root)
1242{
1243 __unlink_va(va, root, false);
1244}
1245
1246static __always_inline void
1247unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1248{
1249 __unlink_va(va, root, true);
1250}
1251
bb850f4d 1252#if DEBUG_AUGMENT_PROPAGATE_CHECK
c3385e84
JC
1253/*
1254 * Gets called when remove the node and rotate.
1255 */
1256static __always_inline unsigned long
1257compute_subtree_max_size(struct vmap_area *va)
1258{
1259 return max3(va_size(va),
1260 get_subtree_max_size(va->rb_node.rb_left),
1261 get_subtree_max_size(va->rb_node.rb_right));
1262}
1263
bb850f4d 1264static void
da27c9ed 1265augment_tree_propagate_check(void)
bb850f4d
URS
1266{
1267 struct vmap_area *va;
da27c9ed 1268 unsigned long computed_size;
bb850f4d 1269
da27c9ed
URS
1270 list_for_each_entry(va, &free_vmap_area_list, list) {
1271 computed_size = compute_subtree_max_size(va);
1272 if (computed_size != va->subtree_max_size)
1273 pr_emerg("tree is corrupted: %lu, %lu\n",
1274 va_size(va), va->subtree_max_size);
bb850f4d 1275 }
bb850f4d
URS
1276}
1277#endif
1278
68ad4a33
URS
1279/*
1280 * This function populates subtree_max_size from bottom to upper
1281 * levels starting from VA point. The propagation must be done
1282 * when VA size is modified by changing its va_start/va_end. Or
1283 * in case of newly inserting of VA to the tree.
1284 *
1285 * It means that __augment_tree_propagate_from() must be called:
1286 * - After VA has been inserted to the tree(free path);
1287 * - After VA has been shrunk(allocation path);
1288 * - After VA has been increased(merging path).
1289 *
1290 * Please note that, it does not mean that upper parent nodes
1291 * and their subtree_max_size are recalculated all the time up
1292 * to the root node.
1293 *
1294 * 4--8
1295 * /\
1296 * / \
1297 * / \
1298 * 2--2 8--8
1299 *
1300 * For example if we modify the node 4, shrinking it to 2, then
1301 * no any modification is required. If we shrink the node 2 to 1
1302 * its subtree_max_size is updated only, and set to 1. If we shrink
1303 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1304 * node becomes 4--6.
1305 */
1306static __always_inline void
1307augment_tree_propagate_from(struct vmap_area *va)
1308{
15ae144f
URS
1309 /*
1310 * Populate the tree from bottom towards the root until
1311 * the calculated maximum available size of checked node
1312 * is equal to its current one.
1313 */
1314 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
bb850f4d
URS
1315
1316#if DEBUG_AUGMENT_PROPAGATE_CHECK
da27c9ed 1317 augment_tree_propagate_check();
bb850f4d 1318#endif
68ad4a33
URS
1319}
1320
1321static void
1322insert_vmap_area(struct vmap_area *va,
1323 struct rb_root *root, struct list_head *head)
1324{
1325 struct rb_node **link;
1326 struct rb_node *parent;
1327
1328 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
1329 if (link)
1330 link_va(va, root, parent, link, head);
68ad4a33
URS
1331}
1332
1333static void
1334insert_vmap_area_augment(struct vmap_area *va,
1335 struct rb_node *from, struct rb_root *root,
1336 struct list_head *head)
1337{
1338 struct rb_node **link;
1339 struct rb_node *parent;
1340
1341 if (from)
1342 link = find_va_links(va, NULL, from, &parent);
1343 else
1344 link = find_va_links(va, root, NULL, &parent);
1345
9c801f61 1346 if (link) {
8eb510db 1347 link_va_augment(va, root, parent, link, head);
9c801f61
URS
1348 augment_tree_propagate_from(va);
1349 }
68ad4a33
URS
1350}
1351
1352/*
1353 * Merge de-allocated chunk of VA memory with previous
1354 * and next free blocks. If coalesce is not done a new
1355 * free area is inserted. If VA has been merged, it is
1356 * freed.
9c801f61
URS
1357 *
1358 * Please note, it can return NULL in case of overlap
1359 * ranges, followed by WARN() report. Despite it is a
1360 * buggy behaviour, a system can be alive and keep
1361 * ongoing.
68ad4a33 1362 */
3c5c3cfb 1363static __always_inline struct vmap_area *
8eb510db
URS
1364__merge_or_add_vmap_area(struct vmap_area *va,
1365 struct rb_root *root, struct list_head *head, bool augment)
68ad4a33
URS
1366{
1367 struct vmap_area *sibling;
1368 struct list_head *next;
1369 struct rb_node **link;
1370 struct rb_node *parent;
1371 bool merged = false;
1372
1373 /*
1374 * Find a place in the tree where VA potentially will be
1375 * inserted, unless it is merged with its sibling/siblings.
1376 */
1377 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
1378 if (!link)
1379 return NULL;
68ad4a33
URS
1380
1381 /*
1382 * Get next node of VA to check if merging can be done.
1383 */
1384 next = get_va_next_sibling(parent, link);
1385 if (unlikely(next == NULL))
1386 goto insert;
1387
1388 /*
1389 * start end
1390 * | |
1391 * |<------VA------>|<-----Next----->|
1392 * | |
1393 * start end
1394 */
1395 if (next != head) {
1396 sibling = list_entry(next, struct vmap_area, list);
1397 if (sibling->va_start == va->va_end) {
1398 sibling->va_start = va->va_start;
1399
68ad4a33
URS
1400 /* Free vmap_area object. */
1401 kmem_cache_free(vmap_area_cachep, va);
1402
1403 /* Point to the new merged area. */
1404 va = sibling;
1405 merged = true;
1406 }
1407 }
1408
1409 /*
1410 * start end
1411 * | |
1412 * |<-----Prev----->|<------VA------>|
1413 * | |
1414 * start end
1415 */
1416 if (next->prev != head) {
1417 sibling = list_entry(next->prev, struct vmap_area, list);
1418 if (sibling->va_end == va->va_start) {
5dd78640
URS
1419 /*
1420 * If both neighbors are coalesced, it is important
1421 * to unlink the "next" node first, followed by merging
1422 * with "previous" one. Otherwise the tree might not be
1423 * fully populated if a sibling's augmented value is
1424 * "normalized" because of rotation operations.
1425 */
54f63d9d 1426 if (merged)
8eb510db 1427 __unlink_va(va, root, augment);
68ad4a33 1428
5dd78640
URS
1429 sibling->va_end = va->va_end;
1430
68ad4a33
URS
1431 /* Free vmap_area object. */
1432 kmem_cache_free(vmap_area_cachep, va);
3c5c3cfb
DA
1433
1434 /* Point to the new merged area. */
1435 va = sibling;
1436 merged = true;
68ad4a33
URS
1437 }
1438 }
1439
1440insert:
5dd78640 1441 if (!merged)
8eb510db 1442 __link_va(va, root, parent, link, head, augment);
3c5c3cfb 1443
96e2db45
URS
1444 return va;
1445}
1446
8eb510db
URS
1447static __always_inline struct vmap_area *
1448merge_or_add_vmap_area(struct vmap_area *va,
1449 struct rb_root *root, struct list_head *head)
1450{
1451 return __merge_or_add_vmap_area(va, root, head, false);
1452}
1453
96e2db45
URS
1454static __always_inline struct vmap_area *
1455merge_or_add_vmap_area_augment(struct vmap_area *va,
1456 struct rb_root *root, struct list_head *head)
1457{
8eb510db 1458 va = __merge_or_add_vmap_area(va, root, head, true);
96e2db45
URS
1459 if (va)
1460 augment_tree_propagate_from(va);
1461
3c5c3cfb 1462 return va;
68ad4a33
URS
1463}
1464
1465static __always_inline bool
1466is_within_this_va(struct vmap_area *va, unsigned long size,
1467 unsigned long align, unsigned long vstart)
1468{
1469 unsigned long nva_start_addr;
1470
1471 if (va->va_start > vstart)
1472 nva_start_addr = ALIGN(va->va_start, align);
1473 else
1474 nva_start_addr = ALIGN(vstart, align);
1475
1476 /* Can be overflowed due to big size or alignment. */
1477 if (nva_start_addr + size < nva_start_addr ||
1478 nva_start_addr < vstart)
1479 return false;
1480
1481 return (nva_start_addr + size <= va->va_end);
1482}
1483
1484/*
1485 * Find the first free block(lowest start address) in the tree,
1486 * that will accomplish the request corresponding to passing
9333fe98
UR
1487 * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1488 * a search length is adjusted to account for worst case alignment
1489 * overhead.
68ad4a33
URS
1490 */
1491static __always_inline struct vmap_area *
f9863be4
URS
1492find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1493 unsigned long align, unsigned long vstart, bool adjust_search_size)
68ad4a33
URS
1494{
1495 struct vmap_area *va;
1496 struct rb_node *node;
9333fe98 1497 unsigned long length;
68ad4a33
URS
1498
1499 /* Start from the root. */
f9863be4 1500 node = root->rb_node;
68ad4a33 1501
9333fe98
UR
1502 /* Adjust the search size for alignment overhead. */
1503 length = adjust_search_size ? size + align - 1 : size;
1504
68ad4a33
URS
1505 while (node) {
1506 va = rb_entry(node, struct vmap_area, rb_node);
1507
9333fe98 1508 if (get_subtree_max_size(node->rb_left) >= length &&
68ad4a33
URS
1509 vstart < va->va_start) {
1510 node = node->rb_left;
1511 } else {
1512 if (is_within_this_va(va, size, align, vstart))
1513 return va;
1514
1515 /*
1516 * Does not make sense to go deeper towards the right
1517 * sub-tree if it does not have a free block that is
9333fe98 1518 * equal or bigger to the requested search length.
68ad4a33 1519 */
9333fe98 1520 if (get_subtree_max_size(node->rb_right) >= length) {
68ad4a33
URS
1521 node = node->rb_right;
1522 continue;
1523 }
1524
1525 /*
3806b041 1526 * OK. We roll back and find the first right sub-tree,
68ad4a33 1527 * that will satisfy the search criteria. It can happen
9f531973
URS
1528 * due to "vstart" restriction or an alignment overhead
1529 * that is bigger then PAGE_SIZE.
68ad4a33
URS
1530 */
1531 while ((node = rb_parent(node))) {
1532 va = rb_entry(node, struct vmap_area, rb_node);
1533 if (is_within_this_va(va, size, align, vstart))
1534 return va;
1535
9333fe98 1536 if (get_subtree_max_size(node->rb_right) >= length &&
68ad4a33 1537 vstart <= va->va_start) {
9f531973
URS
1538 /*
1539 * Shift the vstart forward. Please note, we update it with
1540 * parent's start address adding "1" because we do not want
1541 * to enter same sub-tree after it has already been checked
1542 * and no suitable free block found there.
1543 */
1544 vstart = va->va_start + 1;
68ad4a33
URS
1545 node = node->rb_right;
1546 break;
1547 }
1548 }
1549 }
1550 }
1551
1552 return NULL;
1553}
1554
a6cf4e0f
URS
1555#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1556#include <linux/random.h>
1557
1558static struct vmap_area *
bd1264c3 1559find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
a6cf4e0f
URS
1560 unsigned long align, unsigned long vstart)
1561{
1562 struct vmap_area *va;
1563
bd1264c3 1564 list_for_each_entry(va, head, list) {
a6cf4e0f
URS
1565 if (!is_within_this_va(va, size, align, vstart))
1566 continue;
1567
1568 return va;
1569 }
1570
1571 return NULL;
1572}
1573
1574static void
bd1264c3
SL
1575find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1576 unsigned long size, unsigned long align)
a6cf4e0f
URS
1577{
1578 struct vmap_area *va_1, *va_2;
1579 unsigned long vstart;
1580 unsigned int rnd;
1581
1582 get_random_bytes(&rnd, sizeof(rnd));
1583 vstart = VMALLOC_START + rnd;
1584
bd1264c3
SL
1585 va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1586 va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
a6cf4e0f
URS
1587
1588 if (va_1 != va_2)
1589 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1590 va_1, va_2, vstart);
1591}
1592#endif
1593
68ad4a33
URS
1594enum fit_type {
1595 NOTHING_FIT = 0,
1596 FL_FIT_TYPE = 1, /* full fit */
1597 LE_FIT_TYPE = 2, /* left edge fit */
1598 RE_FIT_TYPE = 3, /* right edge fit */
1599 NE_FIT_TYPE = 4 /* no edge fit */
1600};
1601
1602static __always_inline enum fit_type
1603classify_va_fit_type(struct vmap_area *va,
1604 unsigned long nva_start_addr, unsigned long size)
1605{
1606 enum fit_type type;
1607
1608 /* Check if it is within VA. */
1609 if (nva_start_addr < va->va_start ||
1610 nva_start_addr + size > va->va_end)
1611 return NOTHING_FIT;
1612
1613 /* Now classify. */
1614 if (va->va_start == nva_start_addr) {
1615 if (va->va_end == nva_start_addr + size)
1616 type = FL_FIT_TYPE;
1617 else
1618 type = LE_FIT_TYPE;
1619 } else if (va->va_end == nva_start_addr + size) {
1620 type = RE_FIT_TYPE;
1621 } else {
1622 type = NE_FIT_TYPE;
1623 }
1624
1625 return type;
1626}
1627
1628static __always_inline int
5b75b8e1
URS
1629va_clip(struct rb_root *root, struct list_head *head,
1630 struct vmap_area *va, unsigned long nva_start_addr,
1631 unsigned long size)
68ad4a33 1632{
2c929233 1633 struct vmap_area *lva = NULL;
1b23ff80 1634 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
68ad4a33
URS
1635
1636 if (type == FL_FIT_TYPE) {
1637 /*
1638 * No need to split VA, it fully fits.
1639 *
1640 * | |
1641 * V NVA V
1642 * |---------------|
1643 */
f9863be4 1644 unlink_va_augment(va, root);
68ad4a33
URS
1645 kmem_cache_free(vmap_area_cachep, va);
1646 } else if (type == LE_FIT_TYPE) {
1647 /*
1648 * Split left edge of fit VA.
1649 *
1650 * | |
1651 * V NVA V R
1652 * |-------|-------|
1653 */
1654 va->va_start += size;
1655 } else if (type == RE_FIT_TYPE) {
1656 /*
1657 * Split right edge of fit VA.
1658 *
1659 * | |
1660 * L V NVA V
1661 * |-------|-------|
1662 */
1663 va->va_end = nva_start_addr;
1664 } else if (type == NE_FIT_TYPE) {
1665 /*
1666 * Split no edge of fit VA.
1667 *
1668 * | |
1669 * L V NVA V R
1670 * |---|-------|---|
1671 */
82dd23e8
URS
1672 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1673 if (unlikely(!lva)) {
1674 /*
1675 * For percpu allocator we do not do any pre-allocation
1676 * and leave it as it is. The reason is it most likely
1677 * never ends up with NE_FIT_TYPE splitting. In case of
1678 * percpu allocations offsets and sizes are aligned to
1679 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1680 * are its main fitting cases.
1681 *
1682 * There are a few exceptions though, as an example it is
1683 * a first allocation (early boot up) when we have "one"
1684 * big free space that has to be split.
060650a2
URS
1685 *
1686 * Also we can hit this path in case of regular "vmap"
1687 * allocations, if "this" current CPU was not preloaded.
1688 * See the comment in alloc_vmap_area() why. If so, then
1689 * GFP_NOWAIT is used instead to get an extra object for
1690 * split purpose. That is rare and most time does not
1691 * occur.
1692 *
1693 * What happens if an allocation gets failed. Basically,
1694 * an "overflow" path is triggered to purge lazily freed
1695 * areas to free some memory, then, the "retry" path is
1696 * triggered to repeat one more time. See more details
1697 * in alloc_vmap_area() function.
82dd23e8
URS
1698 */
1699 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1700 if (!lva)
1701 return -1;
1702 }
68ad4a33
URS
1703
1704 /*
1705 * Build the remainder.
1706 */
1707 lva->va_start = va->va_start;
1708 lva->va_end = nva_start_addr;
1709
1710 /*
1711 * Shrink this VA to remaining size.
1712 */
1713 va->va_start = nva_start_addr + size;
1714 } else {
1715 return -1;
1716 }
1717
1718 if (type != FL_FIT_TYPE) {
1719 augment_tree_propagate_from(va);
1720
2c929233 1721 if (lva) /* type == NE_FIT_TYPE */
f9863be4 1722 insert_vmap_area_augment(lva, &va->rb_node, root, head);
68ad4a33
URS
1723 }
1724
1725 return 0;
1726}
1727
38f6b9af
URS
1728static unsigned long
1729va_alloc(struct vmap_area *va,
1730 struct rb_root *root, struct list_head *head,
1731 unsigned long size, unsigned long align,
1732 unsigned long vstart, unsigned long vend)
1733{
1734 unsigned long nva_start_addr;
1735 int ret;
1736
1737 if (va->va_start > vstart)
1738 nva_start_addr = ALIGN(va->va_start, align);
1739 else
1740 nva_start_addr = ALIGN(vstart, align);
1741
1742 /* Check the "vend" restriction. */
1743 if (nva_start_addr + size > vend)
1744 return vend;
1745
1746 /* Update the free vmap_area. */
5b75b8e1 1747 ret = va_clip(root, head, va, nva_start_addr, size);
38f6b9af
URS
1748 if (WARN_ON_ONCE(ret))
1749 return vend;
1750
1751 return nva_start_addr;
1752}
1753
68ad4a33
URS
1754/*
1755 * Returns a start address of the newly allocated area, if success.
1756 * Otherwise a vend is returned that indicates failure.
1757 */
1758static __always_inline unsigned long
f9863be4
URS
1759__alloc_vmap_area(struct rb_root *root, struct list_head *head,
1760 unsigned long size, unsigned long align,
cacca6ba 1761 unsigned long vstart, unsigned long vend)
68ad4a33 1762{
9333fe98 1763 bool adjust_search_size = true;
68ad4a33
URS
1764 unsigned long nva_start_addr;
1765 struct vmap_area *va;
68ad4a33 1766
9333fe98
UR
1767 /*
1768 * Do not adjust when:
1769 * a) align <= PAGE_SIZE, because it does not make any sense.
1770 * All blocks(their start addresses) are at least PAGE_SIZE
1771 * aligned anyway;
1772 * b) a short range where a requested size corresponds to exactly
1773 * specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1774 * With adjusted search length an allocation would not succeed.
1775 */
1776 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1777 adjust_search_size = false;
1778
f9863be4 1779 va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
68ad4a33
URS
1780 if (unlikely(!va))
1781 return vend;
1782
38f6b9af
URS
1783 nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend);
1784 if (nva_start_addr == vend)
68ad4a33
URS
1785 return vend;
1786
a6cf4e0f 1787#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
bd1264c3 1788 find_vmap_lowest_match_check(root, head, size, align);
a6cf4e0f
URS
1789#endif
1790
68ad4a33
URS
1791 return nva_start_addr;
1792}
4da56b99 1793
d98c9e83
AR
1794/*
1795 * Free a region of KVA allocated by alloc_vmap_area
1796 */
1797static void free_vmap_area(struct vmap_area *va)
1798{
d0936029
URS
1799 struct vmap_node *vn = addr_to_node(va->va_start);
1800
d98c9e83
AR
1801 /*
1802 * Remove from the busy tree/list.
1803 */
d0936029
URS
1804 spin_lock(&vn->busy.lock);
1805 unlink_va(va, &vn->busy.root);
1806 spin_unlock(&vn->busy.lock);
d98c9e83
AR
1807
1808 /*
1809 * Insert/Merge it back to the free tree/list.
1810 */
1811 spin_lock(&free_vmap_area_lock);
96e2db45 1812 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
d98c9e83
AR
1813 spin_unlock(&free_vmap_area_lock);
1814}
1815
187f8cc4
URS
1816static inline void
1817preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1818{
1819 struct vmap_area *va = NULL;
1820
1821 /*
1822 * Preload this CPU with one extra vmap_area object. It is used
1823 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1824 * a CPU that does an allocation is preloaded.
1825 *
1826 * We do it in non-atomic context, thus it allows us to use more
1827 * permissive allocation masks to be more stable under low memory
1828 * condition and high memory pressure.
1829 */
1830 if (!this_cpu_read(ne_fit_preload_node))
1831 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1832
1833 spin_lock(lock);
1834
1835 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1836 kmem_cache_free(vmap_area_cachep, va);
1837}
1838
72210662
URS
1839static struct vmap_pool *
1840size_to_va_pool(struct vmap_node *vn, unsigned long size)
1841{
1842 unsigned int idx = (size - 1) / PAGE_SIZE;
1843
1844 if (idx < MAX_VA_SIZE_PAGES)
1845 return &vn->pool[idx];
1846
1847 return NULL;
1848}
1849
1850static bool
1851node_pool_add_va(struct vmap_node *n, struct vmap_area *va)
1852{
1853 struct vmap_pool *vp;
1854
1855 vp = size_to_va_pool(n, va_size(va));
1856 if (!vp)
1857 return false;
1858
1859 spin_lock(&n->pool_lock);
1860 list_add(&va->list, &vp->head);
1861 WRITE_ONCE(vp->len, vp->len + 1);
1862 spin_unlock(&n->pool_lock);
1863
1864 return true;
1865}
1866
1867static struct vmap_area *
1868node_pool_del_va(struct vmap_node *vn, unsigned long size,
1869 unsigned long align, unsigned long vstart,
1870 unsigned long vend)
1871{
1872 struct vmap_area *va = NULL;
1873 struct vmap_pool *vp;
1874 int err = 0;
1875
1876 vp = size_to_va_pool(vn, size);
1877 if (!vp || list_empty(&vp->head))
1878 return NULL;
1879
1880 spin_lock(&vn->pool_lock);
1881 if (!list_empty(&vp->head)) {
1882 va = list_first_entry(&vp->head, struct vmap_area, list);
1883
1884 if (IS_ALIGNED(va->va_start, align)) {
1885 /*
1886 * Do some sanity check and emit a warning
1887 * if one of below checks detects an error.
1888 */
1889 err |= (va_size(va) != size);
1890 err |= (va->va_start < vstart);
1891 err |= (va->va_end > vend);
1892
1893 if (!WARN_ON_ONCE(err)) {
1894 list_del_init(&va->list);
1895 WRITE_ONCE(vp->len, vp->len - 1);
1896 } else {
1897 va = NULL;
1898 }
1899 } else {
1900 list_move_tail(&va->list, &vp->head);
1901 va = NULL;
1902 }
1903 }
1904 spin_unlock(&vn->pool_lock);
1905
1906 return va;
1907}
1908
1909static struct vmap_area *
1910node_alloc(unsigned long size, unsigned long align,
1911 unsigned long vstart, unsigned long vend,
1912 unsigned long *addr, unsigned int *vn_id)
1913{
1914 struct vmap_area *va;
1915
1916 *vn_id = 0;
1917 *addr = vend;
1918
1919 /*
1920 * Fallback to a global heap if not vmalloc or there
1921 * is only one node.
1922 */
1923 if (vstart != VMALLOC_START || vend != VMALLOC_END ||
1924 nr_vmap_nodes == 1)
1925 return NULL;
1926
1927 *vn_id = raw_smp_processor_id() % nr_vmap_nodes;
1928 va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend);
1929 *vn_id = encode_vn_id(*vn_id);
1930
1931 if (va)
1932 *addr = va->va_start;
1933
1934 return va;
1935}
1936
aaab830a 1937static inline void setup_vmalloc_vm(struct vm_struct *vm,
1938 struct vmap_area *va, unsigned long flags, const void *caller)
1939{
1940 vm->flags = flags;
1941 vm->addr = (void *)va->va_start;
1942 vm->size = va->va_end - va->va_start;
1943 vm->caller = caller;
1944 va->vm = vm;
1945}
1946
db64fe02
NP
1947/*
1948 * Allocate a region of KVA of the specified size and alignment, within the
aaab830a 1949 * vstart and vend. If vm is passed in, the two will also be bound.
db64fe02
NP
1950 */
1951static struct vmap_area *alloc_vmap_area(unsigned long size,
1952 unsigned long align,
1953 unsigned long vstart, unsigned long vend,
869176a0 1954 int node, gfp_t gfp_mask,
4b68a773 1955 unsigned long va_flags, struct vm_struct *vm)
db64fe02 1956{
d0936029 1957 struct vmap_node *vn;
187f8cc4 1958 struct vmap_area *va;
12e376a6 1959 unsigned long freed;
1da177e4 1960 unsigned long addr;
72210662 1961 unsigned int vn_id;
db64fe02 1962 int purged = 0;
d98c9e83 1963 int ret;
db64fe02 1964
7e4a32c0
HL
1965 if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
1966 return ERR_PTR(-EINVAL);
db64fe02 1967
68ad4a33
URS
1968 if (unlikely(!vmap_initialized))
1969 return ERR_PTR(-EBUSY);
1970
5803ed29 1971 might_sleep();
db64fe02 1972
7f88f88f 1973 /*
72210662
URS
1974 * If a VA is obtained from a global heap(if it fails here)
1975 * it is anyway marked with this "vn_id" so it is returned
1976 * to this pool's node later. Such way gives a possibility
1977 * to populate pools based on users demand.
1978 *
1979 * On success a ready to go VA is returned.
7f88f88f 1980 */
72210662
URS
1981 va = node_alloc(size, align, vstart, vend, &addr, &vn_id);
1982 if (!va) {
1983 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1984
1985 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1986 if (unlikely(!va))
1987 return ERR_PTR(-ENOMEM);
db64fe02 1988
96aa8437
URS
1989 /*
1990 * Only scan the relevant parts containing pointers to other objects
1991 * to avoid false negatives.
1992 */
1993 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1994 }
7f88f88f 1995
db64fe02 1996retry:
72210662
URS
1997 if (addr == vend) {
1998 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1999 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
2000 size, align, vstart, vend);
2001 spin_unlock(&free_vmap_area_lock);
2002 }
89699605 2003
cf243da6
URS
2004 trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
2005
afd07389 2006 /*
68ad4a33
URS
2007 * If an allocation fails, the "vend" address is
2008 * returned. Therefore trigger the overflow path.
afd07389 2009 */
68ad4a33 2010 if (unlikely(addr == vend))
89699605 2011 goto overflow;
db64fe02
NP
2012
2013 va->va_start = addr;
2014 va->va_end = addr + size;
688fcbfc 2015 va->vm = NULL;
72210662 2016 va->flags = (va_flags | vn_id);
68ad4a33 2017
4b68a773
BH
2018 if (vm) {
2019 vm->addr = (void *)va->va_start;
2020 vm->size = va->va_end - va->va_start;
2021 va->vm = vm;
2022 }
aaab830a 2023
d0936029
URS
2024 vn = addr_to_node(va->va_start);
2025
2026 spin_lock(&vn->busy.lock);
2027 insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
2028 spin_unlock(&vn->busy.lock);
db64fe02 2029
61e16557 2030 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
2031 BUG_ON(va->va_start < vstart);
2032 BUG_ON(va->va_end > vend);
2033
d98c9e83
AR
2034 ret = kasan_populate_vmalloc(addr, size);
2035 if (ret) {
2036 free_vmap_area(va);
2037 return ERR_PTR(ret);
2038 }
2039
db64fe02 2040 return va;
89699605
NP
2041
2042overflow:
89699605 2043 if (!purged) {
77e50af0 2044 reclaim_and_purge_vmap_areas();
89699605
NP
2045 purged = 1;
2046 goto retry;
2047 }
4da56b99 2048
12e376a6
URS
2049 freed = 0;
2050 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
2051
2052 if (freed > 0) {
2053 purged = 0;
2054 goto retry;
4da56b99
CW
2055 }
2056
03497d76 2057 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
2058 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
2059 size);
68ad4a33
URS
2060
2061 kmem_cache_free(vmap_area_cachep, va);
89699605 2062 return ERR_PTR(-EBUSY);
db64fe02
NP
2063}
2064
4da56b99
CW
2065int register_vmap_purge_notifier(struct notifier_block *nb)
2066{
2067 return blocking_notifier_chain_register(&vmap_notify_list, nb);
2068}
2069EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
2070
2071int unregister_vmap_purge_notifier(struct notifier_block *nb)
2072{
2073 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
2074}
2075EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
2076
db64fe02
NP
2077/*
2078 * lazy_max_pages is the maximum amount of virtual address space we gather up
2079 * before attempting to purge with a TLB flush.
2080 *
2081 * There is a tradeoff here: a larger number will cover more kernel page tables
2082 * and take slightly longer to purge, but it will linearly reduce the number of
2083 * global TLB flushes that must be performed. It would seem natural to scale
2084 * this number up linearly with the number of CPUs (because vmapping activity
2085 * could also scale linearly with the number of CPUs), however it is likely
2086 * that in practice, workloads might be constrained in other ways that mean
2087 * vmap activity will not scale linearly with CPUs. Also, I want to be
2088 * conservative and not introduce a big latency on huge systems, so go with
2089 * a less aggressive log scale. It will still be an improvement over the old
2090 * code, and it will be simple to change the scale factor if we find that it
2091 * becomes a problem on bigger systems.
2092 */
2093static unsigned long lazy_max_pages(void)
2094{
2095 unsigned int log;
2096
2097 log = fls(num_online_cpus());
2098
2099 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
2100}
2101
4d36e6f8 2102static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 2103
0574ecd1 2104/*
f0953a1b 2105 * Serialize vmap purging. There is no actual critical section protected
153090f2 2106 * by this lock, but we want to avoid concurrent calls for performance
0574ecd1
CH
2107 * reasons and to make the pcpu_get_vm_areas more deterministic.
2108 */
f9e09977 2109static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 2110
02b709df
NP
2111/* for per-CPU blocks */
2112static void purge_fragmented_blocks_allcpus(void);
282631cb 2113static cpumask_t purge_nodes;
02b709df 2114
72210662
URS
2115static void
2116reclaim_list_global(struct list_head *head)
db64fe02 2117{
72210662 2118 struct vmap_area *va, *n;
db64fe02 2119
72210662
URS
2120 if (list_empty(head))
2121 return;
02b709df 2122
e36176be 2123 spin_lock(&free_vmap_area_lock);
72210662
URS
2124 list_for_each_entry_safe(va, n, head, list)
2125 merge_or_add_vmap_area_augment(va,
2126 &free_vmap_area_root, &free_vmap_area_list);
2127 spin_unlock(&free_vmap_area_lock);
2128}
96e2db45 2129
72210662
URS
2130static void
2131decay_va_pool_node(struct vmap_node *vn, bool full_decay)
2132{
2133 struct vmap_area *va, *nva;
2134 struct list_head decay_list;
2135 struct rb_root decay_root;
2136 unsigned long n_decay;
2137 int i;
68571be9 2138
72210662
URS
2139 decay_root = RB_ROOT;
2140 INIT_LIST_HEAD(&decay_list);
96e2db45 2141
72210662
URS
2142 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
2143 struct list_head tmp_list;
db64fe02 2144
72210662
URS
2145 if (list_empty(&vn->pool[i].head))
2146 continue;
db64fe02 2147
72210662
URS
2148 INIT_LIST_HEAD(&tmp_list);
2149
2150 /* Detach the pool, so no-one can access it. */
2151 spin_lock(&vn->pool_lock);
2152 list_replace_init(&vn->pool[i].head, &tmp_list);
2153 spin_unlock(&vn->pool_lock);
2154
2155 if (full_decay)
2156 WRITE_ONCE(vn->pool[i].len, 0);
2157
2158 /* Decay a pool by ~25% out of left objects. */
2159 n_decay = vn->pool[i].len >> 2;
2160
2161 list_for_each_entry_safe(va, nva, &tmp_list, list) {
2162 list_del_init(&va->list);
2163 merge_or_add_vmap_area(va, &decay_root, &decay_list);
2164
2165 if (!full_decay) {
2166 WRITE_ONCE(vn->pool[i].len, vn->pool[i].len - 1);
2167
2168 if (!--n_decay)
2169 break;
2170 }
2171 }
763b218d 2172
dd3b8353 2173 /*
15e02a39
URS
2174 * Attach the pool back if it has been partly decayed.
2175 * Please note, it is supposed that nobody(other contexts)
2176 * can populate the pool therefore a simple list replace
2177 * operation takes place here.
dd3b8353 2178 */
72210662
URS
2179 if (!full_decay && !list_empty(&tmp_list)) {
2180 spin_lock(&vn->pool_lock);
2181 list_replace_init(&tmp_list, &vn->pool[i].head);
2182 spin_unlock(&vn->pool_lock);
2183 }
2184 }
3c5c3cfb 2185
72210662
URS
2186 reclaim_list_global(&decay_list);
2187}
2188
2189static void purge_vmap_node(struct work_struct *work)
2190{
2191 struct vmap_node *vn = container_of(work,
2192 struct vmap_node, purge_work);
2193 struct vmap_area *va, *n_va;
2194 LIST_HEAD(local_list);
2195
2196 vn->nr_purged = 0;
2197
282631cb 2198 list_for_each_entry_safe(va, n_va, &vn->purge_list, list) {
4d36e6f8 2199 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
3c5c3cfb
DA
2200 unsigned long orig_start = va->va_start;
2201 unsigned long orig_end = va->va_end;
72210662 2202 unsigned int vn_id = decode_vn_id(va->flags);
763b218d 2203
72210662 2204 list_del_init(&va->list);
9c801f61 2205
3c5c3cfb
DA
2206 if (is_vmalloc_or_module_addr((void *)orig_start))
2207 kasan_release_vmalloc(orig_start, orig_end,
2208 va->va_start, va->va_end);
dd3b8353 2209
4d36e6f8 2210 atomic_long_sub(nr, &vmap_lazy_nr);
72210662 2211 vn->nr_purged++;
68571be9 2212
72210662
URS
2213 if (is_vn_id_valid(vn_id) && !vn->skip_populate)
2214 if (node_pool_add_va(vn, va))
2215 continue;
2216
2217 /* Go back to global. */
2218 list_add(&va->list, &local_list);
763b218d 2219 }
6030fd5f 2220
72210662 2221 reclaim_list_global(&local_list);
282631cb
URS
2222}
2223
2224/*
2225 * Purges all lazily-freed vmap areas.
2226 */
72210662
URS
2227static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end,
2228 bool full_pool_decay)
282631cb 2229{
72210662
URS
2230 unsigned long nr_purged_areas = 0;
2231 unsigned int nr_purge_helpers;
2232 unsigned int nr_purge_nodes;
282631cb
URS
2233 struct vmap_node *vn;
2234 int i;
2235
2236 lockdep_assert_held(&vmap_purge_lock);
72210662
URS
2237
2238 /*
2239 * Use cpumask to mark which node has to be processed.
2240 */
282631cb
URS
2241 purge_nodes = CPU_MASK_NONE;
2242
2243 for (i = 0; i < nr_vmap_nodes; i++) {
2244 vn = &vmap_nodes[i];
2245
2246 INIT_LIST_HEAD(&vn->purge_list);
72210662
URS
2247 vn->skip_populate = full_pool_decay;
2248 decay_va_pool_node(vn, full_pool_decay);
282631cb
URS
2249
2250 if (RB_EMPTY_ROOT(&vn->lazy.root))
2251 continue;
2252
2253 spin_lock(&vn->lazy.lock);
2254 WRITE_ONCE(vn->lazy.root.rb_node, NULL);
2255 list_replace_init(&vn->lazy.head, &vn->purge_list);
2256 spin_unlock(&vn->lazy.lock);
2257
2258 start = min(start, list_first_entry(&vn->purge_list,
2259 struct vmap_area, list)->va_start);
2260
2261 end = max(end, list_last_entry(&vn->purge_list,
2262 struct vmap_area, list)->va_end);
2263
2264 cpumask_set_cpu(i, &purge_nodes);
2265 }
2266
72210662
URS
2267 nr_purge_nodes = cpumask_weight(&purge_nodes);
2268 if (nr_purge_nodes > 0) {
282631cb
URS
2269 flush_tlb_kernel_range(start, end);
2270
72210662
URS
2271 /* One extra worker is per a lazy_max_pages() full set minus one. */
2272 nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages();
2273 nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1;
2274
282631cb 2275 for_each_cpu(i, &purge_nodes) {
72210662
URS
2276 vn = &vmap_nodes[i];
2277
2278 if (nr_purge_helpers > 0) {
2279 INIT_WORK(&vn->purge_work, purge_vmap_node);
2280
2281 if (cpumask_test_cpu(i, cpu_online_mask))
2282 schedule_work_on(i, &vn->purge_work);
2283 else
2284 schedule_work(&vn->purge_work);
2285
2286 nr_purge_helpers--;
2287 } else {
2288 vn->purge_work.func = NULL;
2289 purge_vmap_node(&vn->purge_work);
2290 nr_purged_areas += vn->nr_purged;
2291 }
2292 }
2293
2294 for_each_cpu(i, &purge_nodes) {
2295 vn = &vmap_nodes[i];
2296
2297 if (vn->purge_work.func) {
2298 flush_work(&vn->purge_work);
2299 nr_purged_areas += vn->nr_purged;
2300 }
282631cb
URS
2301 }
2302 }
2303
72210662
URS
2304 trace_purge_vmap_area_lazy(start, end, nr_purged_areas);
2305 return nr_purged_areas > 0;
db64fe02
NP
2306}
2307
2308/*
77e50af0 2309 * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
db64fe02 2310 */
77e50af0
TG
2311static void reclaim_and_purge_vmap_areas(void)
2312
db64fe02 2313{
f9e09977 2314 mutex_lock(&vmap_purge_lock);
0574ecd1 2315 purge_fragmented_blocks_allcpus();
72210662 2316 __purge_vmap_area_lazy(ULONG_MAX, 0, true);
f9e09977 2317 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
2318}
2319
690467c8
URS
2320static void drain_vmap_area_work(struct work_struct *work)
2321{
282631cb 2322 mutex_lock(&vmap_purge_lock);
72210662 2323 __purge_vmap_area_lazy(ULONG_MAX, 0, false);
282631cb 2324 mutex_unlock(&vmap_purge_lock);
690467c8
URS
2325}
2326
db64fe02 2327/*
edd89818
URS
2328 * Free a vmap area, caller ensuring that the area has been unmapped,
2329 * unlinked and flush_cache_vunmap had been called for the correct
2330 * range previously.
db64fe02 2331 */
64141da5 2332static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 2333{
8c4196fe
URS
2334 unsigned long nr_lazy_max = lazy_max_pages();
2335 unsigned long va_start = va->va_start;
72210662
URS
2336 unsigned int vn_id = decode_vn_id(va->flags);
2337 struct vmap_node *vn;
4d36e6f8 2338 unsigned long nr_lazy;
80c4bd7a 2339
edd89818
URS
2340 if (WARN_ON_ONCE(!list_empty(&va->list)))
2341 return;
dd3b8353 2342
4d36e6f8
URS
2343 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
2344 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a 2345
96e2db45 2346 /*
72210662
URS
2347 * If it was request by a certain node we would like to
2348 * return it to that node, i.e. its pool for later reuse.
96e2db45 2349 */
72210662
URS
2350 vn = is_vn_id_valid(vn_id) ?
2351 id_to_node(vn_id):addr_to_node(va->va_start);
2352
282631cb 2353 spin_lock(&vn->lazy.lock);
72210662 2354 insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head);
282631cb 2355 spin_unlock(&vn->lazy.lock);
80c4bd7a 2356
8c4196fe
URS
2357 trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
2358
96e2db45 2359 /* After this point, we may free va at any time */
8c4196fe 2360 if (unlikely(nr_lazy > nr_lazy_max))
690467c8 2361 schedule_work(&drain_vmap_work);
db64fe02
NP
2362}
2363
b29acbdc
NP
2364/*
2365 * Free and unmap a vmap area
2366 */
2367static void free_unmap_vmap_area(struct vmap_area *va)
2368{
2369 flush_cache_vunmap(va->va_start, va->va_end);
4ad0ae8c 2370 vunmap_range_noflush(va->va_start, va->va_end);
8e57f8ac 2371 if (debug_pagealloc_enabled_static())
82a2e924
CP
2372 flush_tlb_kernel_range(va->va_start, va->va_end);
2373
c8eef01e 2374 free_vmap_area_noflush(va);
b29acbdc
NP
2375}
2376
993d0b28 2377struct vmap_area *find_vmap_area(unsigned long addr)
db64fe02 2378{
d0936029 2379 struct vmap_node *vn;
db64fe02 2380 struct vmap_area *va;
d0936029 2381 int i, j;
db64fe02 2382
4ed91fa9
URS
2383 if (unlikely(!vmap_initialized))
2384 return NULL;
2385
d0936029
URS
2386 /*
2387 * An addr_to_node_id(addr) converts an address to a node index
2388 * where a VA is located. If VA spans several zones and passed
2389 * addr is not the same as va->va_start, what is not common, we
15e02a39 2390 * may need to scan extra nodes. See an example:
d0936029 2391 *
15e02a39 2392 * <----va---->
d0936029
URS
2393 * -|-----|-----|-----|-----|-
2394 * 1 2 0 1
2395 *
15e02a39
URS
2396 * VA resides in node 1 whereas it spans 1, 2 an 0. If passed
2397 * addr is within 2 or 0 nodes we should do extra work.
d0936029
URS
2398 */
2399 i = j = addr_to_node_id(addr);
2400 do {
2401 vn = &vmap_nodes[i];
db64fe02 2402
d0936029
URS
2403 spin_lock(&vn->busy.lock);
2404 va = __find_vmap_area(addr, &vn->busy.root);
2405 spin_unlock(&vn->busy.lock);
2406
2407 if (va)
2408 return va;
2409 } while ((i = (i + 1) % nr_vmap_nodes) != j);
2410
2411 return NULL;
db64fe02
NP
2412}
2413
edd89818
URS
2414static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
2415{
d0936029 2416 struct vmap_node *vn;
edd89818 2417 struct vmap_area *va;
d0936029 2418 int i, j;
edd89818 2419
15e02a39
URS
2420 /*
2421 * Check the comment in the find_vmap_area() about the loop.
2422 */
d0936029
URS
2423 i = j = addr_to_node_id(addr);
2424 do {
2425 vn = &vmap_nodes[i];
edd89818 2426
d0936029
URS
2427 spin_lock(&vn->busy.lock);
2428 va = __find_vmap_area(addr, &vn->busy.root);
2429 if (va)
2430 unlink_va(va, &vn->busy.root);
2431 spin_unlock(&vn->busy.lock);
2432
2433 if (va)
2434 return va;
2435 } while ((i = (i + 1) % nr_vmap_nodes) != j);
2436
2437 return NULL;
edd89818
URS
2438}
2439
db64fe02
NP
2440/*** Per cpu kva allocator ***/
2441
2442/*
2443 * vmap space is limited especially on 32 bit architectures. Ensure there is
2444 * room for at least 16 percpu vmap blocks per CPU.
2445 */
2446/*
2447 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
2448 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
2449 * instead (we just need a rough idea)
2450 */
2451#if BITS_PER_LONG == 32
2452#define VMALLOC_SPACE (128UL*1024*1024)
2453#else
2454#define VMALLOC_SPACE (128UL*1024*1024*1024)
2455#endif
2456
2457#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
2458#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
2459#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
2460#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
2461#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
2462#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
2463#define VMAP_BBMAP_BITS \
2464 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
2465 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
2466 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
2467
2468#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
2469
77e50af0
TG
2470/*
2471 * Purge threshold to prevent overeager purging of fragmented blocks for
2472 * regular operations: Purge if vb->free is less than 1/4 of the capacity.
2473 */
2474#define VMAP_PURGE_THRESHOLD (VMAP_BBMAP_BITS / 4)
2475
869176a0
BH
2476#define VMAP_RAM 0x1 /* indicates vm_map_ram area*/
2477#define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/
2478#define VMAP_FLAGS_MASK 0x3
2479
db64fe02
NP
2480struct vmap_block_queue {
2481 spinlock_t lock;
2482 struct list_head free;
062eacf5
URS
2483
2484 /*
2485 * An xarray requires an extra memory dynamically to
2486 * be allocated. If it is an issue, we can use rb-tree
2487 * instead.
2488 */
2489 struct xarray vmap_blocks;
db64fe02
NP
2490};
2491
2492struct vmap_block {
2493 spinlock_t lock;
2494 struct vmap_area *va;
db64fe02 2495 unsigned long free, dirty;
d76f9954 2496 DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
7d61bfe8 2497 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
2498 struct list_head free_list;
2499 struct rcu_head rcu_head;
02b709df 2500 struct list_head purge;
db64fe02
NP
2501};
2502
2503/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
2504static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
2505
2506/*
062eacf5
URS
2507 * In order to fast access to any "vmap_block" associated with a
2508 * specific address, we use a hash.
2509 *
2510 * A per-cpu vmap_block_queue is used in both ways, to serialize
2511 * an access to free block chains among CPUs(alloc path) and it
2512 * also acts as a vmap_block hash(alloc/free paths). It means we
2513 * overload it, since we already have the per-cpu array which is
2514 * used as a hash table. When used as a hash a 'cpu' passed to
2515 * per_cpu() is not actually a CPU but rather a hash index.
2516 *
fa1c77c1 2517 * A hash function is addr_to_vb_xa() which hashes any address
062eacf5
URS
2518 * to a specific index(in a hash) it belongs to. This then uses a
2519 * per_cpu() macro to access an array with generated index.
2520 *
2521 * An example:
2522 *
2523 * CPU_1 CPU_2 CPU_0
2524 * | | |
2525 * V V V
2526 * 0 10 20 30 40 50 60
2527 * |------|------|------|------|------|------|...<vmap address space>
2528 * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2
2529 *
2530 * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
2531 * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
2532 *
2533 * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
2534 * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
2535 *
2536 * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
2537 * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
2538 *
2539 * This technique almost always avoids lock contention on insert/remove,
2540 * however xarray spinlocks protect against any contention that remains.
db64fe02 2541 */
062eacf5 2542static struct xarray *
fa1c77c1 2543addr_to_vb_xa(unsigned long addr)
062eacf5
URS
2544{
2545 int index = (addr / VMAP_BLOCK_SIZE) % num_possible_cpus();
2546
2547 return &per_cpu(vmap_block_queue, index).vmap_blocks;
2548}
db64fe02
NP
2549
2550/*
2551 * We should probably have a fallback mechanism to allocate virtual memory
2552 * out of partially filled vmap blocks. However vmap block sizing should be
2553 * fairly reasonable according to the vmalloc size, so it shouldn't be a
2554 * big problem.
2555 */
2556
2557static unsigned long addr_to_vb_idx(unsigned long addr)
2558{
2559 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
2560 addr /= VMAP_BLOCK_SIZE;
2561 return addr;
2562}
2563
cf725ce2
RP
2564static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2565{
2566 unsigned long addr;
2567
2568 addr = va_start + (pages_off << PAGE_SHIFT);
2569 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2570 return (void *)addr;
2571}
2572
2573/**
2574 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2575 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
2576 * @order: how many 2^order pages should be occupied in newly allocated block
2577 * @gfp_mask: flags for the page level allocator
2578 *
a862f68a 2579 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
2580 */
2581static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
2582{
2583 struct vmap_block_queue *vbq;
2584 struct vmap_block *vb;
2585 struct vmap_area *va;
062eacf5 2586 struct xarray *xa;
db64fe02
NP
2587 unsigned long vb_idx;
2588 int node, err;
cf725ce2 2589 void *vaddr;
db64fe02
NP
2590
2591 node = numa_node_id();
2592
2593 vb = kmalloc_node(sizeof(struct vmap_block),
2594 gfp_mask & GFP_RECLAIM_MASK, node);
2595 if (unlikely(!vb))
2596 return ERR_PTR(-ENOMEM);
2597
2598 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2599 VMALLOC_START, VMALLOC_END,
869176a0 2600 node, gfp_mask,
4b68a773 2601 VMAP_RAM|VMAP_BLOCK, NULL);
ddf9c6d4 2602 if (IS_ERR(va)) {
db64fe02 2603 kfree(vb);
e7d86340 2604 return ERR_CAST(va);
db64fe02
NP
2605 }
2606
cf725ce2 2607 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
2608 spin_lock_init(&vb->lock);
2609 vb->va = va;
cf725ce2
RP
2610 /* At least something should be left free */
2611 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
d76f9954 2612 bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
cf725ce2 2613 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 2614 vb->dirty = 0;
7d61bfe8
RP
2615 vb->dirty_min = VMAP_BBMAP_BITS;
2616 vb->dirty_max = 0;
d76f9954 2617 bitmap_set(vb->used_map, 0, (1UL << order));
db64fe02 2618 INIT_LIST_HEAD(&vb->free_list);
db64fe02 2619
fa1c77c1 2620 xa = addr_to_vb_xa(va->va_start);
db64fe02 2621 vb_idx = addr_to_vb_idx(va->va_start);
062eacf5 2622 err = xa_insert(xa, vb_idx, vb, gfp_mask);
0f14599c
MWO
2623 if (err) {
2624 kfree(vb);
2625 free_vmap_area(va);
2626 return ERR_PTR(err);
2627 }
db64fe02 2628
3f804920 2629 vbq = raw_cpu_ptr(&vmap_block_queue);
db64fe02 2630 spin_lock(&vbq->lock);
68ac546f 2631 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 2632 spin_unlock(&vbq->lock);
db64fe02 2633
cf725ce2 2634 return vaddr;
db64fe02
NP
2635}
2636
db64fe02
NP
2637static void free_vmap_block(struct vmap_block *vb)
2638{
d0936029 2639 struct vmap_node *vn;
db64fe02 2640 struct vmap_block *tmp;
062eacf5 2641 struct xarray *xa;
db64fe02 2642
fa1c77c1 2643 xa = addr_to_vb_xa(vb->va->va_start);
062eacf5 2644 tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
db64fe02
NP
2645 BUG_ON(tmp != vb);
2646
d0936029
URS
2647 vn = addr_to_node(vb->va->va_start);
2648 spin_lock(&vn->busy.lock);
2649 unlink_va(vb->va, &vn->busy.root);
2650 spin_unlock(&vn->busy.lock);
edd89818 2651
64141da5 2652 free_vmap_area_noflush(vb->va);
22a3c7d1 2653 kfree_rcu(vb, rcu_head);
db64fe02
NP
2654}
2655
ca5e46c3 2656static bool purge_fragmented_block(struct vmap_block *vb,
77e50af0
TG
2657 struct vmap_block_queue *vbq, struct list_head *purge_list,
2658 bool force_purge)
ca5e46c3
TG
2659{
2660 if (vb->free + vb->dirty != VMAP_BBMAP_BITS ||
2661 vb->dirty == VMAP_BBMAP_BITS)
2662 return false;
2663
77e50af0
TG
2664 /* Don't overeagerly purge usable blocks unless requested */
2665 if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD))
2666 return false;
2667
ca5e46c3 2668 /* prevent further allocs after releasing lock */
7f48121e 2669 WRITE_ONCE(vb->free, 0);
ca5e46c3 2670 /* prevent purging it again */
7f48121e 2671 WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS);
ca5e46c3
TG
2672 vb->dirty_min = 0;
2673 vb->dirty_max = VMAP_BBMAP_BITS;
2674 spin_lock(&vbq->lock);
2675 list_del_rcu(&vb->free_list);
2676 spin_unlock(&vbq->lock);
2677 list_add_tail(&vb->purge, purge_list);
2678 return true;
2679}
2680
2681static void free_purged_blocks(struct list_head *purge_list)
2682{
2683 struct vmap_block *vb, *n_vb;
2684
2685 list_for_each_entry_safe(vb, n_vb, purge_list, purge) {
2686 list_del(&vb->purge);
2687 free_vmap_block(vb);
2688 }
2689}
2690
02b709df
NP
2691static void purge_fragmented_blocks(int cpu)
2692{
2693 LIST_HEAD(purge);
2694 struct vmap_block *vb;
02b709df
NP
2695 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2696
2697 rcu_read_lock();
2698 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
7f48121e
TG
2699 unsigned long free = READ_ONCE(vb->free);
2700 unsigned long dirty = READ_ONCE(vb->dirty);
2701
2702 if (free + dirty != VMAP_BBMAP_BITS ||
2703 dirty == VMAP_BBMAP_BITS)
02b709df
NP
2704 continue;
2705
2706 spin_lock(&vb->lock);
77e50af0 2707 purge_fragmented_block(vb, vbq, &purge, true);
ca5e46c3 2708 spin_unlock(&vb->lock);
02b709df
NP
2709 }
2710 rcu_read_unlock();
ca5e46c3 2711 free_purged_blocks(&purge);
02b709df
NP
2712}
2713
02b709df
NP
2714static void purge_fragmented_blocks_allcpus(void)
2715{
2716 int cpu;
2717
2718 for_each_possible_cpu(cpu)
2719 purge_fragmented_blocks(cpu);
2720}
2721
db64fe02
NP
2722static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2723{
2724 struct vmap_block_queue *vbq;
2725 struct vmap_block *vb;
cf725ce2 2726 void *vaddr = NULL;
db64fe02
NP
2727 unsigned int order;
2728
891c49ab 2729 BUG_ON(offset_in_page(size));
db64fe02 2730 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
2731 if (WARN_ON(size == 0)) {
2732 /*
2733 * Allocating 0 bytes isn't what caller wants since
2734 * get_order(0) returns funny result. Just warn and terminate
2735 * early.
2736 */
ac0476e8 2737 return ERR_PTR(-EINVAL);
aa91c4d8 2738 }
db64fe02
NP
2739 order = get_order(size);
2740
db64fe02 2741 rcu_read_lock();
3f804920 2742 vbq = raw_cpu_ptr(&vmap_block_queue);
db64fe02 2743 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 2744 unsigned long pages_off;
db64fe02 2745
43d76502
TG
2746 if (READ_ONCE(vb->free) < (1UL << order))
2747 continue;
2748
db64fe02 2749 spin_lock(&vb->lock);
cf725ce2
RP
2750 if (vb->free < (1UL << order)) {
2751 spin_unlock(&vb->lock);
2752 continue;
2753 }
02b709df 2754
cf725ce2
RP
2755 pages_off = VMAP_BBMAP_BITS - vb->free;
2756 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
43d76502 2757 WRITE_ONCE(vb->free, vb->free - (1UL << order));
d76f9954 2758 bitmap_set(vb->used_map, pages_off, (1UL << order));
02b709df
NP
2759 if (vb->free == 0) {
2760 spin_lock(&vbq->lock);
2761 list_del_rcu(&vb->free_list);
2762 spin_unlock(&vbq->lock);
2763 }
cf725ce2 2764
02b709df
NP
2765 spin_unlock(&vb->lock);
2766 break;
db64fe02 2767 }
02b709df 2768
db64fe02
NP
2769 rcu_read_unlock();
2770
cf725ce2
RP
2771 /* Allocate new block if nothing was found */
2772 if (!vaddr)
2773 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 2774
cf725ce2 2775 return vaddr;
db64fe02
NP
2776}
2777
78a0e8c4 2778static void vb_free(unsigned long addr, unsigned long size)
db64fe02
NP
2779{
2780 unsigned long offset;
db64fe02
NP
2781 unsigned int order;
2782 struct vmap_block *vb;
062eacf5 2783 struct xarray *xa;
db64fe02 2784
891c49ab 2785 BUG_ON(offset_in_page(size));
db64fe02 2786 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc 2787
78a0e8c4 2788 flush_cache_vunmap(addr, addr + size);
b29acbdc 2789
db64fe02 2790 order = get_order(size);
78a0e8c4 2791 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
062eacf5 2792
fa1c77c1 2793 xa = addr_to_vb_xa(addr);
062eacf5
URS
2794 vb = xa_load(xa, addr_to_vb_idx(addr));
2795
d76f9954
BH
2796 spin_lock(&vb->lock);
2797 bitmap_clear(vb->used_map, offset, (1UL << order));
2798 spin_unlock(&vb->lock);
db64fe02 2799
4ad0ae8c 2800 vunmap_range_noflush(addr, addr + size);
64141da5 2801
8e57f8ac 2802 if (debug_pagealloc_enabled_static())
78a0e8c4 2803 flush_tlb_kernel_range(addr, addr + size);
82a2e924 2804
db64fe02 2805 spin_lock(&vb->lock);
7d61bfe8 2806
a09fad96 2807 /* Expand the not yet TLB flushed dirty range */
7d61bfe8
RP
2808 vb->dirty_min = min(vb->dirty_min, offset);
2809 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 2810
7f48121e 2811 WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order));
db64fe02 2812 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 2813 BUG_ON(vb->free);
db64fe02
NP
2814 spin_unlock(&vb->lock);
2815 free_vmap_block(vb);
2816 } else
2817 spin_unlock(&vb->lock);
2818}
2819
868b104d 2820static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 2821{
ca5e46c3 2822 LIST_HEAD(purge_list);
db64fe02 2823 int cpu;
db64fe02 2824
9b463334
JF
2825 if (unlikely(!vmap_initialized))
2826 return;
2827
ca5e46c3 2828 mutex_lock(&vmap_purge_lock);
5803ed29 2829
db64fe02
NP
2830 for_each_possible_cpu(cpu) {
2831 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2832 struct vmap_block *vb;
fc1e0d98 2833 unsigned long idx;
db64fe02
NP
2834
2835 rcu_read_lock();
fc1e0d98 2836 xa_for_each(&vbq->vmap_blocks, idx, vb) {
db64fe02 2837 spin_lock(&vb->lock);
ca5e46c3
TG
2838
2839 /*
2840 * Try to purge a fragmented block first. If it's
2841 * not purgeable, check whether there is dirty
2842 * space to be flushed.
2843 */
77e50af0 2844 if (!purge_fragmented_block(vb, vbq, &purge_list, false) &&
a09fad96 2845 vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) {
7d61bfe8 2846 unsigned long va_start = vb->va->va_start;
db64fe02 2847 unsigned long s, e;
b136be5e 2848
7d61bfe8
RP
2849 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2850 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 2851
7d61bfe8
RP
2852 start = min(s, start);
2853 end = max(e, end);
db64fe02 2854
a09fad96
TG
2855 /* Prevent that this is flushed again */
2856 vb->dirty_min = VMAP_BBMAP_BITS;
2857 vb->dirty_max = 0;
2858
7d61bfe8 2859 flush = 1;
db64fe02
NP
2860 }
2861 spin_unlock(&vb->lock);
2862 }
2863 rcu_read_unlock();
2864 }
ca5e46c3 2865 free_purged_blocks(&purge_list);
db64fe02 2866
72210662 2867 if (!__purge_vmap_area_lazy(start, end, false) && flush)
0574ecd1 2868 flush_tlb_kernel_range(start, end);
f9e09977 2869 mutex_unlock(&vmap_purge_lock);
db64fe02 2870}
868b104d
RE
2871
2872/**
2873 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2874 *
2875 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2876 * to amortize TLB flushing overheads. What this means is that any page you
2877 * have now, may, in a former life, have been mapped into kernel virtual
2878 * address by the vmap layer and so there might be some CPUs with TLB entries
2879 * still referencing that page (additional to the regular 1:1 kernel mapping).
2880 *
2881 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2882 * be sure that none of the pages we have control over will have any aliases
2883 * from the vmap layer.
2884 */
2885void vm_unmap_aliases(void)
2886{
2887 unsigned long start = ULONG_MAX, end = 0;
2888 int flush = 0;
2889
2890 _vm_unmap_aliases(start, end, flush);
2891}
db64fe02
NP
2892EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2893
2894/**
2895 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2896 * @mem: the pointer returned by vm_map_ram
2897 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2898 */
2899void vm_unmap_ram(const void *mem, unsigned int count)
2900{
65ee03c4 2901 unsigned long size = (unsigned long)count << PAGE_SHIFT;
4aff1dc4 2902 unsigned long addr = (unsigned long)kasan_reset_tag(mem);
9c3acf60 2903 struct vmap_area *va;
db64fe02 2904
5803ed29 2905 might_sleep();
db64fe02
NP
2906 BUG_ON(!addr);
2907 BUG_ON(addr < VMALLOC_START);
2908 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 2909 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 2910
d98c9e83
AR
2911 kasan_poison_vmalloc(mem, size);
2912
9c3acf60 2913 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 2914 debug_check_no_locks_freed(mem, size);
78a0e8c4 2915 vb_free(addr, size);
9c3acf60
CH
2916 return;
2917 }
2918
edd89818 2919 va = find_unlink_vmap_area(addr);
14687619
URS
2920 if (WARN_ON_ONCE(!va))
2921 return;
2922
05e3ff95
CP
2923 debug_check_no_locks_freed((void *)va->va_start,
2924 (va->va_end - va->va_start));
9c3acf60 2925 free_unmap_vmap_area(va);
db64fe02
NP
2926}
2927EXPORT_SYMBOL(vm_unmap_ram);
2928
2929/**
2930 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2931 * @pages: an array of pointers to the pages to be mapped
2932 * @count: number of pages
2933 * @node: prefer to allocate data structures on this node
e99c97ad 2934 *
36437638
GK
2935 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2936 * faster than vmap so it's good. But if you mix long-life and short-life
2937 * objects with vm_map_ram(), it could consume lots of address space through
2938 * fragmentation (especially on a 32bit machine). You could see failures in
2939 * the end. Please use this function for short-lived objects.
2940 *
e99c97ad 2941 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02 2942 */
d4efd79a 2943void *vm_map_ram(struct page **pages, unsigned int count, int node)
db64fe02 2944{
65ee03c4 2945 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
2946 unsigned long addr;
2947 void *mem;
2948
2949 if (likely(count <= VMAP_MAX_ALLOC)) {
2950 mem = vb_alloc(size, GFP_KERNEL);
2951 if (IS_ERR(mem))
2952 return NULL;
2953 addr = (unsigned long)mem;
2954 } else {
2955 struct vmap_area *va;
2956 va = alloc_vmap_area(size, PAGE_SIZE,
869176a0 2957 VMALLOC_START, VMALLOC_END,
aaab830a 2958 node, GFP_KERNEL, VMAP_RAM,
4b68a773 2959 NULL);
db64fe02
NP
2960 if (IS_ERR(va))
2961 return NULL;
2962
2963 addr = va->va_start;
2964 mem = (void *)addr;
2965 }
d98c9e83 2966
b67177ec
NP
2967 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2968 pages, PAGE_SHIFT) < 0) {
db64fe02
NP
2969 vm_unmap_ram(mem, count);
2970 return NULL;
2971 }
b67177ec 2972
23689e91
AK
2973 /*
2974 * Mark the pages as accessible, now that they are mapped.
2975 * With hardware tag-based KASAN, marking is skipped for
2976 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2977 */
f6e39794 2978 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
19f1c3ac 2979
db64fe02
NP
2980 return mem;
2981}
2982EXPORT_SYMBOL(vm_map_ram);
2983
4341fa45 2984static struct vm_struct *vmlist __initdata;
92eac168 2985
121e6f32
NP
2986static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2987{
2988#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2989 return vm->page_order;
2990#else
2991 return 0;
2992#endif
2993}
2994
2995static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2996{
2997#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2998 vm->page_order = order;
2999#else
3000 BUG_ON(order != 0);
3001#endif
3002}
3003
be9b7335
NP
3004/**
3005 * vm_area_add_early - add vmap area early during boot
3006 * @vm: vm_struct to add
3007 *
3008 * This function is used to add fixed kernel vm area to vmlist before
3009 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
3010 * should contain proper values and the other fields should be zero.
3011 *
3012 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3013 */
3014void __init vm_area_add_early(struct vm_struct *vm)
3015{
3016 struct vm_struct *tmp, **p;
3017
3018 BUG_ON(vmap_initialized);
3019 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
3020 if (tmp->addr >= vm->addr) {
3021 BUG_ON(tmp->addr < vm->addr + vm->size);
3022 break;
3023 } else
3024 BUG_ON(tmp->addr + tmp->size > vm->addr);
3025 }
3026 vm->next = *p;
3027 *p = vm;
3028}
3029
f0aa6617
TH
3030/**
3031 * vm_area_register_early - register vmap area early during boot
3032 * @vm: vm_struct to register
c0c0a293 3033 * @align: requested alignment
f0aa6617
TH
3034 *
3035 * This function is used to register kernel vm area before
3036 * vmalloc_init() is called. @vm->size and @vm->flags should contain
3037 * proper values on entry and other fields should be zero. On return,
3038 * vm->addr contains the allocated address.
3039 *
3040 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3041 */
c0c0a293 3042void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617 3043{
0eb68437
KW
3044 unsigned long addr = ALIGN(VMALLOC_START, align);
3045 struct vm_struct *cur, **p;
c0c0a293 3046
0eb68437 3047 BUG_ON(vmap_initialized);
f0aa6617 3048
0eb68437
KW
3049 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
3050 if ((unsigned long)cur->addr - addr >= vm->size)
3051 break;
3052 addr = ALIGN((unsigned long)cur->addr + cur->size, align);
3053 }
f0aa6617 3054
0eb68437
KW
3055 BUG_ON(addr > VMALLOC_END - vm->size);
3056 vm->addr = (void *)addr;
3057 vm->next = *p;
3058 *p = vm;
3252b1d8 3059 kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
f0aa6617
TH
3060}
3061
20fc02b4 3062static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 3063{
d4033afd 3064 /*
20fc02b4 3065 * Before removing VM_UNINITIALIZED,
d4033afd
JK
3066 * we should make sure that vm has proper values.
3067 * Pair with smp_rmb() in show_numa_info().
3068 */
3069 smp_wmb();
20fc02b4 3070 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
3071}
3072
db64fe02 3073static struct vm_struct *__get_vm_area_node(unsigned long size,
7ca3027b
DA
3074 unsigned long align, unsigned long shift, unsigned long flags,
3075 unsigned long start, unsigned long end, int node,
3076 gfp_t gfp_mask, const void *caller)
db64fe02 3077{
0006526d 3078 struct vmap_area *va;
db64fe02 3079 struct vm_struct *area;
d98c9e83 3080 unsigned long requested_size = size;
1da177e4 3081
52fd24ca 3082 BUG_ON(in_interrupt());
7ca3027b 3083 size = ALIGN(size, 1ul << shift);
31be8309
OH
3084 if (unlikely(!size))
3085 return NULL;
1da177e4 3086
252e5c6e 3087 if (flags & VM_IOREMAP)
3088 align = 1ul << clamp_t(int, get_count_order_long(size),
3089 PAGE_SHIFT, IOREMAP_MAX_ORDER);
3090
cf88c790 3091 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
3092 if (unlikely(!area))
3093 return NULL;
3094
71394fe5
AR
3095 if (!(flags & VM_NO_GUARD))
3096 size += PAGE_SIZE;
1da177e4 3097
4b68a773
BH
3098 area->flags = flags;
3099 area->caller = caller;
3100
3101 va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0, area);
db64fe02
NP
3102 if (IS_ERR(va)) {
3103 kfree(area);
3104 return NULL;
1da177e4 3105 }
1da177e4 3106
19f1c3ac
AK
3107 /*
3108 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
3109 * best-effort approach, as they can be mapped outside of vmalloc code.
3110 * For VM_ALLOC mappings, the pages are marked as accessible after
3111 * getting mapped in __vmalloc_node_range().
23689e91
AK
3112 * With hardware tag-based KASAN, marking is skipped for
3113 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
19f1c3ac
AK
3114 */
3115 if (!(flags & VM_ALLOC))
23689e91 3116 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
f6e39794 3117 KASAN_VMALLOC_PROT_NORMAL);
1d96320f 3118
1da177e4 3119 return area;
1da177e4
LT
3120}
3121
c2968612
BH
3122struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
3123 unsigned long start, unsigned long end,
5e6cafc8 3124 const void *caller)
c2968612 3125{
7ca3027b
DA
3126 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
3127 NUMA_NO_NODE, GFP_KERNEL, caller);
c2968612
BH
3128}
3129
1da177e4 3130/**
92eac168
MR
3131 * get_vm_area - reserve a contiguous kernel virtual area
3132 * @size: size of the area
3133 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 3134 *
92eac168
MR
3135 * Search an area of @size in the kernel virtual mapping area,
3136 * and reserved it for out purposes. Returns the area descriptor
3137 * on success or %NULL on failure.
a862f68a
MR
3138 *
3139 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
3140 */
3141struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
3142{
7ca3027b
DA
3143 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3144 VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
3145 NUMA_NO_NODE, GFP_KERNEL,
3146 __builtin_return_address(0));
23016969
CL
3147}
3148
3149struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 3150 const void *caller)
23016969 3151{
7ca3027b
DA
3152 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3153 VMALLOC_START, VMALLOC_END,
00ef2d2f 3154 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
3155}
3156
e9da6e99 3157/**
92eac168
MR
3158 * find_vm_area - find a continuous kernel virtual area
3159 * @addr: base address
e9da6e99 3160 *
92eac168
MR
3161 * Search for the kernel VM area starting at @addr, and return it.
3162 * It is up to the caller to do all required locking to keep the returned
3163 * pointer valid.
a862f68a 3164 *
74640617 3165 * Return: the area descriptor on success or %NULL on failure.
e9da6e99
MS
3166 */
3167struct vm_struct *find_vm_area(const void *addr)
83342314 3168{
db64fe02 3169 struct vmap_area *va;
83342314 3170
db64fe02 3171 va = find_vmap_area((unsigned long)addr);
688fcbfc
PL
3172 if (!va)
3173 return NULL;
1da177e4 3174
688fcbfc 3175 return va->vm;
1da177e4
LT
3176}
3177
7856dfeb 3178/**
92eac168
MR
3179 * remove_vm_area - find and remove a continuous kernel virtual area
3180 * @addr: base address
7856dfeb 3181 *
92eac168
MR
3182 * Search for the kernel VM area starting at @addr, and remove it.
3183 * This function returns the found VM area, but using it is NOT safe
3184 * on SMP machines, except for its size or flags.
a862f68a 3185 *
74640617 3186 * Return: the area descriptor on success or %NULL on failure.
7856dfeb 3187 */
b3bdda02 3188struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 3189{
db64fe02 3190 struct vmap_area *va;
75c59ce7 3191 struct vm_struct *vm;
db64fe02 3192
5803ed29
CH
3193 might_sleep();
3194
17d3ef43
CH
3195 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
3196 addr))
3197 return NULL;
c69480ad 3198
75c59ce7
CH
3199 va = find_unlink_vmap_area((unsigned long)addr);
3200 if (!va || !va->vm)
3201 return NULL;
3202 vm = va->vm;
dd32c279 3203
17d3ef43
CH
3204 debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
3205 debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
75c59ce7 3206 kasan_free_module_shadow(vm);
17d3ef43 3207 kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
dd3b8353 3208
75c59ce7
CH
3209 free_unmap_vmap_area(va);
3210 return vm;
7856dfeb
AK
3211}
3212
868b104d
RE
3213static inline void set_area_direct_map(const struct vm_struct *area,
3214 int (*set_direct_map)(struct page *page))
3215{
3216 int i;
3217
121e6f32 3218 /* HUGE_VMALLOC passes small pages to set_direct_map */
868b104d
RE
3219 for (i = 0; i < area->nr_pages; i++)
3220 if (page_address(area->pages[i]))
3221 set_direct_map(area->pages[i]);
3222}
3223
9e5fa0ae
CH
3224/*
3225 * Flush the vm mapping and reset the direct map.
3226 */
3227static void vm_reset_perms(struct vm_struct *area)
868b104d 3228{
868b104d 3229 unsigned long start = ULONG_MAX, end = 0;
121e6f32 3230 unsigned int page_order = vm_area_page_order(area);
31e67340 3231 int flush_dmap = 0;
868b104d
RE
3232 int i;
3233
868b104d 3234 /*
9e5fa0ae 3235 * Find the start and end range of the direct mappings to make sure that
868b104d
RE
3236 * the vm_unmap_aliases() flush includes the direct map.
3237 */
121e6f32 3238 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
8e41f872 3239 unsigned long addr = (unsigned long)page_address(area->pages[i]);
9e5fa0ae 3240
8e41f872 3241 if (addr) {
121e6f32
NP
3242 unsigned long page_size;
3243
3244 page_size = PAGE_SIZE << page_order;
868b104d 3245 start = min(addr, start);
121e6f32 3246 end = max(addr + page_size, end);
31e67340 3247 flush_dmap = 1;
868b104d
RE
3248 }
3249 }
3250
3251 /*
3252 * Set direct map to something invalid so that it won't be cached if
3253 * there are any accesses after the TLB flush, then flush the TLB and
3254 * reset the direct map permissions to the default.
3255 */
3256 set_area_direct_map(area, set_direct_map_invalid_noflush);
31e67340 3257 _vm_unmap_aliases(start, end, flush_dmap);
868b104d
RE
3258 set_area_direct_map(area, set_direct_map_default_noflush);
3259}
3260
208162f4 3261static void delayed_vfree_work(struct work_struct *w)
1da177e4 3262{
208162f4
CH
3263 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
3264 struct llist_node *t, *llnode;
bf22e37a 3265
208162f4 3266 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
5d3d31d6 3267 vfree(llnode);
bf22e37a
AR
3268}
3269
3270/**
92eac168
MR
3271 * vfree_atomic - release memory allocated by vmalloc()
3272 * @addr: memory base address
bf22e37a 3273 *
92eac168
MR
3274 * This one is just like vfree() but can be called in any atomic context
3275 * except NMIs.
bf22e37a
AR
3276 */
3277void vfree_atomic(const void *addr)
3278{
01e2e839 3279 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
bf22e37a 3280
01e2e839 3281 BUG_ON(in_nmi());
bf22e37a
AR
3282 kmemleak_free(addr);
3283
01e2e839
CH
3284 /*
3285 * Use raw_cpu_ptr() because this can be called from preemptible
3286 * context. Preemption is absolutely fine here, because the llist_add()
3287 * implementation is lockless, so it works even if we are adding to
3288 * another cpu's list. schedule_work() should be fine with this too.
3289 */
3290 if (addr && llist_add((struct llist_node *)addr, &p->list))
3291 schedule_work(&p->wq);
c67dc624
RP
3292}
3293
1da177e4 3294/**
fa307474
MWO
3295 * vfree - Release memory allocated by vmalloc()
3296 * @addr: Memory base address
1da177e4 3297 *
fa307474
MWO
3298 * Free the virtually continuous memory area starting at @addr, as obtained
3299 * from one of the vmalloc() family of APIs. This will usually also free the
3300 * physical memory underlying the virtual allocation, but that memory is
3301 * reference counted, so it will not be freed until the last user goes away.
1da177e4 3302 *
fa307474 3303 * If @addr is NULL, no operation is performed.
c9fcee51 3304 *
fa307474 3305 * Context:
92eac168 3306 * May sleep if called *not* from interrupt context.
fa307474
MWO
3307 * Must not be called in NMI context (strictly speaking, it could be
3308 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
f0953a1b 3309 * conventions for vfree() arch-dependent would be a really bad idea).
1da177e4 3310 */
b3bdda02 3311void vfree(const void *addr)
1da177e4 3312{
79311c1f
CH
3313 struct vm_struct *vm;
3314 int i;
89219d37 3315
01e2e839
CH
3316 if (unlikely(in_interrupt())) {
3317 vfree_atomic(addr);
3318 return;
3319 }
89219d37 3320
01e2e839 3321 BUG_ON(in_nmi());
89219d37 3322 kmemleak_free(addr);
01e2e839 3323 might_sleep();
a8dda165 3324
32fcfd40
AV
3325 if (!addr)
3326 return;
c67dc624 3327
79311c1f
CH
3328 vm = remove_vm_area(addr);
3329 if (unlikely(!vm)) {
3330 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
3331 addr);
3332 return;
3333 }
3334
9e5fa0ae
CH
3335 if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
3336 vm_reset_perms(vm);
79311c1f
CH
3337 for (i = 0; i < vm->nr_pages; i++) {
3338 struct page *page = vm->pages[i];
3339
3340 BUG_ON(!page);
3341 mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
3342 /*
3343 * High-order allocs for huge vmallocs are split, so
3344 * can be freed as an array of order-0 allocations
3345 */
dcc1be11 3346 __free_page(page);
79311c1f
CH
3347 cond_resched();
3348 }
3349 atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
3350 kvfree(vm->pages);
3351 kfree(vm);
1da177e4 3352}
1da177e4
LT
3353EXPORT_SYMBOL(vfree);
3354
3355/**
92eac168
MR
3356 * vunmap - release virtual mapping obtained by vmap()
3357 * @addr: memory base address
1da177e4 3358 *
92eac168
MR
3359 * Free the virtually contiguous memory area starting at @addr,
3360 * which was created from the page array passed to vmap().
1da177e4 3361 *
92eac168 3362 * Must not be called in interrupt context.
1da177e4 3363 */
b3bdda02 3364void vunmap(const void *addr)
1da177e4 3365{
79311c1f
CH
3366 struct vm_struct *vm;
3367
1da177e4 3368 BUG_ON(in_interrupt());
34754b69 3369 might_sleep();
79311c1f
CH
3370
3371 if (!addr)
3372 return;
3373 vm = remove_vm_area(addr);
3374 if (unlikely(!vm)) {
3375 WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
3376 addr);
3377 return;
3378 }
3379 kfree(vm);
1da177e4 3380}
1da177e4
LT
3381EXPORT_SYMBOL(vunmap);
3382
3383/**
92eac168
MR
3384 * vmap - map an array of pages into virtually contiguous space
3385 * @pages: array of page pointers
3386 * @count: number of pages to map
3387 * @flags: vm_area->flags
3388 * @prot: page protection for the mapping
3389 *
b944afc9
CH
3390 * Maps @count pages from @pages into contiguous kernel virtual space.
3391 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
3392 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
3393 * are transferred from the caller to vmap(), and will be freed / dropped when
3394 * vfree() is called on the return value.
a862f68a
MR
3395 *
3396 * Return: the address of the area or %NULL on failure
1da177e4
LT
3397 */
3398void *vmap(struct page **pages, unsigned int count,
92eac168 3399 unsigned long flags, pgprot_t prot)
1da177e4
LT
3400{
3401 struct vm_struct *area;
b67177ec 3402 unsigned long addr;
65ee03c4 3403 unsigned long size; /* In bytes */
1da177e4 3404
34754b69
PZ
3405 might_sleep();
3406
37f3605e
CH
3407 if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
3408 return NULL;
3409
bd1a8fb2
PZ
3410 /*
3411 * Your top guard is someone else's bottom guard. Not having a top
3412 * guard compromises someone else's mappings too.
3413 */
3414 if (WARN_ON_ONCE(flags & VM_NO_GUARD))
3415 flags &= ~VM_NO_GUARD;
3416
ca79b0c2 3417 if (count > totalram_pages())
1da177e4
LT
3418 return NULL;
3419
65ee03c4
GJM
3420 size = (unsigned long)count << PAGE_SHIFT;
3421 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
3422 if (!area)
3423 return NULL;
23016969 3424
b67177ec
NP
3425 addr = (unsigned long)area->addr;
3426 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
3427 pages, PAGE_SHIFT) < 0) {
1da177e4
LT
3428 vunmap(area->addr);
3429 return NULL;
3430 }
3431
c22ee528 3432 if (flags & VM_MAP_PUT_PAGES) {
b944afc9 3433 area->pages = pages;
c22ee528
ML
3434 area->nr_pages = count;
3435 }
1da177e4
LT
3436 return area->addr;
3437}
1da177e4
LT
3438EXPORT_SYMBOL(vmap);
3439
3e9a9e25
CH
3440#ifdef CONFIG_VMAP_PFN
3441struct vmap_pfn_data {
3442 unsigned long *pfns;
3443 pgprot_t prot;
3444 unsigned int idx;
3445};
3446
3447static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
3448{
3449 struct vmap_pfn_data *data = private;
b3f78e74
RR
3450 unsigned long pfn = data->pfns[data->idx];
3451 pte_t ptent;
3e9a9e25 3452
b3f78e74 3453 if (WARN_ON_ONCE(pfn_valid(pfn)))
3e9a9e25 3454 return -EINVAL;
b3f78e74
RR
3455
3456 ptent = pte_mkspecial(pfn_pte(pfn, data->prot));
3457 set_pte_at(&init_mm, addr, pte, ptent);
3458
3459 data->idx++;
3e9a9e25
CH
3460 return 0;
3461}
3462
3463/**
3464 * vmap_pfn - map an array of PFNs into virtually contiguous space
3465 * @pfns: array of PFNs
3466 * @count: number of pages to map
3467 * @prot: page protection for the mapping
3468 *
3469 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
3470 * the start address of the mapping.
3471 */
3472void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
3473{
3474 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
3475 struct vm_struct *area;
3476
3477 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
3478 __builtin_return_address(0));
3479 if (!area)
3480 return NULL;
3481 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3482 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
3483 free_vm_area(area);
3484 return NULL;
3485 }
a50420c7
AG
3486
3487 flush_cache_vmap((unsigned long)area->addr,
3488 (unsigned long)area->addr + count * PAGE_SIZE);
3489
3e9a9e25
CH
3490 return area->addr;
3491}
3492EXPORT_SYMBOL_GPL(vmap_pfn);
3493#endif /* CONFIG_VMAP_PFN */
3494
12b9f873
UR
3495static inline unsigned int
3496vm_area_alloc_pages(gfp_t gfp, int nid,
343ab817 3497 unsigned int order, unsigned int nr_pages, struct page **pages)
12b9f873
UR
3498{
3499 unsigned int nr_allocated = 0;
e9c3cda4
MH
3500 gfp_t alloc_gfp = gfp;
3501 bool nofail = false;
ffb29b1c
CW
3502 struct page *page;
3503 int i;
12b9f873
UR
3504
3505 /*
3506 * For order-0 pages we make use of bulk allocator, if
3507 * the page array is partly or not at all populated due
3508 * to fails, fallback to a single page allocator that is
3509 * more permissive.
3510 */
c00b6b96 3511 if (!order) {
e9c3cda4 3512 /* bulk allocator doesn't support nofail req. officially */
9376130c
MH
3513 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
3514
343ab817
URS
3515 while (nr_allocated < nr_pages) {
3516 unsigned int nr, nr_pages_request;
3517
3518 /*
3519 * A maximum allowed request is hard-coded and is 100
3520 * pages per call. That is done in order to prevent a
3521 * long preemption off scenario in the bulk-allocator
3522 * so the range is [1:100].
3523 */
3524 nr_pages_request = min(100U, nr_pages - nr_allocated);
3525
c00b6b96
CW
3526 /* memory allocation should consider mempolicy, we can't
3527 * wrongly use nearest node when nid == NUMA_NO_NODE,
3528 * otherwise memory may be allocated in only one node,
98af39d5 3529 * but mempolicy wants to alloc memory by interleaving.
c00b6b96
CW
3530 */
3531 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
88ae5fb7 3532 nr = alloc_pages_bulk_array_mempolicy_noprof(bulk_gfp,
c00b6b96
CW
3533 nr_pages_request,
3534 pages + nr_allocated);
3535
3536 else
88ae5fb7 3537 nr = alloc_pages_bulk_array_node_noprof(bulk_gfp, nid,
c00b6b96
CW
3538 nr_pages_request,
3539 pages + nr_allocated);
343ab817
URS
3540
3541 nr_allocated += nr;
3542 cond_resched();
3543
3544 /*
3545 * If zero or pages were obtained partly,
3546 * fallback to a single page allocator.
3547 */
3548 if (nr != nr_pages_request)
3549 break;
3550 }
e9c3cda4
MH
3551 } else if (gfp & __GFP_NOFAIL) {
3552 /*
3553 * Higher order nofail allocations are really expensive and
3554 * potentially dangerous (pre-mature OOM, disruptive reclaim
3555 * and compaction etc.
3556 */
3557 alloc_gfp &= ~__GFP_NOFAIL;
3558 nofail = true;
3b8000ae 3559 }
12b9f873
UR
3560
3561 /* High-order pages or fallback path if "bulk" fails. */
ffb29b1c 3562 while (nr_allocated < nr_pages) {
dd544141
VA
3563 if (fatal_signal_pending(current))
3564 break;
3565
ffb29b1c 3566 if (nid == NUMA_NO_NODE)
88ae5fb7 3567 page = alloc_pages_noprof(alloc_gfp, order);
ffb29b1c 3568 else
88ae5fb7 3569 page = alloc_pages_node_noprof(nid, alloc_gfp, order);
e9c3cda4
MH
3570 if (unlikely(!page)) {
3571 if (!nofail)
3572 break;
3573
3574 /* fall back to the zero order allocations */
3575 alloc_gfp |= __GFP_NOFAIL;
3576 order = 0;
3577 continue;
3578 }
3579
3b8000ae
NP
3580 /*
3581 * Higher order allocations must be able to be treated as
3582 * indepdenent small pages by callers (as they can with
3583 * small-page vmallocs). Some drivers do their own refcounting
3584 * on vmalloc_to_page() pages, some use page->mapping,
3585 * page->lru, etc.
3586 */
3587 if (order)
3588 split_page(page, order);
12b9f873
UR
3589
3590 /*
3591 * Careful, we allocate and map page-order pages, but
3592 * tracking is done per PAGE_SIZE page so as to keep the
3593 * vm_struct APIs independent of the physical/mapped size.
3594 */
3595 for (i = 0; i < (1U << order); i++)
3596 pages[nr_allocated + i] = page + i;
3597
12e376a6 3598 cond_resched();
12b9f873
UR
3599 nr_allocated += 1U << order;
3600 }
3601
3602 return nr_allocated;
3603}
3604
e31d9eb5 3605static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
121e6f32
NP
3606 pgprot_t prot, unsigned int page_shift,
3607 int node)
1da177e4 3608{
930f036b 3609 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
9376130c 3610 bool nofail = gfp_mask & __GFP_NOFAIL;
121e6f32
NP
3611 unsigned long addr = (unsigned long)area->addr;
3612 unsigned long size = get_vm_area_size(area);
34fe6537 3613 unsigned long array_size;
121e6f32
NP
3614 unsigned int nr_small_pages = size >> PAGE_SHIFT;
3615 unsigned int page_order;
451769eb
MH
3616 unsigned int flags;
3617 int ret;
1da177e4 3618
121e6f32 3619 array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
80b1d8fd 3620
f255935b
CH
3621 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3622 gfp_mask |= __GFP_HIGHMEM;
1da177e4 3623
1da177e4 3624 /* Please note that the recursion is strictly bounded. */
8757d5fa 3625 if (array_size > PAGE_SIZE) {
88ae5fb7 3626 area->pages = __vmalloc_node_noprof(array_size, 1, nested_gfp, node,
f255935b 3627 area->caller);
286e1ea3 3628 } else {
88ae5fb7 3629 area->pages = kmalloc_node_noprof(array_size, nested_gfp, node);
286e1ea3 3630 }
7ea36242 3631
5c1f4e69 3632 if (!area->pages) {
c3d77172 3633 warn_alloc(gfp_mask, NULL,
f4bdfeaf
URS
3634 "vmalloc error: size %lu, failed to allocated page array size %lu",
3635 nr_small_pages * PAGE_SIZE, array_size);
cd61413b 3636 free_vm_area(area);
1da177e4
LT
3637 return NULL;
3638 }
1da177e4 3639
121e6f32 3640 set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
121e6f32 3641 page_order = vm_area_page_order(area);
bf53d6f8 3642
c3d77172
URS
3643 area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3644 node, page_order, nr_small_pages, area->pages);
5c1f4e69 3645
97105f0a 3646 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
4e5aa1f4 3647 if (gfp_mask & __GFP_ACCOUNT) {
3b8000ae 3648 int i;
4e5aa1f4 3649
3b8000ae
NP
3650 for (i = 0; i < area->nr_pages; i++)
3651 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
4e5aa1f4 3652 }
1da177e4 3653
5c1f4e69
URS
3654 /*
3655 * If not enough pages were obtained to accomplish an
f41f036b 3656 * allocation request, free them via vfree() if any.
5c1f4e69
URS
3657 */
3658 if (area->nr_pages != nr_small_pages) {
95a301ee
LS
3659 /*
3660 * vm_area_alloc_pages() can fail due to insufficient memory but
3661 * also:-
3662 *
3663 * - a pending fatal signal
3664 * - insufficient huge page-order pages
3665 *
3666 * Since we always retry allocations at order-0 in the huge page
3667 * case a warning for either is spurious.
3668 */
3669 if (!fatal_signal_pending(current) && page_order == 0)
f349b15e 3670 warn_alloc(gfp_mask, NULL,
95a301ee
LS
3671 "vmalloc error: size %lu, failed to allocate pages",
3672 area->nr_pages * PAGE_SIZE);
5c1f4e69
URS
3673 goto fail;
3674 }
3675
451769eb
MH
3676 /*
3677 * page tables allocations ignore external gfp mask, enforce it
3678 * by the scope API
3679 */
3680 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3681 flags = memalloc_nofs_save();
3682 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3683 flags = memalloc_noio_save();
3684
9376130c
MH
3685 do {
3686 ret = vmap_pages_range(addr, addr + size, prot, area->pages,
451769eb 3687 page_shift);
9376130c
MH
3688 if (nofail && (ret < 0))
3689 schedule_timeout_uninterruptible(1);
3690 } while (nofail && (ret < 0));
451769eb
MH
3691
3692 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3693 memalloc_nofs_restore(flags);
3694 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3695 memalloc_noio_restore(flags);
3696
3697 if (ret < 0) {
c3d77172 3698 warn_alloc(gfp_mask, NULL,
f4bdfeaf
URS
3699 "vmalloc error: size %lu, failed to map pages",
3700 area->nr_pages * PAGE_SIZE);
1da177e4 3701 goto fail;
d70bec8c 3702 }
ed1f324c 3703
1da177e4
LT
3704 return area->addr;
3705
3706fail:
f41f036b 3707 vfree(area->addr);
1da177e4
LT
3708 return NULL;
3709}
3710
3711/**
92eac168
MR
3712 * __vmalloc_node_range - allocate virtually contiguous memory
3713 * @size: allocation size
3714 * @align: desired alignment
3715 * @start: vm area range start
3716 * @end: vm area range end
3717 * @gfp_mask: flags for the page level allocator
3718 * @prot: protection mask for the allocated pages
3719 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
3720 * @node: node to use for allocation or NUMA_NO_NODE
3721 * @caller: caller's return address
3722 *
3723 * Allocate enough pages to cover @size from the page level
b7d90e7a 3724 * allocator with @gfp_mask flags. Please note that the full set of gfp
30d3f011
MH
3725 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3726 * supported.
3727 * Zone modifiers are not supported. From the reclaim modifiers
3728 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3729 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3730 * __GFP_RETRY_MAYFAIL are not supported).
3731 *
3732 * __GFP_NOWARN can be used to suppress failures messages.
b7d90e7a
MH
3733 *
3734 * Map them into contiguous kernel virtual space, using a pagetable
3735 * protection of @prot.
a862f68a
MR
3736 *
3737 * Return: the address of the area or %NULL on failure
1da177e4 3738 */
88ae5fb7 3739void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align,
d0a21265 3740 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
3741 pgprot_t prot, unsigned long vm_flags, int node,
3742 const void *caller)
1da177e4
LT
3743{
3744 struct vm_struct *area;
19f1c3ac 3745 void *ret;
f6e39794 3746 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
89219d37 3747 unsigned long real_size = size;
121e6f32
NP
3748 unsigned long real_align = align;
3749 unsigned int shift = PAGE_SHIFT;
1da177e4 3750
d70bec8c
NP
3751 if (WARN_ON_ONCE(!size))
3752 return NULL;
3753
3754 if ((size >> PAGE_SHIFT) > totalram_pages()) {
3755 warn_alloc(gfp_mask, NULL,
f4bdfeaf
URS
3756 "vmalloc error: size %lu, exceeds total pages",
3757 real_size);
d70bec8c 3758 return NULL;
121e6f32
NP
3759 }
3760
559089e0 3761 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
121e6f32 3762 unsigned long size_per_node;
1da177e4 3763
121e6f32
NP
3764 /*
3765 * Try huge pages. Only try for PAGE_KERNEL allocations,
3766 * others like modules don't yet expect huge pages in
3767 * their allocations due to apply_to_page_range not
3768 * supporting them.
3769 */
3770
3771 size_per_node = size;
3772 if (node == NUMA_NO_NODE)
3773 size_per_node /= num_online_nodes();
3382bbee 3774 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
121e6f32 3775 shift = PMD_SHIFT;
3382bbee
CL
3776 else
3777 shift = arch_vmap_pte_supported_shift(size_per_node);
3778
3779 align = max(real_align, 1UL << shift);
3780 size = ALIGN(real_size, 1UL << shift);
121e6f32
NP
3781 }
3782
3783again:
7ca3027b
DA
3784 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3785 VM_UNINITIALIZED | vm_flags, start, end, node,
3786 gfp_mask, caller);
d70bec8c 3787 if (!area) {
9376130c 3788 bool nofail = gfp_mask & __GFP_NOFAIL;
d70bec8c 3789 warn_alloc(gfp_mask, NULL,
9376130c
MH
3790 "vmalloc error: size %lu, vm_struct allocation failed%s",
3791 real_size, (nofail) ? ". Retrying." : "");
3792 if (nofail) {
3793 schedule_timeout_uninterruptible(1);
3794 goto again;
3795 }
de7d2b56 3796 goto fail;
d70bec8c 3797 }
1da177e4 3798
f6e39794
AK
3799 /*
3800 * Prepare arguments for __vmalloc_area_node() and
3801 * kasan_unpoison_vmalloc().
3802 */
3803 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3804 if (kasan_hw_tags_enabled()) {
3805 /*
3806 * Modify protection bits to allow tagging.
3807 * This must be done before mapping.
3808 */
3809 prot = arch_vmap_pgprot_tagged(prot);
01d92c7f 3810
f6e39794
AK
3811 /*
3812 * Skip page_alloc poisoning and zeroing for physical
3813 * pages backing VM_ALLOC mapping. Memory is instead
3814 * poisoned and zeroed by kasan_unpoison_vmalloc().
3815 */
0a54864f 3816 gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
f6e39794
AK
3817 }
3818
3819 /* Take note that the mapping is PAGE_KERNEL. */
3820 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
23689e91
AK
3821 }
3822
01d92c7f 3823 /* Allocate physical pages and map them into vmalloc space. */
19f1c3ac
AK
3824 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3825 if (!ret)
121e6f32 3826 goto fail;
89219d37 3827
23689e91
AK
3828 /*
3829 * Mark the pages as accessible, now that they are mapped.
6c2f761d
AK
3830 * The condition for setting KASAN_VMALLOC_INIT should complement the
3831 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3832 * to make sure that memory is initialized under the same conditions.
f6e39794
AK
3833 * Tag-based KASAN modes only assign tags to normal non-executable
3834 * allocations, see __kasan_unpoison_vmalloc().
23689e91 3835 */
f6e39794 3836 kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
6c2f761d
AK
3837 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3838 (gfp_mask & __GFP_SKIP_ZERO))
23689e91 3839 kasan_flags |= KASAN_VMALLOC_INIT;
f6e39794 3840 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */
23689e91 3841 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
19f1c3ac 3842
f5252e00 3843 /*
20fc02b4
ZY
3844 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3845 * flag. It means that vm_struct is not fully initialized.
4341fa45 3846 * Now, it is fully initialized, so remove this flag here.
f5252e00 3847 */
20fc02b4 3848 clear_vm_uninitialized_flag(area);
f5252e00 3849
7ca3027b 3850 size = PAGE_ALIGN(size);
60115fa5
KW
3851 if (!(vm_flags & VM_DEFER_KMEMLEAK))
3852 kmemleak_vmalloc(area, size, gfp_mask);
89219d37 3853
19f1c3ac 3854 return area->addr;
de7d2b56
JP
3855
3856fail:
121e6f32
NP
3857 if (shift > PAGE_SHIFT) {
3858 shift = PAGE_SHIFT;
3859 align = real_align;
3860 size = real_size;
3861 goto again;
3862 }
3863
de7d2b56 3864 return NULL;
1da177e4
LT
3865}
3866
d0a21265 3867/**
92eac168
MR
3868 * __vmalloc_node - allocate virtually contiguous memory
3869 * @size: allocation size
3870 * @align: desired alignment
3871 * @gfp_mask: flags for the page level allocator
92eac168
MR
3872 * @node: node to use for allocation or NUMA_NO_NODE
3873 * @caller: caller's return address
a7c3e901 3874 *
f38fcb9c
CH
3875 * Allocate enough pages to cover @size from the page level allocator with
3876 * @gfp_mask flags. Map them into contiguous kernel virtual space.
a7c3e901 3877 *
92eac168
MR
3878 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3879 * and __GFP_NOFAIL are not supported
a7c3e901 3880 *
92eac168
MR
3881 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3882 * with mm people.
a862f68a
MR
3883 *
3884 * Return: pointer to the allocated memory or %NULL on error
d0a21265 3885 */
88ae5fb7 3886void *__vmalloc_node_noprof(unsigned long size, unsigned long align,
f38fcb9c 3887 gfp_t gfp_mask, int node, const void *caller)
d0a21265 3888{
88ae5fb7 3889 return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END,
f38fcb9c 3890 gfp_mask, PAGE_KERNEL, 0, node, caller);
d0a21265 3891}
c3f896dc
CH
3892/*
3893 * This is only for performance analysis of vmalloc and stress purpose.
3894 * It is required by vmalloc test module, therefore do not use it other
3895 * than that.
3896 */
3897#ifdef CONFIG_TEST_VMALLOC_MODULE
88ae5fb7 3898EXPORT_SYMBOL_GPL(__vmalloc_node_noprof);
c3f896dc 3899#endif
d0a21265 3900
88ae5fb7 3901void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask)
930fc45a 3902{
88ae5fb7 3903 return __vmalloc_node_noprof(size, 1, gfp_mask, NUMA_NO_NODE,
23016969 3904 __builtin_return_address(0));
930fc45a 3905}
88ae5fb7 3906EXPORT_SYMBOL(__vmalloc_noprof);
1da177e4
LT
3907
3908/**
92eac168
MR
3909 * vmalloc - allocate virtually contiguous memory
3910 * @size: allocation size
3911 *
3912 * Allocate enough pages to cover @size from the page level
3913 * allocator and map them into contiguous kernel virtual space.
1da177e4 3914 *
92eac168
MR
3915 * For tight control over page level allocator and protection flags
3916 * use __vmalloc() instead.
a862f68a
MR
3917 *
3918 * Return: pointer to the allocated memory or %NULL on error
1da177e4 3919 */
88ae5fb7 3920void *vmalloc_noprof(unsigned long size)
1da177e4 3921{
88ae5fb7 3922 return __vmalloc_node_noprof(size, 1, GFP_KERNEL, NUMA_NO_NODE,
4d39d728 3923 __builtin_return_address(0));
1da177e4 3924}
88ae5fb7 3925EXPORT_SYMBOL(vmalloc_noprof);
1da177e4 3926
15a64f5a 3927/**
559089e0
SL
3928 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3929 * @size: allocation size
3930 * @gfp_mask: flags for the page level allocator
15a64f5a 3931 *
559089e0 3932 * Allocate enough pages to cover @size from the page level
15a64f5a 3933 * allocator and map them into contiguous kernel virtual space.
559089e0
SL
3934 * If @size is greater than or equal to PMD_SIZE, allow using
3935 * huge pages for the memory
15a64f5a
CI
3936 *
3937 * Return: pointer to the allocated memory or %NULL on error
3938 */
88ae5fb7 3939void *vmalloc_huge_noprof(unsigned long size, gfp_t gfp_mask)
15a64f5a 3940{
88ae5fb7 3941 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
559089e0 3942 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
15a64f5a
CI
3943 NUMA_NO_NODE, __builtin_return_address(0));
3944}
88ae5fb7 3945EXPORT_SYMBOL_GPL(vmalloc_huge_noprof);
15a64f5a 3946
e1ca7788 3947/**
92eac168
MR
3948 * vzalloc - allocate virtually contiguous memory with zero fill
3949 * @size: allocation size
3950 *
3951 * Allocate enough pages to cover @size from the page level
3952 * allocator and map them into contiguous kernel virtual space.
3953 * The memory allocated is set to zero.
3954 *
3955 * For tight control over page level allocator and protection flags
3956 * use __vmalloc() instead.
a862f68a
MR
3957 *
3958 * Return: pointer to the allocated memory or %NULL on error
e1ca7788 3959 */
88ae5fb7 3960void *vzalloc_noprof(unsigned long size)
e1ca7788 3961{
88ae5fb7 3962 return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
4d39d728 3963 __builtin_return_address(0));
e1ca7788 3964}
88ae5fb7 3965EXPORT_SYMBOL(vzalloc_noprof);
e1ca7788 3966
83342314 3967/**
ead04089
REB
3968 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3969 * @size: allocation size
83342314 3970 *
ead04089
REB
3971 * The resulting memory area is zeroed so it can be mapped to userspace
3972 * without leaking data.
a862f68a
MR
3973 *
3974 * Return: pointer to the allocated memory or %NULL on error
83342314 3975 */
88ae5fb7 3976void *vmalloc_user_noprof(unsigned long size)
83342314 3977{
88ae5fb7 3978 return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END,
bc84c535
RP
3979 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3980 VM_USERMAP, NUMA_NO_NODE,
3981 __builtin_return_address(0));
83342314 3982}
88ae5fb7 3983EXPORT_SYMBOL(vmalloc_user_noprof);
83342314 3984
930fc45a 3985/**
92eac168
MR
3986 * vmalloc_node - allocate memory on a specific node
3987 * @size: allocation size
3988 * @node: numa node
930fc45a 3989 *
92eac168
MR
3990 * Allocate enough pages to cover @size from the page level
3991 * allocator and map them into contiguous kernel virtual space.
930fc45a 3992 *
92eac168
MR
3993 * For tight control over page level allocator and protection flags
3994 * use __vmalloc() instead.
a862f68a
MR
3995 *
3996 * Return: pointer to the allocated memory or %NULL on error
930fc45a 3997 */
88ae5fb7 3998void *vmalloc_node_noprof(unsigned long size, int node)
930fc45a 3999{
88ae5fb7 4000 return __vmalloc_node_noprof(size, 1, GFP_KERNEL, node,
f38fcb9c 4001 __builtin_return_address(0));
930fc45a 4002}
88ae5fb7 4003EXPORT_SYMBOL(vmalloc_node_noprof);
930fc45a 4004
e1ca7788
DY
4005/**
4006 * vzalloc_node - allocate memory on a specific node with zero fill
4007 * @size: allocation size
4008 * @node: numa node
4009 *
4010 * Allocate enough pages to cover @size from the page level
4011 * allocator and map them into contiguous kernel virtual space.
4012 * The memory allocated is set to zero.
4013 *
a862f68a 4014 * Return: pointer to the allocated memory or %NULL on error
e1ca7788 4015 */
88ae5fb7 4016void *vzalloc_node_noprof(unsigned long size, int node)
e1ca7788 4017{
88ae5fb7 4018 return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, node,
4d39d728 4019 __builtin_return_address(0));
e1ca7788 4020}
88ae5fb7 4021EXPORT_SYMBOL(vzalloc_node_noprof);
e1ca7788 4022
0d08e0d3 4023#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 4024#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 4025#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 4026#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 4027#else
698d0831
MH
4028/*
4029 * 64b systems should always have either DMA or DMA32 zones. For others
4030 * GFP_DMA32 should do the right thing and use the normal zone.
4031 */
68d68ff6 4032#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3
AK
4033#endif
4034
1da177e4 4035/**
92eac168
MR
4036 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
4037 * @size: allocation size
1da177e4 4038 *
92eac168
MR
4039 * Allocate enough 32bit PA addressable pages to cover @size from the
4040 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
4041 *
4042 * Return: pointer to the allocated memory or %NULL on error
1da177e4 4043 */
88ae5fb7 4044void *vmalloc_32_noprof(unsigned long size)
1da177e4 4045{
88ae5fb7 4046 return __vmalloc_node_noprof(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
f38fcb9c 4047 __builtin_return_address(0));
1da177e4 4048}
88ae5fb7 4049EXPORT_SYMBOL(vmalloc_32_noprof);
1da177e4 4050
83342314 4051/**
ead04089 4052 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 4053 * @size: allocation size
ead04089
REB
4054 *
4055 * The resulting memory area is 32bit addressable and zeroed so it can be
4056 * mapped to userspace without leaking data.
a862f68a
MR
4057 *
4058 * Return: pointer to the allocated memory or %NULL on error
83342314 4059 */
88ae5fb7 4060void *vmalloc_32_user_noprof(unsigned long size)
83342314 4061{
88ae5fb7 4062 return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END,
bc84c535
RP
4063 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
4064 VM_USERMAP, NUMA_NO_NODE,
4065 __builtin_return_address(0));
83342314 4066}
88ae5fb7 4067EXPORT_SYMBOL(vmalloc_32_user_noprof);
83342314 4068
d0107eb0 4069/*
4c91c07c
LS
4070 * Atomically zero bytes in the iterator.
4071 *
4072 * Returns the number of zeroed bytes.
d0107eb0 4073 */
4c91c07c
LS
4074static size_t zero_iter(struct iov_iter *iter, size_t count)
4075{
4076 size_t remains = count;
4077
4078 while (remains > 0) {
4079 size_t num, copied;
4080
0e4bc271 4081 num = min_t(size_t, remains, PAGE_SIZE);
4c91c07c
LS
4082 copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
4083 remains -= copied;
4084
4085 if (copied < num)
4086 break;
4087 }
d0107eb0 4088
4c91c07c
LS
4089 return count - remains;
4090}
4091
4092/*
4093 * small helper routine, copy contents to iter from addr.
4094 * If the page is not present, fill zero.
4095 *
4096 * Returns the number of copied bytes.
4097 */
4098static size_t aligned_vread_iter(struct iov_iter *iter,
4099 const char *addr, size_t count)
d0107eb0 4100{
4c91c07c
LS
4101 size_t remains = count;
4102 struct page *page;
d0107eb0 4103
4c91c07c 4104 while (remains > 0) {
d0107eb0 4105 unsigned long offset, length;
4c91c07c 4106 size_t copied = 0;
d0107eb0 4107
891c49ab 4108 offset = offset_in_page(addr);
d0107eb0 4109 length = PAGE_SIZE - offset;
4c91c07c
LS
4110 if (length > remains)
4111 length = remains;
4112 page = vmalloc_to_page(addr);
d0107eb0 4113 /*
4c91c07c
LS
4114 * To do safe access to this _mapped_ area, we need lock. But
4115 * adding lock here means that we need to add overhead of
4116 * vmalloc()/vfree() calls for this _debug_ interface, rarely
4117 * used. Instead of that, we'll use an local mapping via
4118 * copy_page_to_iter_nofault() and accept a small overhead in
4119 * this access function.
d0107eb0 4120 */
4c91c07c
LS
4121 if (page)
4122 copied = copy_page_to_iter_nofault(page, offset,
4123 length, iter);
4124 else
4125 copied = zero_iter(iter, length);
d0107eb0 4126
4c91c07c
LS
4127 addr += copied;
4128 remains -= copied;
4129
4130 if (copied != length)
4131 break;
d0107eb0 4132 }
4c91c07c
LS
4133
4134 return count - remains;
d0107eb0
KH
4135}
4136
4c91c07c
LS
4137/*
4138 * Read from a vm_map_ram region of memory.
4139 *
4140 * Returns the number of copied bytes.
4141 */
4142static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
4143 size_t count, unsigned long flags)
06c89946
BH
4144{
4145 char *start;
4146 struct vmap_block *vb;
062eacf5 4147 struct xarray *xa;
06c89946 4148 unsigned long offset;
4c91c07c
LS
4149 unsigned int rs, re;
4150 size_t remains, n;
06c89946
BH
4151
4152 /*
4153 * If it's area created by vm_map_ram() interface directly, but
4154 * not further subdividing and delegating management to vmap_block,
4155 * handle it here.
4156 */
4c91c07c
LS
4157 if (!(flags & VMAP_BLOCK))
4158 return aligned_vread_iter(iter, addr, count);
4159
4160 remains = count;
06c89946
BH
4161
4162 /*
4163 * Area is split into regions and tracked with vmap_block, read out
4164 * each region and zero fill the hole between regions.
4165 */
fa1c77c1 4166 xa = addr_to_vb_xa((unsigned long) addr);
062eacf5 4167 vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
06c89946 4168 if (!vb)
4c91c07c 4169 goto finished_zero;
06c89946
BH
4170
4171 spin_lock(&vb->lock);
4172 if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
4173 spin_unlock(&vb->lock);
4c91c07c 4174 goto finished_zero;
06c89946 4175 }
4c91c07c 4176
06c89946 4177 for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
4c91c07c
LS
4178 size_t copied;
4179
4180 if (remains == 0)
4181 goto finished;
4182
06c89946 4183 start = vmap_block_vaddr(vb->va->va_start, rs);
4c91c07c
LS
4184
4185 if (addr < start) {
4186 size_t to_zero = min_t(size_t, start - addr, remains);
4187 size_t zeroed = zero_iter(iter, to_zero);
4188
4189 addr += zeroed;
4190 remains -= zeroed;
4191
4192 if (remains == 0 || zeroed != to_zero)
4193 goto finished;
06c89946 4194 }
4c91c07c 4195
06c89946
BH
4196 /*it could start reading from the middle of used region*/
4197 offset = offset_in_page(addr);
4198 n = ((re - rs + 1) << PAGE_SHIFT) - offset;
4c91c07c
LS
4199 if (n > remains)
4200 n = remains;
4201
4202 copied = aligned_vread_iter(iter, start + offset, n);
06c89946 4203
4c91c07c
LS
4204 addr += copied;
4205 remains -= copied;
4206
4207 if (copied != n)
4208 goto finished;
06c89946 4209 }
4c91c07c 4210
06c89946
BH
4211 spin_unlock(&vb->lock);
4212
4c91c07c 4213finished_zero:
06c89946 4214 /* zero-fill the left dirty or free regions */
4c91c07c
LS
4215 return count - remains + zero_iter(iter, remains);
4216finished:
4217 /* We couldn't copy/zero everything */
4218 spin_unlock(&vb->lock);
4219 return count - remains;
06c89946
BH
4220}
4221
d0107eb0 4222/**
4c91c07c
LS
4223 * vread_iter() - read vmalloc area in a safe way to an iterator.
4224 * @iter: the iterator to which data should be written.
4225 * @addr: vm address.
4226 * @count: number of bytes to be read.
92eac168 4227 *
92eac168
MR
4228 * This function checks that addr is a valid vmalloc'ed area, and
4229 * copy data from that area to a given buffer. If the given memory range
4230 * of [addr...addr+count) includes some valid address, data is copied to
4231 * proper area of @buf. If there are memory holes, they'll be zero-filled.
4232 * IOREMAP area is treated as memory hole and no copy is done.
4233 *
4234 * If [addr...addr+count) doesn't includes any intersects with alive
4235 * vm_struct area, returns 0. @buf should be kernel's buffer.
4236 *
4237 * Note: In usual ops, vread() is never necessary because the caller
4238 * should know vmalloc() area is valid and can use memcpy().
4239 * This is for routines which have to access vmalloc area without
bbcd53c9 4240 * any information, as /proc/kcore.
a862f68a
MR
4241 *
4242 * Return: number of bytes for which addr and buf should be increased
4243 * (same number as @count) or %0 if [addr...addr+count) doesn't
4244 * include any intersection with valid vmalloc area
d0107eb0 4245 */
4c91c07c 4246long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
1da177e4 4247{
d0936029 4248 struct vmap_node *vn;
e81ce85f
JK
4249 struct vmap_area *va;
4250 struct vm_struct *vm;
4c91c07c
LS
4251 char *vaddr;
4252 size_t n, size, flags, remains;
53becf32 4253 unsigned long next;
1da177e4 4254
4aff1dc4
AK
4255 addr = kasan_reset_tag(addr);
4256
1da177e4
LT
4257 /* Don't allow overflow */
4258 if ((unsigned long) addr + count < count)
4259 count = -(unsigned long) addr;
4260
4c91c07c
LS
4261 remains = count;
4262
53becf32
URS
4263 vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va);
4264 if (!vn)
4c91c07c 4265 goto finished_zero;
f181234a
CW
4266
4267 /* no intersects with alive vmap_area */
4c91c07c
LS
4268 if ((unsigned long)addr + remains <= va->va_start)
4269 goto finished_zero;
f181234a 4270
53becf32 4271 do {
4c91c07c
LS
4272 size_t copied;
4273
4274 if (remains == 0)
4275 goto finished;
e81ce85f 4276
06c89946
BH
4277 vm = va->vm;
4278 flags = va->flags & VMAP_FLAGS_MASK;
4279 /*
4280 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
4281 * be set together with VMAP_RAM.
4282 */
4283 WARN_ON(flags == VMAP_BLOCK);
4284
4285 if (!vm && !flags)
53becf32 4286 goto next_va;
e81ce85f 4287
30a7a9b1 4288 if (vm && (vm->flags & VM_UNINITIALIZED))
53becf32 4289 goto next_va;
4c91c07c 4290
30a7a9b1
BH
4291 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4292 smp_rmb();
4293
06c89946
BH
4294 vaddr = (char *) va->va_start;
4295 size = vm ? get_vm_area_size(vm) : va_size(va);
4296
4297 if (addr >= vaddr + size)
53becf32 4298 goto next_va;
4c91c07c
LS
4299
4300 if (addr < vaddr) {
4301 size_t to_zero = min_t(size_t, vaddr - addr, remains);
4302 size_t zeroed = zero_iter(iter, to_zero);
4303
4304 addr += zeroed;
4305 remains -= zeroed;
4306
4307 if (remains == 0 || zeroed != to_zero)
1da177e4 4308 goto finished;
1da177e4 4309 }
4c91c07c 4310
06c89946 4311 n = vaddr + size - addr;
4c91c07c
LS
4312 if (n > remains)
4313 n = remains;
06c89946
BH
4314
4315 if (flags & VMAP_RAM)
4c91c07c 4316 copied = vmap_ram_vread_iter(iter, addr, n, flags);
e6f79822 4317 else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE))))
4c91c07c 4318 copied = aligned_vread_iter(iter, addr, n);
e6f79822 4319 else /* IOREMAP | SPARSE area is treated as memory hole */
4c91c07c
LS
4320 copied = zero_iter(iter, n);
4321
4322 addr += copied;
4323 remains -= copied;
4324
4325 if (copied != n)
4326 goto finished;
53becf32
URS
4327
4328 next_va:
4329 next = va->va_end;
4330 spin_unlock(&vn->busy.lock);
4331 } while ((vn = find_vmap_area_exceed_addr_lock(next, &va)));
d0107eb0 4332
4c91c07c 4333finished_zero:
53becf32
URS
4334 if (vn)
4335 spin_unlock(&vn->busy.lock);
4336
d0107eb0 4337 /* zero-fill memory holes */
4c91c07c
LS
4338 return count - remains + zero_iter(iter, remains);
4339finished:
4340 /* Nothing remains, or We couldn't copy/zero everything. */
53becf32
URS
4341 if (vn)
4342 spin_unlock(&vn->busy.lock);
d0107eb0 4343
4c91c07c 4344 return count - remains;
1da177e4
LT
4345}
4346
83342314 4347/**
92eac168
MR
4348 * remap_vmalloc_range_partial - map vmalloc pages to userspace
4349 * @vma: vma to cover
4350 * @uaddr: target user address to start at
4351 * @kaddr: virtual address of vmalloc kernel memory
bdebd6a2 4352 * @pgoff: offset from @kaddr to start at
92eac168 4353 * @size: size of map area
7682486b 4354 *
92eac168 4355 * Returns: 0 for success, -Exxx on failure
83342314 4356 *
92eac168
MR
4357 * This function checks that @kaddr is a valid vmalloc'ed area,
4358 * and that it is big enough to cover the range starting at
4359 * @uaddr in @vma. Will return failure if that criteria isn't
4360 * met.
83342314 4361 *
92eac168 4362 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 4363 */
e69e9d4a 4364int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
bdebd6a2
JH
4365 void *kaddr, unsigned long pgoff,
4366 unsigned long size)
83342314
NP
4367{
4368 struct vm_struct *area;
bdebd6a2
JH
4369 unsigned long off;
4370 unsigned long end_index;
4371
4372 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
4373 return -EINVAL;
83342314 4374
e69e9d4a
HD
4375 size = PAGE_ALIGN(size);
4376
4377 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
4378 return -EINVAL;
4379
e69e9d4a 4380 area = find_vm_area(kaddr);
83342314 4381 if (!area)
db64fe02 4382 return -EINVAL;
83342314 4383
fe9041c2 4384 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
db64fe02 4385 return -EINVAL;
83342314 4386
bdebd6a2
JH
4387 if (check_add_overflow(size, off, &end_index) ||
4388 end_index > get_vm_area_size(area))
db64fe02 4389 return -EINVAL;
bdebd6a2 4390 kaddr += off;
83342314 4391
83342314 4392 do {
e69e9d4a 4393 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
4394 int ret;
4395
83342314
NP
4396 ret = vm_insert_page(vma, uaddr, page);
4397 if (ret)
4398 return ret;
4399
4400 uaddr += PAGE_SIZE;
e69e9d4a
HD
4401 kaddr += PAGE_SIZE;
4402 size -= PAGE_SIZE;
4403 } while (size > 0);
83342314 4404
1c71222e 4405 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
83342314 4406
db64fe02 4407 return 0;
83342314 4408}
e69e9d4a
HD
4409
4410/**
92eac168
MR
4411 * remap_vmalloc_range - map vmalloc pages to userspace
4412 * @vma: vma to cover (map full range of vma)
4413 * @addr: vmalloc memory
4414 * @pgoff: number of pages into addr before first page to map
e69e9d4a 4415 *
92eac168 4416 * Returns: 0 for success, -Exxx on failure
e69e9d4a 4417 *
92eac168
MR
4418 * This function checks that addr is a valid vmalloc'ed area, and
4419 * that it is big enough to cover the vma. Will return failure if
4420 * that criteria isn't met.
e69e9d4a 4421 *
92eac168 4422 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
4423 */
4424int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
4425 unsigned long pgoff)
4426{
4427 return remap_vmalloc_range_partial(vma, vma->vm_start,
bdebd6a2 4428 addr, pgoff,
e69e9d4a
HD
4429 vma->vm_end - vma->vm_start);
4430}
83342314
NP
4431EXPORT_SYMBOL(remap_vmalloc_range);
4432
5f4352fb
JF
4433void free_vm_area(struct vm_struct *area)
4434{
4435 struct vm_struct *ret;
4436 ret = remove_vm_area(area->addr);
4437 BUG_ON(ret != area);
4438 kfree(area);
4439}
4440EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 4441
4f8b02b4 4442#ifdef CONFIG_SMP
ca23e405
TH
4443static struct vmap_area *node_to_va(struct rb_node *n)
4444{
4583e773 4445 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
4446}
4447
4448/**
68ad4a33
URS
4449 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
4450 * @addr: target address
ca23e405 4451 *
68ad4a33
URS
4452 * Returns: vmap_area if it is found. If there is no such area
4453 * the first highest(reverse order) vmap_area is returned
4454 * i.e. va->va_start < addr && va->va_end < addr or NULL
4455 * if there are no any areas before @addr.
ca23e405 4456 */
68ad4a33
URS
4457static struct vmap_area *
4458pvm_find_va_enclose_addr(unsigned long addr)
ca23e405 4459{
68ad4a33
URS
4460 struct vmap_area *va, *tmp;
4461 struct rb_node *n;
4462
4463 n = free_vmap_area_root.rb_node;
4464 va = NULL;
ca23e405
TH
4465
4466 while (n) {
68ad4a33
URS
4467 tmp = rb_entry(n, struct vmap_area, rb_node);
4468 if (tmp->va_start <= addr) {
4469 va = tmp;
4470 if (tmp->va_end >= addr)
4471 break;
4472
ca23e405 4473 n = n->rb_right;
68ad4a33
URS
4474 } else {
4475 n = n->rb_left;
4476 }
ca23e405
TH
4477 }
4478
68ad4a33 4479 return va;
ca23e405
TH
4480}
4481
4482/**
68ad4a33
URS
4483 * pvm_determine_end_from_reverse - find the highest aligned address
4484 * of free block below VMALLOC_END
4485 * @va:
4486 * in - the VA we start the search(reverse order);
4487 * out - the VA with the highest aligned end address.
799fa85d 4488 * @align: alignment for required highest address
ca23e405 4489 *
68ad4a33 4490 * Returns: determined end address within vmap_area
ca23e405 4491 */
68ad4a33
URS
4492static unsigned long
4493pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
ca23e405 4494{
68ad4a33 4495 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
ca23e405
TH
4496 unsigned long addr;
4497
68ad4a33
URS
4498 if (likely(*va)) {
4499 list_for_each_entry_from_reverse((*va),
4500 &free_vmap_area_list, list) {
4501 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
4502 if ((*va)->va_start < addr)
4503 return addr;
4504 }
ca23e405
TH
4505 }
4506
68ad4a33 4507 return 0;
ca23e405
TH
4508}
4509
4510/**
4511 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
4512 * @offsets: array containing offset of each area
4513 * @sizes: array containing size of each area
4514 * @nr_vms: the number of areas to allocate
4515 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
4516 *
4517 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
4518 * vm_structs on success, %NULL on failure
4519 *
4520 * Percpu allocator wants to use congruent vm areas so that it can
4521 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
4522 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
4523 * be scattered pretty far, distance between two areas easily going up
4524 * to gigabytes. To avoid interacting with regular vmallocs, these
4525 * areas are allocated from top.
ca23e405 4526 *
68ad4a33
URS
4527 * Despite its complicated look, this allocator is rather simple. It
4528 * does everything top-down and scans free blocks from the end looking
4529 * for matching base. While scanning, if any of the areas do not fit the
4530 * base address is pulled down to fit the area. Scanning is repeated till
4531 * all the areas fit and then all necessary data structures are inserted
4532 * and the result is returned.
ca23e405
TH
4533 */
4534struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
4535 const size_t *sizes, int nr_vms,
ec3f64fc 4536 size_t align)
ca23e405
TH
4537{
4538 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
4539 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
68ad4a33 4540 struct vmap_area **vas, *va;
ca23e405
TH
4541 struct vm_struct **vms;
4542 int area, area2, last_area, term_area;
253a496d 4543 unsigned long base, start, size, end, last_end, orig_start, orig_end;
ca23e405
TH
4544 bool purged = false;
4545
ca23e405 4546 /* verify parameters and allocate data structures */
891c49ab 4547 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
4548 for (last_area = 0, area = 0; area < nr_vms; area++) {
4549 start = offsets[area];
4550 end = start + sizes[area];
4551
4552 /* is everything aligned properly? */
4553 BUG_ON(!IS_ALIGNED(offsets[area], align));
4554 BUG_ON(!IS_ALIGNED(sizes[area], align));
4555
4556 /* detect the area with the highest address */
4557 if (start > offsets[last_area])
4558 last_area = area;
4559
c568da28 4560 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
4561 unsigned long start2 = offsets[area2];
4562 unsigned long end2 = start2 + sizes[area2];
4563
c568da28 4564 BUG_ON(start2 < end && start < end2);
ca23e405
TH
4565 }
4566 }
4567 last_end = offsets[last_area] + sizes[last_area];
4568
4569 if (vmalloc_end - vmalloc_start < last_end) {
4570 WARN_ON(true);
4571 return NULL;
4572 }
4573
4d67d860
TM
4574 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
4575 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 4576 if (!vas || !vms)
f1db7afd 4577 goto err_free2;
ca23e405
TH
4578
4579 for (area = 0; area < nr_vms; area++) {
68ad4a33 4580 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
ec3f64fc 4581 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
4582 if (!vas[area] || !vms[area])
4583 goto err_free;
4584 }
4585retry:
e36176be 4586 spin_lock(&free_vmap_area_lock);
ca23e405
TH
4587
4588 /* start scanning - we scan from the top, begin with the last area */
4589 area = term_area = last_area;
4590 start = offsets[area];
4591 end = start + sizes[area];
4592
68ad4a33
URS
4593 va = pvm_find_va_enclose_addr(vmalloc_end);
4594 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
4595
4596 while (true) {
ca23e405
TH
4597 /*
4598 * base might have underflowed, add last_end before
4599 * comparing.
4600 */
68ad4a33
URS
4601 if (base + last_end < vmalloc_start + last_end)
4602 goto overflow;
ca23e405
TH
4603
4604 /*
68ad4a33 4605 * Fitting base has not been found.
ca23e405 4606 */
68ad4a33
URS
4607 if (va == NULL)
4608 goto overflow;
ca23e405 4609
5336e52c 4610 /*
d8cc323d 4611 * If required width exceeds current VA block, move
5336e52c
KS
4612 * base downwards and then recheck.
4613 */
4614 if (base + end > va->va_end) {
4615 base = pvm_determine_end_from_reverse(&va, align) - end;
4616 term_area = area;
4617 continue;
4618 }
4619
ca23e405 4620 /*
68ad4a33 4621 * If this VA does not fit, move base downwards and recheck.
ca23e405 4622 */
5336e52c 4623 if (base + start < va->va_start) {
68ad4a33
URS
4624 va = node_to_va(rb_prev(&va->rb_node));
4625 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
4626 term_area = area;
4627 continue;
4628 }
4629
4630 /*
4631 * This area fits, move on to the previous one. If
4632 * the previous one is the terminal one, we're done.
4633 */
4634 area = (area + nr_vms - 1) % nr_vms;
4635 if (area == term_area)
4636 break;
68ad4a33 4637
ca23e405
TH
4638 start = offsets[area];
4639 end = start + sizes[area];
68ad4a33 4640 va = pvm_find_va_enclose_addr(base + end);
ca23e405 4641 }
68ad4a33 4642
ca23e405
TH
4643 /* we've found a fitting base, insert all va's */
4644 for (area = 0; area < nr_vms; area++) {
68ad4a33 4645 int ret;
ca23e405 4646
68ad4a33
URS
4647 start = base + offsets[area];
4648 size = sizes[area];
ca23e405 4649
68ad4a33
URS
4650 va = pvm_find_va_enclose_addr(start);
4651 if (WARN_ON_ONCE(va == NULL))
4652 /* It is a BUG(), but trigger recovery instead. */
4653 goto recovery;
4654
5b75b8e1
URS
4655 ret = va_clip(&free_vmap_area_root,
4656 &free_vmap_area_list, va, start, size);
1b23ff80 4657 if (WARN_ON_ONCE(unlikely(ret)))
68ad4a33
URS
4658 /* It is a BUG(), but trigger recovery instead. */
4659 goto recovery;
4660
68ad4a33
URS
4661 /* Allocated area. */
4662 va = vas[area];
4663 va->va_start = start;
4664 va->va_end = start + size;
68ad4a33 4665 }
ca23e405 4666
e36176be 4667 spin_unlock(&free_vmap_area_lock);
ca23e405 4668
253a496d
DA
4669 /* populate the kasan shadow space */
4670 for (area = 0; area < nr_vms; area++) {
4671 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
4672 goto err_free_shadow;
253a496d
DA
4673 }
4674
ca23e405 4675 /* insert all vm's */
e36176be 4676 for (area = 0; area < nr_vms; area++) {
d0936029 4677 struct vmap_node *vn = addr_to_node(vas[area]->va_start);
e36176be 4678
d0936029
URS
4679 spin_lock(&vn->busy.lock);
4680 insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head);
aaab830a 4681 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
3645cb4a 4682 pcpu_get_vm_areas);
d0936029 4683 spin_unlock(&vn->busy.lock);
e36176be 4684 }
ca23e405 4685
19f1c3ac
AK
4686 /*
4687 * Mark allocated areas as accessible. Do it now as a best-effort
4688 * approach, as they can be mapped outside of vmalloc code.
23689e91
AK
4689 * With hardware tag-based KASAN, marking is skipped for
4690 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
19f1c3ac 4691 */
1d96320f
AK
4692 for (area = 0; area < nr_vms; area++)
4693 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
f6e39794 4694 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
1d96320f 4695
ca23e405
TH
4696 kfree(vas);
4697 return vms;
4698
68ad4a33 4699recovery:
e36176be
URS
4700 /*
4701 * Remove previously allocated areas. There is no
4702 * need in removing these areas from the busy tree,
4703 * because they are inserted only on the final step
4704 * and when pcpu_get_vm_areas() is success.
4705 */
68ad4a33 4706 while (area--) {
253a496d
DA
4707 orig_start = vas[area]->va_start;
4708 orig_end = vas[area]->va_end;
96e2db45
URS
4709 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4710 &free_vmap_area_list);
9c801f61
URS
4711 if (va)
4712 kasan_release_vmalloc(orig_start, orig_end,
4713 va->va_start, va->va_end);
68ad4a33
URS
4714 vas[area] = NULL;
4715 }
4716
4717overflow:
e36176be 4718 spin_unlock(&free_vmap_area_lock);
68ad4a33 4719 if (!purged) {
77e50af0 4720 reclaim_and_purge_vmap_areas();
68ad4a33
URS
4721 purged = true;
4722
4723 /* Before "retry", check if we recover. */
4724 for (area = 0; area < nr_vms; area++) {
4725 if (vas[area])
4726 continue;
4727
4728 vas[area] = kmem_cache_zalloc(
4729 vmap_area_cachep, GFP_KERNEL);
4730 if (!vas[area])
4731 goto err_free;
4732 }
4733
4734 goto retry;
4735 }
4736
ca23e405
TH
4737err_free:
4738 for (area = 0; area < nr_vms; area++) {
68ad4a33
URS
4739 if (vas[area])
4740 kmem_cache_free(vmap_area_cachep, vas[area]);
4741
f1db7afd 4742 kfree(vms[area]);
ca23e405 4743 }
f1db7afd 4744err_free2:
ca23e405
TH
4745 kfree(vas);
4746 kfree(vms);
4747 return NULL;
253a496d
DA
4748
4749err_free_shadow:
4750 spin_lock(&free_vmap_area_lock);
4751 /*
4752 * We release all the vmalloc shadows, even the ones for regions that
4753 * hadn't been successfully added. This relies on kasan_release_vmalloc
4754 * being able to tolerate this case.
4755 */
4756 for (area = 0; area < nr_vms; area++) {
4757 orig_start = vas[area]->va_start;
4758 orig_end = vas[area]->va_end;
96e2db45
URS
4759 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4760 &free_vmap_area_list);
9c801f61
URS
4761 if (va)
4762 kasan_release_vmalloc(orig_start, orig_end,
4763 va->va_start, va->va_end);
253a496d
DA
4764 vas[area] = NULL;
4765 kfree(vms[area]);
4766 }
4767 spin_unlock(&free_vmap_area_lock);
4768 kfree(vas);
4769 kfree(vms);
4770 return NULL;
ca23e405
TH
4771}
4772
4773/**
4774 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4775 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4776 * @nr_vms: the number of allocated areas
4777 *
4778 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4779 */
4780void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4781{
4782 int i;
4783
4784 for (i = 0; i < nr_vms; i++)
4785 free_vm_area(vms[i]);
4786 kfree(vms);
4787}
4f8b02b4 4788#endif /* CONFIG_SMP */
a10aa579 4789
5bb1bb35 4790#ifdef CONFIG_PRINTK
98f18083
PM
4791bool vmalloc_dump_obj(void *object)
4792{
0818e739
JFG
4793 const void *caller;
4794 struct vm_struct *vm;
4795 struct vmap_area *va;
d0936029 4796 struct vmap_node *vn;
0818e739
JFG
4797 unsigned long addr;
4798 unsigned int nr_pages;
98f18083 4799
8be4d46e
URS
4800 addr = PAGE_ALIGN((unsigned long) object);
4801 vn = addr_to_node(addr);
d0936029 4802
8be4d46e 4803 if (!spin_trylock(&vn->busy.lock))
0818e739 4804 return false;
d0936029 4805
8be4d46e
URS
4806 va = __find_vmap_area(addr, &vn->busy.root);
4807 if (!va || !va->vm) {
d0936029 4808 spin_unlock(&vn->busy.lock);
98f18083 4809 return false;
0818e739
JFG
4810 }
4811
4812 vm = va->vm;
8be4d46e 4813 addr = (unsigned long) vm->addr;
0818e739
JFG
4814 caller = vm->caller;
4815 nr_pages = vm->nr_pages;
8be4d46e 4816 spin_unlock(&vn->busy.lock);
d0936029 4817
bd34dcd4 4818 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
0818e739 4819 nr_pages, addr, caller);
8be4d46e 4820
98f18083
PM
4821 return true;
4822}
5bb1bb35 4823#endif
98f18083 4824
a10aa579 4825#ifdef CONFIG_PROC_FS
a47a126a
ED
4826static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4827{
e5adfffc 4828 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a 4829 unsigned int nr, *counters = m->private;
51e50b3a 4830 unsigned int step = 1U << vm_area_page_order(v);
a47a126a
ED
4831
4832 if (!counters)
4833 return;
4834
af12346c
WL
4835 if (v->flags & VM_UNINITIALIZED)
4836 return;
7e5b528b
DV
4837 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4838 smp_rmb();
af12346c 4839
a47a126a
ED
4840 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4841
51e50b3a
ED
4842 for (nr = 0; nr < v->nr_pages; nr += step)
4843 counters[page_to_nid(v->pages[nr])] += step;
a47a126a
ED
4844 for_each_node_state(nr, N_HIGH_MEMORY)
4845 if (counters[nr])
4846 seq_printf(m, " N%u=%u", nr, counters[nr]);
4847 }
4848}
4849
dd3b8353
URS
4850static void show_purge_info(struct seq_file *m)
4851{
282631cb 4852 struct vmap_node *vn;
dd3b8353 4853 struct vmap_area *va;
282631cb 4854 int i;
dd3b8353 4855
282631cb
URS
4856 for (i = 0; i < nr_vmap_nodes; i++) {
4857 vn = &vmap_nodes[i];
dd3b8353 4858
282631cb
URS
4859 spin_lock(&vn->lazy.lock);
4860 list_for_each_entry(va, &vn->lazy.head, list) {
4861 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4862 (void *)va->va_start, (void *)va->va_end,
4863 va->va_end - va->va_start);
4864 }
4865 spin_unlock(&vn->lazy.lock);
dd3b8353
URS
4866 }
4867}
4868
8e1d743f 4869static int vmalloc_info_show(struct seq_file *m, void *p)
a10aa579 4870{
d0936029 4871 struct vmap_node *vn;
3f500069 4872 struct vmap_area *va;
d4033afd 4873 struct vm_struct *v;
8e1d743f 4874 int i;
d4033afd 4875
8e1d743f
URS
4876 for (i = 0; i < nr_vmap_nodes; i++) {
4877 vn = &vmap_nodes[i];
3f500069 4878
8e1d743f
URS
4879 spin_lock(&vn->busy.lock);
4880 list_for_each_entry(va, &vn->busy.head, list) {
4881 if (!va->vm) {
4882 if (va->flags & VMAP_RAM)
4883 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4884 (void *)va->va_start, (void *)va->va_end,
4885 va->va_end - va->va_start);
78c72746 4886
8e1d743f
URS
4887 continue;
4888 }
d4033afd 4889
8e1d743f 4890 v = va->vm;
a10aa579 4891
8e1d743f
URS
4892 seq_printf(m, "0x%pK-0x%pK %7ld",
4893 v->addr, v->addr + v->size, v->size);
a10aa579 4894
8e1d743f
URS
4895 if (v->caller)
4896 seq_printf(m, " %pS", v->caller);
23016969 4897
8e1d743f
URS
4898 if (v->nr_pages)
4899 seq_printf(m, " pages=%d", v->nr_pages);
a10aa579 4900
8e1d743f
URS
4901 if (v->phys_addr)
4902 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579 4903
8e1d743f
URS
4904 if (v->flags & VM_IOREMAP)
4905 seq_puts(m, " ioremap");
a10aa579 4906
902861e3
LT
4907 if (v->flags & VM_SPARSE)
4908 seq_puts(m, " sparse");
e6f79822 4909
8e1d743f
URS
4910 if (v->flags & VM_ALLOC)
4911 seq_puts(m, " vmalloc");
a10aa579 4912
8e1d743f
URS
4913 if (v->flags & VM_MAP)
4914 seq_puts(m, " vmap");
a10aa579 4915
8e1d743f
URS
4916 if (v->flags & VM_USERMAP)
4917 seq_puts(m, " user");
a10aa579 4918
8e1d743f
URS
4919 if (v->flags & VM_DMA_COHERENT)
4920 seq_puts(m, " dma-coherent");
fe9041c2 4921
8e1d743f
URS
4922 if (is_vmalloc_addr(v->pages))
4923 seq_puts(m, " vpages");
a10aa579 4924
8e1d743f
URS
4925 show_numa_info(m, v);
4926 seq_putc(m, '\n');
4927 }
4928 spin_unlock(&vn->busy.lock);
4929 }
dd3b8353
URS
4930
4931 /*
96e2db45 4932 * As a final step, dump "unpurged" areas.
dd3b8353 4933 */
8e1d743f 4934 show_purge_info(m);
a10aa579
CL
4935 return 0;
4936}
4937
5f6a6a9c
AD
4938static int __init proc_vmalloc_init(void)
4939{
8e1d743f
URS
4940 void *priv_data = NULL;
4941
fddda2b7 4942 if (IS_ENABLED(CONFIG_NUMA))
8e1d743f
URS
4943 priv_data = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
4944
4945 proc_create_single_data("vmallocinfo",
4946 0400, NULL, vmalloc_info_show, priv_data);
4947
5f6a6a9c
AD
4948 return 0;
4949}
4950module_init(proc_vmalloc_init);
db3808c1 4951
a10aa579 4952#endif
208162f4 4953
d0936029 4954static void __init vmap_init_free_space(void)
7fa8cee0
URS
4955{
4956 unsigned long vmap_start = 1;
4957 const unsigned long vmap_end = ULONG_MAX;
d0936029
URS
4958 struct vmap_area *free;
4959 struct vm_struct *busy;
7fa8cee0
URS
4960
4961 /*
4962 * B F B B B F
4963 * -|-----|.....|-----|-----|-----|.....|-
4964 * | The KVA space |
4965 * |<--------------------------------->|
4966 */
d0936029
URS
4967 for (busy = vmlist; busy; busy = busy->next) {
4968 if ((unsigned long) busy->addr - vmap_start > 0) {
7fa8cee0
URS
4969 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4970 if (!WARN_ON_ONCE(!free)) {
4971 free->va_start = vmap_start;
d0936029 4972 free->va_end = (unsigned long) busy->addr;
7fa8cee0
URS
4973
4974 insert_vmap_area_augment(free, NULL,
4975 &free_vmap_area_root,
4976 &free_vmap_area_list);
4977 }
4978 }
4979
d0936029 4980 vmap_start = (unsigned long) busy->addr + busy->size;
7fa8cee0
URS
4981 }
4982
4983 if (vmap_end - vmap_start > 0) {
4984 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4985 if (!WARN_ON_ONCE(!free)) {
4986 free->va_start = vmap_start;
4987 free->va_end = vmap_end;
4988
4989 insert_vmap_area_augment(free, NULL,
4990 &free_vmap_area_root,
4991 &free_vmap_area_list);
4992 }
4993 }
4994}
4995
d0936029
URS
4996static void vmap_init_nodes(void)
4997{
4998 struct vmap_node *vn;
8f33a2ff
URS
4999 int i, n;
5000
5001#if BITS_PER_LONG == 64
15e02a39
URS
5002 /*
5003 * A high threshold of max nodes is fixed and bound to 128,
5004 * thus a scale factor is 1 for systems where number of cores
5005 * are less or equal to specified threshold.
5006 *
5007 * As for NUMA-aware notes. For bigger systems, for example
5008 * NUMA with multi-sockets, where we can end-up with thousands
5009 * of cores in total, a "sub-numa-clustering" should be added.
5010 *
5011 * In this case a NUMA domain is considered as a single entity
5012 * with dedicated sub-nodes in it which describe one group or
5013 * set of cores. Therefore a per-domain purging is supposed to
5014 * be added as well as a per-domain balancing.
5015 */
8f33a2ff
URS
5016 n = clamp_t(unsigned int, num_possible_cpus(), 1, 128);
5017
5018 if (n > 1) {
5019 vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT | __GFP_NOWARN);
5020 if (vn) {
5021 /* Node partition is 16 pages. */
5022 vmap_zone_size = (1 << 4) * PAGE_SIZE;
5023 nr_vmap_nodes = n;
5024 vmap_nodes = vn;
5025 } else {
5026 pr_err("Failed to allocate an array. Disable a node layer\n");
5027 }
5028 }
5029#endif
d0936029 5030
8f33a2ff
URS
5031 for (n = 0; n < nr_vmap_nodes; n++) {
5032 vn = &vmap_nodes[n];
d0936029
URS
5033 vn->busy.root = RB_ROOT;
5034 INIT_LIST_HEAD(&vn->busy.head);
5035 spin_lock_init(&vn->busy.lock);
282631cb
URS
5036
5037 vn->lazy.root = RB_ROOT;
5038 INIT_LIST_HEAD(&vn->lazy.head);
5039 spin_lock_init(&vn->lazy.lock);
72210662 5040
8f33a2ff
URS
5041 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
5042 INIT_LIST_HEAD(&vn->pool[i].head);
5043 WRITE_ONCE(vn->pool[i].len, 0);
72210662
URS
5044 }
5045
5046 spin_lock_init(&vn->pool_lock);
d0936029
URS
5047 }
5048}
5049
7679ba6b
URS
5050static unsigned long
5051vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5052{
5053 unsigned long count;
5054 struct vmap_node *vn;
5055 int i, j;
5056
5057 for (count = 0, i = 0; i < nr_vmap_nodes; i++) {
5058 vn = &vmap_nodes[i];
5059
5060 for (j = 0; j < MAX_VA_SIZE_PAGES; j++)
5061 count += READ_ONCE(vn->pool[j].len);
5062 }
5063
5064 return count ? count : SHRINK_EMPTY;
5065}
5066
5067static unsigned long
5068vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5069{
5070 int i;
5071
5072 for (i = 0; i < nr_vmap_nodes; i++)
5073 decay_va_pool_node(&vmap_nodes[i], true);
5074
5075 return SHRINK_STOP;
5076}
5077
208162f4
CH
5078void __init vmalloc_init(void)
5079{
7679ba6b 5080 struct shrinker *vmap_node_shrinker;
208162f4 5081 struct vmap_area *va;
d0936029 5082 struct vmap_node *vn;
208162f4
CH
5083 struct vm_struct *tmp;
5084 int i;
5085
5086 /*
5087 * Create the cache for vmap_area objects.
5088 */
5089 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
5090
5091 for_each_possible_cpu(i) {
5092 struct vmap_block_queue *vbq;
5093 struct vfree_deferred *p;
5094
5095 vbq = &per_cpu(vmap_block_queue, i);
5096 spin_lock_init(&vbq->lock);
5097 INIT_LIST_HEAD(&vbq->free);
5098 p = &per_cpu(vfree_deferred, i);
5099 init_llist_head(&p->list);
5100 INIT_WORK(&p->wq, delayed_vfree_work);
062eacf5 5101 xa_init(&vbq->vmap_blocks);
208162f4
CH
5102 }
5103
d0936029
URS
5104 /*
5105 * Setup nodes before importing vmlist.
5106 */
5107 vmap_init_nodes();
5108
208162f4
CH
5109 /* Import existing vmlist entries. */
5110 for (tmp = vmlist; tmp; tmp = tmp->next) {
5111 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5112 if (WARN_ON_ONCE(!va))
5113 continue;
5114
5115 va->va_start = (unsigned long)tmp->addr;
5116 va->va_end = va->va_start + tmp->size;
5117 va->vm = tmp;
d0936029
URS
5118
5119 vn = addr_to_node(va->va_start);
5120 insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
208162f4
CH
5121 }
5122
5123 /*
5124 * Now we can initialize a free vmap space.
5125 */
5126 vmap_init_free_space();
5127 vmap_initialized = true;
7679ba6b
URS
5128
5129 vmap_node_shrinker = shrinker_alloc(0, "vmap-node");
5130 if (!vmap_node_shrinker) {
5131 pr_err("Failed to allocate vmap-node shrinker!\n");
5132 return;
5133 }
5134
5135 vmap_node_shrinker->count_objects = vmap_node_shrink_count;
5136 vmap_node_shrinker->scan_objects = vmap_node_shrink_scan;
5137 shrinker_register(vmap_node_shrinker);
208162f4 5138}