]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - arch/powerpc/include/asm/book3s/32/pgtable.h
powerpc/mm/32s: Use BATs for STRICT_KERNEL_RWX
[thirdparty/kernel/stable.git] / arch / powerpc / include / asm / book3s / 32 / pgtable.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
3dfcb315
AK
2#ifndef _ASM_POWERPC_BOOK3S_32_PGTABLE_H
3#define _ASM_POWERPC_BOOK3S_32_PGTABLE_H
4
9849a569 5#define __ARCH_USE_5LEVEL_HACK
3dfcb315
AK
6#include <asm-generic/pgtable-nopmd.h>
7
cbbb8683 8#include <asm/book3s/32/hash.h>
3dfcb315 9
cbbb8683 10/* And here we include common definitions */
b2133bd7
CL
11
12#define _PAGE_KERNEL_RO 0
385e89d5 13#define _PAGE_KERNEL_ROX (_PAGE_EXEC)
b2133bd7 14#define _PAGE_KERNEL_RW (_PAGE_DIRTY | _PAGE_RW)
385e89d5 15#define _PAGE_KERNEL_RWX (_PAGE_DIRTY | _PAGE_RW | _PAGE_EXEC)
b2133bd7
CL
16
17#define _PAGE_HPTEFLAGS _PAGE_HASHPTE
18
19#ifndef __ASSEMBLY__
20
21static inline bool pte_user(pte_t pte)
22{
23 return pte_val(pte) & _PAGE_USER;
24}
25#endif /* __ASSEMBLY__ */
26
27/*
28 * Location of the PFN in the PTE. Most 32-bit platforms use the same
29 * as _PAGE_SHIFT here (ie, naturally aligned).
30 * Platform who don't just pre-define the value so we don't override it here.
31 */
32#define PTE_RPN_SHIFT (PAGE_SHIFT)
33
34/*
35 * The mask covered by the RPN must be a ULL on 32-bit platforms with
36 * 64-bit PTEs.
37 */
38#ifdef CONFIG_PTE_64BIT
39#define PTE_RPN_MASK (~((1ULL << PTE_RPN_SHIFT) - 1))
40#else
41#define PTE_RPN_MASK (~((1UL << PTE_RPN_SHIFT) - 1))
42#endif
43
44/*
45 * _PAGE_CHG_MASK masks of bits that are to be preserved across
46 * pgprot changes.
47 */
48#define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HASHPTE | _PAGE_DIRTY | \
49 _PAGE_ACCESSED | _PAGE_SPECIAL)
50
b2133bd7
CL
51/*
52 * We define 2 sets of base prot bits, one for basic pages (ie,
53 * cacheable kernel and user pages) and one for non cacheable
54 * pages. We always set _PAGE_COHERENT when SMP is enabled or
55 * the processor might need it for DMA coherency.
56 */
57#define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED)
58#define _PAGE_BASE (_PAGE_BASE_NC | _PAGE_COHERENT)
59
60/*
61 * Permission masks used to generate the __P and __S table.
62 *
63 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
64 *
65 * Write permissions imply read permissions for now.
66 */
67#define PAGE_NONE __pgprot(_PAGE_BASE)
68#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
385e89d5 69#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
b2133bd7 70#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
385e89d5 71#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
b2133bd7 72#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
385e89d5 73#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
b2133bd7
CL
74
75/* Permission masks used for kernel mappings */
76#define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
77#define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE)
78#define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
79 _PAGE_NO_CACHE | _PAGE_GUARDED)
80#define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
81#define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
82#define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
83
84/*
85 * Protection used for kernel text. We want the debuggers to be able to
86 * set breakpoints anywhere, so don't write protect the kernel text
87 * on platforms where such control is possible.
88 */
89#if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) ||\
90 defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
91#define PAGE_KERNEL_TEXT PAGE_KERNEL_X
92#else
93#define PAGE_KERNEL_TEXT PAGE_KERNEL_ROX
94#endif
95
96/* Make modules code happy. We don't set RO yet */
97#define PAGE_KERNEL_EXEC PAGE_KERNEL_X
98
99/* Advertise special mapping type for AGP */
100#define PAGE_AGP (PAGE_KERNEL_NC)
101#define HAVE_PAGE_AGP
3dfcb315 102
9b081e10
CL
103#define PTE_INDEX_SIZE PTE_SHIFT
104#define PMD_INDEX_SIZE 0
105#define PUD_INDEX_SIZE 0
106#define PGD_INDEX_SIZE (32 - PGDIR_SHIFT)
107
108#define PMD_CACHE_INDEX PMD_INDEX_SIZE
fae22116 109#define PUD_CACHE_INDEX PUD_INDEX_SIZE
9b081e10
CL
110
111#ifndef __ASSEMBLY__
112#define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_INDEX_SIZE)
113#define PMD_TABLE_SIZE 0
114#define PUD_TABLE_SIZE 0
115#define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE)
116#endif /* __ASSEMBLY__ */
117
118#define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
119#define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
120
3dfcb315
AK
121/*
122 * The normal case is that PTEs are 32-bits and we have a 1-page
123 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
124 *
125 * For any >32-bit physical address platform, we can use the following
126 * two level page table layout where the pgdir is 8KB and the MS 13 bits
127 * are an index to the second level table. The combined pgdir/pmd first
128 * level has 2048 entries and the second level has 512 64-bit PTE entries.
129 * -Matt
130 */
131/* PGDIR_SHIFT determines what a top-level page table entry can map */
9b081e10 132#define PGDIR_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
3dfcb315
AK
133#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
134#define PGDIR_MASK (~(PGDIR_SIZE-1))
135
3dfcb315 136#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
3dfcb315
AK
137/*
138 * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
139 * value (for now) on others, from where we can start layout kernel
140 * virtual space that goes below PKMAP and FIXMAP
141 */
142#ifdef CONFIG_HIGHMEM
143#define KVIRT_TOP PKMAP_BASE
144#else
145#define KVIRT_TOP (0xfe000000UL) /* for now, could be FIXMAP_BASE ? */
146#endif
147
148/*
149 * ioremap_bot starts at that address. Early ioremaps move down from there,
150 * until mem_init() at which point this becomes the top of the vmalloc
151 * and ioremap space
152 */
153#ifdef CONFIG_NOT_COHERENT_CACHE
154#define IOREMAP_TOP ((KVIRT_TOP - CONFIG_CONSISTENT_SIZE) & PAGE_MASK)
155#else
156#define IOREMAP_TOP KVIRT_TOP
157#endif
158
159/*
160 * Just any arbitrary offset to the start of the vmalloc VM area: the
161 * current 16MB value just means that there will be a 64MB "hole" after the
162 * physical memory until the kernel virtual memory starts. That means that
163 * any out-of-bounds memory accesses will hopefully be caught.
164 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
165 * area for the same reason. ;)
166 *
167 * We no longer map larger than phys RAM with the BATs so we don't have
168 * to worry about the VMALLOC_OFFSET causing problems. We do have to worry
169 * about clashes between our early calls to ioremap() that start growing down
170 * from ioremap_base being run into the VM area allocations (growing upwards
171 * from VMALLOC_START). For this reason we have ioremap_bot to check when
172 * we actually run into our mappings setup in the early boot with the VM
173 * system. This really does become a problem for machines with good amounts
174 * of RAM. -- Cort
175 */
176#define VMALLOC_OFFSET (0x1000000) /* 16M */
63b2bc61
CL
177
178/*
179 * With CONFIG_STRICT_KERNEL_RWX, kernel segments are set NX. But when modules
180 * are used, NX cannot be set on VMALLOC space. So vmalloc VM space and linear
181 * memory shall not share segments.
182 */
183#if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_MODULES)
184#define VMALLOC_START ((_ALIGN((long)high_memory, 256L << 20) + VMALLOC_OFFSET) & \
185 ~(VMALLOC_OFFSET - 1))
186#else
3dfcb315 187#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
63b2bc61 188#endif
3dfcb315
AK
189#define VMALLOC_END ioremap_bot
190
cbbb8683
AK
191#ifndef __ASSEMBLY__
192#include <linux/sched.h>
193#include <linux/threads.h>
cbbb8683
AK
194
195extern unsigned long ioremap_bot;
196
9b081e10
CL
197/* Bits to mask out from a PGD to get to the PUD page */
198#define PGD_MASKED_BITS 0
cbbb8683
AK
199
200#define pte_ERROR(e) \
201 pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
202 (unsigned long long)pte_val(e))
203#define pgd_ERROR(e) \
204 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
3dfcb315
AK
205/*
206 * Bits in a linux-style PTE. These match the bits in the
207 * (hardware-defined) PowerPC PTE as closely as possible.
208 */
209
3dfcb315
AK
210#define pte_clear(mm, addr, ptep) \
211 do { pte_update(ptep, ~_PAGE_HASHPTE, 0); } while (0)
212
213#define pmd_none(pmd) (!pmd_val(pmd))
214#define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD)
215#define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK)
f281b5d5
AK
216static inline void pmd_clear(pmd_t *pmdp)
217{
218 *pmdp = __pmd(0);
219}
220
3dfcb315
AK
221
222/*
223 * When flushing the tlb entry for a page, we also need to flush the hash
224 * table entry. flush_hash_pages is assembler (for speed) in hashtable.S.
225 */
226extern int flush_hash_pages(unsigned context, unsigned long va,
227 unsigned long pmdval, int count);
228
229/* Add an HPTE to the hash table */
230extern void add_hash_page(unsigned context, unsigned long va,
231 unsigned long pmdval);
232
233/* Flush an entry from the TLB/hash table */
234extern void flush_hash_entry(struct mm_struct *mm, pte_t *ptep,
235 unsigned long address);
236
237/*
238 * PTE updates. This function is called whenever an existing
239 * valid PTE is updated. This does -not- include set_pte_at()
240 * which nowadays only sets a new PTE.
241 *
242 * Depending on the type of MMU, we may need to use atomic updates
243 * and the PTE may be either 32 or 64 bit wide. In the later case,
244 * when using atomic updates, only the low part of the PTE is
245 * accessed atomically.
246 *
247 * In addition, on 44x, we also maintain a global flag indicating
248 * that an executable user mapping was modified, which is needed
249 * to properly flush the virtually tagged instruction cache of
250 * those implementations.
251 */
252#ifndef CONFIG_PTE_64BIT
253static inline unsigned long pte_update(pte_t *p,
254 unsigned long clr,
255 unsigned long set)
256{
3dfcb315
AK
257 unsigned long old, tmp;
258
259 __asm__ __volatile__("\
2601: lwarx %0,0,%3\n\
261 andc %1,%0,%4\n\
262 or %1,%1,%5\n"
3dfcb315
AK
263" stwcx. %1,0,%3\n\
264 bne- 1b"
265 : "=&r" (old), "=&r" (tmp), "=m" (*p)
266 : "r" (p), "r" (clr), "r" (set), "m" (*p)
267 : "cc" );
cbbb8683 268
3dfcb315
AK
269 return old;
270}
271#else /* CONFIG_PTE_64BIT */
272static inline unsigned long long pte_update(pte_t *p,
273 unsigned long clr,
274 unsigned long set)
275{
3dfcb315
AK
276 unsigned long long old;
277 unsigned long tmp;
278
279 __asm__ __volatile__("\
2801: lwarx %L0,0,%4\n\
281 lwzx %0,0,%3\n\
282 andc %1,%L0,%5\n\
283 or %1,%1,%6\n"
3dfcb315
AK
284" stwcx. %1,0,%4\n\
285 bne- 1b"
286 : "=&r" (old), "=&r" (tmp), "=m" (*p)
287 : "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p)
288 : "cc" );
cbbb8683 289
3dfcb315
AK
290 return old;
291}
292#endif /* CONFIG_PTE_64BIT */
293
294/*
295 * 2.6 calls this without flushing the TLB entry; this is wrong
296 * for our hash-based implementation, we fix that up here.
297 */
298#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
299static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep)
300{
301 unsigned long old;
302 old = pte_update(ptep, _PAGE_ACCESSED, 0);
3dfcb315
AK
303 if (old & _PAGE_HASHPTE) {
304 unsigned long ptephys = __pa(ptep) & PAGE_MASK;
305 flush_hash_pages(context, addr, ptephys, 1);
306 }
3dfcb315
AK
307 return (old & _PAGE_ACCESSED) != 0;
308}
309#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
310 __ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep)
311
312#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
313static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
314 pte_t *ptep)
315{
316 return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
317}
318
319#define __HAVE_ARCH_PTEP_SET_WRPROTECT
320static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
321 pte_t *ptep)
322{
b2133bd7 323 pte_update(ptep, _PAGE_RW, 0);
3dfcb315 324}
3dfcb315 325
e4c1112c 326static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
b3603e17 327 pte_t *ptep, pte_t entry,
e4c1112c
AK
328 unsigned long address,
329 int psize)
3dfcb315
AK
330{
331 unsigned long set = pte_val(entry) &
385e89d5 332 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
3dfcb315 333
b2133bd7 334 pte_update(ptep, 0, set);
bd5050e3
AK
335
336 flush_tlb_page(vma, address);
3dfcb315
AK
337}
338
339#define __HAVE_ARCH_PTE_SAME
340#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
341
3dfcb315 342#define pmd_page_vaddr(pmd) \
32ea4c14 343 ((unsigned long)__va(pmd_val(pmd) & ~(PTE_TABLE_SIZE - 1)))
3dfcb315
AK
344#define pmd_page(pmd) \
345 pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
3dfcb315
AK
346
347/* to find an entry in a kernel page-table-directory */
348#define pgd_offset_k(address) pgd_offset(&init_mm, address)
349
350/* to find an entry in a page-table-directory */
351#define pgd_index(address) ((address) >> PGDIR_SHIFT)
352#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
353
354/* Find an entry in the third-level page table.. */
355#define pte_index(address) \
356 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
357#define pte_offset_kernel(dir, addr) \
358 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr))
359#define pte_offset_map(dir, addr) \
32ea4c14
CL
360 ((pte_t *)(kmap_atomic(pmd_page(*(dir))) + \
361 (pmd_page_vaddr(*(dir)) & ~PAGE_MASK)) + pte_index(addr))
3dfcb315
AK
362#define pte_unmap(pte) kunmap_atomic(pte)
363
364/*
365 * Encode and decode a swap entry.
366 * Note that the bits we use in a PTE for representing a swap entry
367 * must not include the _PAGE_PRESENT bit or the _PAGE_HASHPTE bit (if used).
368 * -- paulus
369 */
370#define __swp_type(entry) ((entry).val & 0x1f)
371#define __swp_offset(entry) ((entry).val >> 5)
372#define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) })
373#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 })
374#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 })
375
c766ee72 376int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot);
4386c096 377
1ca72129
AK
378/* Generic accessors to PTE bits */
379static inline int pte_write(pte_t pte) { return !!(pte_val(pte) & _PAGE_RW);}
ca8afd40 380static inline int pte_read(pte_t pte) { return 1; }
1ca72129
AK
381static inline int pte_dirty(pte_t pte) { return !!(pte_val(pte) & _PAGE_DIRTY); }
382static inline int pte_young(pte_t pte) { return !!(pte_val(pte) & _PAGE_ACCESSED); }
383static inline int pte_special(pte_t pte) { return !!(pte_val(pte) & _PAGE_SPECIAL); }
384static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
385e89d5 385static inline bool pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }
1ca72129
AK
386
387static inline int pte_present(pte_t pte)
388{
389 return pte_val(pte) & _PAGE_PRESENT;
390}
391
daba7902
CL
392static inline bool pte_hw_valid(pte_t pte)
393{
394 return pte_val(pte) & _PAGE_PRESENT;
395}
396
397static inline bool pte_hashpte(pte_t pte)
398{
399 return !!(pte_val(pte) & _PAGE_HASHPTE);
400}
401
402static inline bool pte_ci(pte_t pte)
403{
404 return !!(pte_val(pte) & _PAGE_NO_CACHE);
405}
406
5769beaf
AK
407/*
408 * We only find page table entry in the last level
409 * Hence no need for other accessors
410 */
411#define pte_access_permitted pte_access_permitted
412static inline bool pte_access_permitted(pte_t pte, bool write)
413{
5769beaf
AK
414 /*
415 * A read-only access is controlled by _PAGE_USER bit.
416 * We have _PAGE_READ set for WRITE and EXECUTE
417 */
26973fa5
CL
418 if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
419 return false;
5769beaf 420
26973fa5 421 if (write && !pte_write(pte))
5769beaf
AK
422 return false;
423
424 return true;
425}
426
1ca72129
AK
427/* Conversion functions: convert a page and protection to a page entry,
428 * and a page entry and page directory to the page they refer to.
429 *
430 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
431 * long for now.
432 */
433static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
434{
435 return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
436 pgprot_val(pgprot));
437}
438
439static inline unsigned long pte_pfn(pte_t pte)
440{
441 return pte_val(pte) >> PTE_RPN_SHIFT;
442}
443
444/* Generic modifiers for PTE bits */
445static inline pte_t pte_wrprotect(pte_t pte)
446{
447 return __pte(pte_val(pte) & ~_PAGE_RW);
448}
449
daba7902
CL
450static inline pte_t pte_exprotect(pte_t pte)
451{
385e89d5 452 return __pte(pte_val(pte) & ~_PAGE_EXEC);
daba7902
CL
453}
454
1ca72129
AK
455static inline pte_t pte_mkclean(pte_t pte)
456{
457 return __pte(pte_val(pte) & ~_PAGE_DIRTY);
458}
459
460static inline pte_t pte_mkold(pte_t pte)
461{
462 return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
463}
464
daba7902
CL
465static inline pte_t pte_mkexec(pte_t pte)
466{
385e89d5 467 return __pte(pte_val(pte) | _PAGE_EXEC);
daba7902
CL
468}
469
470static inline pte_t pte_mkpte(pte_t pte)
471{
472 return pte;
473}
474
1ca72129
AK
475static inline pte_t pte_mkwrite(pte_t pte)
476{
477 return __pte(pte_val(pte) | _PAGE_RW);
478}
479
480static inline pte_t pte_mkdirty(pte_t pte)
481{
482 return __pte(pte_val(pte) | _PAGE_DIRTY);
483}
484
485static inline pte_t pte_mkyoung(pte_t pte)
486{
487 return __pte(pte_val(pte) | _PAGE_ACCESSED);
488}
489
490static inline pte_t pte_mkspecial(pte_t pte)
491{
492 return __pte(pte_val(pte) | _PAGE_SPECIAL);
493}
494
495static inline pte_t pte_mkhuge(pte_t pte)
496{
497 return pte;
498}
499
daba7902
CL
500static inline pte_t pte_mkprivileged(pte_t pte)
501{
502 return __pte(pte_val(pte) & ~_PAGE_USER);
503}
504
505static inline pte_t pte_mkuser(pte_t pte)
506{
507 return __pte(pte_val(pte) | _PAGE_USER);
508}
509
1ca72129
AK
510static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
511{
512 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
513}
514
515
516
517/* This low level function performs the actual PTE insertion
518 * Setting the PTE depends on the MMU type and other factors. It's
519 * an horrible mess that I'm not going to try to clean up now but
520 * I'm keeping it in one place rather than spread around
521 */
522static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
523 pte_t *ptep, pte_t pte, int percpu)
524{
a0cd0f8c 525#if defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
1ca72129
AK
526 /* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
527 * helper pte_update() which does an atomic update. We need to do that
528 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
529 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving
530 * the hash bits instead (ie, same as the non-SMP case)
531 */
532 if (percpu)
533 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
534 | (pte_val(pte) & ~_PAGE_HASHPTE));
535 else
536 pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte));
537
a0cd0f8c 538#elif defined(CONFIG_PTE_64BIT)
1ca72129
AK
539 /* Second case is 32-bit with 64-bit PTE. In this case, we
540 * can just store as long as we do the two halves in the right order
541 * with a barrier in between. This is possible because we take care,
542 * in the hash code, to pre-invalidate if the PTE was already hashed,
543 * which synchronizes us with any concurrent invalidation.
544 * In the percpu case, we also fallback to the simple update preserving
545 * the hash bits
546 */
547 if (percpu) {
548 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
549 | (pte_val(pte) & ~_PAGE_HASHPTE));
550 return;
551 }
552 if (pte_val(*ptep) & _PAGE_HASHPTE)
553 flush_hash_entry(mm, ptep, addr);
554 __asm__ __volatile__("\
555 stw%U0%X0 %2,%0\n\
556 eieio\n\
557 stw%U0%X0 %L2,%1"
558 : "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
559 : "r" (pte) : "memory");
560
a0cd0f8c 561#else
1ca72129
AK
562 /* Third case is 32-bit hash table in UP mode, we need to preserve
563 * the _PAGE_HASHPTE bit since we may not have invalidated the previous
564 * translation in the hash yet (done in a subsequent flush_tlb_xxx())
565 * and see we need to keep track that this PTE needs invalidating
566 */
567 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
568 | (pte_val(pte) & ~_PAGE_HASHPTE));
1ca72129
AK
569#endif
570}
571
572/*
573 * Macro to mark a page protection value as "uncacheable".
574 */
575
576#define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
577 _PAGE_WRITETHRU)
578
579#define pgprot_noncached pgprot_noncached
580static inline pgprot_t pgprot_noncached(pgprot_t prot)
581{
582 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
583 _PAGE_NO_CACHE | _PAGE_GUARDED);
584}
585
586#define pgprot_noncached_wc pgprot_noncached_wc
587static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
588{
589 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
590 _PAGE_NO_CACHE);
591}
592
593#define pgprot_cached pgprot_cached
594static inline pgprot_t pgprot_cached(pgprot_t prot)
595{
596 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
597 _PAGE_COHERENT);
598}
599
600#define pgprot_cached_wthru pgprot_cached_wthru
601static inline pgprot_t pgprot_cached_wthru(pgprot_t prot)
602{
603 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
604 _PAGE_COHERENT | _PAGE_WRITETHRU);
605}
606
607#define pgprot_cached_noncoherent pgprot_cached_noncoherent
608static inline pgprot_t pgprot_cached_noncoherent(pgprot_t prot)
609{
610 return __pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL);
611}
612
613#define pgprot_writecombine pgprot_writecombine
614static inline pgprot_t pgprot_writecombine(pgprot_t prot)
615{
616 return pgprot_noncached_wc(prot);
617}
618
3dfcb315
AK
619#endif /* !__ASSEMBLY__ */
620
621#endif /* _ASM_POWERPC_BOOK3S_32_PGTABLE_H */