]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - arch/x86/kvm/mtrr.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 499
[thirdparty/kernel/stable.git] / arch / x86 / kvm / mtrr.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
ff53604b
XG
2/*
3 * vMTRR implementation
4 *
5 * Copyright (C) 2006 Qumranet, Inc.
6 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
7 * Copyright(C) 2015 Intel Corporation.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 * Marcelo Tosatti <mtosatti@redhat.com>
13 * Paolo Bonzini <pbonzini@redhat.com>
14 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
ff53604b
XG
15 */
16
17#include <linux/kvm_host.h>
18#include <asm/mtrr.h>
19
20#include "cpuid.h"
21#include "mmu.h"
22
10fac2dc
XG
23#define IA32_MTRR_DEF_TYPE_E (1ULL << 11)
24#define IA32_MTRR_DEF_TYPE_FE (1ULL << 10)
25#define IA32_MTRR_DEF_TYPE_TYPE_MASK (0xff)
26
ff53604b
XG
27static bool msr_mtrr_valid(unsigned msr)
28{
29 switch (msr) {
30 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
31 case MSR_MTRRfix64K_00000:
32 case MSR_MTRRfix16K_80000:
33 case MSR_MTRRfix16K_A0000:
34 case MSR_MTRRfix4K_C0000:
35 case MSR_MTRRfix4K_C8000:
36 case MSR_MTRRfix4K_D0000:
37 case MSR_MTRRfix4K_D8000:
38 case MSR_MTRRfix4K_E0000:
39 case MSR_MTRRfix4K_E8000:
40 case MSR_MTRRfix4K_F0000:
41 case MSR_MTRRfix4K_F8000:
42 case MSR_MTRRdefType:
43 case MSR_IA32_CR_PAT:
44 return true;
ff53604b
XG
45 }
46 return false;
47}
48
ff53604b
XG
49static bool valid_mtrr_type(unsigned t)
50{
51 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
52}
53
54bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
55{
56 int i;
57 u64 mask;
58
59 if (!msr_mtrr_valid(msr))
60 return false;
61
62 if (msr == MSR_IA32_CR_PAT) {
674ea351 63 return kvm_pat_valid(data);
ff53604b
XG
64 } else if (msr == MSR_MTRRdefType) {
65 if (data & ~0xcff)
66 return false;
67 return valid_mtrr_type(data & 0xff);
68 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
69 for (i = 0; i < 8 ; i++)
70 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
71 return false;
72 return true;
73 }
74
75 /* variable MTRRs */
76 WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
77
78 mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
79 if ((msr & 1) == 0) {
80 /* MTRR base */
81 if (!valid_mtrr_type(data & 0xff))
82 return false;
83 mask |= 0xf00;
84 } else
85 /* MTRR mask */
86 mask |= 0x7ff;
87 if (data & mask) {
88 kvm_inject_gp(vcpu, 0);
89 return false;
90 }
91
92 return true;
93}
94EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
95
10fac2dc
XG
96static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
97{
98 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
99}
100
101static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
102{
103 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
104}
105
106static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
107{
108 return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
109}
110
e24dea2a 111static u8 mtrr_disabled_type(struct kvm_vcpu *vcpu)
10dc331f
XG
112{
113 /*
114 * Intel SDM 11.11.2.2: all MTRRs are disabled when
115 * IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC
116 * memory type is applied to all of physical memory.
e24dea2a
PB
117 *
118 * However, virtual machines can be run with CPUID such that
119 * there are no MTRRs. In that case, the firmware will never
120 * enable MTRRs and it is obviously undesirable to run the
121 * guest entirely with UC memory and we use WB.
10dc331f 122 */
d6321d49 123 if (guest_cpuid_has(vcpu, X86_FEATURE_MTRR))
e24dea2a
PB
124 return MTRR_TYPE_UNCACHABLE;
125 else
126 return MTRR_TYPE_WRBACK;
10dc331f
XG
127}
128
de9aef5e
XG
129/*
130* Three terms are used in the following code:
131* - segment, it indicates the address segments covered by fixed MTRRs.
132* - unit, it corresponds to the MSR entry in the segment.
133* - range, a range is covered in one memory cache type.
134*/
135struct fixed_mtrr_segment {
136 u64 start;
137 u64 end;
138
139 int range_shift;
140
141 /* the start position in kvm_mtrr.fixed_ranges[]. */
142 int range_start;
143};
144
145static struct fixed_mtrr_segment fixed_seg_table[] = {
146 /* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
147 {
148 .start = 0x0,
149 .end = 0x80000,
150 .range_shift = 16, /* 64K */
151 .range_start = 0,
152 },
153
154 /*
155 * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
156 * 16K fixed mtrr.
157 */
158 {
159 .start = 0x80000,
160 .end = 0xc0000,
161 .range_shift = 14, /* 16K */
162 .range_start = 8,
163 },
164
165 /*
166 * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
167 * 4K fixed mtrr.
168 */
169 {
170 .start = 0xc0000,
171 .end = 0x100000,
172 .range_shift = 12, /* 12K */
173 .range_start = 24,
174 }
175};
176
177/*
178 * The size of unit is covered in one MSR, one MSR entry contains
179 * 8 ranges so that unit size is always 8 * 2^range_shift.
180 */
181static u64 fixed_mtrr_seg_unit_size(int seg)
182{
183 return 8 << fixed_seg_table[seg].range_shift;
184}
185
186static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
187{
188 switch (msr) {
189 case MSR_MTRRfix64K_00000:
190 *seg = 0;
191 *unit = 0;
192 break;
193 case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
194 *seg = 1;
195 *unit = msr - MSR_MTRRfix16K_80000;
196 break;
197 case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
198 *seg = 2;
199 *unit = msr - MSR_MTRRfix4K_C0000;
200 break;
201 default:
202 return false;
203 }
204
205 return true;
206}
207
208static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
209{
210 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
211 u64 unit_size = fixed_mtrr_seg_unit_size(seg);
212
213 *start = mtrr_seg->start + unit * unit_size;
214 *end = *start + unit_size;
215 WARN_ON(*end > mtrr_seg->end);
216}
217
218static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
219{
220 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
221
222 WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
223 > mtrr_seg->end);
224
225 /* each unit has 8 ranges. */
226 return mtrr_seg->range_start + 8 * unit;
227}
228
f571c097
XG
229static int fixed_mtrr_seg_end_range_index(int seg)
230{
231 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
232 int n;
233
234 n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
235 return mtrr_seg->range_start + n - 1;
236}
237
de9aef5e
XG
238static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
239{
240 int seg, unit;
241
242 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
243 return false;
244
245 fixed_mtrr_seg_unit_range(seg, unit, start, end);
246 return true;
247}
248
249static int fixed_msr_to_range_index(u32 msr)
250{
251 int seg, unit;
252
253 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
254 return -1;
255
256 return fixed_mtrr_seg_unit_range_index(seg, unit);
257}
258
f7bfb57b
XG
259static int fixed_mtrr_addr_to_seg(u64 addr)
260{
261 struct fixed_mtrr_segment *mtrr_seg;
262 int seg, seg_num = ARRAY_SIZE(fixed_seg_table);
263
264 for (seg = 0; seg < seg_num; seg++) {
265 mtrr_seg = &fixed_seg_table[seg];
a7f2d786 266 if (mtrr_seg->start <= addr && addr < mtrr_seg->end)
f7bfb57b
XG
267 return seg;
268 }
269
270 return -1;
271}
272
273static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
274{
275 struct fixed_mtrr_segment *mtrr_seg;
276 int index;
277
278 mtrr_seg = &fixed_seg_table[seg];
279 index = mtrr_seg->range_start;
280 index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
281 return index;
282}
283
f571c097
XG
284static u64 fixed_mtrr_range_end_addr(int seg, int index)
285{
286 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
287 int pos = index - mtrr_seg->range_start;
288
289 return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
290}
291
a13842dc
XG
292static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
293{
294 u64 mask;
295
296 *start = range->base & PAGE_MASK;
297
298 mask = range->mask & PAGE_MASK;
a13842dc
XG
299
300 /* This cannot overflow because writing to the reserved bits of
301 * variable MTRRs causes a #GP.
302 */
303 *end = (*start | ~mask) + 1;
304}
305
ff53604b
XG
306static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
307{
70109e7d 308 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
a13842dc 309 gfn_t start, end;
ff53604b 310 int index;
ff53604b
XG
311
312 if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
313 !kvm_arch_has_noncoherent_dma(vcpu->kvm))
314 return;
315
10fac2dc 316 if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
ff53604b
XG
317 return;
318
de9aef5e
XG
319 /* fixed MTRRs. */
320 if (fixed_msr_to_range(msr, &start, &end)) {
321 if (!fixed_mtrr_is_enabled(mtrr_state))
322 return;
323 } else if (msr == MSR_MTRRdefType) {
ff53604b
XG
324 start = 0x0;
325 end = ~0ULL;
de9aef5e 326 } else {
ff53604b 327 /* variable range MTRRs. */
ff53604b 328 index = (msr - 0x200) / 2;
a13842dc 329 var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end);
ff53604b
XG
330 }
331
ff53604b
XG
332 kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
333}
334
19efffa2
XG
335static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
336{
337 return (range->mask & (1 << 11)) != 0;
338}
339
340static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
341{
342 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
343 struct kvm_mtrr_range *tmp, *cur;
344 int index, is_mtrr_mask;
345
346 index = (msr - 0x200) / 2;
347 is_mtrr_mask = msr - 0x200 - 2 * index;
348 cur = &mtrr_state->var_ranges[index];
349
350 /* remove the entry if it's in the list. */
351 if (var_mtrr_range_is_valid(cur))
352 list_del(&mtrr_state->var_ranges[index].node);
353
fa7c4ebd
PB
354 /* Extend the mask with all 1 bits to the left, since those
355 * bits must implicitly be 0. The bits are then cleared
356 * when reading them.
357 */
19efffa2
XG
358 if (!is_mtrr_mask)
359 cur->base = data;
360 else
fa7c4ebd 361 cur->mask = data | (-1LL << cpuid_maxphyaddr(vcpu));
19efffa2
XG
362
363 /* add it to the list if it's enabled. */
364 if (var_mtrr_range_is_valid(cur)) {
365 list_for_each_entry(tmp, &mtrr_state->head, node)
366 if (cur->base >= tmp->base)
367 break;
368 list_add_tail(&cur->node, &tmp->node);
369 }
370}
371
ff53604b
XG
372int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
373{
de9aef5e 374 int index;
ff53604b
XG
375
376 if (!kvm_mtrr_valid(vcpu, msr, data))
377 return 1;
378
de9aef5e
XG
379 index = fixed_msr_to_range_index(msr);
380 if (index >= 0)
381 *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
382 else if (msr == MSR_MTRRdefType)
10fac2dc 383 vcpu->arch.mtrr_state.deftype = data;
ff53604b
XG
384 else if (msr == MSR_IA32_CR_PAT)
385 vcpu->arch.pat = data;
19efffa2
XG
386 else
387 set_var_mtrr_msr(vcpu, msr, data);
ff53604b
XG
388
389 update_mtrr(vcpu, msr);
390 return 0;
391}
392
393int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
394{
de9aef5e 395 int index;
ff53604b 396
eb839917
XG
397 /* MSR_MTRRcap is a readonly MSR. */
398 if (msr == MSR_MTRRcap) {
399 /*
400 * SMRR = 0
401 * WC = 1
402 * FIX = 1
403 * VCNT = KVM_NR_VAR_MTRR
404 */
405 *pdata = 0x500 | KVM_NR_VAR_MTRR;
406 return 0;
407 }
408
ff53604b
XG
409 if (!msr_mtrr_valid(msr))
410 return 1;
411
de9aef5e
XG
412 index = fixed_msr_to_range_index(msr);
413 if (index >= 0)
414 *pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
415 else if (msr == MSR_MTRRdefType)
10fac2dc 416 *pdata = vcpu->arch.mtrr_state.deftype;
ff53604b
XG
417 else if (msr == MSR_IA32_CR_PAT)
418 *pdata = vcpu->arch.pat;
419 else { /* Variable MTRRs */
de9aef5e 420 int is_mtrr_mask;
ff53604b 421
de9aef5e
XG
422 index = (msr - 0x200) / 2;
423 is_mtrr_mask = msr - 0x200 - 2 * index;
ff53604b 424 if (!is_mtrr_mask)
de9aef5e 425 *pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
ff53604b 426 else
de9aef5e 427 *pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
fa7c4ebd
PB
428
429 *pdata &= (1ULL << cpuid_maxphyaddr(vcpu)) - 1;
ff53604b
XG
430 }
431
432 return 0;
433}
434
19efffa2
XG
435void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
436{
437 INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
438}
439
f571c097
XG
440struct mtrr_iter {
441 /* input fields. */
442 struct kvm_mtrr *mtrr_state;
443 u64 start;
444 u64 end;
445
446 /* output fields. */
447 int mem_type;
10dc331f
XG
448 /* mtrr is completely disabled? */
449 bool mtrr_disabled;
f571c097
XG
450 /* [start, end) is not fully covered in MTRRs? */
451 bool partial_map;
452
453 /* private fields. */
454 union {
455 /* used for fixed MTRRs. */
456 struct {
457 int index;
458 int seg;
459 };
460
461 /* used for var MTRRs. */
462 struct {
463 struct kvm_mtrr_range *range;
464 /* max address has been covered in var MTRRs. */
465 u64 start_max;
466 };
467 };
468
469 bool fixed;
470};
471
472static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
473{
474 int seg, index;
475
476 if (!fixed_mtrr_is_enabled(iter->mtrr_state))
477 return false;
478
479 seg = fixed_mtrr_addr_to_seg(iter->start);
480 if (seg < 0)
481 return false;
482
483 iter->fixed = true;
484 index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
485 iter->index = index;
486 iter->seg = seg;
487 return true;
488}
489
490static bool match_var_range(struct mtrr_iter *iter,
491 struct kvm_mtrr_range *range)
492{
493 u64 start, end;
494
495 var_mtrr_range(range, &start, &end);
496 if (!(start >= iter->end || end <= iter->start)) {
497 iter->range = range;
498
499 /*
500 * the function is called when we do kvm_mtrr.head walking.
501 * Range has the minimum base address which interleaves
502 * [looker->start_max, looker->end).
503 */
504 iter->partial_map |= iter->start_max < start;
505
506 /* update the max address has been covered. */
507 iter->start_max = max(iter->start_max, end);
508 return true;
509 }
510
511 return false;
512}
513
514static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
515{
516 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
517
518 list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
519 if (match_var_range(iter, iter->range))
520 return;
521
522 iter->range = NULL;
523 iter->partial_map |= iter->start_max < iter->end;
524}
525
526static void mtrr_lookup_var_start(struct mtrr_iter *iter)
527{
528 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
529
530 iter->fixed = false;
531 iter->start_max = iter->start;
30b072ce 532 iter->range = NULL;
f571c097
XG
533 iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);
534
535 __mtrr_lookup_var_next(iter);
536}
537
538static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
539{
540 /* terminate the lookup. */
541 if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
542 iter->fixed = false;
543 iter->range = NULL;
544 return;
545 }
546
547 iter->index++;
548
549 /* have looked up for all fixed MTRRs. */
550 if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
551 return mtrr_lookup_var_start(iter);
552
553 /* switch to next segment. */
554 if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
555 iter->seg++;
556}
557
558static void mtrr_lookup_var_next(struct mtrr_iter *iter)
559{
560 __mtrr_lookup_var_next(iter);
561}
562
563static void mtrr_lookup_start(struct mtrr_iter *iter)
564{
565 if (!mtrr_is_enabled(iter->mtrr_state)) {
10dc331f 566 iter->mtrr_disabled = true;
f571c097
XG
567 return;
568 }
569
570 if (!mtrr_lookup_fixed_start(iter))
571 mtrr_lookup_var_start(iter);
572}
573
574static void mtrr_lookup_init(struct mtrr_iter *iter,
575 struct kvm_mtrr *mtrr_state, u64 start, u64 end)
576{
577 iter->mtrr_state = mtrr_state;
578 iter->start = start;
579 iter->end = end;
10dc331f 580 iter->mtrr_disabled = false;
f571c097
XG
581 iter->partial_map = false;
582 iter->fixed = false;
583 iter->range = NULL;
584
585 mtrr_lookup_start(iter);
586}
587
588static bool mtrr_lookup_okay(struct mtrr_iter *iter)
589{
590 if (iter->fixed) {
591 iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
592 return true;
593 }
594
595 if (iter->range) {
596 iter->mem_type = iter->range->base & 0xff;
597 return true;
598 }
599
600 return false;
601}
602
603static void mtrr_lookup_next(struct mtrr_iter *iter)
604{
605 if (iter->fixed)
606 mtrr_lookup_fixed_next(iter);
607 else
608 mtrr_lookup_var_next(iter);
609}
610
611#define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
612 for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
613 mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
614
3f3f78b6 615u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
ff53604b 616{
3f3f78b6 617 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
fa612137
XG
618 struct mtrr_iter iter;
619 u64 start, end;
620 int type = -1;
3f3f78b6
XG
621 const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
622 | (1 << MTRR_TYPE_WRTHROUGH);
623
624 start = gfn_to_gpa(gfn);
fa612137 625 end = start + PAGE_SIZE;
ff53604b 626
fa612137
XG
627 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
628 int curr_type = iter.mem_type;
ff53604b 629
3f3f78b6
XG
630 /*
631 * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
632 * Precedences.
633 */
634
3f3f78b6
XG
635 if (type == -1) {
636 type = curr_type;
ff53604b
XG
637 continue;
638 }
639
3f3f78b6
XG
640 /*
641 * If two or more variable memory ranges match and the
642 * memory types are identical, then that memory type is
643 * used.
644 */
645 if (type == curr_type)
646 continue;
647
648 /*
649 * If two or more variable memory ranges match and one of
650 * the memory types is UC, the UC memory type used.
651 */
652 if (curr_type == MTRR_TYPE_UNCACHABLE)
ff53604b
XG
653 return MTRR_TYPE_UNCACHABLE;
654
3f3f78b6
XG
655 /*
656 * If two or more variable memory ranges match and the
657 * memory types are WT and WB, the WT memory type is used.
658 */
659 if (((1 << type) & wt_wb_mask) &&
660 ((1 << curr_type) & wt_wb_mask)) {
661 type = MTRR_TYPE_WRTHROUGH;
662 continue;
ff53604b
XG
663 }
664
3f3f78b6
XG
665 /*
666 * For overlaps not defined by the above rules, processor
667 * behavior is undefined.
668 */
669
670 /* We use WB for this undefined behavior. :( */
671 return MTRR_TYPE_WRBACK;
ff53604b
XG
672 }
673
10dc331f 674 if (iter.mtrr_disabled)
e24dea2a 675 return mtrr_disabled_type(vcpu);
10dc331f 676
fc1a8126
AW
677 /* not contained in any MTRRs. */
678 if (type == -1)
679 return mtrr_default_type(mtrr_state);
680
3e5d2fdc
XG
681 /*
682 * We just check one page, partially covered by MTRRs is
683 * impossible.
684 */
685 WARN_ON(iter.partial_map);
686
fa612137 687 return type;
ff53604b 688}
ff53604b 689EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);
6a39bbc5
XG
690
691bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
692 int page_num)
693{
694 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
695 struct mtrr_iter iter;
696 u64 start, end;
697 int type = -1;
698
699 start = gfn_to_gpa(gfn);
700 end = gfn_to_gpa(gfn + page_num);
701 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
702 if (type == -1) {
703 type = iter.mem_type;
704 continue;
705 }
706
707 if (type != iter.mem_type)
708 return false;
709 }
710
10dc331f
XG
711 if (iter.mtrr_disabled)
712 return true;
713
6a39bbc5
XG
714 if (!iter.partial_map)
715 return true;
716
717 if (type == -1)
718 return true;
719
720 return type == mtrr_default_type(mtrr_state);
721}