]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - fs/aio.c
Linux 4.20.17
[thirdparty/kernel/stable.git] / fs / aio.c
CommitLineData
1da177e4
LT
1/*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
bfe4037e 8 * Copyright 2018 Christoph Hellwig.
1da177e4
LT
9 *
10 * See ../COPYING for licensing terms.
11 */
caf4167a
KO
12#define pr_fmt(fmt) "%s: " fmt, __func__
13
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/init.h>
16#include <linux/errno.h>
17#include <linux/time.h>
18#include <linux/aio_abi.h>
630d9c47 19#include <linux/export.h>
1da177e4 20#include <linux/syscalls.h>
b9d128f1 21#include <linux/backing-dev.h>
9018ccc4 22#include <linux/refcount.h>
027445c3 23#include <linux/uio.h>
1da177e4 24
174cd4b1 25#include <linux/sched/signal.h>
1da177e4
LT
26#include <linux/fs.h>
27#include <linux/file.h>
28#include <linux/mm.h>
29#include <linux/mman.h>
3d2d827f 30#include <linux/mmu_context.h>
e1bdd5f2 31#include <linux/percpu.h>
1da177e4
LT
32#include <linux/slab.h>
33#include <linux/timer.h>
34#include <linux/aio.h>
35#include <linux/highmem.h>
36#include <linux/workqueue.h>
37#include <linux/security.h>
9c3060be 38#include <linux/eventfd.h>
cfb1e33e 39#include <linux/blkdev.h>
9d85cba7 40#include <linux/compat.h>
36bc08cc
GZ
41#include <linux/migrate.h>
42#include <linux/ramfs.h>
723be6e3 43#include <linux/percpu-refcount.h>
71ad7490 44#include <linux/mount.h>
1da177e4
LT
45
46#include <asm/kmap_types.h>
7c0f6ba6 47#include <linux/uaccess.h>
a538e3ff 48#include <linux/nospec.h>
1da177e4 49
68d70d03
AV
50#include "internal.h"
51
f3a2752a
CH
52#define KIOCB_KEY 0
53
4e179bca
KO
54#define AIO_RING_MAGIC 0xa10a10a1
55#define AIO_RING_COMPAT_FEATURES 1
56#define AIO_RING_INCOMPAT_FEATURES 0
57struct aio_ring {
58 unsigned id; /* kernel internal index number */
59 unsigned nr; /* number of io_events */
fa8a53c3
BL
60 unsigned head; /* Written to by userland or under ring_lock
61 * mutex by aio_read_events_ring(). */
4e179bca
KO
62 unsigned tail;
63
64 unsigned magic;
65 unsigned compat_features;
66 unsigned incompat_features;
67 unsigned header_length; /* size of aio_ring */
68
69
70 struct io_event io_events[0];
71}; /* 128 bytes + ring size */
72
73#define AIO_RING_PAGES 8
4e179bca 74
db446a08 75struct kioctx_table {
d0264c01
TH
76 struct rcu_head rcu;
77 unsigned nr;
78 struct kioctx __rcu *table[];
db446a08
BL
79};
80
e1bdd5f2
KO
81struct kioctx_cpu {
82 unsigned reqs_available;
83};
84
dc48e56d
JA
85struct ctx_rq_wait {
86 struct completion comp;
87 atomic_t count;
88};
89
4e179bca 90struct kioctx {
723be6e3 91 struct percpu_ref users;
36f55889 92 atomic_t dead;
4e179bca 93
e34ecee2
KO
94 struct percpu_ref reqs;
95
4e179bca 96 unsigned long user_id;
4e179bca 97
e1bdd5f2
KO
98 struct __percpu kioctx_cpu *cpu;
99
100 /*
101 * For percpu reqs_available, number of slots we move to/from global
102 * counter at a time:
103 */
104 unsigned req_batch;
3e845ce0
KO
105 /*
106 * This is what userspace passed to io_setup(), it's not used for
107 * anything but counting against the global max_reqs quota.
108 *
58c85dc2 109 * The real limit is nr_events - 1, which will be larger (see
3e845ce0
KO
110 * aio_setup_ring())
111 */
4e179bca
KO
112 unsigned max_reqs;
113
58c85dc2
KO
114 /* Size of ringbuffer, in units of struct io_event */
115 unsigned nr_events;
4e179bca 116
58c85dc2
KO
117 unsigned long mmap_base;
118 unsigned long mmap_size;
119
120 struct page **ring_pages;
121 long nr_pages;
122
f729863a 123 struct rcu_work free_rwork; /* see free_ioctx() */
4e23bcae 124
e02ba72a
AP
125 /*
126 * signals when all in-flight requests are done
127 */
dc48e56d 128 struct ctx_rq_wait *rq_wait;
e02ba72a 129
4e23bcae 130 struct {
34e83fc6
KO
131 /*
132 * This counts the number of available slots in the ringbuffer,
133 * so we avoid overflowing it: it's decremented (if positive)
134 * when allocating a kiocb and incremented when the resulting
135 * io_event is pulled off the ringbuffer.
e1bdd5f2
KO
136 *
137 * We batch accesses to it with a percpu version.
34e83fc6
KO
138 */
139 atomic_t reqs_available;
4e23bcae
KO
140 } ____cacheline_aligned_in_smp;
141
142 struct {
143 spinlock_t ctx_lock;
144 struct list_head active_reqs; /* used for cancellation */
145 } ____cacheline_aligned_in_smp;
146
58c85dc2
KO
147 struct {
148 struct mutex ring_lock;
4e23bcae
KO
149 wait_queue_head_t wait;
150 } ____cacheline_aligned_in_smp;
58c85dc2
KO
151
152 struct {
153 unsigned tail;
d856f32a 154 unsigned completed_events;
58c85dc2 155 spinlock_t completion_lock;
4e23bcae 156 } ____cacheline_aligned_in_smp;
58c85dc2
KO
157
158 struct page *internal_pages[AIO_RING_PAGES];
36bc08cc 159 struct file *aio_ring_file;
db446a08
BL
160
161 unsigned id;
4e179bca
KO
162};
163
a3c0d439
CH
164struct fsync_iocb {
165 struct work_struct work;
166 struct file *file;
167 bool datasync;
168};
169
bfe4037e
CH
170struct poll_iocb {
171 struct file *file;
172 struct wait_queue_head *head;
173 __poll_t events;
174 bool woken;
175 bool cancelled;
176 struct wait_queue_entry wait;
177 struct work_struct work;
178};
179
04b2fa9f 180struct aio_kiocb {
54843f87
CH
181 union {
182 struct kiocb rw;
a3c0d439 183 struct fsync_iocb fsync;
bfe4037e 184 struct poll_iocb poll;
54843f87 185 };
04b2fa9f
CH
186
187 struct kioctx *ki_ctx;
188 kiocb_cancel_fn *ki_cancel;
189
190 struct iocb __user *ki_user_iocb; /* user's aiocb */
191 __u64 ki_user_data; /* user's data for completion */
192
193 struct list_head ki_list; /* the aio core uses this
194 * for cancellation */
9018ccc4 195 refcount_t ki_refcnt;
04b2fa9f
CH
196
197 /*
198 * If the aio_resfd field of the userspace iocb is not zero,
199 * this is the underlying eventfd context to deliver events to.
200 */
201 struct eventfd_ctx *ki_eventfd;
202};
203
1da177e4 204/*------ sysctl variables----*/
d55b5fda
ZB
205static DEFINE_SPINLOCK(aio_nr_lock);
206unsigned long aio_nr; /* current system wide number of aio requests */
207unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
1da177e4
LT
208/*----end sysctl variables---*/
209
e18b890b
CL
210static struct kmem_cache *kiocb_cachep;
211static struct kmem_cache *kioctx_cachep;
1da177e4 212
71ad7490
BL
213static struct vfsmount *aio_mnt;
214
215static const struct file_operations aio_ring_fops;
216static const struct address_space_operations aio_ctx_aops;
217
218static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
219{
71ad7490 220 struct file *file;
71ad7490 221 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
7f62656b
DC
222 if (IS_ERR(inode))
223 return ERR_CAST(inode);
71ad7490
BL
224
225 inode->i_mapping->a_ops = &aio_ctx_aops;
226 inode->i_mapping->private_data = ctx;
227 inode->i_size = PAGE_SIZE * nr_pages;
228
d93aa9d8
AV
229 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
230 O_RDWR, &aio_ring_fops);
c9c554f2 231 if (IS_ERR(file))
71ad7490 232 iput(inode);
71ad7490
BL
233 return file;
234}
235
236static struct dentry *aio_mount(struct file_system_type *fs_type,
237 int flags, const char *dev_name, void *data)
238{
d93aa9d8 239 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, NULL,
22f6b4d3
JH
240 AIO_RING_MAGIC);
241
242 if (!IS_ERR(root))
243 root->d_sb->s_iflags |= SB_I_NOEXEC;
244 return root;
71ad7490
BL
245}
246
1da177e4
LT
247/* aio_setup
248 * Creates the slab caches used by the aio routines, panic on
249 * failure as this is done early during the boot sequence.
250 */
251static int __init aio_setup(void)
252{
71ad7490
BL
253 static struct file_system_type aio_fs = {
254 .name = "aio",
255 .mount = aio_mount,
256 .kill_sb = kill_anon_super,
257 };
258 aio_mnt = kern_mount(&aio_fs);
259 if (IS_ERR(aio_mnt))
260 panic("Failed to create aio fs mount.");
261
04b2fa9f 262 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
0a31bd5f 263 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
1da177e4
LT
264 return 0;
265}
385773e0 266__initcall(aio_setup);
1da177e4 267
5e9ae2e5
BL
268static void put_aio_ring_file(struct kioctx *ctx)
269{
270 struct file *aio_ring_file = ctx->aio_ring_file;
de04e769
RV
271 struct address_space *i_mapping;
272
5e9ae2e5 273 if (aio_ring_file) {
45063097 274 truncate_setsize(file_inode(aio_ring_file), 0);
5e9ae2e5
BL
275
276 /* Prevent further access to the kioctx from migratepages */
45063097 277 i_mapping = aio_ring_file->f_mapping;
de04e769
RV
278 spin_lock(&i_mapping->private_lock);
279 i_mapping->private_data = NULL;
5e9ae2e5 280 ctx->aio_ring_file = NULL;
de04e769 281 spin_unlock(&i_mapping->private_lock);
5e9ae2e5
BL
282
283 fput(aio_ring_file);
284 }
285}
286
1da177e4
LT
287static void aio_free_ring(struct kioctx *ctx)
288{
36bc08cc 289 int i;
1da177e4 290
fa8a53c3
BL
291 /* Disconnect the kiotx from the ring file. This prevents future
292 * accesses to the kioctx from page migration.
293 */
294 put_aio_ring_file(ctx);
295
36bc08cc 296 for (i = 0; i < ctx->nr_pages; i++) {
8e321fef 297 struct page *page;
36bc08cc
GZ
298 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
299 page_count(ctx->ring_pages[i]));
8e321fef
BL
300 page = ctx->ring_pages[i];
301 if (!page)
302 continue;
303 ctx->ring_pages[i] = NULL;
304 put_page(page);
36bc08cc 305 }
1da177e4 306
ddb8c45b 307 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
58c85dc2 308 kfree(ctx->ring_pages);
ddb8c45b
SL
309 ctx->ring_pages = NULL;
310 }
36bc08cc
GZ
311}
312
5477e70a 313static int aio_ring_mremap(struct vm_area_struct *vma)
e4a0d3e7 314{
5477e70a 315 struct file *file = vma->vm_file;
e4a0d3e7
PE
316 struct mm_struct *mm = vma->vm_mm;
317 struct kioctx_table *table;
b2edffdd 318 int i, res = -EINVAL;
e4a0d3e7
PE
319
320 spin_lock(&mm->ioctx_lock);
321 rcu_read_lock();
322 table = rcu_dereference(mm->ioctx_table);
323 for (i = 0; i < table->nr; i++) {
324 struct kioctx *ctx;
325
d0264c01 326 ctx = rcu_dereference(table->table[i]);
e4a0d3e7 327 if (ctx && ctx->aio_ring_file == file) {
b2edffdd
AV
328 if (!atomic_read(&ctx->dead)) {
329 ctx->user_id = ctx->mmap_base = vma->vm_start;
330 res = 0;
331 }
e4a0d3e7
PE
332 break;
333 }
334 }
335
336 rcu_read_unlock();
337 spin_unlock(&mm->ioctx_lock);
b2edffdd 338 return res;
e4a0d3e7
PE
339}
340
5477e70a
ON
341static const struct vm_operations_struct aio_ring_vm_ops = {
342 .mremap = aio_ring_mremap,
343#if IS_ENABLED(CONFIG_MMU)
344 .fault = filemap_fault,
345 .map_pages = filemap_map_pages,
346 .page_mkwrite = filemap_page_mkwrite,
347#endif
348};
349
350static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
351{
352 vma->vm_flags |= VM_DONTEXPAND;
353 vma->vm_ops = &aio_ring_vm_ops;
354 return 0;
355}
356
36bc08cc
GZ
357static const struct file_operations aio_ring_fops = {
358 .mmap = aio_ring_mmap,
359};
360
0c45355f 361#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc
GZ
362static int aio_migratepage(struct address_space *mapping, struct page *new,
363 struct page *old, enum migrate_mode mode)
364{
5e9ae2e5 365 struct kioctx *ctx;
36bc08cc 366 unsigned long flags;
fa8a53c3 367 pgoff_t idx;
36bc08cc
GZ
368 int rc;
369
2916ecc0
JG
370 /*
371 * We cannot support the _NO_COPY case here, because copy needs to
372 * happen under the ctx->completion_lock. That does not work with the
373 * migration workflow of MIGRATE_SYNC_NO_COPY.
374 */
375 if (mode == MIGRATE_SYNC_NO_COPY)
376 return -EINVAL;
377
8e321fef
BL
378 rc = 0;
379
fa8a53c3 380 /* mapping->private_lock here protects against the kioctx teardown. */
8e321fef
BL
381 spin_lock(&mapping->private_lock);
382 ctx = mapping->private_data;
fa8a53c3
BL
383 if (!ctx) {
384 rc = -EINVAL;
385 goto out;
386 }
387
388 /* The ring_lock mutex. The prevents aio_read_events() from writing
389 * to the ring's head, and prevents page migration from mucking in
390 * a partially initialized kiotx.
391 */
392 if (!mutex_trylock(&ctx->ring_lock)) {
393 rc = -EAGAIN;
394 goto out;
395 }
396
397 idx = old->index;
398 if (idx < (pgoff_t)ctx->nr_pages) {
399 /* Make sure the old page hasn't already been changed */
400 if (ctx->ring_pages[idx] != old)
401 rc = -EAGAIN;
8e321fef
BL
402 } else
403 rc = -EINVAL;
8e321fef
BL
404
405 if (rc != 0)
fa8a53c3 406 goto out_unlock;
8e321fef 407
36bc08cc
GZ
408 /* Writeback must be complete */
409 BUG_ON(PageWriteback(old));
8e321fef 410 get_page(new);
36bc08cc 411
8e321fef 412 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
36bc08cc 413 if (rc != MIGRATEPAGE_SUCCESS) {
8e321fef 414 put_page(new);
fa8a53c3 415 goto out_unlock;
36bc08cc
GZ
416 }
417
fa8a53c3
BL
418 /* Take completion_lock to prevent other writes to the ring buffer
419 * while the old page is copied to the new. This prevents new
420 * events from being lost.
5e9ae2e5 421 */
fa8a53c3
BL
422 spin_lock_irqsave(&ctx->completion_lock, flags);
423 migrate_page_copy(new, old);
424 BUG_ON(ctx->ring_pages[idx] != old);
425 ctx->ring_pages[idx] = new;
426 spin_unlock_irqrestore(&ctx->completion_lock, flags);
36bc08cc 427
fa8a53c3
BL
428 /* The old page is no longer accessible. */
429 put_page(old);
8e321fef 430
fa8a53c3
BL
431out_unlock:
432 mutex_unlock(&ctx->ring_lock);
433out:
434 spin_unlock(&mapping->private_lock);
36bc08cc 435 return rc;
1da177e4 436}
0c45355f 437#endif
1da177e4 438
36bc08cc 439static const struct address_space_operations aio_ctx_aops = {
835f252c 440 .set_page_dirty = __set_page_dirty_no_writeback,
0c45355f 441#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc 442 .migratepage = aio_migratepage,
0c45355f 443#endif
36bc08cc
GZ
444};
445
2a8a9867 446static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
1da177e4
LT
447{
448 struct aio_ring *ring;
41003a7b 449 struct mm_struct *mm = current->mm;
3dc9acb6 450 unsigned long size, unused;
1da177e4 451 int nr_pages;
36bc08cc
GZ
452 int i;
453 struct file *file;
1da177e4
LT
454
455 /* Compensate for the ring buffer's head/tail overlap entry */
456 nr_events += 2; /* 1 is required, 2 for good luck */
457
458 size = sizeof(struct aio_ring);
459 size += sizeof(struct io_event) * nr_events;
1da177e4 460
36bc08cc 461 nr_pages = PFN_UP(size);
1da177e4
LT
462 if (nr_pages < 0)
463 return -EINVAL;
464
71ad7490 465 file = aio_private_file(ctx, nr_pages);
36bc08cc
GZ
466 if (IS_ERR(file)) {
467 ctx->aio_ring_file = NULL;
fa8a53c3 468 return -ENOMEM;
36bc08cc
GZ
469 }
470
3dc9acb6
LT
471 ctx->aio_ring_file = file;
472 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
473 / sizeof(struct io_event);
474
475 ctx->ring_pages = ctx->internal_pages;
476 if (nr_pages > AIO_RING_PAGES) {
477 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
478 GFP_KERNEL);
479 if (!ctx->ring_pages) {
480 put_aio_ring_file(ctx);
481 return -ENOMEM;
482 }
483 }
484
36bc08cc
GZ
485 for (i = 0; i < nr_pages; i++) {
486 struct page *page;
45063097 487 page = find_or_create_page(file->f_mapping,
36bc08cc
GZ
488 i, GFP_HIGHUSER | __GFP_ZERO);
489 if (!page)
490 break;
491 pr_debug("pid(%d) page[%d]->count=%d\n",
492 current->pid, i, page_count(page));
493 SetPageUptodate(page);
36bc08cc 494 unlock_page(page);
3dc9acb6
LT
495
496 ctx->ring_pages[i] = page;
36bc08cc 497 }
3dc9acb6 498 ctx->nr_pages = i;
1da177e4 499
3dc9acb6
LT
500 if (unlikely(i != nr_pages)) {
501 aio_free_ring(ctx);
fa8a53c3 502 return -ENOMEM;
1da177e4
LT
503 }
504
58c85dc2
KO
505 ctx->mmap_size = nr_pages * PAGE_SIZE;
506 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
36bc08cc 507
013373e8
MH
508 if (down_write_killable(&mm->mmap_sem)) {
509 ctx->mmap_size = 0;
510 aio_free_ring(ctx);
511 return -EINTR;
512 }
513
36bc08cc
GZ
514 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
515 PROT_READ | PROT_WRITE,
897ab3e0 516 MAP_SHARED, 0, &unused, NULL);
3dc9acb6 517 up_write(&mm->mmap_sem);
58c85dc2 518 if (IS_ERR((void *)ctx->mmap_base)) {
58c85dc2 519 ctx->mmap_size = 0;
1da177e4 520 aio_free_ring(ctx);
fa8a53c3 521 return -ENOMEM;
1da177e4
LT
522 }
523
58c85dc2 524 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
d6c355c7 525
58c85dc2
KO
526 ctx->user_id = ctx->mmap_base;
527 ctx->nr_events = nr_events; /* trusted copy */
1da177e4 528
58c85dc2 529 ring = kmap_atomic(ctx->ring_pages[0]);
1da177e4 530 ring->nr = nr_events; /* user copy */
db446a08 531 ring->id = ~0U;
1da177e4
LT
532 ring->head = ring->tail = 0;
533 ring->magic = AIO_RING_MAGIC;
534 ring->compat_features = AIO_RING_COMPAT_FEATURES;
535 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
536 ring->header_length = sizeof(struct aio_ring);
e8e3c3d6 537 kunmap_atomic(ring);
58c85dc2 538 flush_dcache_page(ctx->ring_pages[0]);
1da177e4
LT
539
540 return 0;
541}
542
1da177e4
LT
543#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
544#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
545#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
546
04b2fa9f 547void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
0460fef2 548{
54843f87 549 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
0460fef2
KO
550 struct kioctx *ctx = req->ki_ctx;
551 unsigned long flags;
552
75321b50
CH
553 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
554 return;
0460fef2 555
75321b50
CH
556 spin_lock_irqsave(&ctx->ctx_lock, flags);
557 list_add_tail(&req->ki_list, &ctx->active_reqs);
0460fef2 558 req->ki_cancel = cancel;
0460fef2
KO
559 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
560}
561EXPORT_SYMBOL(kiocb_set_cancel_fn);
562
a6d7cff4
TH
563/*
564 * free_ioctx() should be RCU delayed to synchronize against the RCU
565 * protected lookup_ioctx() and also needs process context to call
f729863a 566 * aio_free_ring(). Use rcu_work.
a6d7cff4 567 */
e34ecee2 568static void free_ioctx(struct work_struct *work)
36f55889 569{
f729863a
TH
570 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
571 free_rwork);
e34ecee2 572 pr_debug("freeing %p\n", ctx);
e1bdd5f2 573
e34ecee2 574 aio_free_ring(ctx);
e1bdd5f2 575 free_percpu(ctx->cpu);
9a1049da
TH
576 percpu_ref_exit(&ctx->reqs);
577 percpu_ref_exit(&ctx->users);
36f55889
KO
578 kmem_cache_free(kioctx_cachep, ctx);
579}
580
e34ecee2
KO
581static void free_ioctx_reqs(struct percpu_ref *ref)
582{
583 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
584
e02ba72a 585 /* At this point we know that there are no any in-flight requests */
dc48e56d
JA
586 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
587 complete(&ctx->rq_wait->comp);
e02ba72a 588
a6d7cff4 589 /* Synchronize against RCU protected table->table[] dereferences */
f729863a
TH
590 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
591 queue_rcu_work(system_wq, &ctx->free_rwork);
e34ecee2
KO
592}
593
36f55889
KO
594/*
595 * When this function runs, the kioctx has been removed from the "hash table"
596 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
597 * now it's safe to cancel any that need to be.
598 */
e34ecee2 599static void free_ioctx_users(struct percpu_ref *ref)
36f55889 600{
e34ecee2 601 struct kioctx *ctx = container_of(ref, struct kioctx, users);
04b2fa9f 602 struct aio_kiocb *req;
36f55889
KO
603
604 spin_lock_irq(&ctx->ctx_lock);
605
606 while (!list_empty(&ctx->active_reqs)) {
607 req = list_first_entry(&ctx->active_reqs,
04b2fa9f 608 struct aio_kiocb, ki_list);
888933f8 609 req->ki_cancel(&req->rw);
4faa9996 610 list_del_init(&req->ki_list);
36f55889
KO
611 }
612
613 spin_unlock_irq(&ctx->ctx_lock);
614
e34ecee2
KO
615 percpu_ref_kill(&ctx->reqs);
616 percpu_ref_put(&ctx->reqs);
36f55889
KO
617}
618
db446a08
BL
619static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
620{
621 unsigned i, new_nr;
622 struct kioctx_table *table, *old;
623 struct aio_ring *ring;
624
625 spin_lock(&mm->ioctx_lock);
855ef0de 626 table = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
627
628 while (1) {
629 if (table)
630 for (i = 0; i < table->nr; i++)
d0264c01 631 if (!rcu_access_pointer(table->table[i])) {
db446a08 632 ctx->id = i;
d0264c01 633 rcu_assign_pointer(table->table[i], ctx);
db446a08
BL
634 spin_unlock(&mm->ioctx_lock);
635
fa8a53c3
BL
636 /* While kioctx setup is in progress,
637 * we are protected from page migration
638 * changes ring_pages by ->ring_lock.
639 */
db446a08
BL
640 ring = kmap_atomic(ctx->ring_pages[0]);
641 ring->id = ctx->id;
642 kunmap_atomic(ring);
643 return 0;
644 }
645
646 new_nr = (table ? table->nr : 1) * 4;
db446a08
BL
647 spin_unlock(&mm->ioctx_lock);
648
649 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
650 new_nr, GFP_KERNEL);
651 if (!table)
652 return -ENOMEM;
653
654 table->nr = new_nr;
655
656 spin_lock(&mm->ioctx_lock);
855ef0de 657 old = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
658
659 if (!old) {
660 rcu_assign_pointer(mm->ioctx_table, table);
661 } else if (table->nr > old->nr) {
662 memcpy(table->table, old->table,
663 old->nr * sizeof(struct kioctx *));
664
665 rcu_assign_pointer(mm->ioctx_table, table);
666 kfree_rcu(old, rcu);
667 } else {
668 kfree(table);
669 table = old;
670 }
671 }
672}
673
e34ecee2
KO
674static void aio_nr_sub(unsigned nr)
675{
676 spin_lock(&aio_nr_lock);
677 if (WARN_ON(aio_nr - nr > aio_nr))
678 aio_nr = 0;
679 else
680 aio_nr -= nr;
681 spin_unlock(&aio_nr_lock);
682}
683
1da177e4
LT
684/* ioctx_alloc
685 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
686 */
687static struct kioctx *ioctx_alloc(unsigned nr_events)
688{
41003a7b 689 struct mm_struct *mm = current->mm;
1da177e4 690 struct kioctx *ctx;
e23754f8 691 int err = -ENOMEM;
1da177e4 692
2a8a9867
MFO
693 /*
694 * Store the original nr_events -- what userspace passed to io_setup(),
695 * for counting against the global limit -- before it changes.
696 */
697 unsigned int max_reqs = nr_events;
698
e1bdd5f2
KO
699 /*
700 * We keep track of the number of available ringbuffer slots, to prevent
701 * overflow (reqs_available), and we also use percpu counters for this.
702 *
703 * So since up to half the slots might be on other cpu's percpu counters
704 * and unavailable, double nr_events so userspace sees what they
705 * expected: additionally, we move req_batch slots to/from percpu
706 * counters at a time, so make sure that isn't 0:
707 */
708 nr_events = max(nr_events, num_possible_cpus() * 4);
709 nr_events *= 2;
710
1da177e4 711 /* Prevent overflows */
08397acd 712 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
1da177e4
LT
713 pr_debug("ENOMEM: nr_events too high\n");
714 return ERR_PTR(-EINVAL);
715 }
716
2a8a9867 717 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
1da177e4
LT
718 return ERR_PTR(-EAGAIN);
719
c3762229 720 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
1da177e4
LT
721 if (!ctx)
722 return ERR_PTR(-ENOMEM);
723
2a8a9867 724 ctx->max_reqs = max_reqs;
1da177e4 725
1da177e4 726 spin_lock_init(&ctx->ctx_lock);
0460fef2 727 spin_lock_init(&ctx->completion_lock);
58c85dc2 728 mutex_init(&ctx->ring_lock);
fa8a53c3
BL
729 /* Protect against page migration throughout kiotx setup by keeping
730 * the ring_lock mutex held until setup is complete. */
731 mutex_lock(&ctx->ring_lock);
1da177e4
LT
732 init_waitqueue_head(&ctx->wait);
733
734 INIT_LIST_HEAD(&ctx->active_reqs);
1da177e4 735
2aad2a86 736 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
fa8a53c3
BL
737 goto err;
738
2aad2a86 739 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
fa8a53c3
BL
740 goto err;
741
e1bdd5f2
KO
742 ctx->cpu = alloc_percpu(struct kioctx_cpu);
743 if (!ctx->cpu)
e34ecee2 744 goto err;
1da177e4 745
2a8a9867 746 err = aio_setup_ring(ctx, nr_events);
fa8a53c3 747 if (err < 0)
e34ecee2 748 goto err;
e1bdd5f2 749
34e83fc6 750 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
e1bdd5f2 751 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
6878ea72
BL
752 if (ctx->req_batch < 1)
753 ctx->req_batch = 1;
34e83fc6 754
1da177e4 755 /* limit the number of system wide aios */
9fa1cb39 756 spin_lock(&aio_nr_lock);
2a8a9867
MFO
757 if (aio_nr + ctx->max_reqs > aio_max_nr ||
758 aio_nr + ctx->max_reqs < aio_nr) {
9fa1cb39 759 spin_unlock(&aio_nr_lock);
e34ecee2 760 err = -EAGAIN;
d1b94327 761 goto err_ctx;
2dd542b7
AV
762 }
763 aio_nr += ctx->max_reqs;
9fa1cb39 764 spin_unlock(&aio_nr_lock);
1da177e4 765
1881686f
BL
766 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
767 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
723be6e3 768
da90382c
BL
769 err = ioctx_add_table(ctx, mm);
770 if (err)
e34ecee2 771 goto err_cleanup;
da90382c 772
fa8a53c3
BL
773 /* Release the ring_lock mutex now that all setup is complete. */
774 mutex_unlock(&ctx->ring_lock);
775
caf4167a 776 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
58c85dc2 777 ctx, ctx->user_id, mm, ctx->nr_events);
1da177e4
LT
778 return ctx;
779
e34ecee2
KO
780err_cleanup:
781 aio_nr_sub(ctx->max_reqs);
d1b94327 782err_ctx:
deeb8525
AV
783 atomic_set(&ctx->dead, 1);
784 if (ctx->mmap_size)
785 vm_munmap(ctx->mmap_base, ctx->mmap_size);
d1b94327 786 aio_free_ring(ctx);
e34ecee2 787err:
fa8a53c3 788 mutex_unlock(&ctx->ring_lock);
e1bdd5f2 789 free_percpu(ctx->cpu);
9a1049da
TH
790 percpu_ref_exit(&ctx->reqs);
791 percpu_ref_exit(&ctx->users);
1da177e4 792 kmem_cache_free(kioctx_cachep, ctx);
caf4167a 793 pr_debug("error allocating ioctx %d\n", err);
e23754f8 794 return ERR_PTR(err);
1da177e4
LT
795}
796
36f55889
KO
797/* kill_ioctx
798 * Cancels all outstanding aio requests on an aio context. Used
799 * when the processes owning a context have all exited to encourage
800 * the rapid destruction of the kioctx.
801 */
fb2d4483 802static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
dc48e56d 803 struct ctx_rq_wait *wait)
36f55889 804{
fa88b6f8 805 struct kioctx_table *table;
db446a08 806
b2edffdd
AV
807 spin_lock(&mm->ioctx_lock);
808 if (atomic_xchg(&ctx->dead, 1)) {
809 spin_unlock(&mm->ioctx_lock);
fa88b6f8 810 return -EINVAL;
b2edffdd 811 }
db446a08 812
855ef0de 813 table = rcu_dereference_raw(mm->ioctx_table);
d0264c01
TH
814 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
815 RCU_INIT_POINTER(table->table[ctx->id], NULL);
fa88b6f8 816 spin_unlock(&mm->ioctx_lock);
4fcc712f 817
a6d7cff4 818 /* free_ioctx_reqs() will do the necessary RCU synchronization */
fa88b6f8 819 wake_up_all(&ctx->wait);
4fcc712f 820
fa88b6f8
BL
821 /*
822 * It'd be more correct to do this in free_ioctx(), after all
823 * the outstanding kiocbs have finished - but by then io_destroy
824 * has already returned, so io_setup() could potentially return
825 * -EAGAIN with no ioctxs actually in use (as far as userspace
826 * could tell).
827 */
828 aio_nr_sub(ctx->max_reqs);
4fcc712f 829
fa88b6f8
BL
830 if (ctx->mmap_size)
831 vm_munmap(ctx->mmap_base, ctx->mmap_size);
fb2d4483 832
dc48e56d 833 ctx->rq_wait = wait;
fa88b6f8
BL
834 percpu_ref_kill(&ctx->users);
835 return 0;
1da177e4
LT
836}
837
36f55889
KO
838/*
839 * exit_aio: called when the last user of mm goes away. At this point, there is
840 * no way for any new requests to be submited or any of the io_* syscalls to be
841 * called on the context.
842 *
843 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
844 * them.
1da177e4 845 */
fc9b52cd 846void exit_aio(struct mm_struct *mm)
1da177e4 847{
4b70ac5f 848 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
dc48e56d
JA
849 struct ctx_rq_wait wait;
850 int i, skipped;
db446a08 851
4b70ac5f
ON
852 if (!table)
853 return;
db446a08 854
dc48e56d
JA
855 atomic_set(&wait.count, table->nr);
856 init_completion(&wait.comp);
857
858 skipped = 0;
4b70ac5f 859 for (i = 0; i < table->nr; ++i) {
d0264c01
TH
860 struct kioctx *ctx =
861 rcu_dereference_protected(table->table[i], true);
abf137dd 862
dc48e56d
JA
863 if (!ctx) {
864 skipped++;
4b70ac5f 865 continue;
dc48e56d
JA
866 }
867
936af157 868 /*
4b70ac5f
ON
869 * We don't need to bother with munmap() here - exit_mmap(mm)
870 * is coming and it'll unmap everything. And we simply can't,
871 * this is not necessarily our ->mm.
872 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
873 * that it needs to unmap the area, just set it to 0.
936af157 874 */
58c85dc2 875 ctx->mmap_size = 0;
dc48e56d
JA
876 kill_ioctx(mm, ctx, &wait);
877 }
36f55889 878
dc48e56d 879 if (!atomic_sub_and_test(skipped, &wait.count)) {
6098b45b 880 /* Wait until all IO for the context are done. */
dc48e56d 881 wait_for_completion(&wait.comp);
1da177e4 882 }
4b70ac5f
ON
883
884 RCU_INIT_POINTER(mm->ioctx_table, NULL);
885 kfree(table);
1da177e4
LT
886}
887
e1bdd5f2
KO
888static void put_reqs_available(struct kioctx *ctx, unsigned nr)
889{
890 struct kioctx_cpu *kcpu;
263782c1 891 unsigned long flags;
e1bdd5f2 892
263782c1 893 local_irq_save(flags);
be6fb451 894 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2 895 kcpu->reqs_available += nr;
263782c1 896
e1bdd5f2
KO
897 while (kcpu->reqs_available >= ctx->req_batch * 2) {
898 kcpu->reqs_available -= ctx->req_batch;
899 atomic_add(ctx->req_batch, &ctx->reqs_available);
900 }
901
263782c1 902 local_irq_restore(flags);
e1bdd5f2
KO
903}
904
905static bool get_reqs_available(struct kioctx *ctx)
906{
907 struct kioctx_cpu *kcpu;
908 bool ret = false;
263782c1 909 unsigned long flags;
e1bdd5f2 910
263782c1 911 local_irq_save(flags);
be6fb451 912 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2
KO
913 if (!kcpu->reqs_available) {
914 int old, avail = atomic_read(&ctx->reqs_available);
915
916 do {
917 if (avail < ctx->req_batch)
918 goto out;
919
920 old = avail;
921 avail = atomic_cmpxchg(&ctx->reqs_available,
922 avail, avail - ctx->req_batch);
923 } while (avail != old);
924
925 kcpu->reqs_available += ctx->req_batch;
926 }
927
928 ret = true;
929 kcpu->reqs_available--;
930out:
263782c1 931 local_irq_restore(flags);
e1bdd5f2
KO
932 return ret;
933}
934
d856f32a
BL
935/* refill_reqs_available
936 * Updates the reqs_available reference counts used for tracking the
937 * number of free slots in the completion ring. This can be called
938 * from aio_complete() (to optimistically update reqs_available) or
939 * from aio_get_req() (the we're out of events case). It must be
940 * called holding ctx->completion_lock.
941 */
942static void refill_reqs_available(struct kioctx *ctx, unsigned head,
943 unsigned tail)
944{
945 unsigned events_in_ring, completed;
946
947 /* Clamp head since userland can write to it. */
948 head %= ctx->nr_events;
949 if (head <= tail)
950 events_in_ring = tail - head;
951 else
952 events_in_ring = ctx->nr_events - (head - tail);
953
954 completed = ctx->completed_events;
955 if (events_in_ring < completed)
956 completed -= events_in_ring;
957 else
958 completed = 0;
959
960 if (!completed)
961 return;
962
963 ctx->completed_events -= completed;
964 put_reqs_available(ctx, completed);
965}
966
967/* user_refill_reqs_available
968 * Called to refill reqs_available when aio_get_req() encounters an
969 * out of space in the completion ring.
970 */
971static void user_refill_reqs_available(struct kioctx *ctx)
972{
973 spin_lock_irq(&ctx->completion_lock);
974 if (ctx->completed_events) {
975 struct aio_ring *ring;
976 unsigned head;
977
978 /* Access of ring->head may race with aio_read_events_ring()
979 * here, but that's okay since whether we read the old version
980 * or the new version, and either will be valid. The important
981 * part is that head cannot pass tail since we prevent
982 * aio_complete() from updating tail by holding
983 * ctx->completion_lock. Even if head is invalid, the check
984 * against ctx->completed_events below will make sure we do the
985 * safe/right thing.
986 */
987 ring = kmap_atomic(ctx->ring_pages[0]);
988 head = ring->head;
989 kunmap_atomic(ring);
990
991 refill_reqs_available(ctx, head, ctx->tail);
992 }
993
994 spin_unlock_irq(&ctx->completion_lock);
995}
996
1da177e4 997/* aio_get_req
57282d8f
KO
998 * Allocate a slot for an aio request.
999 * Returns NULL if no requests are free.
1da177e4 1000 */
04b2fa9f 1001static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1da177e4 1002{
04b2fa9f 1003 struct aio_kiocb *req;
a1c8eae7 1004
d856f32a
BL
1005 if (!get_reqs_available(ctx)) {
1006 user_refill_reqs_available(ctx);
1007 if (!get_reqs_available(ctx))
1008 return NULL;
1009 }
a1c8eae7 1010
0460fef2 1011 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1da177e4 1012 if (unlikely(!req))
a1c8eae7 1013 goto out_put;
1da177e4 1014
e34ecee2 1015 percpu_ref_get(&ctx->reqs);
75321b50 1016 INIT_LIST_HEAD(&req->ki_list);
9018ccc4 1017 refcount_set(&req->ki_refcnt, 0);
1da177e4 1018 req->ki_ctx = ctx;
080d676d 1019 return req;
a1c8eae7 1020out_put:
e1bdd5f2 1021 put_reqs_available(ctx, 1);
a1c8eae7 1022 return NULL;
1da177e4
LT
1023}
1024
d5470b59 1025static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1da177e4 1026{
db446a08 1027 struct aio_ring __user *ring = (void __user *)ctx_id;
abf137dd 1028 struct mm_struct *mm = current->mm;
65c24491 1029 struct kioctx *ctx, *ret = NULL;
db446a08
BL
1030 struct kioctx_table *table;
1031 unsigned id;
1032
1033 if (get_user(id, &ring->id))
1034 return NULL;
1da177e4 1035
abf137dd 1036 rcu_read_lock();
db446a08 1037 table = rcu_dereference(mm->ioctx_table);
abf137dd 1038
db446a08
BL
1039 if (!table || id >= table->nr)
1040 goto out;
1da177e4 1041
a538e3ff 1042 id = array_index_nospec(id, table->nr);
d0264c01 1043 ctx = rcu_dereference(table->table[id]);
f30d704f 1044 if (ctx && ctx->user_id == ctx_id) {
baf10564
AV
1045 if (percpu_ref_tryget_live(&ctx->users))
1046 ret = ctx;
db446a08
BL
1047 }
1048out:
abf137dd 1049 rcu_read_unlock();
65c24491 1050 return ret;
1da177e4
LT
1051}
1052
9018ccc4
CH
1053static inline void iocb_put(struct aio_kiocb *iocb)
1054{
1055 if (refcount_read(&iocb->ki_refcnt) == 0 ||
1056 refcount_dec_and_test(&iocb->ki_refcnt)) {
1057 percpu_ref_put(&iocb->ki_ctx->reqs);
1058 kmem_cache_free(kiocb_cachep, iocb);
1059 }
1060}
1061
1da177e4
LT
1062/* aio_complete
1063 * Called when the io request on the given iocb is complete.
1da177e4 1064 */
54843f87 1065static void aio_complete(struct aio_kiocb *iocb, long res, long res2)
1da177e4
LT
1066{
1067 struct kioctx *ctx = iocb->ki_ctx;
1da177e4 1068 struct aio_ring *ring;
21b40200 1069 struct io_event *ev_page, *event;
d856f32a 1070 unsigned tail, pos, head;
1da177e4 1071 unsigned long flags;
1da177e4 1072
0460fef2
KO
1073 /*
1074 * Add a completion event to the ring buffer. Must be done holding
4b30f07e 1075 * ctx->completion_lock to prevent other code from messing with the tail
0460fef2
KO
1076 * pointer since we might be called from irq context.
1077 */
1078 spin_lock_irqsave(&ctx->completion_lock, flags);
1079
58c85dc2 1080 tail = ctx->tail;
21b40200
KO
1081 pos = tail + AIO_EVENTS_OFFSET;
1082
58c85dc2 1083 if (++tail >= ctx->nr_events)
4bf69b2a 1084 tail = 0;
1da177e4 1085
58c85dc2 1086 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
1087 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1088
04b2fa9f 1089 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1da177e4
LT
1090 event->data = iocb->ki_user_data;
1091 event->res = res;
1092 event->res2 = res2;
1093
21b40200 1094 kunmap_atomic(ev_page);
58c85dc2 1095 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
1096
1097 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
04b2fa9f 1098 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
caf4167a 1099 res, res2);
1da177e4
LT
1100
1101 /* after flagging the request as done, we
1102 * must never even look at it again
1103 */
1104 smp_wmb(); /* make event visible before updating tail */
1105
58c85dc2 1106 ctx->tail = tail;
1da177e4 1107
58c85dc2 1108 ring = kmap_atomic(ctx->ring_pages[0]);
d856f32a 1109 head = ring->head;
21b40200 1110 ring->tail = tail;
e8e3c3d6 1111 kunmap_atomic(ring);
58c85dc2 1112 flush_dcache_page(ctx->ring_pages[0]);
1da177e4 1113
d856f32a
BL
1114 ctx->completed_events++;
1115 if (ctx->completed_events > 1)
1116 refill_reqs_available(ctx, head, tail);
0460fef2
KO
1117 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1118
21b40200 1119 pr_debug("added to ring %p at [%u]\n", iocb, tail);
8d1c98b0
DL
1120
1121 /*
1122 * Check if the user asked us to deliver the result through an
1123 * eventfd. The eventfd_signal() function is safe to be called
1124 * from IRQ context.
1125 */
54843f87 1126 if (iocb->ki_eventfd) {
8d1c98b0 1127 eventfd_signal(iocb->ki_eventfd, 1);
54843f87
CH
1128 eventfd_ctx_put(iocb->ki_eventfd);
1129 }
8d1c98b0 1130
6cb2a210
QB
1131 /*
1132 * We have to order our ring_info tail store above and test
1133 * of the wait list below outside the wait lock. This is
1134 * like in wake_up_bit() where clearing a bit has to be
1135 * ordered with the unlocked test.
1136 */
1137 smp_mb();
1138
1da177e4
LT
1139 if (waitqueue_active(&ctx->wait))
1140 wake_up(&ctx->wait);
9018ccc4 1141 iocb_put(iocb);
1da177e4
LT
1142}
1143
2be4e7de 1144/* aio_read_events_ring
a31ad380
KO
1145 * Pull an event off of the ioctx's event ring. Returns the number of
1146 * events fetched
1da177e4 1147 */
a31ad380
KO
1148static long aio_read_events_ring(struct kioctx *ctx,
1149 struct io_event __user *event, long nr)
1da177e4 1150{
1da177e4 1151 struct aio_ring *ring;
5ffac122 1152 unsigned head, tail, pos;
a31ad380
KO
1153 long ret = 0;
1154 int copy_ret;
1155
9c9ce763
DC
1156 /*
1157 * The mutex can block and wake us up and that will cause
1158 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1159 * and repeat. This should be rare enough that it doesn't cause
1160 * peformance issues. See the comment in read_events() for more detail.
1161 */
1162 sched_annotate_sleep();
58c85dc2 1163 mutex_lock(&ctx->ring_lock);
1da177e4 1164
fa8a53c3 1165 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
58c85dc2 1166 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1167 head = ring->head;
5ffac122 1168 tail = ring->tail;
a31ad380
KO
1169 kunmap_atomic(ring);
1170
2ff396be
JM
1171 /*
1172 * Ensure that once we've read the current tail pointer, that
1173 * we also see the events that were stored up to the tail.
1174 */
1175 smp_rmb();
1176
5ffac122 1177 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1da177e4 1178
5ffac122 1179 if (head == tail)
1da177e4
LT
1180 goto out;
1181
edfbbf38
BL
1182 head %= ctx->nr_events;
1183 tail %= ctx->nr_events;
1184
a31ad380
KO
1185 while (ret < nr) {
1186 long avail;
1187 struct io_event *ev;
1188 struct page *page;
1189
5ffac122
KO
1190 avail = (head <= tail ? tail : ctx->nr_events) - head;
1191 if (head == tail)
a31ad380
KO
1192 break;
1193
a31ad380 1194 pos = head + AIO_EVENTS_OFFSET;
58c85dc2 1195 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
a31ad380
KO
1196 pos %= AIO_EVENTS_PER_PAGE;
1197
d2988bd4
AV
1198 avail = min(avail, nr - ret);
1199 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1200
a31ad380
KO
1201 ev = kmap(page);
1202 copy_ret = copy_to_user(event + ret, ev + pos,
1203 sizeof(*ev) * avail);
1204 kunmap(page);
1205
1206 if (unlikely(copy_ret)) {
1207 ret = -EFAULT;
1208 goto out;
1209 }
1210
1211 ret += avail;
1212 head += avail;
58c85dc2 1213 head %= ctx->nr_events;
1da177e4 1214 }
1da177e4 1215
58c85dc2 1216 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1217 ring->head = head;
91d80a84 1218 kunmap_atomic(ring);
58c85dc2 1219 flush_dcache_page(ctx->ring_pages[0]);
a31ad380 1220
5ffac122 1221 pr_debug("%li h%u t%u\n", ret, head, tail);
a31ad380 1222out:
58c85dc2 1223 mutex_unlock(&ctx->ring_lock);
a31ad380 1224
1da177e4
LT
1225 return ret;
1226}
1227
a31ad380
KO
1228static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1229 struct io_event __user *event, long *i)
1da177e4 1230{
a31ad380 1231 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1da177e4 1232
a31ad380
KO
1233 if (ret > 0)
1234 *i += ret;
1da177e4 1235
a31ad380
KO
1236 if (unlikely(atomic_read(&ctx->dead)))
1237 ret = -EINVAL;
1da177e4 1238
a31ad380
KO
1239 if (!*i)
1240 *i = ret;
1da177e4 1241
a31ad380 1242 return ret < 0 || *i >= min_nr;
1da177e4
LT
1243}
1244
a31ad380 1245static long read_events(struct kioctx *ctx, long min_nr, long nr,
1da177e4 1246 struct io_event __user *event,
fa2e62a5 1247 ktime_t until)
1da177e4 1248{
a31ad380 1249 long ret = 0;
1da177e4 1250
a31ad380
KO
1251 /*
1252 * Note that aio_read_events() is being called as the conditional - i.e.
1253 * we're calling it after prepare_to_wait() has set task state to
1254 * TASK_INTERRUPTIBLE.
1255 *
1256 * But aio_read_events() can block, and if it blocks it's going to flip
1257 * the task state back to TASK_RUNNING.
1258 *
1259 * This should be ok, provided it doesn't flip the state back to
1260 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1261 * will only happen if the mutex_lock() call blocks, and we then find
1262 * the ringbuffer empty. So in practice we should be ok, but it's
1263 * something to be aware of when touching this code.
1264 */
2456e855 1265 if (until == 0)
5f785de5
FZ
1266 aio_read_events(ctx, min_nr, nr, event, &ret);
1267 else
1268 wait_event_interruptible_hrtimeout(ctx->wait,
1269 aio_read_events(ctx, min_nr, nr, event, &ret),
1270 until);
a31ad380 1271 return ret;
1da177e4
LT
1272}
1273
1da177e4
LT
1274/* sys_io_setup:
1275 * Create an aio_context capable of receiving at least nr_events.
1276 * ctxp must not point to an aio_context that already exists, and
1277 * must be initialized to 0 prior to the call. On successful
1278 * creation of the aio_context, *ctxp is filled in with the resulting
1279 * handle. May fail with -EINVAL if *ctxp is not initialized,
1280 * if the specified nr_events exceeds internal limits. May fail
1281 * with -EAGAIN if the specified nr_events exceeds the user's limit
1282 * of available events. May fail with -ENOMEM if insufficient kernel
1283 * resources are available. May fail with -EFAULT if an invalid
1284 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1285 * implemented.
1286 */
002c8976 1287SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1da177e4
LT
1288{
1289 struct kioctx *ioctx = NULL;
1290 unsigned long ctx;
1291 long ret;
1292
1293 ret = get_user(ctx, ctxp);
1294 if (unlikely(ret))
1295 goto out;
1296
1297 ret = -EINVAL;
d55b5fda 1298 if (unlikely(ctx || nr_events == 0)) {
acd88d4e 1299 pr_debug("EINVAL: ctx %lu nr_events %u\n",
d55b5fda 1300 ctx, nr_events);
1da177e4
LT
1301 goto out;
1302 }
1303
1304 ioctx = ioctx_alloc(nr_events);
1305 ret = PTR_ERR(ioctx);
1306 if (!IS_ERR(ioctx)) {
1307 ret = put_user(ioctx->user_id, ctxp);
a2e1859a 1308 if (ret)
e02ba72a 1309 kill_ioctx(current->mm, ioctx, NULL);
723be6e3 1310 percpu_ref_put(&ioctx->users);
1da177e4
LT
1311 }
1312
1313out:
1314 return ret;
1315}
1316
c00d2c7e
AV
1317#ifdef CONFIG_COMPAT
1318COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1319{
1320 struct kioctx *ioctx = NULL;
1321 unsigned long ctx;
1322 long ret;
1323
1324 ret = get_user(ctx, ctx32p);
1325 if (unlikely(ret))
1326 goto out;
1327
1328 ret = -EINVAL;
1329 if (unlikely(ctx || nr_events == 0)) {
1330 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1331 ctx, nr_events);
1332 goto out;
1333 }
1334
1335 ioctx = ioctx_alloc(nr_events);
1336 ret = PTR_ERR(ioctx);
1337 if (!IS_ERR(ioctx)) {
1338 /* truncating is ok because it's a user address */
1339 ret = put_user((u32)ioctx->user_id, ctx32p);
1340 if (ret)
1341 kill_ioctx(current->mm, ioctx, NULL);
1342 percpu_ref_put(&ioctx->users);
1343 }
1344
1345out:
1346 return ret;
1347}
1348#endif
1349
1da177e4
LT
1350/* sys_io_destroy:
1351 * Destroy the aio_context specified. May cancel any outstanding
1352 * AIOs and block on completion. Will fail with -ENOSYS if not
642b5123 1353 * implemented. May fail with -EINVAL if the context pointed to
1da177e4
LT
1354 * is invalid.
1355 */
002c8976 1356SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1da177e4
LT
1357{
1358 struct kioctx *ioctx = lookup_ioctx(ctx);
1359 if (likely(NULL != ioctx)) {
dc48e56d 1360 struct ctx_rq_wait wait;
fb2d4483 1361 int ret;
e02ba72a 1362
dc48e56d
JA
1363 init_completion(&wait.comp);
1364 atomic_set(&wait.count, 1);
1365
e02ba72a
AP
1366 /* Pass requests_done to kill_ioctx() where it can be set
1367 * in a thread-safe way. If we try to set it here then we have
1368 * a race condition if two io_destroy() called simultaneously.
1369 */
dc48e56d 1370 ret = kill_ioctx(current->mm, ioctx, &wait);
723be6e3 1371 percpu_ref_put(&ioctx->users);
e02ba72a
AP
1372
1373 /* Wait until all IO for the context are done. Otherwise kernel
1374 * keep using user-space buffers even if user thinks the context
1375 * is destroyed.
1376 */
fb2d4483 1377 if (!ret)
dc48e56d 1378 wait_for_completion(&wait.comp);
e02ba72a 1379
fb2d4483 1380 return ret;
1da177e4 1381 }
acd88d4e 1382 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1383 return -EINVAL;
1384}
1385
3c96c7f4
AV
1386static void aio_remove_iocb(struct aio_kiocb *iocb)
1387{
1388 struct kioctx *ctx = iocb->ki_ctx;
1389 unsigned long flags;
1390
1391 spin_lock_irqsave(&ctx->ctx_lock, flags);
1392 list_del(&iocb->ki_list);
1393 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1394}
1395
54843f87
CH
1396static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1397{
1398 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1399
3c96c7f4
AV
1400 if (!list_empty_careful(&iocb->ki_list))
1401 aio_remove_iocb(iocb);
1402
54843f87
CH
1403 if (kiocb->ki_flags & IOCB_WRITE) {
1404 struct inode *inode = file_inode(kiocb->ki_filp);
1405
1406 /*
1407 * Tell lockdep we inherited freeze protection from submission
1408 * thread.
1409 */
1410 if (S_ISREG(inode->i_mode))
1411 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1412 file_end_write(kiocb->ki_filp);
1413 }
1414
1415 fput(kiocb->ki_filp);
1416 aio_complete(iocb, res, res2);
1417}
1418
1419static int aio_prep_rw(struct kiocb *req, struct iocb *iocb)
1420{
1421 int ret;
1422
1423 req->ki_filp = fget(iocb->aio_fildes);
1424 if (unlikely(!req->ki_filp))
1425 return -EBADF;
1426 req->ki_complete = aio_complete_rw;
1427 req->ki_pos = iocb->aio_offset;
1428 req->ki_flags = iocb_flags(req->ki_filp);
1429 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1430 req->ki_flags |= IOCB_EVENTFD;
fc28724d 1431 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
d9a08a9e
AM
1432 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1433 /*
1434 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1435 * aio_reqprio is interpreted as an I/O scheduling
1436 * class and priority.
1437 */
1438 ret = ioprio_check_cap(iocb->aio_reqprio);
1439 if (ret) {
9a6d9a62 1440 pr_debug("aio ioprio check cap error: %d\n", ret);
53fffe29 1441 fput(req->ki_filp);
9a6d9a62 1442 return ret;
d9a08a9e
AM
1443 }
1444
1445 req->ki_ioprio = iocb->aio_reqprio;
1446 } else
1447 req->ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1448
54843f87
CH
1449 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1450 if (unlikely(ret))
1451 fput(req->ki_filp);
1452 return ret;
1453}
1454
89319d31
CH
1455static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1456 bool vectored, bool compat, struct iov_iter *iter)
eed4e51f 1457{
89319d31
CH
1458 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1459 size_t len = iocb->aio_nbytes;
1460
1461 if (!vectored) {
1462 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1463 *iovec = NULL;
1464 return ret;
1465 }
9d85cba7
JM
1466#ifdef CONFIG_COMPAT
1467 if (compat)
89319d31
CH
1468 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1469 iter);
9d85cba7 1470#endif
89319d31 1471 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
eed4e51f
BP
1472}
1473
9061d14a 1474static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
89319d31
CH
1475{
1476 switch (ret) {
1477 case -EIOCBQUEUED:
9061d14a 1478 break;
89319d31
CH
1479 case -ERESTARTSYS:
1480 case -ERESTARTNOINTR:
1481 case -ERESTARTNOHAND:
1482 case -ERESTART_RESTARTBLOCK:
1483 /*
1484 * There's no easy way to restart the syscall since other AIO's
1485 * may be already running. Just fail this IO with EINTR.
1486 */
1487 ret = -EINTR;
1488 /*FALLTHRU*/
1489 default:
54843f87 1490 aio_complete_rw(req, ret, 0);
89319d31
CH
1491 }
1492}
1493
1494static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1495 bool compat)
1da177e4 1496{
00fefb9c 1497 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
293bc982 1498 struct iov_iter iter;
54843f87 1499 struct file *file;
89319d31 1500 ssize_t ret;
1da177e4 1501
54843f87
CH
1502 ret = aio_prep_rw(req, iocb);
1503 if (ret)
1504 return ret;
1505 file = req->ki_filp;
1506
1507 ret = -EBADF;
89319d31 1508 if (unlikely(!(file->f_mode & FMODE_READ)))
54843f87
CH
1509 goto out_fput;
1510 ret = -EINVAL;
89319d31 1511 if (unlikely(!file->f_op->read_iter))
54843f87 1512 goto out_fput;
73a7075e 1513
89319d31
CH
1514 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1515 if (ret)
54843f87 1516 goto out_fput;
89319d31
CH
1517 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1518 if (!ret)
9061d14a 1519 aio_rw_done(req, call_read_iter(file, req, &iter));
89319d31 1520 kfree(iovec);
54843f87 1521out_fput:
9061d14a 1522 if (unlikely(ret))
54843f87 1523 fput(file);
89319d31
CH
1524 return ret;
1525}
73a7075e 1526
89319d31
CH
1527static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1528 bool compat)
1529{
89319d31
CH
1530 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1531 struct iov_iter iter;
54843f87 1532 struct file *file;
89319d31 1533 ssize_t ret;
41ef4eb8 1534
54843f87
CH
1535 ret = aio_prep_rw(req, iocb);
1536 if (ret)
1537 return ret;
1538 file = req->ki_filp;
1539
1540 ret = -EBADF;
89319d31 1541 if (unlikely(!(file->f_mode & FMODE_WRITE)))
54843f87
CH
1542 goto out_fput;
1543 ret = -EINVAL;
89319d31 1544 if (unlikely(!file->f_op->write_iter))
54843f87 1545 goto out_fput;
1da177e4 1546
89319d31
CH
1547 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1548 if (ret)
54843f87 1549 goto out_fput;
89319d31
CH
1550 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1551 if (!ret) {
70fe2f48 1552 /*
92ce4728 1553 * Open-code file_start_write here to grab freeze protection,
54843f87
CH
1554 * which will be released by another thread in
1555 * aio_complete_rw(). Fool lockdep by telling it the lock got
1556 * released so that it doesn't complain about the held lock when
1557 * we return to userspace.
70fe2f48 1558 */
92ce4728
CH
1559 if (S_ISREG(file_inode(file)->i_mode)) {
1560 __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
a12f1ae6 1561 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
92ce4728
CH
1562 }
1563 req->ki_flags |= IOCB_WRITE;
9061d14a 1564 aio_rw_done(req, call_write_iter(file, req, &iter));
41ef4eb8 1565 }
89319d31 1566 kfree(iovec);
54843f87 1567out_fput:
9061d14a 1568 if (unlikely(ret))
54843f87 1569 fput(file);
89319d31 1570 return ret;
1da177e4
LT
1571}
1572
a3c0d439
CH
1573static void aio_fsync_work(struct work_struct *work)
1574{
1575 struct fsync_iocb *req = container_of(work, struct fsync_iocb, work);
1576 int ret;
1577
1578 ret = vfs_fsync(req->file, req->datasync);
1579 fput(req->file);
1580 aio_complete(container_of(req, struct aio_kiocb, fsync), ret, 0);
1581}
1582
1583static int aio_fsync(struct fsync_iocb *req, struct iocb *iocb, bool datasync)
1584{
1585 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1586 iocb->aio_rw_flags))
1587 return -EINVAL;
a11e1d43 1588
a3c0d439
CH
1589 req->file = fget(iocb->aio_fildes);
1590 if (unlikely(!req->file))
1591 return -EBADF;
1592 if (unlikely(!req->file->f_op->fsync)) {
1593 fput(req->file);
1594 return -EINVAL;
1595 }
1596
1597 req->datasync = datasync;
1598 INIT_WORK(&req->work, aio_fsync_work);
1599 schedule_work(&req->work);
9061d14a 1600 return 0;
a3c0d439
CH
1601}
1602
bfe4037e
CH
1603static inline void aio_poll_complete(struct aio_kiocb *iocb, __poll_t mask)
1604{
1605 struct file *file = iocb->poll.file;
1606
1607 aio_complete(iocb, mangle_poll(mask), 0);
1608 fput(file);
1609}
1610
1611static void aio_poll_complete_work(struct work_struct *work)
1612{
1613 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1614 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1615 struct poll_table_struct pt = { ._key = req->events };
1616 struct kioctx *ctx = iocb->ki_ctx;
1617 __poll_t mask = 0;
1618
1619 if (!READ_ONCE(req->cancelled))
1620 mask = vfs_poll(req->file, &pt) & req->events;
1621
1622 /*
1623 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1624 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1625 * synchronize with them. In the cancellation case the list_del_init
1626 * itself is not actually needed, but harmless so we keep it in to
1627 * avoid further branches in the fast path.
1628 */
1629 spin_lock_irq(&ctx->ctx_lock);
1630 if (!mask && !READ_ONCE(req->cancelled)) {
1631 add_wait_queue(req->head, &req->wait);
1632 spin_unlock_irq(&ctx->ctx_lock);
1633 return;
1634 }
1635 list_del_init(&iocb->ki_list);
1636 spin_unlock_irq(&ctx->ctx_lock);
1637
1638 aio_poll_complete(iocb, mask);
1639}
1640
1641/* assumes we are called with irqs disabled */
1642static int aio_poll_cancel(struct kiocb *iocb)
1643{
1644 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1645 struct poll_iocb *req = &aiocb->poll;
1646
1647 spin_lock(&req->head->lock);
1648 WRITE_ONCE(req->cancelled, true);
1649 if (!list_empty(&req->wait.entry)) {
1650 list_del_init(&req->wait.entry);
1651 schedule_work(&aiocb->poll.work);
1652 }
1653 spin_unlock(&req->head->lock);
1654
1655 return 0;
1656}
1657
1658static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1659 void *key)
1660{
1661 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
e8693bcf 1662 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
bfe4037e 1663 __poll_t mask = key_to_poll(key);
f8250934 1664 unsigned long flags;
bfe4037e
CH
1665
1666 req->woken = true;
1667
1668 /* for instances that support it check for an event match first: */
e8693bcf
CH
1669 if (mask) {
1670 if (!(mask & req->events))
1671 return 0;
1672
f8250934
BVA
1673 /*
1674 * Try to complete the iocb inline if we can. Use
1675 * irqsave/irqrestore because not all filesystems (e.g. fuse)
1676 * call this function with IRQs disabled and because IRQs
1677 * have to be disabled before ctx_lock is obtained.
1678 */
1679 if (spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
e8693bcf 1680 list_del(&iocb->ki_list);
f8250934 1681 spin_unlock_irqrestore(&iocb->ki_ctx->ctx_lock, flags);
e8693bcf
CH
1682
1683 list_del_init(&req->wait.entry);
1684 aio_poll_complete(iocb, mask);
1685 return 1;
1686 }
1687 }
bfe4037e
CH
1688
1689 list_del_init(&req->wait.entry);
1690 schedule_work(&req->work);
1691 return 1;
1692}
1693
1694struct aio_poll_table {
1695 struct poll_table_struct pt;
1696 struct aio_kiocb *iocb;
1697 int error;
1698};
1699
1700static void
1701aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1702 struct poll_table_struct *p)
1703{
1704 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1705
1706 /* multiple wait queues per file are not supported */
1707 if (unlikely(pt->iocb->poll.head)) {
1708 pt->error = -EINVAL;
1709 return;
1710 }
1711
1712 pt->error = 0;
1713 pt->iocb->poll.head = head;
1714 add_wait_queue(head, &pt->iocb->poll.wait);
1715}
1716
1717static ssize_t aio_poll(struct aio_kiocb *aiocb, struct iocb *iocb)
1718{
1719 struct kioctx *ctx = aiocb->ki_ctx;
1720 struct poll_iocb *req = &aiocb->poll;
1721 struct aio_poll_table apt;
1722 __poll_t mask;
1723
1724 /* reject any unknown events outside the normal event mask. */
1725 if ((u16)iocb->aio_buf != iocb->aio_buf)
1726 return -EINVAL;
1727 /* reject fields that are not defined for poll */
1728 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1729 return -EINVAL;
1730
1731 INIT_WORK(&req->work, aio_poll_complete_work);
1732 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1733 req->file = fget(iocb->aio_fildes);
1734 if (unlikely(!req->file))
1735 return -EBADF;
1736
1737 apt.pt._qproc = aio_poll_queue_proc;
1738 apt.pt._key = req->events;
1739 apt.iocb = aiocb;
1740 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1741
1742 /* initialized the list so that we can do list_empty checks */
1743 INIT_LIST_HEAD(&req->wait.entry);
1744 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1745
1746 /* one for removal from waitqueue, one for this function */
1747 refcount_set(&aiocb->ki_refcnt, 2);
1748
1749 mask = vfs_poll(req->file, &apt.pt) & req->events;
1750 if (unlikely(!req->head)) {
1751 /* we did not manage to set up a waitqueue, done */
1752 goto out;
1753 }
1754
1755 spin_lock_irq(&ctx->ctx_lock);
1756 spin_lock(&req->head->lock);
1757 if (req->woken) {
1758 /* wake_up context handles the rest */
1759 mask = 0;
1760 apt.error = 0;
1761 } else if (mask || apt.error) {
1762 /* if we get an error or a mask we are done */
1763 WARN_ON_ONCE(list_empty(&req->wait.entry));
1764 list_del_init(&req->wait.entry);
1765 } else {
1766 /* actually waiting for an event */
1767 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1768 aiocb->ki_cancel = aio_poll_cancel;
1769 }
1770 spin_unlock(&req->head->lock);
1771 spin_unlock_irq(&ctx->ctx_lock);
1772
1773out:
1774 if (unlikely(apt.error)) {
1775 fput(req->file);
1776 return apt.error;
1777 }
1778
1779 if (mask)
1780 aio_poll_complete(aiocb, mask);
1781 iocb_put(aiocb);
1782 return 0;
1783}
1784
d5470b59 1785static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
95af8496 1786 bool compat)
1da177e4 1787{
04b2fa9f 1788 struct aio_kiocb *req;
95af8496 1789 struct iocb iocb;
1da177e4
LT
1790 ssize_t ret;
1791
95af8496
AV
1792 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1793 return -EFAULT;
1794
1da177e4 1795 /* enforce forwards compatibility on users */
95af8496 1796 if (unlikely(iocb.aio_reserved2)) {
caf4167a 1797 pr_debug("EINVAL: reserve field set\n");
1da177e4
LT
1798 return -EINVAL;
1799 }
1800
1801 /* prevent overflows */
1802 if (unlikely(
95af8496
AV
1803 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1804 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1805 ((ssize_t)iocb.aio_nbytes < 0)
1da177e4 1806 )) {
acd88d4e 1807 pr_debug("EINVAL: overflow check\n");
1da177e4
LT
1808 return -EINVAL;
1809 }
1810
41ef4eb8 1811 req = aio_get_req(ctx);
1d98ebfc 1812 if (unlikely(!req))
1da177e4 1813 return -EAGAIN;
1d98ebfc 1814
95af8496 1815 if (iocb.aio_flags & IOCB_FLAG_RESFD) {
9c3060be
DL
1816 /*
1817 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1818 * instance of the file* now. The file descriptor must be
1819 * an eventfd() fd, and will be signaled for each completed
1820 * event using the eventfd_signal() function.
1821 */
95af8496 1822 req->ki_eventfd = eventfd_ctx_fdget((int) iocb.aio_resfd);
801678c5 1823 if (IS_ERR(req->ki_eventfd)) {
9c3060be 1824 ret = PTR_ERR(req->ki_eventfd);
87c3a86e 1825 req->ki_eventfd = NULL;
9c3060be
DL
1826 goto out_put_req;
1827 }
9830f4be
GR
1828 }
1829
8a660890 1830 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1da177e4 1831 if (unlikely(ret)) {
caf4167a 1832 pr_debug("EFAULT: aio_key\n");
1da177e4
LT
1833 goto out_put_req;
1834 }
1835
04b2fa9f 1836 req->ki_user_iocb = user_iocb;
95af8496 1837 req->ki_user_data = iocb.aio_data;
1da177e4 1838
95af8496 1839 switch (iocb.aio_lio_opcode) {
89319d31 1840 case IOCB_CMD_PREAD:
95af8496 1841 ret = aio_read(&req->rw, &iocb, false, compat);
89319d31
CH
1842 break;
1843 case IOCB_CMD_PWRITE:
95af8496 1844 ret = aio_write(&req->rw, &iocb, false, compat);
89319d31
CH
1845 break;
1846 case IOCB_CMD_PREADV:
95af8496 1847 ret = aio_read(&req->rw, &iocb, true, compat);
89319d31
CH
1848 break;
1849 case IOCB_CMD_PWRITEV:
95af8496 1850 ret = aio_write(&req->rw, &iocb, true, compat);
89319d31 1851 break;
a3c0d439 1852 case IOCB_CMD_FSYNC:
95af8496 1853 ret = aio_fsync(&req->fsync, &iocb, false);
a3c0d439
CH
1854 break;
1855 case IOCB_CMD_FDSYNC:
95af8496 1856 ret = aio_fsync(&req->fsync, &iocb, true);
ac060cba 1857 break;
bfe4037e
CH
1858 case IOCB_CMD_POLL:
1859 ret = aio_poll(req, &iocb);
1860 break;
89319d31 1861 default:
95af8496 1862 pr_debug("invalid aio operation %d\n", iocb.aio_lio_opcode);
89319d31
CH
1863 ret = -EINVAL;
1864 break;
1865 }
41003a7b 1866
92ce4728 1867 /*
9061d14a
AV
1868 * If ret is 0, we'd either done aio_complete() ourselves or have
1869 * arranged for that to be done asynchronously. Anything non-zero
1870 * means that we need to destroy req ourselves.
92ce4728 1871 */
9061d14a 1872 if (ret)
89319d31 1873 goto out_put_req;
1da177e4 1874 return 0;
1da177e4 1875out_put_req:
e1bdd5f2 1876 put_reqs_available(ctx, 1);
e34ecee2 1877 percpu_ref_put(&ctx->reqs);
54843f87
CH
1878 if (req->ki_eventfd)
1879 eventfd_ctx_put(req->ki_eventfd);
1880 kmem_cache_free(kiocb_cachep, req);
1da177e4
LT
1881 return ret;
1882}
1883
67ba049f
AV
1884/* sys_io_submit:
1885 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1886 * the number of iocbs queued. May return -EINVAL if the aio_context
1887 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1888 * *iocbpp[0] is not properly initialized, if the operation specified
1889 * is invalid for the file descriptor in the iocb. May fail with
1890 * -EFAULT if any of the data structures point to invalid data. May
1891 * fail with -EBADF if the file descriptor specified in the first
1892 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1893 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1894 * fail with -ENOSYS if not implemented.
1895 */
1896SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1897 struct iocb __user * __user *, iocbpp)
1da177e4
LT
1898{
1899 struct kioctx *ctx;
1900 long ret = 0;
080d676d 1901 int i = 0;
9f5b9425 1902 struct blk_plug plug;
1da177e4
LT
1903
1904 if (unlikely(nr < 0))
1905 return -EINVAL;
1906
1da177e4
LT
1907 ctx = lookup_ioctx(ctx_id);
1908 if (unlikely(!ctx)) {
caf4167a 1909 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1910 return -EINVAL;
1911 }
1912
1da92779
AV
1913 if (nr > ctx->nr_events)
1914 nr = ctx->nr_events;
1915
9f5b9425 1916 blk_start_plug(&plug);
67ba049f 1917 for (i = 0; i < nr; i++) {
1da177e4 1918 struct iocb __user *user_iocb;
1da177e4 1919
67ba049f 1920 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1da177e4
LT
1921 ret = -EFAULT;
1922 break;
1923 }
1924
67ba049f 1925 ret = io_submit_one(ctx, user_iocb, false);
1da177e4
LT
1926 if (ret)
1927 break;
1928 }
9f5b9425 1929 blk_finish_plug(&plug);
1da177e4 1930
723be6e3 1931 percpu_ref_put(&ctx->users);
1da177e4
LT
1932 return i ? i : ret;
1933}
1934
c00d2c7e 1935#ifdef CONFIG_COMPAT
c00d2c7e 1936COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
67ba049f 1937 int, nr, compat_uptr_t __user *, iocbpp)
c00d2c7e 1938{
67ba049f
AV
1939 struct kioctx *ctx;
1940 long ret = 0;
1941 int i = 0;
1942 struct blk_plug plug;
c00d2c7e
AV
1943
1944 if (unlikely(nr < 0))
1945 return -EINVAL;
1946
67ba049f
AV
1947 ctx = lookup_ioctx(ctx_id);
1948 if (unlikely(!ctx)) {
1949 pr_debug("EINVAL: invalid context id\n");
1950 return -EINVAL;
1951 }
1952
1da92779
AV
1953 if (nr > ctx->nr_events)
1954 nr = ctx->nr_events;
1955
67ba049f
AV
1956 blk_start_plug(&plug);
1957 for (i = 0; i < nr; i++) {
1958 compat_uptr_t user_iocb;
1959
1960 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1961 ret = -EFAULT;
1962 break;
1963 }
1964
1965 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1966 if (ret)
1967 break;
1968 }
1969 blk_finish_plug(&plug);
1970
1971 percpu_ref_put(&ctx->users);
1972 return i ? i : ret;
c00d2c7e
AV
1973}
1974#endif
1975
1da177e4
LT
1976/* lookup_kiocb
1977 * Finds a given iocb for cancellation.
1da177e4 1978 */
04b2fa9f 1979static struct aio_kiocb *
f3a2752a 1980lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb)
1da177e4 1981{
04b2fa9f 1982 struct aio_kiocb *kiocb;
d00689af
ZB
1983
1984 assert_spin_locked(&ctx->ctx_lock);
1985
1da177e4 1986 /* TODO: use a hash or array, this sucks. */
04b2fa9f
CH
1987 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1988 if (kiocb->ki_user_iocb == iocb)
1da177e4
LT
1989 return kiocb;
1990 }
1991 return NULL;
1992}
1993
1994/* sys_io_cancel:
1995 * Attempts to cancel an iocb previously passed to io_submit. If
1996 * the operation is successfully cancelled, the resulting event is
1997 * copied into the memory pointed to by result without being placed
1998 * into the completion queue and 0 is returned. May fail with
1999 * -EFAULT if any of the data structures pointed to are invalid.
2000 * May fail with -EINVAL if aio_context specified by ctx_id is
2001 * invalid. May fail with -EAGAIN if the iocb specified was not
2002 * cancelled. Will fail with -ENOSYS if not implemented.
2003 */
002c8976
HC
2004SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2005 struct io_event __user *, result)
1da177e4 2006{
1da177e4 2007 struct kioctx *ctx;
04b2fa9f 2008 struct aio_kiocb *kiocb;
888933f8 2009 int ret = -EINVAL;
1da177e4 2010 u32 key;
1da177e4 2011
f3a2752a 2012 if (unlikely(get_user(key, &iocb->aio_key)))
1da177e4 2013 return -EFAULT;
f3a2752a
CH
2014 if (unlikely(key != KIOCB_KEY))
2015 return -EINVAL;
1da177e4
LT
2016
2017 ctx = lookup_ioctx(ctx_id);
2018 if (unlikely(!ctx))
2019 return -EINVAL;
2020
2021 spin_lock_irq(&ctx->ctx_lock);
f3a2752a 2022 kiocb = lookup_kiocb(ctx, iocb);
888933f8
CH
2023 if (kiocb) {
2024 ret = kiocb->ki_cancel(&kiocb->rw);
2025 list_del_init(&kiocb->ki_list);
2026 }
1da177e4
LT
2027 spin_unlock_irq(&ctx->ctx_lock);
2028
906b973c 2029 if (!ret) {
bec68faa
KO
2030 /*
2031 * The result argument is no longer used - the io_event is
2032 * always delivered via the ring buffer. -EINPROGRESS indicates
2033 * cancellation is progress:
906b973c 2034 */
bec68faa 2035 ret = -EINPROGRESS;
906b973c 2036 }
1da177e4 2037
723be6e3 2038 percpu_ref_put(&ctx->users);
1da177e4
LT
2039
2040 return ret;
2041}
2042
fa2e62a5
DD
2043static long do_io_getevents(aio_context_t ctx_id,
2044 long min_nr,
2045 long nr,
2046 struct io_event __user *events,
2047 struct timespec64 *ts)
2048{
2049 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2050 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2051 long ret = -EINVAL;
2052
2053 if (likely(ioctx)) {
2054 if (likely(min_nr <= nr && min_nr >= 0))
2055 ret = read_events(ioctx, min_nr, nr, events, until);
2056 percpu_ref_put(&ioctx->users);
2057 }
2058
2059 return ret;
2060}
2061
1da177e4
LT
2062/* io_getevents:
2063 * Attempts to read at least min_nr events and up to nr events from
642b5123
ST
2064 * the completion queue for the aio_context specified by ctx_id. If
2065 * it succeeds, the number of read events is returned. May fail with
2066 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2067 * out of range, if timeout is out of range. May fail with -EFAULT
2068 * if any of the memory specified is invalid. May return 0 or
2069 * < min_nr if the timeout specified by timeout has elapsed
2070 * before sufficient events are available, where timeout == NULL
2071 * specifies an infinite timeout. Note that the timeout pointed to by
6900807c 2072 * timeout is relative. Will fail with -ENOSYS if not implemented.
1da177e4 2073 */
002c8976
HC
2074SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2075 long, min_nr,
2076 long, nr,
2077 struct io_event __user *, events,
2078 struct timespec __user *, timeout)
1da177e4 2079{
fa2e62a5 2080 struct timespec64 ts;
7a074e96
CH
2081 int ret;
2082
2083 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2084 return -EFAULT;
2085
2086 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2087 if (!ret && signal_pending(current))
2088 ret = -EINTR;
2089 return ret;
2090}
1da177e4 2091
9ba546c0
CH
2092struct __aio_sigset {
2093 const sigset_t __user *sigmask;
2094 size_t sigsetsize;
2095};
2096
7a074e96
CH
2097SYSCALL_DEFINE6(io_pgetevents,
2098 aio_context_t, ctx_id,
2099 long, min_nr,
2100 long, nr,
2101 struct io_event __user *, events,
2102 struct timespec __user *, timeout,
2103 const struct __aio_sigset __user *, usig)
2104{
2105 struct __aio_sigset ksig = { NULL, };
2106 sigset_t ksigmask, sigsaved;
2107 struct timespec64 ts;
2108 int ret;
2109
2110 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2111 return -EFAULT;
2112
2113 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2114 return -EFAULT;
2115
2116 if (ksig.sigmask) {
2117 if (ksig.sigsetsize != sizeof(sigset_t))
2118 return -EINVAL;
2119 if (copy_from_user(&ksigmask, ksig.sigmask, sizeof(ksigmask)))
fa2e62a5 2120 return -EFAULT;
7a074e96
CH
2121 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2122 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2123 }
2124
2125 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2126 if (signal_pending(current)) {
2127 if (ksig.sigmask) {
2128 current->saved_sigmask = sigsaved;
2129 set_restore_sigmask();
2130 }
2131
2132 if (!ret)
2133 ret = -ERESTARTNOHAND;
2134 } else {
2135 if (ksig.sigmask)
2136 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1da177e4 2137 }
fa2e62a5 2138
7a074e96 2139 return ret;
1da177e4 2140}
c00d2c7e
AV
2141
2142#ifdef CONFIG_COMPAT
2143COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
2144 compat_long_t, min_nr,
2145 compat_long_t, nr,
2146 struct io_event __user *, events,
9afc5eee 2147 struct old_timespec32 __user *, timeout)
c00d2c7e 2148{
fa2e62a5 2149 struct timespec64 t;
7a074e96
CH
2150 int ret;
2151
9afc5eee 2152 if (timeout && get_old_timespec32(&t, timeout))
7a074e96
CH
2153 return -EFAULT;
2154
2155 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2156 if (!ret && signal_pending(current))
2157 ret = -EINTR;
2158 return ret;
2159}
2160
c00d2c7e 2161
7a074e96
CH
2162struct __compat_aio_sigset {
2163 compat_sigset_t __user *sigmask;
2164 compat_size_t sigsetsize;
2165};
2166
2167COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2168 compat_aio_context_t, ctx_id,
2169 compat_long_t, min_nr,
2170 compat_long_t, nr,
2171 struct io_event __user *, events,
9afc5eee 2172 struct old_timespec32 __user *, timeout,
7a074e96
CH
2173 const struct __compat_aio_sigset __user *, usig)
2174{
2175 struct __compat_aio_sigset ksig = { NULL, };
2176 sigset_t ksigmask, sigsaved;
2177 struct timespec64 t;
2178 int ret;
2179
9afc5eee 2180 if (timeout && get_old_timespec32(&t, timeout))
7a074e96
CH
2181 return -EFAULT;
2182
2183 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2184 return -EFAULT;
2185
2186 if (ksig.sigmask) {
2187 if (ksig.sigsetsize != sizeof(compat_sigset_t))
2188 return -EINVAL;
2189 if (get_compat_sigset(&ksigmask, ksig.sigmask))
c00d2c7e 2190 return -EFAULT;
7a074e96
CH
2191 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2192 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2193 }
c00d2c7e 2194
7a074e96
CH
2195 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2196 if (signal_pending(current)) {
2197 if (ksig.sigmask) {
2198 current->saved_sigmask = sigsaved;
2199 set_restore_sigmask();
2200 }
2201 if (!ret)
2202 ret = -ERESTARTNOHAND;
2203 } else {
2204 if (ksig.sigmask)
2205 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
c00d2c7e 2206 }
fa2e62a5 2207
7a074e96 2208 return ret;
c00d2c7e
AV
2209}
2210#endif